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Abstract— Mobile Ad hoc Networks (MANETs) are susceptible to 
various node misbehaviors due to their unique features, such as 
highly dynamic network topology, rigorous power constraints and 
error-prone transmission media. Significant research efforts have 
been made to address the problem of misbehavior detection. 
However, little research work has been done to distinguish truly 
malicious behaviors from the faulty behaviors. Both the malicious 
behaviors and the faulty behaviors are generally equally treated 
as misbehaviors without any further investigation by most of the 
traditional misbehavior detection mechanisms. In this paper, we 
propose and develop a policy-based malicious peer detection 
mechanism, in which context information, such as communication 
channel status, buffer status, and transmission power level, is 
collected and then used to determine whether the misbehavior is 
likely a result of malicious activity or not. Simulation results il-
lustrate that the policy-based malicious peer detection mechanism 
is able to distinguish malicious peers from faulty peers with high 
confidence. Moreover, the mechanism converges to a consistent 
view of malicious nodes amongst all the nodes with a limited 
communication overhead. 
 

I. INTRODUCTION 
MOBILE ad hoc network (MANET) is a self-configuring 
network of mobile devices that are connected by wireless 

links. In a MANET, each device is willing to serve as a router 
and share its transmission power with other devices because it 
is required to forward traffic that is irrelevant to its own inter-
est.  

Unlike the traditional wired networks, MANETs are gener-
ally more susceptible to malicious attacks as well as failures. 
Moreover, there are various sophisticated attacks that are dif-
ficult to identify [1, 2, 3]. Another threat comes from the 
compromised nodes that are taken over by an adversary.  These 
compromised nodes can interfere with almost all of the network 
operations, such as route discovery, secure key management, 
and packet forwarding. Therefore, misbehavior surveillance 
and detection is a crucial method that has been widely used in 
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MANETs to protect them from both external attackers and 
internal malicious nodes (see, for instance, [4, 6, 7]).  

The misbehaviors observed by neighboring peers typically 
include dropping, modification, and misrouting of packets at 
the network layer, as well as false Request/Clears in the MAC 
layer [8]. However, many of these events may also occur due to 
environmental and mobility related reasons, not just malicious 
intent. For instance, a packet may be dropped when a node’s 
buffer becomes full because of an inability to forward packets 
on a noisy channel. Even if they are both regarded as misbe-
haviors, malicious behaviors are far more dangerous than the 
faulty behaviors, because the goal of the malicious attackers is 
to disturb the network operations by carrying out the misbe-
haviors, whereas faulty nodes do not aim to intentionally dis-
rupt the network and their effects are generally self limiting. 
Hence, it is essential that malicious attackers and faulty nodes 
be properly classified.  

Significant research has been done on various node misbe-
haviors [4, 5, 6] and the corresponding countermeasures that 
can be done against them [7, 8, 9]. However, little research has 
been done to distinguish truly malicious behaviors from faulty 
behaviors, which is the problem that we address in this paper. 
We use context information, such as communication channel 
status (busy/idle), buffer status (full/not full), and transmission 
power level, to judge whether the misbehavior is the result of 
malicious intent or not. In our proposed mechanism, the peers 
in a MANET observe and record the abnormal behaviors of 
their neighbors in a manner similar to existing methods [4, 7, 8]. 
In contrast to most existing approaches however, each peer also 
simultaneously collects the context information within which 
the abnormal behaviors occur. When each peer decides if a 
node is malicious based on observing abnormal behaviors, it 
factors in the context information in a manner specified by a 
policy. In other words, the policy specifies, based on the con-
text, how “abnormal” is defined. Moreover, all the nodes will 
exchange their observed abnormal behaviors as well as the 
observed context information with their neighbors. Therefore, 
each node can then make use of both local context information 
and remote context information to better understand the cir-
cumstance under which the misbehavior has occurred.   

