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ABSTRACT

Title of Dissertation: Bayesian Analysis of Synthetic Data under Multiple
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Statistical Disclosure Control (SDC) methods are used to preserve confidentiality of

publicly released microdata, without compromising on its fundamental structure, so

as to ensure adequate and accurate statistical analysis of the data. The synthetic data

approach is a popular form of SDC methodology where (all or part of) the real data

are not released, but are instead used to create synthetic data which are released.



In this dissertation we develop Bayesian inference based on singly or multiply imputed

synthetic data, when the original data are derived from the following models: multiple

linear regression, multivariate normal and multivariate regression. We assume that

the synthetic data are generated by using two methods: plug-in sampling, where

unknown parameters in the data model are set equal to observed values of their

point estimators based on the original data, and synthetic data are drawn from this

estimated version of the model; posterior predictive sampling, where an imputed

posterior distribution of the unknown parameters is used to generate a posterior

draw, which in turn is plugged in the original model to produce synthetic data. In

the single imputation case, the procedures developed here fill the gap in the existing

literature where inferential methods are only available for multiple imputation and by

being based on exact distributions, it may even be applied to cases where the sample

size is small. Simulation results are presented to demonstrate how the proposed

methodology performs compared to the theoretical predictions. We also outline some

ways to extend the proposed methodology for certain scenarios where the required

set of conditions do not hold.
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Chapter 1

Introduction

Statistical agencies are often faced with two incongruous objectives, namely: collect

and publish useful datasets for designing public policies and building scientific the-

ories; as well as protect confidentiality of survey respondents which is essential to

uphold public trust, leading to better response rates and data accuracy. When re-

leasing microdata to the public, methods of statistical disclosure control (SDC) are

used to protect confidential data. SDC methods include data swapping, additive and

multiplicative noise, top and bottom coding, and also the creation of synthetic data.

The synthetic data approach is a popular method aims to satisfy the two objectives,

and some statistical agencies now release synthetic data products.

Generally, there are two types of synthetic data discussed in the literature: fully syn-

thetic data and partially synthetic data, and methodology for drawing inference based

on synthetic data has been developed using concepts of multiple imputation (Rubin,

1987). In fully synthetic data methodology, all units in the population not selected in

the sample are treated as missing, and are multiply imputed based on the information

from sampled units, to create multiple synthetic populations. A sample is then drawn
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from each synthetic population, and these samples are released to the public. This

approach was suggested by Rubin (1993), and methods for drawing inference based

on the synthetic data generated using this approach were developed by Raghunathan

et al. (2003). In the partially synthetic data approach, the released data comprise

only the originally sampled units, but any responses deemed to be confidential are

replaced by multiple imputations. For any particular variable, the responses could be

deemed as confidential for some or all respondents. This approach was suggested by

Little (1993), and methods for drawing inference based on synthetic data under this

approach were developed by Reiter (2003). We refer to the monograph by Drechsler

(2011) for a detailed and general discussion on synthetic data methodology.

In comparison with the standard SDC methods, multiple imputation techniques

presents many advantages dealing with many real data problems that other methods

cannot. It preserves the joint distribution of the original data offering a better qual-

ity analysis; is applicable to both categorical and continuous variables; released fully

synthetic datasets gives a very small disclosure risk; with partially synthetic datasets

generation one may only synthesize the records at risk, maintaining intact the records

that have no need to be protected; it allows the possibility to impute missing val-

ues before generating synthetic datasets having no need to give up on some records;

preserves linear constraints; allows the analyst to decide if valid results will be given

from the synthetic data based on the meta-data information. Some drawbacks exist

as well. Since it is a perturbation method there is a question on the utility limit of

the data and only the statistical properties gathered by the model are preserved (An

and Little, 2007; Drechsler, 2010).

In this work, we will be concerned solely with partially synthetic data and their utility

and necessity is described below. There are several examples where partially synthetic

data products have been produced based on major data sources. Some examples in
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the United States include the Survey of Income and Program Participation (Abowd

et al., 2006; Benedetto et al., 2013), the American Community Survey Group Quarters

data (Hawala, 2008), OnTheMap data on where workers live and where they work

(Machanavajjhala et al., 2008), and the Longitudinal Business Database (Kinney

et al., 2011; Kinney et al., 2014). To obtain valid inference on population quantities

using synthetic data, the current practice requires multiple synthetic datasets to be

released, but there are cases where it is indeed desirable to release only a single par-

tially synthetic dataset. For example, the Synthetic Longitudinal Business Database,

accessible through the VirtualRDC at Cornell University, is a partially synthetic ver-

sion of the U.S. Census Bureau’s Longitudinal Business Database (LBD). As discussed

in Kinney et al. (2011) and Kinney et al. (2014), the decision was made to release

only a single version of the LBD in the synthetic file, instead of multiple copies, to

avoid the perception of high disclosure risk. Similarly, in the application of partially

synthetic data to American Community Survey Group Quarters data presented by

Hawala (2008), only a single synthetic dataset is released, because of the concern that

releasing multiple synthetic copies may increase disclosure risk.

The motivations for this current research are thus twofold. First, although synthetic

data methodology calls for releasing multiple synthetic versions of the original data,

there are situations where it might not be possible. Secondly, since synthetic data

generation is indeed model-based, it becomes imperative to develop rigorous model-

based finite sample inference.

The primary purpose of this work is to develop Bayesian analytic tools for drawing

inference based on a singly or multiply imputed partially synthetic dataset(s) arising

from the subsequent models: multiple linear regression (MLR), multivariate normal

(MVN) and multivariate regression (MVR). This synthetic data problem fits into the

framework of partially synthetic data, and hence the methodology of Reiter (2003)
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can be used to obtain approximately valid inference if the sample size is sufficiently

large and the number of multiply imputed synthetic datasets available is m > 1.

However, given the specific structure of each problem, we shall instead exploit the

model structure to derive Bayesian inference for the parameters. While the method-

ology we derive is specific to the problem at hand, it yields exact inference for both

large and small samples using the m ≥ 1 multiply imputed synthetic datasets that are

available. We essentially extend the work done in a series of recent papers Klein et al.

(2014), Klein and Sinha (2015a), Klein and Sinha (2015b), Moura (2016), Moura

et al. (2017a), Moura et al. (2017b), Klein et al. (2019), Moura et al. (2021) that

developed exact parametric inferential methods based on singly or multiply imputed

synthetic data for several probability models, to the Bayesian domain.

1.1 Generating Synthetic Data

We consider two ways of generating the m ≥ 1 synthetic copies of the original data

namely, plug-in sampling and posterior predictive sampling. In the former method,

parameter estimates are plugged in the model to generate synthetic data. In the

latter one, posterior draws of the parameter are generated using an imputed prior,

which are then fed into the original model to beget synthetic data.

Plug-in Sampling. The basic mechanism for generating synthetic data via plug-in

sampling (PIS) is described as follows: let Y = (y1, . . . ,yn) be the original confiden-

tial data, which are jointly distributed according to the probability density function

(pdf) fθ(Y ), where θ is the unknown (scalar or vector) parameter. To generate par-

tially synthetic data, let θ̂ = θ̂(Y ) be the observed value of a point estimator of θ, and

we plug it into the joint pdf of Y . The resulting pdf, with the unknown θ replaced

by the observed value θ̂(Y ) of the point estimator, is denoted by fθ̂. The singly
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imputed synthetic data, denoted by Z, are then generated by drawing Z from the

joint pdf fθ̂. For the multiple imputation case, we draw m > 1 samples Z1, . . . ,Zm

independently from fθ̂.

Posterior Predictive Sampling. An alternative method to generate partially syn-

thetic data is to use posterior predictive sampling (PPS) which proceeds as follows:

suppose that Y = (y1, . . . ,yn) are the original data which are jointly distributed

according to the pdf fθ(Y ), where θ is the unknown (scalar or vector) parameter.

Assume a prior π(θ) for θ, then the posterior distribution of θ given Y is obtained

as π(θ |Y ) ∝ π(θ)fθ(Y ), and used to draw m ≥ 1 replications θ∗1, . . . ,θ
∗
m (known as

posterior draws). Next, for each posterior draw of θ, a corresponding replicate of Y

is generated, namely Zj = (zj1, . . . ,zjn)′ drawn from the pdf fθ∗j (X) independently

for j = 1, . . . ,m.

The organization of the rest of the thesis is as follows. The first two Chapters 1 and 2

set in motion the development of the theory under the MLR model, the structure of

which is paralleled in the latter models as well. In Section 2.1, we carry out Bayesian

inference based on singly imputed synthetic data under the MLR model generated

using the plug-in sampling method. In Section 2.2, we derive Bayesian inference based

on singly imputed synthetic data generated using posterior predictive sampling. Here

we use a general form of the prior π(β, σ2), involving a hyperparameter α. We present

simulation results for both setups in Section 2.3 to demonstrate how the proposed

methodology performs compared to the theoretical predictions. In Section 2.4 we

extend the previous methodology to a more general scenario of the original data be-

ing only partially sensitive. In Section 3.1, we carry out Bayesian inference based on

multiply imputed synthetic data generated using the plug-in sampling method and

also include simulation results. In Section 3.2, we mention our progress in deriving

Bayesian inference based on multiply imputed synthetic data generated using pos-
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terior predictive sampling with the aforementioned prior. In Section 3.3 we discuss

inference for partially sensitive data in context of the multiply imputed MLR setup.

In Chapters 4 and 5 we develop Bayesian inference in a similar manner as above for

singly and multiply imputed data respectively, when the original data arrives from

the MVN model. Similarly the succeeding two Chapters 7 and 8 deal with the MVR

model. Finally, in Chapter 8, we discuss the direction we would be taking with future

work.

1.2 An Important Lemma

We conclude this chapter with an observation regarding the existence of sufficient

statistics in the context of synthetic data.

Lemma 1.2.1. Suppose that when the original data Y are observed, T (Y ) is a

sufficient statistic for θ. Then when the synthetic data V = (V1, . . . ,VM) are ob-

served, (T (V1), . . . , T (VM)) is jointly sufficient for θ. Furthermore, if M = 1, the

sufficient statistic is simply T (V1), and if M > 1, then
∑M

i=1 T (Vi) is sufficient if

fθ(Y ) = h(Y )ψ(θ) exp {γ(θ)′T (Y )}, i.e., if fθ(Y ) belongs to the exponential family.

Proof. Suppose based on the original data Y , T (Y ) is a sufficient statistic for the

unknown parameter θ in the original model fθ(Y ). Then we can write fθ(Y ) =

h(Y )gθ[T (Y )], and the pdf of the synthetic data V = (V1, . . . ,VM) is

∫ { M∏
i=1

fθ̂(Y )(Vi)

}
fθ(Y )dY =

∫ { M∏
i=1

gθ̂(Y )(T (Vi))h(Vi)

}
fθ(Y )dY

=

{
M∏
i=1

h(Vi)

}∫ { M∏
i=1

gθ̂(Y )(T (Vi))

}
fθ(Y )dY

6



Chapter 2

Bayesian Analysis of Singly

Imputed Synthetic Data under the

Multiple Linear Regression Model

Throughout, we would be dealing with the case of a standard MLR model involving a

sensitive response variable y and a p×1 dimensional vector of non-sensitive predictors

x. We assume that

y1, . . . , yn are independent such that yi ∼ N(x′iβ, σ
2) (2.1)

where x1, . . . ,xn are fixed p × 1 vectors, and β and σ2 are both unknown. Thus

the original data consist of {(yi,xi) : i = 1, . . . , n}. We define y = (y1, . . . , yn)′

as the n × 1 dimensional vector of response variables, and X = [x1 · · ·xn]′ as the

n× p dimensional matrix of predictor variables, and we assume that rank(X) = p <

n. Based on the original data, β̂ = b = (X ′X)−1X ′y is the maximum likelihood

estimator (MLE) and uniformly minimum variance unbiased estimator (UMVUE) of
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β, and σ̂2 = RSS/(n− p) is the UMVUE of σ2 where RSS = (y −Xb)′(y −Xb) =

y′(In−PX)y with Ik as the k-dimensional identity matrix and PX = X(X ′X)−1X ′

is the orthogonal projection matrix to the column space of X. Furthermore, b and

RSS are independently distributed such that

b ∼ Np(β, σ
2(X ′X)−1)

RSS ∼ σ2χ2
n−p

(2.2)

When the original data are observed, b and RSS are jointly sufficient for β and σ2.

Since y is sensitive and hence cannot be released, instead it is replaced with a singly

imputed synthetic copy which is released. The synthetic data is generated by two

methods as described earlier: plug-in sampling and posterior predictive sampling. In

the former method, parameter estimates are plugged in the MLR model to generate

synthetic data. In the latter one, posterior draws of the parameter are generated

using an imputed prior, which are then fed into the MLR model to generate synthetic

data. The development builds on the exact likelihood based procedures developed in

Klein and Sinha (2015a) and Klein and Sinha (2015b).