The remainder of this paper is organized as follows. In Sec-
tion II, we present related work on misbehavior detection in 
MANETs. The malicious peer detection mechanism is de-
scribed in Section III. In Section IV, we validate our proposed 
mechanism by various simulation scenarios, followed by con-
clusions in Section V. 
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II. RELATED WORK 
Misbehavior detection is a long studied topic in the security 

research, and the work on misbehavior detection (may also be 
called as intrusion detection in some cases) has produced a very 
rich literature in traditional [9, 10], P2P [11] and ad hoc net-
works [4, 7, 8]. In the latter, most contributions assume that 
there is no fixed network and security infrastructure that mis-
behavior detection mechanism can rely on. 

Intrusion Detection Systems (IDS) provide an important 
framework for detecting various node misbehaviors in 
MANETs. Several approaches have been proposed to build 
IDSs on each individual peer due to the lack of a fixed infra-
structure [7, 13, 14]. In these, each node is equipped with an 
IDS sensor, and each IDS sensor is assumed to be always 
monitoring the network traffic, which is not energy efficient 
given the limited battery power that each node has in MANETs. 
On the contrary, Huang et al. [15] propose a cooperative in-
trusion detection framework in which clusters are formed and 
the nodes in each cluster will take over the intrusion detection 
operations in turn. This cluster-based approach can definitely 
reduce the power consumption for each node. 

Routing misbehavior is another kind of malicious activity 
that is common in ad hoc networks. Marti et al. [4] introduce 
two related techniques, namely watchdog and pathrater, to 
detect and isolate misbehaving nodes, which are nodes that do 
not forward packets. There are also other proposed solutions 
that aim to cope with the routing misbehaviors [16, 17, 18]. 

In previous work [12, 19], we have described a gossip-based 
misbehavior detection algorithm in which the outlier detection 
method is adopted to identify various node misbehaviors. 
Weighted voting and the Dempster-Shafer Theory of evidence 
(DST) are used to combine multiple local views of misbehav-
ing nodes from different nodes. However, none of these pre-
vious works endeavored to reveal the difference between the 
malicious peers and the faulty peers, both of which may be 
treated as misbehaving nodes with no difference.  

III. MALICIOUS PEER DETECTION USING CONTEXT 
INFORMATION 

The goal of the malicious peer detection system is to prop-
erly identify the malicious peers in MANETs by using the 
distributed misbehavior detection mechanism as well as the 
context information collection scheme. The distributed mis-
behavior detection mechanism is similar to the gossip-based 
outlier detection mechanism [12] in which a certain number of 
outliers are identified in terms of some abnormal behaviors 
observed by neighbors, such as packet drops, misroutes or 
modifications. Gossiping in MANETs generally refers to the 
repetitive probabilistic exchange of messages between two 
peers in MANETs. In the context collection scheme, each node 
observes and records the current network and node context 
information, such as channel status, buffer status and trans-
mission signal strength. When the distributed misbehavior 
detection mechanism attempts to identify the malicious peers, 
the collected context information will be utilized to help decide 

which nodes are truly malicious nodes and which nodes are 
merely faulty nodes that randomly exhibit misbehaviors. 

A. System Architecture 

Figure 1 illustrates the system architecture with three com-
ponents: the Misbehavior Detector, a Trust Manager, and a 
Policy Manager.  As this figure shows, both the Misbehavior 
Detector and Policy Manager actively sense the network. 
However, the Misbehavior Detector aims to observe and record 
the abnormal behaviors of neighbors, whereas the Policy 
Manager attempts to detect changes in network context. Once 
the Misbehavior Detector identifies misbehaving nodes, it 
notifies the Trust Manager of its findings. Then, the Trust 
Manager will update the trustworthiness value based on the 
information about misbehaviors. The Misbehavior Detector 
will get feedback from both the Trust Manager and Route 
Manager once they finish updating the relevant information. 
On the other hand, the other information stream collected from 
the network, which is the network context, will be processed 
and reasoned by the Policy Manager. If it finds out that the 
policies should be updated, the Policy Manager will propagate 
the updated policies to all other components. 

B. Formulation 
A node in MANETs is defined as a system entity that can 

observe the behaviors of other entities within its radio trans-
mission range. A neighbor of a node N is defined as a node that 
is located within N’s radio transmission range. We assume that 
each node transmits at full power. If the underlying MAC 
protocol uses variable power settings, then a neighbor is a node 
that can listen to the transmission. 

A node not only observes the abnormal behaviors that its 
neighbors exhibit, it will also keep track of the total number of 

Figure 1. The system architecture comprises three main compoenents: a 
misbehavior detector, a policy manager and a trust manager. 



 

packets that each node has received. The rate of abnormal 
traffic over the total traffic is an appropriate criterion for a node 
to decide if its neighbor is potentially a malicious peer or not. 
For example, if all the nodes agree to observe the behaviors of 
packet drop, misroute and modification, then the packet drop 
rate (PDR), packet modification rate (PMOR) and packet 
misroute rate (PMIR) can be defined as follows, respectively. 

PacketsgminIncoofNumberTotal
MisroutedPacketsofNumber

PMIR

PacketsgminIncoofNumerTotal
ModifiedPacketsofNumber

PMOR

PacketsgminIncoofNumberTotal
DroppedPacketsofNumber

PDR
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"
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We define the trustworthiness of a node Nk as a real value !k 
that reflects the probability with which the node will perform 
the exact actions that it is supposed to take. !k can be assigned 
any real value in the range [0, 1], and the higher the value of !k, 
the node Nk is more reliable and has a higher probability to take 
the correct actions. The trustworthiness !k of a node Nk can be 
defined as a function of all misbehaviors that other nodes have 
observed for the node Nk. In other words, the trustworthiness !k 
can initially be derived as follows. 

#$"
i

kik M1%  

We note that different misbehaviors may be caused by dif-
ferent reasons. For instance, packet dropping and packet 
modification are both viewed as misbehaviors. However, 
packet dropping may be caused either by intentional malicious 
behavior or by power failure.  On the other hand, when we find 
that a node is modifying the incoming packets, we can safely 
conclude that it is malicious. Hence, we should vary the pun-
ishment for different misbehaviors according to the context of 
their occurrence. Namely, the calculation of trustworthiness !k 
is adjusted as follow. 
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Here Pi denotes the punishment factor for the i-th misbe-
havior, which indicates the severity degree of its outcome. The 
punishment factor is the function of the context in which the 
misbehavior occurs. In other words, the same misbehavior may 
be punished differently when it occurs in different circum-
stances. The punishment factor is determined by the Policy 
Manager, which will be discussed later in more details. Mki 
represents the rate of this misbehavior over the total observed 
behaviors. For example, if packet drop, packet modification, 
and packet misroute are the three exact misbehaviors we are 
observing, then !k can be derived as follow. The punishment 
factors for different misbehaviors will need to be selected so 
that !k always falls in the range of [0, 1]. This does not however 
necessitate that Pis sum to 1. 
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C. Misbehavior Detection 
As we have discussed in the previous section, the gossip- 

based outlier detection algorithm is used in the Misbehavior 
Detector to identify misbehaving nodes. The outlier detection 
algorithm has the following four steps, viz. local view formation, 
local view exchange, view combination, and global view forma-
tion.  The basic functionality of the Misbehavior Detector is 
similar to the outlier detection algorithm that we have proposed 
earlier [12]. However, the context information offered by the 
Policy Manager is added to the outlier detection algorithm, and the 
context information is used to decide the circumstance under 
which the misbehaviors occur. In this way, a node may distinguish 
a malicious node from other faulty nodes because they carry out 
the misbehaviors under different circumstances.  

D. Trust Management 
A variety of trust and reputation management approaches 

have been studied during the past decades, for instance [20, 21, 
22]. All of these trust management approaches can fit our sys-
tem. For the experiments presented in this paper, we adopt a 
simple but well-defined trust management scheme, in which 
each nodes trustworthiness !k is initially set to a default value. 
A peers !k is modified whenever we obtain any novel infor-
mation regarding its trustworthiness in terms of both direct 
observation results from the node itself and indirect observa-
tion results from other nodes. Direct observation results and 
indirect observation results are generally called first-hand 
information and second-hand information, respectively [23]. 