2.1 Plug-In Sampling method

The singly imputed synthetic data in this case consist of a single synthetic version of

y = (y1, . . . , yn)′, which is denoted as z = (z1, . . . , zn)′, and obtained by drawing

z1, . . . , zn independently such that zi ∼ N

(
x′ib,

RSS

n− p

)
(2.3)

Thus the released data will be of the form {(zi,xi) : i = 1, . . . , n}, and our goal is to

discuss Bayesian inference on β and σ2 based on this released data.

8



It is convenient to identify the latent structure of the pseudo randomization involved

in the released data. For what follows we would write identities that are sometimes

algebraic but also sometimes distributional. The exact case should be clear from the

context. Specifically, we could write

z
d
= Xβ̂ + σ̂W

where W = (w1, . . . , wn)′ ∼ Nn(0, In) with wi
iid∼N(0, 1). Then by Lemma 1.2.1 the

sufficient statistics based on the released data are

b∗ = (X ′X)−1X ′z
d
= β̂ + σ̂(X ′X)−1X ′W

d
= β̂ + σ̂CU1

RSS∗ = z′(In − PX)z
d
= σ̂2W ′(In − PX)W

d
= σ̂2V

(2.4)

where U1 ∼ Np(0, Ip) and V ∼ χ2
n−p, and C is a full rank square root of (X ′X)−1

such that CC ′ = (X ′X)−1. It is easy to check that b∗ is independent of RSS∗ by

using the following result: If y ∼ Np(µ, Σ), Bk×p and Ap×p are constant matrices,

then By and y′Ay are independent if and only if BΣA = O. Next, we can write

b∗
d
= β̂ + σ(σ̂/σ)CU1

d
= β̂ + σ

√
ψCU1

RSS∗
d
= σ2(σ̂/σ)2V1

d
= σ2ψV

(2.5)

where ψ = (σ̂/σ)2 is a latent quantity. From (2.2), we have β̂
d
= β + σCU2 where

U2 ∼ Np(0, Ip) independent ofU1 and hence from (2.5) conditional on the parameters,

we could write

b∗
d
= β + σ

√
1 + ψCU3

where U3 ∼ Np(0, Ip). Thus the likelihood based on the released data for the param-

eters θ = (β, σ2, ψ) is given by

L(β, σ2, ψ | b∗,RSS∗) = φp(b
∗;β, σ2(1 + ψ)(X ′X)−1)h(RSS∗;n− p, σ2ψ) (2.6)

9



where φk(w;µ,Σ) is the density of w ∼ Nk(µ,Σ) and h(v; d, s) is the density of

v ∼ s χ2
d. For full Bayesian specification, we need priors on the unknown quantities

(β, σ2, ψ). The prior on ψ is naturally imposed by the original MLR model and the

single imputation mechanism. Thus, a priori

ψ ∼ π(ψ) = h(ψ;n− p, (n− p)−1)

For Bayesian inference on the other unknown parameters we assume non-informative

improper priors and assume that all unknown quantities are a priori independent.

Specifically, we assume

π(β, σ2) = π(β)π(σ2)

where π(β) ∝ 1 and π(σ) ∝ σ−δ and hence the induced prior on σ2 is π(σ2) ∝ (σ2)−
δ+1
2

for δ > 0. The posterior distribution can then be computed in the following manner:

π(β, σ2, ψ | b∗,RSS∗) ∝ L(β, σ2, ψ | b∗,RSS∗) π(ψ) π(β, σ2)

π(β, σ2, ψ | b∗,RSS∗) = π(β | b∗,RSS∗, σ2, ψ)π(σ2 | b∗,RSS∗, ψ) π(ψ | b∗,RSS∗)

The conditional posteriors follow from observing that from the above two equations

the product of the likelihood of the parameters and their priors break up into three

conditional posterior distributions as follows

β | b∗,RSS∗, σ2, ψ ∼ Np

(
b∗, σ2(1 + ψ)(X ′X)−1

)
(2.7)

σ2 | b∗,RSS∗, ψ ∼ Scale-inv-χ2

(
n− p+ δ − 1,

RSS∗

ψ(n− p+ δ − 1)

)
(2.8)

ψ ∼ (n− p)−1χ2
n−p+δ−1 (2.9)

The posterior distributions are proper as long as n > max{p, p− δ + 1}.
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We observe that
σ2ψ

RSS∗
|RSS∗, ψ ∼ inv-χ2

n−p+δ−1 so that

σ2ψ

RSS∗
∼ inv-χ2

n−p+δ−1 (2.10)

unconditionally and
σ2ψ

RSS∗
is independent of the data and ψ. Here we use the fact

that if X ∼ Scale-inv-χ2(ν, τ 2) then
X

τ 2ν
∼ inv-χ2

ν .

Marginal Posterior of parameters

β | b∗,RSS∗, ψ ∼ tn−p+δ−1

(
b∗,

RSS∗(1 + ψ)

ψ(n− p+ δ − 1)
(X ′X)−1

)

π(σ2 |RSS∗) ∝ (σ2)−
n−p+δ+1

2 K0

(√
(n− p)RSS∗

σ2

)

where Kν(z) is the modified Bessel function of the second kind as defined in Tweedie

(1957).

Marginal Likelihood of data

π(b∗,RSS∗) =

∫
π(b∗,RSS∗, ψ |β, σ2) π(β, σ2) dβ dσ2dψ ∝ (RSS∗)−

δ+1
2

Posterior Predictive Density

Let D be the original dataset and Dnew be the new dataset with (b̃∗, R̃SS
∗
) as the

sufficient statistic.

π(Dnew |D) =

∫
π(Dnew |β, σ2, ψ)π(β, σ2, ψ |D) dβ dσ2 dψ

∝ (R̃SS
∗
)
n−p
2
−1

∫ [
(b̃∗ − b∗)′(X ′X)(b̃∗ − b∗)

2 (1 + ψ)
+

R̃SS
∗

+ RSS∗

ψ

]− 2n−p+δ−1
2

e−(n−p)ψ

ψ2(1 + ψ)
p
2

dψ

11



Bayes Estimators of β and σ2

The Bayes estimators for the parameters are calculated as follows:

β̂BAYES = E(β | b∗,RSS∗) = Eψ Eσ2 E(β | b∗,RSS∗, σ2, ψ) = Eψ Eσ2(b∗) = b∗

σ̂2
BAYES = E(σ2 | b∗,RSS∗) = Eψ E(σ2 | b∗,RSS∗, ψ) = Eψ( RSS∗

ψ(n−p+δ−3)
) = RSS∗

(n−p+δ−3)
Eψ( 1

ψ
)

=
(n− p)RSS∗

(n− p+ δ − 3)2

as long as n > max{p, p−δ+3}. Here we use the result that if X ∼ Scale-inv-χ2(ν, τ 2)

then E(X) =
τ 2ν

ν − 2
for ν > 2.

Credible Sets for β and σ2

We will compute pivots (we are misusing the definition a bit, we merely mean a

function of data and parameters whose posterior distribution does not depend on

parameters) for σ2 and β. Given that we have closed form posterior expressions in

the above equations, we can write down exact posterior intervals in terms of credibility

and coverage.

A pivot for σ2 can be defined as

V :=
RSS∗

σ2

whose distribution is calculated as V ∼ V1 × V2 where (n− p)V1, V2 are independent

χ2
n−p+δ−1 random variables (r.v.’s) due to (2.10). A (1 − γ) level credible set for σ2

based on V = RSS∗/σ2 is [
RSS∗

bn,p,δ;γ
,

RSS∗

an,p,δ;γ

]
where an,p,δ;γ and bn,p,δ;γ are any two constants that satisfy 1− γ = P (an,p,δ;γ ≤ V ≤

12



bn,p,δ;γ). The length of the credible interval is RSS∗
(

1

an,p,δ;γ
− 1

bn,p,δ;γ

)
.

Next we define a pivot for β. From (2.7)

C−1/2(β − b∗)√
RSS∗

d
= Y1

where Y1
d
=

√
1
V2

(
1
V1

+ 1
)
U such that V1, V2 are defined as before and are indepen-

dent of U ∼ Np(0, Ip). Finally we define the pivot for β as

T 2 :=
(β − b∗)′(X ′X)(β − b∗)

RSS∗

whose distribution is given by

T 2 ∼ p

n− p+ δ − 1

(
n− p

χ2
n−p+δ−1

+ 1

)
Fp, n−p+δ−1

where the χ2 and F -distributions above are independent. A (1 − γ) level credible

ellipsoid for β based on T 2 is given by

{β : T 2 ≤ cn,p,δ;γ}

where cn,p,δ;γ satisfies 1− γ = P (T 2 ≤ cn,p,δ;γ). The volume of the credible ellipsoid is

Vβ(z,X) =
πp/2

Γ
(
p
2

+ 1
) (cn,p,δ;γRSS∗)p/2 |X ′X|−1/2

The above expression follows from the fact that if A is a p × p dimensional positive

definite (PD) matrix, a ∈ Rp, and C > 0, then the volume of the ellipsoid {b ∈ Rp :

(b− a)′A(b− a) ≤ C} is [πp/2/Γ (p
2

+ 1)]Cp/2 |A|−1/2. It is worth noting here that it

is easy to show that none of the credible intervals are confidence intervals.

13



Remark 2.1.1. If one is interested in the credible set of a single regression coefficient

or more generally in the credible set of a vector of linear combination of β, namely,

Aβ = η where A is a k × p dimensional matrix with rank(A) = k ≤ p, we define

T 2
η = (η −Ab∗)′{A(X ′X)−1A′}−1(η −Ab∗)/RSS∗, and proceed by noting that

T 2
η ∼

k(n− p)
n− p+ δ − 1

(
1

χ2
n−p+δ−1

+ 1

)
Fk, n−p+δ−1

where the χ2 and F -distributions above are independent.

2.2 Posterior Predictive Sampling method

We now proceed as follows to generate the singly imputed synthetic data z = (z1, . . . , zn)

under posterior predictive sampling. We start from a joint prior distribution π(β, σ2) ∝

(σ2)−
α+1
2 for β ∈ Rp, σ2 > 0 and α > 0 resulting in the posterior

σ2 | b,RSS ∼ Scale-inv-χ2

(
n− p+ α− 1,

RSS

n− p+ α− 1

)
(2.11)

β | b,RSS, σ2 ∼ Np

(
b, σ2(X ′X)−1

)
(2.12)

We assume throughout that n + α > p + 1. We first draw (β∗, σ∗) from the above

posterior, and then independently zi ∼ N(x′iβ
∗, (σ∗)2), i = 1, . . . , n. As before,

b∗ = (X ′X)−1X ′z and RSS∗ = (z−Xb∗)′(z−Xb∗), which are jointly sufficient for

(β, σ2) by Lemma 1.2.1.

Similarly as in the last section we can write

z
d
= Xβ∗ + σ∗W

where W ∼ Nn(0, In). Then the sufficient statistics based on the released data can

be written as

14



b∗ = (X ′X)−1X ′z
d
= β∗ + σ∗(X ′X)−1X ′W

d
= β∗ + σ∗CU1

RSS∗ = z′(In − PX)z
d
= σ∗2W ′(In − PX)W

d
= σ∗2V

(2.13)

where U1 ∼ Np(0, Ip), V ∼ χ2
n−p, C is such that CC ′ = (X ′X)−1, b∗ and RSS∗ are

independent. Thus, we get

b∗
d
= β∗ + σ(σ∗/σ)CU1

d
= β∗ + σ

√
ψCU1

RSS∗
d
= σ2(σ∗/σ)2V

d
= σ2ψV

(2.14)

where ψ = (σ∗/σ)2 is a latent quantity. From (2.12) and (2.2), we have

β∗
d
= b+ σ∗CU0

d
= β + σCU 0 + σ∗CU0

d
= β + σ

√
1 + ψCU2

where U0,U
0,U2 ∼ Np(0, Ip) are all independent of each other and of U1 and hence

from (2.14) conditional on the parameters, we could write

b∗
d
= β + σ

√
1 + 2ψCU3

where U3 ∼ Np(0, Ip). Thus the likelihood based on the released data for the param-

eters θ = (β, σ2, ψ) is given by

L(β, σ2, ψ | b∗,RSS∗) = φp(b
∗;β, σ2(1 + 2ψ)(X ′X)−1)h(RSS∗;n− p, σ2ψ) (2.15)

The prior on ψ is naturally imposed by the original MLR model and the single im-

putation method. From (2.11), RSS/σ∗2 |RSS ∼ χ2
n−p+α−1 and thus unconditionally

RSS/σ∗2 ∼ χ2
n−p+α−1 which also implies RSS/σ∗2 is independent of RSS. Hence

ψ =
σ∗2

σ2
=

RSS/σ2

RSS/σ∗2
d
=

n− p
n− p+ α− 1

Fn−p, n−p+α−1
d
= β′

(
n− p

2
,
n− p+ α− 1

2

)
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For Bayesian inference on the other unknown parameters we consider the same in-

dependent non-informative improper priors as before. Thus for δ > 0 we assume

π(β, σ2) = π(β)π(σ2) ∝ (σ2)−
δ+1
2 . The conditional posteriors can be determined

similarly as in the last section as follows:

β | b∗,RSS∗, σ2, ψ ∼ Np

(
b∗, σ2(1 + 2ψ)(X ′X)−1

)
(2.16)

σ2 | b∗,RSS∗, ψ ∼ Scale-inv-χ2

(
n− p+ δ − 1,

RSS∗

ψ(n− p+ δ − 1)

)
(2.17)

ψ ∼ β′
(
n− p+ δ − 1

2
,
n− p+ α− δ

2

)
(2.18)

The posterior distributions are proper as long as n > max{p, p−δ+1, p−α+1, p−α+δ}

and as before
RSS∗

σ2ψ
∼ χ2

n−p+δ−1 and thus
RSS∗

σ2ψ
is independent of the data and ψ.

Marginal Posterior of parameters

β | b∗,RSS∗, ψ ∼ tn−p+δ−1

(
b∗,

RSS∗(1 + 2ψ)

ψ(n− p+ δ − 1)
(X ′X)−1

)

π(σ2 |RSS∗) ∝ (σ2)−
n−p+δ+1

2 U

(
2n− 2p+ α− 1

2
, 1,

RSS∗

2σ2

)
where U(a, b, x) is the confluent hypergeometric function of the second kind.

Marginal Likelihood of data

π(b∗,RSS∗) =

∫
π(b∗,RSS∗, ψ |β, σ2) π(β, σ2) dβ dσ2dψ ∝ (RSS∗)−

δ+1
2

Posterior Predictive Density

π(Dnew |D) =

∫
π(Dnew |β, σ2, ψ)π(β, σ2, ψ |D) dβ dσ2 dψ

∝ (R̃SS
∗
)
n−p
2
−1

∫ [
(b̃∗ − b∗)′(X ′X)(b̃∗ − b∗)

2 (1 + 2ψ)
+

R̃SS
∗

+ RSS∗

ψ

]− 2n−p+δ−1
2

(1 + ψ)−2n−2p+α−1

ψ2(1 + 2ψ)
p
2

dψ
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Bayes Estimators of β and σ2

β̂BAYES = E(β | b∗,RSS∗) = Eψ Eσ2 E(β | b∗,RSS∗, σ2, ψ) = Eψ Eσ2(b∗) = b∗

σ̂2
BAYES = E(σ2 | b∗,RSS∗) = Eψ E(σ2 | b∗,RSS∗, ψ) = Eψ( RSS∗

ψ(n−p+δ−3)
) = RSS∗

(n−p+δ−3)
Eψ( 1

ψ
)

=
(n− p+ α− δ)RSS∗

(n− p+ δ − 3)2

as long as n > max{p, p− δ + 3, p− α+ 1, p− α+ δ}. Here we make use of the facts

that if X ∼ β′(α, β) then X−1 ∼ β′(β, α) and E(X) = α
β−1

for β > 1.

Credible Sets for β and σ2

As
RSS∗

σ2ψ
is independent of ψ so a pivot for σ2 can be defined as

N :=
RSS∗

σ2
=

(
RSS∗

σ2ψ

)
ψ = N1 ×N2

where N1 ∼ χ2
2ζ is independent of N2 ∼ β′(ζ, η) where η = n−p+α−δ

2
, ζ = n−p+δ−1

2
.

A (1− γ) level credible set for σ2 based on N = RSS∗/σ2 is

[
RSS∗

bn,p,α,δ;γ
,

RSS∗

an,p,α,δ;γ

]

where an,p,α,δ;γ and bn,p,α,δ;γ are any two constants that satisfy 1− γ = P (an,p,α,δ;γ ≤

N ≤ bn,p,α,δ;γ). The length of the credible interval is RSS∗
(

1

an,p,α,δ;γ
− 1

bn,p,α,δ;γ

)
.

Let us now consider

T 2 :=
(β − b∗)′(X ′X)(β − b∗)

RSS∗

We will compute the posterior distribution of T 2 | b∗,RSS∗. Observe that we can write

T 2 =

[
(β − b∗)′(X ′X)(β − b∗)

σ2(1 + 2ψ)

] [
σ2ψ

RSS∗

] [
1 + 2ψ

ψ

]
= T1 × T2 × T3
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Now

(a) T1 | b∗,RSS∗, σ2, ψ ∼ χ2
p and hence T1 ∼ χ2

p unconditionally. This also shows that

T1 is independent of (b∗,RSS∗, σ2, ψ) and thus T1 is independent of T2 and T3.

(b) T2 ∼ inv-χ2
2ζ and is independent of T3.

(c) T3− 2 ∼ β′(η, ζ) or alternatively T3
d
= 1 + 1

M
where M ∼ β(ζ, η). This is because

if X ∼ β′(α, β) then 1
X
∼ β′(β, α) and 1

1+X
∼ β(β, α).

Hence finally we see that T 2 is a pivot for β and

T 2 ∼ p

n− p+ δ − 1
Fp, n−p+δ−1

(
1 +

1

M

)
where M ∼ β(ζ, η)

A (1− γ) level credible ellipsoid for β based on T 2 is given by

{β : T 2 ≤ cn,p,α,δ;γ}

where cn,p,α,δ;γ satisfies 1−γ = P (T 2 ≤ cn,p,α,δ;γ). The volume of the credible ellipsoid

is

Vβ(z,X) =
πp/2

Γ
(
p
2

+ 1
) (cn,p,α,δ;γRSS∗)p/2 |X ′X|−1/2

Remark 2.2.1. If one is interested in the credible set of a single regression coefficient

or more generally in the credible set of a vector of linear combination of β, namely,

Aβ = η where A is a k × p dimensional matrix with rank(A) = k ≤ p, we define

T 2
η = (η −Ab∗)′{A(X ′X)−1A′}−1(η −Ab∗)/RSS∗, and proceed by noting that

T 2 ∼ k

n− p+ δ − 1
Fk, n−p+δ−1

(
1 +

1

M

)
where M ∼ β(ζ, η)
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2.3 Simulation Studies

In order to conduct the simulation, the population distribution is taken to be the

linear regression model (2.1) with

p = 10, xi =



1

x1i

x2i

x3i

x4i

I(x5i = 2)

I(x5i = 3)

I(x5i = 4)

I(x5i = 5)

I(x5i = 6)



, β =



β1

β2

β3

β4

β5

β6

β7

β8

β9

β10



=



10

2

2

−3

−1

−2

1

2

2

4



, σ2 = 1. (2.19)

The regressor variables in xi are generated one time at the beginning of the simula-

tion, and then held fixed from one iteration to the next. We generate the regressor

variables (all independently) as follows:

x1i ∼ N(1, 1), log x2i ∼ N(0, 1), x3i ∼ Exponential(mean = 1),

x4i ∼ Poisson(1), x5i =



1 with probability 0.2

2 with probability 0.1

3 with probability 0.2

4 with probability 0.2

5 with probability 0.2

6 with probability 0.1
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Based on Monte Carlo simulation with 104 iterations, we compute an estimate of the

coverage probability, the volume or length (as appropriate) of the respective credible

sets and the Bayes estimators of the parameters, where in all cases, the level of

credibility is set at 0.95.

Plug-In Sampling Tables 2.1, 2.2, 2.3 includes the simulation results for a plug-in

sampling data where the sample size n equals 500, 1000 and 10000 respectively for

different values of the tuning parameter δ. Some interesting observations are in order.

The coverage for σ2 gets slightly better initially as we increase δ, starts worsening

beyond δ ≥ 10, and at large values of δ it is significantly worse. This effect is more

prominent when n is small, in which case the coverage is not the best anyway as

is to be expected. The same effect is observed for the coverage of β though not as

severe. The coverage of β decreases at a much slower rate compared to that of σ2

with increasing δ. The size of the credible sets shrink for both the parameters as

n or δ increases. With decreasing n or increasing δ there seems to be no effect on

the Bayes estimator of β, while the Bayes estimator of σ2 becomes slightly worse,

which is what we expect since β̂BAYES does not involve δ while σ2
BAYES has δ in the

denominator. All of this suggests that there is a sweet spot for the choice of δ to

ensure maximum coverage along with the smallest possible size of the credible sets of

the parameters. For both σ2 and β, from Table 2.3 asymptotically the results imply

that the Bernstein-von Mises theorem holds, with the caveat that inference worsens

with increasing δ, quicker for σ2 than for β. In the asymptotic case, the credible sets

are tighter and the Bayes estimators perform admirably for both the parameters, as

expected. The behavior of the coverage of σ2 and β with respect to different values of

δ in the case n = 500 (depicted by alternating dashes and dots), n = 1000 (depicted

by solid lines), asymptotic case n = 10000 (depicted by dashed lines) are represented

in Figure 2.1(a) and Figure 2.1(b) respectively.
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Posterior Predictive Sampling The general trend of Bayesian inference for model

parameters observed under PIS is also mirrored when data is generated by posterior

predictive sampling, as illustrated in Tables 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9. Overall

for σ2, compared to PIS, the coverage is lower, the credible interval is wider, but the

Bayes estimator performs similarly well. For β, compared to PIS, the coverage is

similar, the Bayes estimator performs similarly well, but the volume of the credible

ellipsoid is one order of magnitude bigger. The interaction of the hyperparameter

α and tuning parameter δ is also pretty interesting to observe. Increasing α seems

to have no effect on the coverage of the parameters but the size of the credible sets

narrow down marginally, although asymptotically there seems to be no significant

difference (as seen by comparing Tables 2.6 and 2.9). We should be able to find a

combination of the two that yields the best inference. The inference for β seems to

be unaffected by the increase in α, except again for the fact that the credible set for

β contracts a bit. The behavior of the coverage of σ2 and β with respect to different

values of δ in the case n = 500 (depicted by alternating dashes and dots), n = 1000

(depicted by solid lines), asymptotic case n = 10000 (depicted by dashed lines) are

represented in Figures 2.1(c), 2.1(e) and Figures 2.1(d), 2.1(f) respectively.

After assessing the results, the recommendation would be to use 2 ≤ δ ≤ 4.
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Table 2.1: Inference for β and σ2 for PIS data with n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.953 0.360 1.011 0.953 1.064e-03 (10.002, 2.000, 2.000, -2.999, -1.000, -2.000, 0.997, 1.998, 1.998, 3.998)’
0.5 0.948 0.359 1.010 0.950 8.814e-04 (10.001, 1.999, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
0.8 0.952 0.359 1.009 0.950 8.248e-04 (9.998, 2.000, 2.000, -2.999, -1.001, -2.000, 1.006, 2.001, 2.002, 4.005)’
1 0.951 0.359 1.010 0.949 9.708e-04 (10.002, 2.001, 2.000, -3.000, -0.999, -2.004, 0.997, 1.995, 1.998, 3.998)’
2 0.951 0.357 1.005 0.949 8.054e-04 (10.000, 2.001, 2.000, -2.999, -0.999, -2.003, 0.998, 1.996, 1.998, 3.997)’
3 0.948 0.355 1.000 0.947 3.988e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.001, 1.002, 1.998, 2.000, 3.997)’
4 0.945 0.353 0.996 0.946 6.732e-04 (9.997, 2.001, 2.001, -3.000, -0.999, -2.000, 1.002, 1.999, 2.001, 4.000)’
10 0.933 0.342 0.972 0.944 4.310e-04 (10.000, 2.000, 2.000, -3.001, -1.000, -2.002, 1.000, 2.002, 2.001, 4.001)’
20 0.863 0.326 0.934 0.931 4.779e-04 (10.001, 2.000, 2.001, -3.001, -1.001, -2.002, 1.000, 2.002, 2.003, 4.000)’
30 0.745 0.310 0.899 0.919 4.963e-04 (9.997, 2.000, 2.000, -2.999, -1.000, -2.000, 1.002, 2.001, 2.003, 4.000)’
50 0.426 0.282 0.834 0.898 3.861e-04 (10.000, 2.000, 2.001, -2.999, -1.001, -2.003, 1.002, 1.998, 1.998, 3.998)’
100 0.010 0.226 0.697 0.825 1.940e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.000)’