The trust management scheme is shown in Figure 2. In the 
trust management scheme, we adopt DST to combine first-hand 
information and second-hand information. Furthermore, Policy 
Manager collects the network and node contexts, and then the 
context information will feed to the view combination in terms 
of secure policy. In this way, trustworthiness !k is reduced for 
various misbehaviors according to various contexts.  

Figure 2.  Trust Management 



 

We should also note that there is no "global" information on 
trustworthiness, and the algorithm converges with a global 
picture of outliers, not with a global picture of trustworthi-
ness.  Each node has its own trust measures which evolve, and 
could be different from that of the others. 

E. Policy Management 
The Policy Manager is responsible to collect and record 

network/node context information, and then enforce the cor-
responding security policies so that the Misbehavior Detector 
and Trust Manager can make use of the context information 
when they identify the malicious nodes.  

For example, we can make use of the context information 
when we need to punish a node because it has dropped a certain 
number of packets. Packet dropping is generally carried out by 
two types of nodes: malicious nodes and selfish nodes. Mali-
cious nodes aim to destroy network operations by dropping 
some portion or all of the packets that flow through them; 
whereas selfish nodes simply want to preserve their resource, 
and consequently they occasionally refuse to forward packets 
for others. However, packet dropping may also be caused by 
external factors, such as (1) overflowing buffers caused by 
overwhelming incoming traffic, or (2) channel collision caused 
by too many simultaneous Request-To-Send (RTS) packets by 
different nodes. Because nodes themselves are unable to con-
trol these external factors, packet dropping resulting from these 
should be punished less than packet dropping induced by ma-
licious or selfish intents.  

Figure 3 demonstrates an example of how context informa-
tion can be utilized when punishing node misbehaviors. In 
Figure 3a), a node A senses that the communication channel is 
busy, because node 2 is sending out RTS packets and at-
tempting to occupy the channel. At the same time, node A also 
finds that node 1 drops some incoming packets. In this case, 
node A may find that the channel is busy when node 1 drops 
packets. As a result, node A decides to decrease the punishment 
for node 1 because it may be forced to drop packets. A rule 
demonstrating this policy is shown below, which is written 
using SWRL [24]. 
 
 
 
 
 
 

In contrast, as is shown in Figure 3b), node A finds that the 
channel is idle when node 1 still drops some more packets. In 
this case, node A decides to increase the punishment factor for 
node 1 because there is no external factor for its packet drop-
ping at this time. A SWRL [24] rule below illustrates this pol-
icy. 

 

IV. PERFORMANCE EVALUATION 
In this section, we examine the performance of the pol-

icy-based malicious peer detection method. We compare the 
performance of our mechanism with the baseline algorithm, 
which is the outlier detection algorithm studied in [12]. 

A. Simulation Setup 
We use GloMoSim 2.03 [25] as the simulation platform. 

Table I lists the parameters used in the simulation scenarios. 

 Here we also assume that transmission range equals to radio 

<ruleml:imp>  
  <ruleml:_rlab ruleml:href="#rule2"/> 
  <ruleml:_body>  
    <swrlx:individualPropertyAtom  swrlx:property="isDropPacket">  
      <ruleml:var>x2</ruleml:var> 
    </swrlx:individualPropertyAtom>  
    <swrlx:individualPropertyAtom  swrlx:property="senseChannelIdle">  
      <ruleml:var>x1</ruleml:var> 
      <ruleml:var>x2</ruleml:var> 
    </swrlx:individualPropertyAtom>  
  </ruleml:_body>  
  <ruleml:_head>  
    <swrlx:individualPropertyAtom  swrlx:property="addPunishment">  
      <ruleml:var>x1</ruleml:var> 
      <ruleml:var>x2</ruleml:var> 
    </swrlx:individualPropertyAtom>  
  </ruleml:_head>  
</ruleml:imp>  