Table 2.2: Inference for β and σ2 for PIS data with n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.951 0.251 1.006 0.949 2.475e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 1.999, 4.001)’
0.5 0.953 0.251 1.004 0.951 2.130e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.000, 0.999, 1.997, 1.999, 4.000)’
0.8 0.951 0.250 1.003 0.953 2.190e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 1.000, 2.000, 2.000, 4.000)’
1 0.950 0.251 1.004 0.951 2.215e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.001, 0.998, 1.998, 1.997, 3.997)’
2 0.949 0.250 1.004 0.946 2.362e-05 (10.000, 2.000, 2.000, -3.001, -1.001, -2.000, 1.002, 2.000, 2.000, 3.999)’
3 0.949 0.250 1.001 0.947 2.472e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 1.001, 2.001, 1.990, 3.997)’
4 0.948 0.248 0.997 0.949 2.174e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 0.999, 2.000, 2.000, 4.000)’
10 0.939 0.245 0.986 0.943 1.562e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.002, 2.001, 3.999)’
20 0.906 0.239 0.965 0.943 2.197e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 1.998, 1.998, 3.996)’
30 0.843 0.233 0.947 0.935 2.156e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 1.999, 2.000, 4.000)’
50 0.661 0.222 0.912 0.926 1.534e-05 (9.996, 2.000, 2.001, -3.001, -1.000, -1.997, 1.003, 2.005, 2.004, 4.004)’
100 0.133 0.198 0.830 0.899 1.121e-05 (10.000, 1.999, 2.000, -3.001, -1.000, -1.998, 1.001, 2.001, 1.999, 4.002)’

Table 2.3: Inference for β and σ2 for PIS data with n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.947 0.078 1.000 0.945 1.811e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 2.000, 4.000)’
0.5 0.949 0.078 1.000 0.950 1.938e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 4.001)’
0.8 0.950 0.078 1.001 0.951 2.032e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.001, 2.000, 4.001)’
1 0.948 0.078 1.000 0.951 2.100e-10 (10.000, 2.000, 2.000, -3.000, -2.000, -2.000, 1.000, 2.000, 2.000, 3.999)’
2 0.950 0.078 1.000 0.950 2.001e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’
3 0.949 0.078 1.000 0.947 2.087e-10 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.000, 4.001)’
4 0.951 0.078 1.000 0.949 2.054e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.000, 4.000)’
10 0.947 0.078 0.999 0.952 1.925e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.001)’
20 0.946 0.078 0.997 0.951 1.898e-10 (10.000, 2.000, 3.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.000, 4.001)’
30 0.944 0.078 0.995 0.948 1.912e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
50 0.927 0.078 0.991 0.944 1.828e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.000)’
100 0.823 0.077 0.981 0.946 1.612e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.001)’
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Table 2.4: Inference for β and σ2 for PPS data with α = 2, n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.955 0.443 1.017 0.951 7.190e-04 (10.003, 2.001, 2.000, -3.001, -1.000, -2.004, 0.995, 1.999, 1.997, 3.997)’
0.5 0.955 0.441 1.015 0.949 5.615e-03 (9.996, 2.001, 2.000, -3.000, -1.000, -1.997, 1.005, 2.004, 2.004, 4.005)’
0.8 0.949 0.441 1.013 0.946 5.364e-03 (10.000, 1.999, 2.000, -2.998, -1.001, -1.996, 0.999, 2.001, 1.999, 3.999)’
1 0.947 0.441 1.013 0.949 5.072e-03 (9.999, 2.000, 2.000, -3.000, -0.999, -1.998, 1.000, 2.001, 2.000, 4.000)’
2 0.944 0.438 1.006 0.950 4.864e-03 (10.001, 2.000, 2.000, -3.000, -1.000, -1.996, 0.998, 1.999, 2.002, 3.998)’
3 0.951 0.435 1.000 0.946 6.296e-03 (9.998, 2.001, 2.000, -3.000, -0.999, -2.000, 1.000, 1.999, 1.999, 4.002)’
4 0.948 0.432 0.994 0.952 8.090e-03 (10.001, 1.999, 2.000, -2.999, -1.001, -1.998, 1.000, 2.002, 2.002, 3.999)’
10 0.927 0.415 0.958 0.940 5.257e-03 (10.002, 2.000, 2.000, -3.001, -0.998, -2.005, 0.998, 1.996, 1.995, 3.997)’
20 0.818 0.389 0.901 0.929 5.398e-03 (9.998, 2.000, 2.000, -2.999, -1.000, -2.002, 1.000, 2.002, 2.003, 4.003)’
30 0.638 0.366 0.848 0.919 3.985e-03 (10.001, 2.000, 2.000, -3.000, -1.000, -1.998, 0.999, 1.998, 1.997, 3.996)’
50 0.232 0.323 0.752 0.891 2.997e-03 (10.001, 2.001, 2.001, -3.000, -1.000, -2.002, 0.999, 1.996, 1.998, 3.998)’
100 4e-04 0.239 0.559 0.805 1.247e-03 (9.998, 2.001, 2.000, -3.000, -1.000, -1.997, 1.003, 2.002, 2.003, 4.003)’

Table 2.5: Inference for β and σ2 for PPS data with α = 2, n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.950 0.308 1.009 0.947 2.381e-04 (10.000, 2.001, 2.000, -3.000, -1.000, -1.999, 1.003, 1.999, 2.002, 4.004)’
0.5 0.947 0.308 1.008 0.951 1.560e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.003, 1.001, 2.001, 2.000, 4.000)’
0.8 0.949 0.308 1.007 0.953 1.782e-04 (10.005, 1.999, 1.999, -3.000, -1.001, -2.002, 0.995, 1.997, 1.997, 3.996)’
1 0.945 0.308 1.007 0.949 1.602e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.001, 2.002, 4.000)’
2 0.950 0.307 1.004 0.949 1.479e-04 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 1.999, 1.999, 4.003)’
3 0.951 0.306 1.000 0.950 2.086e-04 (9.999, 2.001, 2.000, -3.000, -1.000, -2.003, 0.998, 2.001, 2.001, 3.998)’
4 0.949 0.304 0.996 0.952 1.674e-04 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.003, 4.006)’
10 0.937 0.299 0.979 0.944 1.424e-04 (9.999, 2.000, 2.000, -2.999, -1.000, -2.001, 1.000, 2.001, 2.001, 3.999)’
20 0.885 0.289 0.949 0.935 1.091e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.000, 1.998, 3.998)’
30 0.796 0.280 0.921 0.937 1.361e-04 (10.002, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.001, 4.001)’
50 0.521 0.263 0.867 0.922 1.195e-04 (10.000, 2.000, 2.000, -3.000, -1.001, -2.000, 1.000, 2.000, 2.000, 4.000)’
100 0.030 0.226 0.749 0.893 8.032e-05 (10.001, 2.000, 2.000, -2.999, -1.001, -2.004, 1.000, 1.998, 2.000, 3.999)’

Table 2.6: Inference for β and σ2 for PPS data with α = 2, n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.951 0.096 1.001 0.948 1.536e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.001)’
0.5 0.954 0.096 1.001 0.953 1.519e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.000, 4.000)’
0.8 0.952 0.096 1.001 0.950 1.522e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.000, 1.999, 4.000)’
1 0.949 0.096 1.000 0.952 1.541e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.001)’
2 0.951 0.096 1.001 0.945 1.546e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
3 0.952 0.096 1.000 0.951 1.524e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’
4 0.949 0.096 1.000 0.950 1.589e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.001, 4.001)’
10 0.948 0.096 0.998 0.950 1.592e-09 (10.001, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 3.999)’
20 0.945 0.096 0.995 0.946 1.500e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.000)’
30 0.935 0.095 0.992 0.946 1.557e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 3.999)’
50 0.910 0.095 0.986 0.946 1.466e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.001)’
100 0.773 0.093 0.972 0.942 1.512e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 0.999, 2.000, 2.000, 4.000)’
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Table 2.7: Inference for β and σ2 for PPS data with α = 50, n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.951 0.436 1.017 0.949 4.017e-03 (10.002, 2.000, 2.000, -3.000, -1.000, -1.998, 1.000, 1.999, 1.998, 3.999)’
0.5 0.952 0.435 1.014 0.953 4.325e-03 (10.000, 2.001, 2.000, -3.000, -0.999, -2.004, 1.000, 1.997, 1.996, 3.994)’
0.8 0.947 0.433 1.011 0.945 5.193e-03 (10.002, 1.999, 1.999, -3.000, -0.999, -2.003, 1.000, 1.999, 1.998, 4.001)’
1 0.953 0.433 1.009 0.953 4.016e-03 (9.998, 2.000, 2.001, -2.999, -1.001, -2.002, 1.001, 1.997, 2.000, 4.004)’
2 0.949 0.431 1.006 0.947 6.528e-03 (10.002, 2.000, 2.000, -3.000, -1.001, -2.001, 1.000, 1.996, 2.000, 4.000)’
3 0.949 0.428 0.999 0.949 5.483e-03 (10.001, 1.999, 2.000, -2.999, -0.999, -2.003, 0.998, 1.999, 1.998, 4.001)’
4 0.944 0.425 0.994 0.949 4.120e-03 (9.998, 2.001, 2.000, -3.000, -1.000, -1.999, 0.999, 1.997, 2.000, 4.003)’
10 0.920 0.409 0.959 0.938 4.192e-03 (10.002, 2.000, 2.000, -3.000, -1.002, -2.001, 1.000, 2.001, 1.999, 3.999)’
20 0.822 0.385 0.904 0.931 4.663e-03 (9.998, 2.000, 2.000, -3.000, -1.000, -1.997, 1.004, 2.001, 2.002, 4.001)’
30 0.640 0.361 0.852 0.919 3.832e-03 (10.001, 1.999, 2.000, -3.001, -1.000, -2.000, 0.999, 1.998, 2.000, 4.007)’
50 0.254 0.321 0.761 0.891 2.084e-03 (9.996, 2.001, 2.000, -3.000, -1.000, -1.995, 1.006, 2.005, 2.002, 4.003)’
100 4e-04 0.239 0.571 0.809 9.473e-04 (10.001, 2.000, 2.000, -3.001, -1.000, -1.999, 0.998, 1.999, 2.001, 3.996)’

Table 2.8: Inference for β and σ2 for PPS data with α = 50, n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.947 0.306 1.010 0.951 1.405e-04 (10.000, 2.000, 2.000, -3.000, -1.001, -2.004, 1.001, 2.000, 1.998, 3.999)’
0.5 0.948 0.305 1.007 0.950 1.726e-04 (10.002, 2.000, 2.000, -3.001, -1.000, -2.002, 0.997, 1.999, 1.999, 3.999)’
0.8 0.949 0.305 1.007 0.948 1.417e-04 (9.998, 2.000, 2.000, -2.999, -1.000, -1.999, 1.001, 1.999, 1.999, 3.999)’
1 0.953 0.305 1.005 0.945 1.535e-04 (10.000, 1.999, 2.000, -3.000, -1.000, -1.999, 1.001, 2.003, 2.001, 4.000)’
2 0.949 0.304 1.003 0.951 1.675e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.001, 1.001, 2.002, 2.002, 4.003)’
3 0.947 0.303 1.000 0.948 1.135e-04 (10.002, 2.000, 2.000, -3.001, -1.001, -1.999, 1.001, 2.000, 2.003, 3.990)’
4 0.949 0.302 0.998 0.949 1.703e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -1.997, 1.002, 2.001, 2.001, 4.000)’
10 0.936 0.297 0.980 0.947 1.364e-04 (10.002, 1.999, 2.000, -3.000, -1.001, -1.999, 0.999, 1.999, 2.000, 4.001)’
20 0.882 0.287 0.951 0.937 1.186e-04 (9.998, 2.001, 2.000, -3.000, -1.001, -1.996, 1.005, 2.002, 2.005, 4.002)’
30 0.791 0.278 0.922 0.933 1.424e-04 (10.000, 2.000, 2.000, -2.999, -1.000, -2.000, 1.000, 1.997, 2.000, 3.998)’
50 0.535 0.262 0.871 0.924 8.791e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -2.003, 1.000, 1.999, 1.999, 4.003)’
100 0.034 0.225 0.752 0.888 4.545e-05 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.002, 3.997)’

Table 2.9: Inference for β and σ2 for PPS data with α = 50, n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.953 0.096 1.001 0.950 1.484e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 1.999, 3.999)’
0.5 0.947 0.096 1.001 0.950 1.622e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.000, 4.000)’
0.8 0.950 0.096 1.001 0.950 1.464e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.001)’
1 0.947 0.096 1.001 0.952 1.604e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 2.000, 4.000)’
2 0.948 0.096 1.000 0.950 1.395e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 1.998, 1.999, 3.999)’
3 0.952 0.096 1.000 0.951 1.419e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.001, 4.000)’
4 0.946 0.096 1.000 0.949 1.382e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 3.000, 4.000)’
10 0.949 0.096 0.998 0.951 1.318e-09 (10.001, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 1.999, 3.999)’
20 0.940 0.095 0.994 0.948 1.449e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.000, 4.000)’
30 0.935 0.095 0.992 0.946 1.519e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.000)’
50 0.909 0.095 0.986 0.950 1.437e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’
100 0.773 0.093 0.971 0.944 1.376e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.001)’
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(a) σ2 (PIS) (b) β (PIS)

(c) σ2, α = 2 (PPS) (d) β, α = 2 (PPS)

(e) σ2, α = 50 (PPS) (f) β, α = 50 (PPS)

Figure 2.1: Variation in coverage of β and σ2 with respect to δ for SI MLR data
(−·−·− n = 500, — n = 1000, −−− n = 10000)
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The PIS method offers smaller radius of the confidence sets than the PPS method and

also gives estimates of the parameters closer to the ones obtained from the original

data, despite giving slightly higher levels of disclosure risk (Moura (2016)). So we

have a trade off between data utility and data privacy.

In general, the Bayesian posterior intervals, credible intervals and HPD intervals

need not have valid frequentist coverage. This is because the Bayesian intervals

are not derived using a repeated sampling paradigm; their objective is to characterize

reasonable parameter values that conform with the specific model and prior for a given

situation. However, some researchers have advocated a more principled approach to

the practice where the Bayes intervals are calibrated to frequentist calculations so

that Bayesian statements can be rejected based on empirical tests. Such calibrated

Bayes approach (Rubin, 1984; Little, 2006) looks for reconciliation between the two

paradigms. Another approach for reconciliation (asymptotically) is to choose priors

that provided credible intervals with accurate frequentist coverage. Such priors are

called Probability Matching Priors (Datta and Ghosh, 1995).

Usually, Bayesian credible intervals have good frequentist properties provided the

problem admits some type of Bernstein-von Mises theorem. In the present case how-

ever, in the presence of latent structure, such Bernstein-von Mises results may not be

readily available. From the limited empirical investigation it seems that the coverage

of the credible intervals depends on the δ in the prior even asymptotically. It will be

interesting to determine the limits of coverage as δ > 0 varies. We will pursue such

investigation in the future.
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2.4 Partially Sensitive Data

We have assumed so far that all the n observations y = (y1, . . . , yn)′ in the multiple

linear regression model are sensitive. Of course, this need not be the case, and quite

generally we can partition y into two parts: y1 and y2 of dimensions r and (n − r),

respectively, and assume that the first r observations y1 are sensitive, thus requiring

privacy protection, and the remaining (n− r) observations y2 are non-sensitive, and

can remain unprotected. Let X = [X ′1X
′
2]′ be the corresponding partitioning of the

matrixX, so thatX1 andX2 are of dimensions r×p and (n−r)×p, respectively. The

reasons for some of the y-values being sensitive can vary depending on the context.

For example, for income data, large incomes (extreme values) may be sensitive. The

sensitive nature of y may also depend on the (extreme) values of the corresponding

covariates x. We outline below two data analysis procedures when the latter situation

holds, namely, the sensitivity of the first r values of y is due to the nature of the

covariates, which makes r a non-random integer.

Method I: Using only estimates of sensitive part to impute synthetic data

Plug-In Sampling

We propose to synthesize the r sensitive y-values y1 by applying the plug-in sampling

method based on these r y-values, as discussed in Section 2.1. The reason for using

only the sensitive part of the data for imputing synthetic data is to ensure that in

the released data the synthetic part and the non-sensitive part are independent. The

synthetic version of y1 is y∗1 = (y∗1, . . . , y
∗
r)
′ such that y∗i ∼ N(x′ib1, σ̂

2
1) generated

independently for i = 1, . . . , r, where b1 = (X ′1X1)−1X ′1y1 and RSS1 = y′1(Ir −
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PX1)y1 are the sufficient statistics of y1, and σ̂2
1 = RSS1/(r − p). We assume that

r > p and n − r > p so that we can draw valid inference about the p regression

coefficients β separately for each data set. Thus similarly, b2 = (X ′2X2)−1X ′2y2 and

RSS2 = y′2(In−r − PX2)y2 are the sufficient statistics of y2. The released data is

y∗ = (y∗1
′,y2

′)′. Then by Lemma 1.2.1 the sufficient statistics for the imputed data

are

b∗1 = (X ′1X1)−1X ′1y
∗
1
d
= b1 + σ̂1C1U0

d
= β + σ

√
1 + ψC1U1

RSS∗1 = y∗
′

1 (Ir − PX1)y
∗
1
d
= σ̂2

1W
′
1(Ir − PX1)W1

d
= σ2ψV1

where U0,U1 ∼ Np(0, Ip) independently, C1C
′
1 = (X ′1X1)−1, ψ = (σ̂1/σ)2 is a

latent quantity, W1 ∼ Nr(0, Ir) and V1 ∼ χ2
r−p. Now suppose we represent b∗1 =

By∗1, RSS∗1 = y∗
′

1 Ay
∗
1 and y∗1 ∼ Nr(X1β̂1,Σ), then b∗1 is independent of RSS∗1 since

BΣA = σ̂2
1(X ′1X1)−1X ′1(Ir − PX1) = O. Thus the likelihood based on the released

data for the parameters θ = (β, σ2, ψ) is given by

L(β, σ2, ψ | b∗1,RSS∗1,y2) = φp(b
∗
1;β, σ2(1 + ψ)(X ′1X1)−1)h(RSS∗1; r − p, σ2ψ)

φn−r(y2;X2β, σ
2In−r)

The prior distribution on the parameters is given by for δ > 0

π(β, σ2, ψ) = π(β)π(σ2)π(ψ) ∝ (σ2)−
δ+1
2 ψ

r−p
2
−1e

−(r−p)ψ
2

The posterior distribution can be computed in the following manner:

π(β, σ2, ψ | b∗1,RSS∗1,y2) ∝ L(β, σ2, ψ | b∗1,RSS∗1,y2)π(ψ) π(β, σ2)

π(β, σ2, ψ | b∗1,RSS∗1,y2) = π(β | b∗1,RSS∗1,y2, σ
2, ψ) π(σ2 | b∗1,RSS∗1,y2, ψ) π(ψ | b∗1,RSS∗1,y2)

so that we observe, as before, multiplying likelihood of the released data with our

prior results in the product splitting up into three distinct posterior distributions.
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The conditional posteriors are as follows

β |σ2, ψ, b∗1, b2 ∼ Np

[(
X ′1X1

1 + ψ
+X ′2X2

)−1(
X ′1X1

1 + ψ
b∗1 +X ′2X2b2

)
, σ2

(
X ′1X1

1 + ψ
+X ′2X2

)−1
]

σ2 |ψ, b∗1,RSS∗1, b2,RSS2 ∼ Scale-inv-χ2

[
n− p+ δ − 1,

1

n− p+ δ − 1

(
RSS∗1
ψ

+ RSS2+

(b∗1 − b2)′
(

(1 + ψ) (X ′1X1)
−1

+ (X ′2X2)
−1
)−1

(b∗1 − b2)

)]

π(ψ | b∗1,RSS∗1, b2,RSS2) ∝
∣∣∣∣X ′1X1

1 + ψ
+X ′2X2

∣∣∣∣− 1
2

(1 + ψ)−
p
2ψ−1e−

(r−p)ψ
2

×
{

(b∗1 − b2)′
(

(1 + ψ) (X ′1X1)
−1

+ (X ′2X2)
−1
)−1

(b∗1 − b2) +
RSS∗1
ψ

+ RSS2

}−n−p+δ−1
2

We see that the expressions match the case when all of y is sensitive as in Section 2.1

by deleting all quantities involving y2, X2; replacing X1 by X, b∗1 by b∗ and r by n.

The posterior distributions are proper as long as r > p, n > max{r + p, p− δ + 1}.

Now as π(ψ) (we use this shorthand from here on) is a non-standard pdf, we devise

a sampling scheme below using the Accept-Reject method. Let us denote

Q(ψ) = (b∗1 − b2)′
(

(1 + ψ) (X ′1X1)
−1

+ (X ′2X2)
−1
)−1

(b∗1 − b2) +
RSS∗1
ψ

+ RSS2

X ′Xψ =
X ′1X1

1 + ψ
+X ′2X2

We notice that, if we had started with only the sole assumption r > p, sinceX ′Xψ > 0

∀ψ > 0 (as it is a covariance matrix), then letting ψ →∞ would yield X ′2X2 > 0 and

thus n−r > p, necessitating both of those assumptions in the first place. Now turning

our attention to Q(ψ), we see that Q(ψ) > 0 ∀ψ > 0 by definition and also by design.

Since the r.v.’s (b∗1, b2,RSS∗1,RSS2) embroiled in the expression of Q(ψ) are mutually

independent, Q(ψ) > 0 even when RSS∗1 is arbitrarily small, hence Q(ψ) ≥ RSS∗1
ψ

.
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This coupled with the fact that X ′Xψ >
X ′X

1 + ψ
=⇒ |X ′Xψ| > (1 + ψ)−

p
2 |X ′X|

(as A > B =⇒ λi(A) > λi(B) ∀ i = 1, . . . , n where {λi(A) : i = 1, . . . , n} and

{λi(B) : i = 1, . . . , n} are the ordered eigenvalues of n × n PD matrices A and B

respectively) produces π(ψ) ≤ Lg(ψ) where

L =
|X ′X|−

1
2 2n−p+δ−1Γ

(
n−p+δ−1

2

)
((r − p)RSS∗1)

n−p+δ−1
2

and g(ψ) is the pdf of a
χ2
n−p+δ−1

r−p ≡ Γ
(
n−p+δ−1

2
, r−p

2

)
r.v.

Algorithm for sampling from π(ψ):

1. We have the i-th sample ψ(i).

2. Draw a sample ψ′ ∼ g(ψ) where g(ψ) ∼
χ2
n−p+δ−1

r−p and also draw u ∼ U [0, 1].

3. If u ≤ π(ψ)

Lg(ψ)
then ψ(i+1) = ψ′, else discard ψ′ and go back to Step 2.

Theorem 2.4.1. The joint pdf of (b∗1,RSS∗1, b2,RSS2) is given by

fβ,σ2(b∗1,RSS∗1, b2,RSS2)

∝
∫ ∞

0

φp

[
β;

(
X ′1X1

1 + ψ
+X ′2X2

)−1(
X ′1X1

1 + ψ
b∗1 +X ′2X2b2

)
, σ2

(
X ′1X1

1 + ψ
+X ′2X2

)−1
]

×(RSS∗1)
r−p
2
−1(RSS2)

n−r−p
2
−1

(σ2)
n−p
2

e
− 1

2σ2

[
(b∗1−b2)

′(
(1+ψ)(X′1X1)

−1
+(X′2X2)

−1
)−1

(b∗1−b2) +
RSS∗1
ψ

+RSS2

]

×
∣∣∣∣X ′1X1

1 + ψ
+X ′2X2

∣∣∣∣− 1
2

(1 + ψ)−
p
2ψ−1e−

(r−p)ψ
2 dψ

Posterior Predictive Sampling

We similarly synthesize r sensitive y-values y1 by applying the posterior predictive

sampling method based on these r y-values, as discussed in Section 2.2. The synthetic

version of y1 is y∗1 = (y∗1, . . . , y
∗
r)
′ such that y∗i ∼ N(x′iβ

∗
1, σ

∗2
1 ) generated indepen-
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dently for i = 1, . . . , r, where following from equations (2.11) and (2.12), (β∗1, σ
∗2
1 ) are

drawn from

σ2
1 | b1,RSS1 ∼ Scale-inv-χ2

(
r − p+ α− 1,

RSS1

r − p+ α− 1

)
β1 | b1,RSS1, σ

2
1 ∼ Np

(
b1, σ

2
1(X ′1X1)−1

)
where we assume throughout that r + α > p+ 1.