Figure 3.  Punishing Misbehaving Nodes in Different Contexts 

TABLE I 
SIMULATION PARAMETERS 

Parameter Value 

Simulation area 600m × 600m 
Number of nodes 50, 100, 200 

Transmission range 60m, 90m, 120m 
Mobility pattern  Random waypoint 

Node motion speed 10m/s 
Number of malicious nodes 5, 10, 20 

Simulation time 900 s 

<ruleml:imp>  
  <ruleml:_rlab ruleml:href="#rule1"/> 
  <ruleml:_body>  
    <swrlx:individualPropertyAtom  swrlx:property="isDropPacket">  
      <ruleml:var>x2</ruleml:var> 
    </swrlx:individualPropertyAtom>  
    <swrlx:individualPropertyAtom  swrlx:property="senseChannelBusy">  
      <ruleml:var>x1</ruleml:var> 
      <ruleml:var>x2</ruleml:var> 
    </swrlx:individualPropertyAtom>  
  </ruleml:_body>  
  <ruleml:_head>  
    <swrlx:individualPropertyAtom  swrlx:property="reducePunishment">  
      <ruleml:var>x1</ruleml:var> 
      <ruleml:var>x2</ruleml:var> 
    </swrlx:individualPropertyAtom>  
  </ruleml:_head>  
</ruleml:imp>  



 

range. In other words, the definition of neighbor in our simu-
lation is someone who is always within the transmission range 
of the node. 

Three parameters are employed to evaluate the correctness 
and efficiency of our algorithm: Correctness Rate (CR), 
Communication Overhead (CO), and Convergence Time (CT). 
They are defined as follows. 

viewglobalconsistentaformtotakenTimeCT
networkinPacketsofNumberTotal
DetectionOutlierforPacketsofNumberCO

OutliersofNumberTotal
FoundOutliersTrueofNumberCR
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Each simulation scenario has 30 runs with distinct random 
seed, which ensures a unique initial node placement for each 
run. In the simulation, each node observes and records the 
channel status (busy/idle), and exchanges this context infor-
mation with other nodes. 

B. Adversary Model 
In our simulation, nodes either abide by various MANET 

protocols, such as AODV routing protocol, or their behaviors 
deviate from the protocol definition either intentionally (i.e. 
attackers) or unintentionally (i.e. faulty nodes). Both attackers 
and faulty nodes can do harm to the network functionalities, 

and consequently we regard them both as adversaries. In gen-
eral, adversaries can partially or completely drop, modify or 
misroute any packet that is sent to them. We also assume that 
they can deploy the Denial-of-Service (DoS) attack by con-
tinuously sending out Request-To-Send (RTS) packets so as to 
improperly occupy the communication channel all the time, 
which is also regarded as the RTS flood attack. 

The adversaries may mix all these misbehaviors so that it 
will be more difficult to identify their misbehaviors if observed 
only from one or two perspectives. More importantly, the ad-
versaries are capable of deliberately injecting faulty data and 
spreading these fake data to other benign nodes. In this way, the 
benign nodes may be induced to generate faulty reports in 
which benign nodes can be misclassified as misbehaving 
nodes. 

C. Simulation Results 
The goal of the simulations is to observe the performance of 

our algorithm under different parameter configurations. We 
have compared the performance of our algorithm under the 
following five conditions: different number of nodes, different 
radio ranges, and different percentage of malicious nodes. The 
simulation results are showed in Figures 4 through 6. 

 
Figure 4.  CR, CO, CT with Different Number of Nodes (number of malicious nodes: 5, area: 600m ×600m, radio range: 120m, motion speed: 5m/s) 

 
 
 

 
Figure 5.  CR, CO, CT with Different Radio Ranges (number of malicious nodes: 5, area: 600m ×600m, number of nodes: 100, motion speed: 5m/s) 

 



 

 
Figure 6.  CR, CO, CT with Different Number of Malicious Nodes (radio range: 120m, area: 600m ×600m, number of nodes: 100, motion speed: 5m/s) 

 
Figure 4 exhibits the performance of our PbMPD algorithm 

with different number of nodes. From Figure 4 we find that 
when the number of nodes is increased, the algorithm yields a 
higher correctness rate, but it also introduces more communi-
cation overhead. This is consistent with our analysis because 
the information gathered to identify the outliers is generally 
more accurate if there are more observers. At the same time, 
more messages need to be exchanged amongst all the nodes to 
reach a consistent view when there are more nodes. We also 
note that PbMPD demonstrates better correctness rate than the 
baseline algorithm. However, PbMPD also introduces slightly 
higher communication overhead, and PbMPD may take a 
longer time to converge. Because the context information needs 
to be exchanged amongst the nodes besides the local views, 
PbMPD is supposed to introduce more communication over-
head. Similarly, it takes slightly more time for PbMPD to 
converge since it will take extra time for each node to exchange 
context information with other nodes. 

Figure 5 shows how the simulation results differ with dif-
ferent transmission ranges. We find that with a smaller radio 
range, both PbMPD and the baseline algorithm suffer from 
performance degradation. When it is more difficult for nodes to 
exchange the local views, the correctness rate of the final global 
view will surely be degraded. On the other hand, we may also 
conclude from Figure 5 that PbMPD produces a higher cor-
rectness rate than the baseline algorithm with the same radio 
transmission range. This is the case because PbMPD has taken 
the context information into account, and consequently the 
faulty peers are less likely to be misclassified as malicious 
peers even if they both exhibit misbehaviors. 

Figure 6 shows the simulation results with different per-
centage of malicious nodes. It is obvious that PbMPD can yield 
a much better performance than the baseline algorithm with a 
higher percentage of malicious nodes. This is true because with 
a higher percentage of malicious nodes, it will be more likely 
that the benign nodes are forced to drop packets because the 
malicious nodes consume a large portion of the channel time to 
conduct their malicious behaviors. Hence, when there are a 
higher percentage of malicious nodes, the performances of the 
baseline algorithm degrade noticeably. On the other hand, 
PbMPD can properly handle the malicious peer detection 
problem even in a more hostile environment because it relies on 
the context information to decide which nodes are truly mali-
cious. 

D. Discussion 
We also note from the simulation that our PbMPD algorithm 

can properly distinct malicious peers from the faulty peers, 
whereas the baseline algorithm cannot do so at all times. For 
example, in the first simulation scenario in Figure 4, we ob-
serve that when there are 100 nodes in the network, node 24 
and node 83 sometimes exhibit packet dropping misbehavior, 
and consequently they are misclassified as malicious peers by 
the baseline algorithm in some cases. Since neither is set as the 
malicious peers in our simulation setup, we further analyze the 
simulation output, and we find that some of their neighbors are 
malicious peers. Both of them are forced to drop some portion 
of the incoming packets because their malicious neighbors 
deliberately occupy the communication channel for a long 
period of time. Since the baseline algorithm neither collects the 
context information, nor does it utilize the policy to properly 
adjust the punishment in different context, node 24 and node 83 
are sometimes misclassified as malicious peers. 

On the other hand, our PbMPD algorithm first collects the 
context information, and then makes use of the context infor-
mation as well as the corresponding policy to determine the 
punishment factor for each of the misbehaviors. Therefore, the 
faulty nodes can be correctly separated from the malicious 
nodes, and the correctness rate of PbMPD is surely higher than 
that of the baseline algorithm. 

V. CONCLUSION 
In this paper, a policy-based malicious peer detection algo-

rithm is described discriminates the truly malicious attackers 
from the faulty nodes, both of which may exhibit misbehaviors. 
Through the use of context information, such as channel status, 
buffer status and transmission signal strength, a node can de-
termine the circumstance under which the misbehaviors occur. 
As a result, the node can then tell whether a node is forced to act 
as a misbehaving node or not, and reveal the truly malicious 
attackers. The simulation results show that the approach is 
highly resilient to malicious attackers, and it can properly dis-
tinguish the malicious peers from the faulty peers with a limited 
communication overhead. 
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