Then the sufficient statistics for the imputed data are

b∗1 = (X ′1X1)−1X ′1y
∗
1
d
= β∗1 + σ∗1C1U0

d
= β + σ

√
1 + 2ψC1U1

RSS∗1 = y∗
′

1 (Ir − PX1)y
∗
1
d
= σ∗21 W

′
1(Ir − PX1)W1

d
= σ2ψV1

where U0,U1 ∼ Np(0, Ip) independently, C1C
′
1 = (X ′1X1)−1, ψ = (σ∗1/σ)2 is a latent

quantity, W1 ∼ Nr(0, Ir) and V1 ∼ χ2
r−p. Next we can basically adapt the same

procedure as before to obtain the conditional posteriors as follows

β |σ2, ψ, b∗1, b2 ∼ Np

[(
X ′1X1

1 + 2ψ
+X ′2X2

)−1(
X ′1X1

1 + 2ψ
b∗1 +X ′2X2b2

)
, σ2

(
X ′1X1

1 + 2ψ
+X ′2X2

)−1
]

σ2 |ψ, b∗1,RSS∗1, b2,RSS2 ∼ Scale-inv-χ2

[
n− p+ δ − 1,

1

n− p+ δ − 1

(
RSS∗1
ψ

+ RSS2 +

(b∗1 − b2)′
(

(1 + 2ψ) (X ′1X1)
−1

+ (X ′2X2)
−1
)−1

(b∗1 − b2)

)]

π(ψ | b∗1,RSS∗1, b2,RSS2) ∝
∣∣∣∣X ′1X1

1 + 2ψ
+X ′2X2

∣∣∣∣− 1
2

(1 + 2ψ)−
p
2 (1 + ψ)−

2r−2p+α−1
2 ψ−1

×
{

(b∗1 − b2)′
(

(1 + 2ψ) (X ′1X1)
−1

+ (X ′2X2)
−1
)−1

(b∗1 − b2) +
RSS∗1
ψ

+ RSS2

}−n−p+δ−1
2

The posterior distributions are proper as long as r > max
{
p, p− α + 1, n+p−α+δ

2

}
,

n > max{r + p, p− δ + 1} and they match our results in Section 2.2 when r = n.
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Algorithm for sampling from π(ψ):

1. We have the i-th sample ψ(i).

2. Draw a sample ψ′ ∼ g(ψ) where g(ψ) ∼ β′
(
n−p+δ−1

2
, 2r−n−p+α−δ

2

)
and also draw

u ∼ U [0, 1]. This necessitates the assumption 2r + α > n+ p+ δ.

3. If u ≤ π(ψ)

Lg(ψ)
then ψ(i+1) = ψ′, else discard ψ′ and go back to Step 2. Here

L =
|X ′X|−

1
2 B
(
n−p+δ−1

2
, 2r−n−p+α−δ

2

)
(RSS∗1)

n−p+δ−1
2

where B(a, b) is the Beta function.

Theorem 2.4.2. The joint pdf of (b∗1,RSS∗1, b2,RSS2) is given by

fβ,σ2(b∗1,RSS∗1, b2,RSS2)

∝
∫ ∞

0

φp

[
β;

(
X ′1X1

1 + 2ψ
+X ′2X2

)−1(
X ′1X1

1 + 2ψ
b∗1 +X ′2X2b2

)
, σ2

(
X ′1X1

1 + 2ψ
+X ′2X2

)−1
]

×(RSS∗1)
r−p
2
−1(RSS2)

n−r−p
2
−1

(σ2)
n−p
2

e
− 1

2σ2

[
(b∗1−b2)

′(
(1+2ψ)(X′1X1)

−1
+(X′2X2)

−1
)−1

(b∗1−b2) +
RSS∗1
ψ

+RSS2

]

×
∣∣∣∣X ′1X1

1 + 2ψ
+X ′2X2

∣∣∣∣− 1
2

(1 + 2ψ)−
p
2 (1 + ψ)−

2r−2p+α−1
2 ψ−1 dψ

Method II: Using whole data estimates to impute synthetic data

Plug-In Sampling

We can relax the assumption n−r > p needed before if we use estimates of the entire

data to impute the r sensitive y-values y1. In that case, the synthetic version of

y1 is y∗1 = (y∗1, . . . , y
∗
r)
′ such that y∗i ∼ N(x′ib,RSS) generated independently for i =

1, . . . , r and y2 is defined as before. The likelihood of the released data is proportional
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to what follows below, since we only retain quantities containing parameters (β, σ2)

necessary for posterior distribution calculation, also using the fact that y2 | b,RSS is

independent of (β, σ2) by the definition of sufficient statistic

π(y∗1,y2 |β, σ2)

=

∫
π(y∗1,y2 | b,RSS)π(b,RSS |β, σ2) db dRSS

=

∫
π(y∗1 |y2, b,RSS)π(y2 | b,RSS)π(b,RSS |β, σ2) db dRSS

∝
∫
π(y∗1 | b,RSS)π(b |β, σ2) π(RSS |σ2) db dRSS

∝
∫

1

(σ2ψ)
r
2

exp

[
− 1

2σ2ψ
(y∗1 −X1b)

′(y∗1 −X1b)

]
× 1

(σ2)
p
2

exp

[
− 1

2σ2
(b− β)′(X ′X)(b− β)

]
× ψ

n−p
2
−1e−

(n−p)ψ
2 db dψ (2.20)

The last line is due to a change in variable RSS/(n−p)σ2 = ψ. Next we collect terms

for b as

1

ψ
(y∗1 −X1b)

′(y∗1 −X1b) + (b− β)′X ′X(b− β)

= b′
(
X ′X +

X ′1X1

ψ

)
b− 2b

(
X ′Xβ +

X ′1y
∗
1

ψ

)
+
y∗1
′y∗1
ψ

+ β′X ′Xβ

=

(
b−

(
X ′X +

X ′1X1

ψ

)−1(
X ′Xβ +

X ′1y
∗
1

ψ

))′(
X ′X +

X ′1X1

ψ

)
(
b−

(
X ′X +

X ′1X1

ψ

)−1(
X ′Xβ +

X ′1y
∗
1

ψ

))
+
y∗1
′y∗1
ψ

+ β′X ′Xβ

−
(
X ′Xβ +

X ′1y
∗
1

ψ

)′(
X ′X +

X ′1X1

ψ

)−1(
X ′Xβ +

X ′1y
∗
1

ψ

)
(2.21)

where we know X ′X +
X ′1X1

ψ
is invertible because X ′X +

X ′1X1

ψ
> 0 due to

X ′X > 0, X ′1X1 > 0, ψ > 0. The last three quantities above simplify to
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β′

[
X ′X −X ′X

(
X ′X +

X ′1X1

ψ

)−1

X ′X

]
− 2β′

[
X ′X

(
X ′X +

X ′1X1

ψ

)−1
X ′1y

∗
1

ψ

]

+y∗1
′

[
Ir
ψ
− X1

ψ

(
X ′X +

X ′1X1

ψ

)−1
X ′1
ψ

]
y∗1 (2.22)

from which it is clear that the (conditional) posterior variance of β is

X ′X −X ′X
(
X ′X +

X ′1X1

ψ

)−1

X ′X > 0

⇐⇒ (X ′X)1/2

[
Ip − (X ′X)1/2

(
X ′X +

X ′1X1

ψ

)−1

(X ′X)1/2

]
(X ′X)1/2 > 0

⇐⇒ Ip > (X ′X)1/2

(
X ′X +

X ′1X1

ψ

)−1

(X ′X)1/2

⇐⇒ (X ′X)−1 >

(
X ′X +

X ′1X1

ψ

)−1

⇐⇒ X ′X +
X ′1X1

ψ
>X ′X

⇐⇒ X ′1X1

ψ
> 0 ∀ψ > 0 ⇐⇒ X ′1X1 > 0 ⇐⇒ r > p

so that we still have to respect the condition r > p while employing this method.

Thus (2.22) further simplifies to

β′
[
(X ′X)−1 + ψ(X ′1X1)−1

]−1
β − 2β′

[
(X ′X)−1 + ψ(X ′1X1)−1

]−1
b∗1

+ b∗1
′ [(X ′X)−1 + ψ(X ′1X1)−1

]−1
b∗1 +

y∗1
′y∗1
ψ
− b∗1′

X ′1X1

ψ
b∗1

= (β − b∗1)′
[
(X ′X)−1 + ψ(X ′1X1)−1

]−1
(β − b∗1) +

y∗1
′y∗1
ψ
− y∗1 ′

PX1PX1

ψ
y∗1

= (β − b∗1)′
[
(X ′X)−1 + ψ(X ′1X1)−1

]−1
(β − b∗1) + y∗1

′ (Ir − PX1)

ψ
y∗1

= (β − b∗1)′
[
(X ′X)−1 + ψ(X ′1X1)−1

]−1
(β − b∗1) +

RSS∗1
ψ

y∗1 (2.23)

where b∗1 = (X ′1X1)−1X ′1y
∗
1, RSS∗1 = y′1(Ir − PX1)y1 are sufficient statistics for y∗1.
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So integrating out b from (2.20) using (2.21) and (2.23) and multiplying by our usual

prior π(β, σ2) ∝ (σ2)−
δ+1
2 we get the joint posterior distribution to be

π(β, σ2, ψ |y∗1,y2)

∝φp
(
β; b∗1, σ

2
[
(X ′X)−1 + ψ(X ′1X1)−1

])
× (RSS∗1/ψ)

r−p+δ−1
2

(σ2)
r−p+δ−1

2
+1

exp

[
−RSS∗1

2σ2ψ

]

×
∣∣(X ′X)−1 + ψ(X ′1X1)−1

∣∣ 12 ∣∣∣∣X ′X +
X ′1X1

ψ

∣∣∣∣− 1
2

ψ
n−r−p

2
−1e−

(n−p)ψ
2 ψ

r−p+δ−1
2

where after observing

∣∣(X ′X)−1 + ψ(X ′1X1)−1
∣∣ 12 ∣∣∣∣X ′X +

X ′1X1

ψ

∣∣∣∣− 1
2

= ψ
p
2

it leads us to the hierarchical (conditional) posterior distributions as follows

β |σ2, ψ, b∗1 ∼ Np

(
b∗1, σ

2
(
(X ′X)−1 + ψ(X ′1X1)−1

))
(2.24)

σ2 |ψ,RSS∗1 ∼ Scale-inv-χ2

(
r − p+ δ − 1,

RSS∗1
ψ(r − p+ δ − 1)

)
(2.25)

ψ ∼
χ2
n−p+δ−1

n− p
≡ Γ

(
n− p+ δ − 1

2
,
n− p

2

)
(2.26)

The posterior distributions are proper as long as r > max{p, p−δ+1} and the results

match our expressions from Section 2.1 when r = n. An advantage of this method is

that the sampling of ψ is straightforward.

Posterior Predictive Sampling

We synthesize y∗1 = (y∗1, . . . , y
∗
r)
′ such that y∗i ∼ N(x′iβ

∗, σ∗2) generated independently

for i = 1, . . . , r, where (β∗, σ∗2) are drawn from (2.11) and (2.12). The likelihood of
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the released data is given by

π(y∗1,y2 |β, σ2)

=

∫
π(y∗1,y2 |β∗, σ∗2, b,RSS) π(β∗, σ∗2 | b,RSS))π(b,RSS |β, σ2) dβ∗ dσ∗2 db dRSS

∝
∫
π(y∗1 |β∗, σ∗2) π(β∗ |σ∗2, b) π(σ∗2 |RSS) π(b |β, σ2)π(RSS |σ2) dβ∗ dσ∗2 db dRSS

∝
∫

1

(σ∗2)
r
2

exp

[
− 1

2σ∗2
(y∗1 −X1β

∗)′(y∗1 −X1β
∗)

]
× 1

(σ∗2)
p
2

exp

[
− 1

2σ∗2
(β∗ − b)′(X ′X)(β∗ − b)

]
×

exp
[
− RSS

2σ∗2

]
(RSS)

n−p+α−1
2

(σ∗2)
n−p+α+1

2

× 1

(σ2)
p
2

exp

[
− 1

2σ2
(b− β)′(X ′X)(b− β)

]
×

exp
[
−RSS

2σ2

]
(RSS)

n−p
2
−1

(σ2)
n−p
2

dβ∗ dσ∗2 db dRSS

We begin by collecting terms for β∗ as

(y∗1 −X1β
∗)′(y∗1 −X1β

∗) + (β∗ − b)′(X ′X)(β∗ − b)

=β∗′
(
X ′X +X ′1X1

)
β∗ − 2β∗

(
X ′Xb+X ′1y

∗
1

)
+ y∗1

′y∗1 + b′X ′Xb

=
(
β∗ −

(
X ′X +X ′1X1

)−1 (
X ′Xb+X ′1y

∗))′ (X ′X +X ′1X1

)
(
β∗ −

(
X ′X +X ′1X1

)−1 (
X ′Xb+X ′1y

∗
1

))
+ y∗1

′y∗1 + b′X ′Xb

−
(
X ′Xb+X ′1y

∗
1

)′ (
X ′X +X ′1X1

)−1 (
X ′Xb+X ′1y

∗
1

)
After integrating out β∗ the likelihood stands at

∫
1

(σ∗2)
r
2

exp

[
− 1

2σ∗2

(
y∗1
′y∗1 + b′X ′Xb−

(
X1
′y∗1 +X ′Xb

)′ (
X ′X +X ′1X1

)−1 (
X1
′y∗1 +X ′Xb

))]
×

exp
[
− RSS

2σ∗2

]
(σ∗2)

n−p+α+1
2

×
exp

[
−RSS

2σ2

]
(σ2)

n−p
2

× (RSS)
2n−2p+α−1

2
−1

× 1

(σ2)
p
2

exp

[
− 1

2σ2
(b− β)′(X ′X)(b− β)

]
dσ∗2 db dRSS

Next we collect terms for b as follows

1

σ∗2

(
y∗1
′y∗1 + b′X ′Xb−

(
X1
′y∗1 +X ′Xb

)′ (
X ′X +X ′1X1

)−1 (
X1
′y∗1 +X ′Xb

))
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+
1

σ2
(b− β)′(X ′X)(b− β)

= b′
[
(X ′X)

(
1

σ2
+

1

σ∗2

)
− X

′X

σ∗2
(
X ′X +X ′1X1

)−1
X ′X

]
b

− 2b′
[
X ′X

σ∗2
(
X ′X +X ′1X1

)−1
X1
′y∗1 +

X ′X

σ2
β

]
+
y∗1
′y∗1
σ∗2

− y
∗
1
′

σ∗2
X1

(
X ′X +X ′1X1

)−1
X1
′y∗1 + β′

X ′X

σ2
β (2.27)

We can figure out what the variance-covariance matrix will be when we would inte-

grate out b, and thus by definition after a change of variable σ∗2/σ2 = ψ we have

(1 + ψ)X ′X −X ′X (X ′X +X ′1X1)
−1
X ′X > 0

⇐⇒ (1 + ψ) Ip > (X ′X)1/2 (X ′X +X ′1X1)
−1

(X ′X)1/2

⇐⇒ (1 + ψ) (X ′X)−1 > (X ′X +X ′1X1)
−1

⇐⇒ X ′X

1 + ψ
<X ′X +X ′1X1 ⇐⇒ X ′1X1 +

ψ

1 + ψ
X ′X > 0

which is true for all values of ψ > 0. We let ψ → 0 to get X ′1X1 > 0, so r > p and

(1 + ψ)X ′X−X ′X (X ′X +X ′1X1)
−1
X ′X = ψX ′X+

(
(X ′X)

−1
+ (X ′1X1)

−1
)−1

Here we use the following fact: for any two PD matrices A and B,

A−1 −A−1(A−1 +B−1)−1A−1 = A−1(A−1 +B−1)−1B−1 = (A+B)−1 (2.28)

Next we follow up from (2.27) to get, after taking out the common factor
1

σ2ψ
from

all quantities involved
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(
b−

[
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]−1 [
X ′X

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

])′
[
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]
(
b−

[
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]−1 [
X ′X

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

])

+ y∗1
′y∗1 − y∗1

′X1

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψβ′X ′Xβ−[

X ′X
(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

]′ [
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]−1

[
X ′X

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

]

The last three lines give us by repeated application of (2.28)

β′

(
ψX ′X − ψX ′X

[
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]−1

ψX ′X

)
β

− 2β′

(
ψX ′X

[
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]−1

X ′X
(
X ′X +X ′1X1

)−1
X1
′X1

)
b∗1

+y∗1
′(Ir − PX1)y∗1 + b∗1

′
(
X ′1X1 −X ′1X1

(
X ′X +X ′1X1

)−1
X1
′X1

)
b∗1
′

− b∗1′X ′1X1

(
X ′X +X ′1X1

)−1
X ′X

[
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]−1

X ′X
(
X ′X +X ′1X1

)−1
X1
′X1b

∗
1

=β′
(

1

ψ
(X ′X)−1 +

(
X ′X

)−1
+
(
X ′1X1

)−1
)−1

β

− 2β′
(

1

ψ
(X ′X)−1 +

(
X ′X

)−1
+
(
X ′1X1

)−1
)−1

b∗1

+ RSS∗1 + b∗1
′
(

(X ′X)−1 +
(
X ′1X1

)−1
)−1

b∗1

− b∗1′
(

(X ′X)−1 +
(
X ′1X1

)−1
)−1

[
ψX ′X +

((
X ′X

)−1
+
(
X ′1X1

)−1
)−1

]−1

(
(X ′X)−1 +

(
X ′1X1

)−1
)−1

b∗1

= (β − b∗1)′
(

1

ψ
(X ′X)−1 +

(
X ′X

)−1
+
(
X ′1X1

)−1
)−1

(β − b∗1) + RSS∗1 (2.29)
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We integrate out b to find the likelihood to be

∫
1

(σ2)
p
2

exp

[
− 1

2σ2
(β − b∗1)′

(
(1 + ψ)(X ′X)−1 + ψ(X ′1X1)−1

)−1
(β − b∗1)

]

×
exp

[
−RSS∗1

2σ2ψ

]
ψ
n+r−2p+α+1

2

×
exp

[
−RSS

2σ2

(
1 + 1

ψ

)]
(σ2)

2n+r−2p+α+1
2

−1
× (RSS)

2n−2p+α−1
2

−1

×(σ2)
p
2

∣∣∣∣ψX ′X +
(

(X ′X)
−1

+ (X ′1X1)
−1
)−1
∣∣∣∣− 1

2

dψ dRSS

Next integrating out RSS we have

∫
1

(σ2)
p
2

exp

[
− 1

2σ2
(β − b∗1)′

(
(1 + ψ)(X ′X)−1 + ψ(X ′1X1)−1

)−1
(β − b∗1)

]

×
exp

[
−RSS∗1

2σ2ψ

]
ψ
n+r−2p+α+1

2

×

(
σ2ψ
1+ψ

) 2n−2p+α−1
2

(σ2)
2n+r−2p+α+1

2
−1

×(σ2)
p
2

∣∣∣∣ψX ′X +
(

(X ′X)
−1

+ (X ′1X1)
−1
)−1
∣∣∣∣− 1

2

dψ

Finally multiplying the integrand by our regular prior π(β, σ2) ∝ (σ2)−
δ+1
2 , we find

that the product breaks up into exactly three parts corresponding to the following

posterior distributions

β |σ2, ψ, b∗1 ∼ Np

(
b∗1, σ

2
(
(1 + ψ)(X ′X)−1 + ψ(X ′1X1)−1

))
(2.30)

σ2 |ψ,RSS∗1 ∼ Scale-inv-χ2

(
r − p+ δ − 1,

RSS∗1
ψ(r − p+ δ − 1)

)
(2.31)

ψ ∼ β′
(
n− p+ δ − 1

2
,
n− p+ α− δ

2

)
(2.32)

The posterior distributions are proper as long as r > max{p, p − δ + 1, p − α + 1},

n > p− α + δ and they match our results in Section 2.2 when r = n.

Remark 2.4.1. We can think of an r based decision rule to analyze synthetic MLR

data as follows. If r < p we ignore the part of the data that is sensitive and base
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our analysis only on the non-sensitive part. This makes sense in the light of our

simulation data where n � p. If r > p, then we use Method II (use whole data

estimates to impute synthetic data). If r > p, n − r > p then we use Method I (use

sensitive part estimates to impute synthetic data). If r = n then we use our regular

methods of analyses outlined in Sections 2.1 and 2.2.

40



Chapter 3

Bayesian Analysis of Multiply

Imputed Synthetic Data under the

Multiple Linear Regression Model

3.1 Plug In Sampling method

Procedure I

We return to the case of a standard MLR model involving a sensitive response variable

y and a p×1 dimensional vector of non-sensitive predictors x as in Section 2.1, but the

analysis will take a slightly different route. In what follows, we emulate the develop-

ment in Klein et al. (2019). To generate synthetic data z1 = (z11, . . . , z1n)′, . . . ,zm =

(zm1, . . . , zmn)′ for m > 1 under plug-in sampling, we start from the point estimates

b and RSS/(n − p), of β and σ2, respectively. The synthetic data are obtained by

drawing z1, . . . ,zm
iid∼Nn

(
Xb, RSS

n−pIn

)
. Equivalently, the synthetic data are obtained

by drawing zji ∼ N(x′ib,
RSS
n−p), independently for i = 1, . . . , n and j = 1, . . . ,m.
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Let z̄i = 1
m

∑m
j=1 zji, S

2
zi =

∑m
j=1 (zji − z̄i)2, and S2

z =
∑n

i=1 S
2
zi. If m > 1, then it

follows that, conditional on b and RSS,

S2
z ∼

RSS

(n− p)
χ2
n(m−1), z̄i ∼ N

(
x′ib,

RSS

m(n− p)

)
, i = 1, . . . , n

with these terms being (conditionally) independent. If m = 1, then the situation

reduces to z̄i = z1i and S2
zi = 0 for i = 1, . . . , n, and hence S2

z = 0.

Let z̄ = (z̄1, . . . , z̄n)′ and b∗j = (X ′X)−1X ′zj. We define b∗ = (X ′X)−1X ′z̄ =

1
m

∑m
j=1 b

∗
j and S2

comb = S2
z + m(z̄ −Xb∗)′(z̄ −Xb∗), and note that, conditionally

given b and RSS,

b∗ ∼ Np

(
b,

RSS

m(n− p)
(X ′X)−1

)
, S2

comb ∼
RSS

(n− p)
χ2
n(m−1)+n−p

which are (conditionally) independent and can be shown to be jointly sufficient for

(β, σ2). From Klein et al. (2019), we have the following result.

Theorem 3.1.1. The joint pdf of (b∗, S2
comb) is given by

fβ,σ2(b∗, S2
comb) ∝

∫ ∞
0

e
− 1

2

[
(b∗−β)′(X′X)(b∗−β)

σ2(1+
ψ

m(n−p) )
+

(n−p)S2comb
σ2ψ

+ψ

]
(S2

comb)
nm−p

2
−1

σnmψ
n(m−1)+p+2

2

[
1 + m(n−p)

ψ

]−p/2
dψ

Posterior distributions of β and σ2

We choose the same prior on the parameters and multiply it with the above pdf so

that product splits up into the following (conditional) posterior distributions:

β | b∗, S2
comb, σ

2, ψ ∼ Np

(
b∗, σ2(1 +

ψ

m(n− p)
)(X ′X)−1

)
(3.1)

σ2 | b∗, S2
comb, ψ ∼ Scale-inv-χ2

(
nm− p+ δ − 1,

(n− p)S2
comb

ψ(nm− p+ δ − 1)

)
(3.2)

ψ ∼ χ2
n−p+δ−1 (3.3)
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The posterior distributions are proper as long as n > max{p, p − δ + 1} (this also

ensures that nm − p + δ − 1 > 0 since m > 1, which is necessary for the posterior

distribution of σ2 to be proper). It is interesting to observe that plugging in m = 1

in the above formulas yields the same results we obtained for singly imputed plug-in

sampling data as in Section 2.1.

Bayes Estimators of β and σ2

β̂BAYES = E(β | b∗, S2
comb) = Eψ Eσ2 E(β | b∗, S2

comb, σ
2, ψ) = Eψ Eσ2(b∗) = b∗

σ̂2
BAYES = E(σ2 | b∗, S2

comb) = Eψ E(σ2 | b∗, S2
comb, ψ) = Eψ(

(n−p)S2
comb)

ψ(nm−p+δ−3)
) =

(n−p)S2
comb

(nm−p+δ−3)
Eψ( 1

ψ
)

=
(n− p)S2

comb

(nm− p+ δ − 3)(n− p+ δ − 3)

Credible Sets for β and σ2

We will compute pivots for σ2 and β. For that we will first need to define and find

the distribution of a few variables.

Consider U :=
1

σ2
. It is easy to see that

U |S2
comb, ψ ∼ Γ

(
nm− p+ δ − 1

2
,
(n− p)S2

comb

2ψ

)
(3.4)

Then a pivot for σ2 can be defined as

K :=
S2

comb

σ2
= U × S2

comb

=⇒ K |S2
comb, ψ ∼ Γ

(
nm− p+ δ − 1

2
,
(n− p)

2ψ

)
=⇒ K |ψ ∼ Γ

(
nm− p+ δ − 1

2
,
(n− p)

2ψ

)
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where the second line above follows from (3.4) and the fact that if X ∼ Γ (α, β) then

cX ∼ Γ (α, β/c).

Hence the pivot for σ2 is computed as

ψ ∼ χ2
n−p+δ−1

K |ψ ∼ Γ

(
nm− p+ δ − 1

2
,
(n− p)

2ψ

)

A (1− γ) level credible set for σ2 based on K = RSS∗/σ2 is

[
S2

comb

bn,p,δ;γ
,
S2

comb

an,p,δ;γ

]

where an,p,δ;γ and bn,p,δ;γ are any two constants that satisfy 1− γ = P (an,p,δ;γ ≤ K ≤

bn,p,δ;γ). The length of the credible interval is S2
comb

(
1

an,p,δ;γ
− 1

bn,p,δ;γ

)
.

Now consider

V :=
(β − b∗)′(X ′X)(β − b∗)

σ2(1 + ψ
m(n−p))

Then V | b∗, S2
comb, σ

2, ψ ∼ χ2
p and thus unconditionally V ∼ χ2

p. Also V is indepen-

dent of (b∗, S2
comb, σ

2, ψ) and thus V is independent of U . If

U∗ :=
U(n− p)S2

comb

ψ

then U∗ |S2
comb, ψ ∼ χ2

nm−p+δ−1, and unconditionally U∗ ∼ χ2
nm−p+δ−1. Now as V is

independent of U , it is independent of U∗. Finally we define the pivot for β as

T 2
m :=

(β − b∗)′(X ′X)(β − b∗)
S2

comb

Then since T 2
m is not dependent on (b∗, S2

comb) as V , U∗ are both independent of

(b∗, S2
comb), we have
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T 2
m |ψ =

σ2V

(
1 +

ψ

m(n− p)

)
ψU∗

U(n− p)

=
V

U∗

[
1 + ψ

m(n−p)

ψ

]
(n− p) [∵ σ2 =

1

U
]

∼
χ2
p

χ2
nm−p+δ−1

(
1

m
+
n− p
ψ

)
∼

χ2
p

χ2
nm−p+δ−1

(
1

m
+
n− p
ψ

)
=

[
p

nm− p+ δ − 1

]
Fp, n−p+δ−1

(
1

m
+
n− p
ψ

)

Hence the pivot for β is computed as

ψ ∼ χ2
n−p+δ−1

T 2
m |ψ ∼

[
p

nm− p+ δ − 1

] [
1

m
+
n− p
ψ

]
Fp, nm−p+δ−1

A (1− γ) level credible ellipsoid for β based on T 2
m is given by

{β : T 2
m ≤ dn,p,δ,m;γ}

where dn,p,δ,m;γ satisfies 1 − γ = P (T 2
m ≤ dn,p,δ,m;γ). The volume of the credible

ellipsoid is

Vβ(z1, . . . ,zm,X) =
πp/2

Γ
(
p
2

+ 1
) (dn,p,δ,m;γS

2
comb

)p/2 |X ′X|−1/2

Remark 3.1.1. If one is interested in the credible set of a single regression coefficient

or more generally in the credible set of a linear combination of β, namely, Aβ = η

where A is a k × p dimensional matrix with rank(A) = k < p, we define T 2
m,η =

(η −Ab∗)′{A(XX ′)−1A′}−1(η −Ab∗)/RSS∗, and proceed by noting that

T 2
m,η |ψ ∼

[
k

nm− p+ δ − 1

] [
1

m
+
n− p
ψ

]
Fk, nm−p+δ−1 and ψ ∼ χ2

n−p+δ−1
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Procedure II

We can adapt the procedure in Section 2.1 so that the sufficient statistics for the

released data is (b∗1, . . . , b
∗
m,RSS∗1, . . . ,RSS∗m) to obtain

β |σ2, ψ, b∗ ∼ Np

(
b∗,

σ2

m
(1 + ψ)(XX ′)−1

)
(3.5)

σ2 |ψ, b∗1, . . . , b∗m,RSS∗1, . . . ,RSS∗m ∼ Scale-inv-χ2(ν, τ 2) (3.6)

π(ψ | b∗1, . . . , b∗m,RSS∗1, . . . ,RSS∗m) ∝ ψ−
(m−1)(n−p)

2
−1(1 + ψ)−

(m−1)p
2 e−

(n−p)ψ
2

{
ντ 2
}− ν

2

(3.7)

where b∗ = 1
m

∑m
j=1, RSS∗ = 1

m

∑m
j=1 RSS∗j and

ν = nm− p+ δ − 1

ντ 2 =
m∑
j=1

(
b∗j − b∗

)′ X ′X
1 + ψ

(
b∗j − b∗

)
+
m

ψ
RSS∗

We can sample ψ from (3.7) using Accept-Reject algorithm as follows:

π(ψ | data) ≤
2
n+(m−2)p+δ−1

2 Γ
(
n+(m−2)p+δ−1

2

)
(n− p)

n+(m−2)p+δ−1
2

(∑m
j=1 RSS∗j

)nm−p+δ−1
2

fScaledChi(ψ)

where fScaledChi(ψ) is the pdf of a Gamma
(
n+(m−2)p+δ−1

2
, n−p

2

)
distribution. This

would require the additional assumption n+ (m− 2)p+ δ − 1 > 0.

Simulation studies

The setup is same as in Section 2.3. As before in the last chapter the general trend

observed when m = 1 is still followed here, which entails lower coverage for σ2 com-

pared to β that improves asymptotically but not quite (the effect is more prominent
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for large values of δ); the coverage for σ2 increases with increasing δ for a while and

then it dips. Both of the effects are observed for β as well but it is not as dramatic

as the coverage for β is close to 0.95 to begin with and asymptotically the Bernstein-

von Mises theorem holds. Increasing δ decreases the size of credible sets and slightly

worsens the Bayes estimator of σ2 but not that of β. Lastly, credible sets shrink and

Bayes estimators for both parameters work reasonably well in the asymptotic case.

Now let us get to the peculiarities of the situation at hand, i.e. the case when m > 1.

The maximum coverage for σ2 is actually higher when m = 1, with m > 5 being

slightly better off than m > 10 overall for coverage of σ2. For large δ, the coverage

for σ2 is better in the case of m > 1 in the regular case, and m = 1 is better in the

asymptotic case. The coverage for β seems to be close to 0.95 for both m = 1 and

m > 1, with m > 1 being very slighly better off than m = 1 for large δ. The coverage

for β is also slightly better overall for m = 5 than m = 10. The size of credible

sets decrease with increasing m, and they become even more tighter asymptotically.

We observe this quirk for both the parameters, suggesting that the gain in efficiency

of estimation due to an increase in m is paid for by the decrease in coverage. The

Bayes estimator for σ2 is better in the case m > 1 for large values of δ in the regular,

although asymptotically there seems to be no difference. The Bayes estimator for β

behaves similarly for all values of m. Finally, for β overall, the asymptotic case seems

identical in m = 1 and m > 1. The behavior of the coverage of σ2 and β with respect

to different values of δ in the case n = 500 (depicted by alternating dashes and dots),

n = 1000 (depicted by solid lines), asymptotic case n = 10000 (depicted by dashed

lines) are represented in Figures 3.1(a), 3.1(c) and Figures 3.1(b), 3.1(d) respectively.
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Table 3.1: Inference for β and σ2 for MI PIS data with m = 5, n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.949 0.277 1.007 0.95 4.966e-05 (10.000, 2.000, 1.999, -3.000, -0.999, -2.001, 1.000, 1.999, 2.000, 3.999)’
0.5 0.947 0.277 1.007 0.95 5.845e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.998, 2.001, 2.001, 4.000)’
0.8 0.952 0.277 1.006 0.951 4.979e-05 (10.001, 2.000, 2.000, -3.001, -0.999, -2.002, 0.999, 2.000, 2.000, 4.001)’
1 0.946 0.276 1.004 0.953 4.031e-05 (10.001, 2.000, 2.000, -3.001, -0.999, -2.002, 1.001, 2.000, 1.999, 4.002)’
2 0.950 0.275 1.002 0.95 5.778e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.002, 1.999, 1.999, 3.999)’
3 0.951 0.275 1.001 0.948 6.429e-05 (10.001, 2.000, 2.000, -2.999, -1.000, -2.003, 0.999, 2.000, 1.998, 3.999)’
4 0.946 0.273 0.998 0.948 7.037e-05 (9.999, 2.001, 2.000, -3.000, -0.999, -2.000, 0.999, 2.001, 2.000, 4.000)’
10 0.939 0.268 0.984 0.942 4.706e-05 (10.000, 2.000, 2.000, -3.000, -1.001, -2.003, 0.999, 2.000, 2.001, 4.002)’
20 0.898 0.259 0.960 0.938 6.336e-05 (10.000, 2.000, 2.000, -2.999, -1.000, -2.001, 0.998, 1.999, 2.000, 3.999)’
30 0.828 0.251 0.938 0.929 4.428e-05 (9.999, 2.001, 2.000, -3.000, -1.000, -2.003, 1.001, 1.999, 2.002, 3.999)’
50 0.594 0.236 0.894 0.918 3.348e-05 (9.999, 2.000, 2.000, -2.999, -1.000, -1.999, 0.999, 2.000, 2.000, 4.001)’
100 0.083 0.204 0.804 0.873 2.036e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.002, 3.999)’

Table 3.2: Inference for β and σ2 for MI PIS data with m = 5, n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.947 0.194 1.003 0.952 1.316e-06 (10.001, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 1.999, 1.999, 3.997)’
0.5 0.949 0.194 1.004 0.951 1.912e-06 (10.001, 2.000, 2.000, -3.00, -0.999, -2.000, 1.000, 1.998, 1.997, 3.997)’
0.8 0.956 0.194 1.003 0.950 1.681e-06 (10.001, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.000, 1.999, 3.999)’
1 0.951 0.194 1.003 0.955 1.925e-06 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 3.999)’
2 0.947 0.193 1.002 0.952 1.145e-06 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.000, 4.001)’
3 0.945 0.193 1.000 0.948 1.665e-06 (9.999, 2.000, 2.000, -3.000, -1.000, -1.998, 1.002, 2.001, 2.001, 4.004)’
4 0.950 0.193 0.999 0.947 1.511e-06 (10.001, 2.000, 2.000, -3.001, -1.000, -2.001, 1.001, 2.000, 2.000, 3.999)’
10 0.946 0.191 0.991 0.949 1.538e-06 (10.000, 2.000, 2.000, -3.000, -1.001, -2.002, 1.001, 2.000, 2.002, 3.999)’
20 0.925 0.188 0.980 0.943 1.510e-06 (10.003, 2.000, 2.000, -3.000, -1.001, -2.001, 0.998, 1.998, 1.998, 3.998)’
30 0.894 0.185 0.969 0.941 1.690e-06 (10.001, 2.000, 2.000, -3.000, -1.001, -1.999, 1.000, 2.000, 2.000, 4.001)’
50 0.775 0.179 0.946 0.931 1.673e-06 (10.000, 2.000, 2.000, -3.000, -1.000, -2.003, 1.000, 2.001, 2.000, 3.999)’
100 0.335 0.166 0.894 0.917 8.961e-07 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.000, 4.001)’

Table 3.3: Inference for β and σ2 for MI PIS data with m = 5, n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.953 0.061 1.000 0.952 1.551e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.000, 4.001)’
0.5 0.948 0.061 1.000 0.95 1.539e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 4.000)’
0.8 0.948 0.061 1.000 0.946 1.425e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.000, 4.000)’
1 0.946 0.061 1.000 0.950 1.540e-11 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.000)’
2 0.950 0.061 1.000 0.951 1.556e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.001)’
3 0.954 0.061 1.000 0.952 1.556e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.001, 4.000)’
4 0.952 0.061 1.000 0.950 1.542e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.000)’
5 0.697 0.061 0.999 0.949 1.034e-32 (10.000, 2.000, 1.999, -3.000, -1.000, -2.000, 1.000, 1.999, 2.000, 3.999)’
10 0.948 0.061 0.999 0.952 1.480e-11 (10.001, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 2.000, 4.000)’
20 0.947 0.061 0.998 0.951 1.474e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 4.000)’
30 0.944 0.061 0.997 0.952 1.659e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
50 0.933 0.060 0.994 0.947 1.648e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 4.000)’
100 0.881 0.060 0.988 0.948 1.456e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 3.999)’
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Table 3.4: Inference for β and σ2 for MI PIS data with m = 10, n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.952 0.265 1.007 0.954 3.167e-05 (10.002, 2.000, 2.000, -2.999, -1.001, -2.002, 1.000, 1.999, 2.000, 4.000)’
0.5 0.948 0.265 1.006 0.952 4.888e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 1.998, 4.000)’
0.8 0.949 0.264 1.005 0.947 2.500e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -2.001, 0.999, 2.000, 1.998, 3.999)’
1 0.949 0.265 1.005 0.954 2.831e-05 (9.999, 2.000, 2.000, -3.000, -1.000, -2.001, 1.001, 2.001, 2.002, 3.999)’
2 0.944 0.264 1.002 0.953 4.065e-05 (9.999, 2.000, 2.000, -3.000, -0.999, -2.000, 1.000, 1.998, 1.999, 4.000)’
3 0.949 0.263 1.000 0.950 3.059e-05 (10.000, 2.000, 2.000, -3.001, -1.000, -1.998, 1.000, 2.000, 1.998, 4.000)’
4 0.946 0.262 0.997 0.952 3.543e-05 (10.001, 1.999, 2.000, -3.000, -0.999, -1.999, 1.000, 2.000, 2.000, 4.000)’
10 0.941 0.257 0.985 0.948 3.629e-05 (10.001, 1.999, 2.000, -3.000, -1.000, -1.998, 0.998, 1.999, 1.999, 3.999)’
20 0.901 0.249 0.963 0.933 2.978e-05 (10.000, 2.000, 2.000, -3.001, -0.999, -2.001, 1.001, 2.000, 2.001, 4.000)’
30 0.831 0.242 0.942 0.933 2.293e-05 (10.000, 2.000, 2.000, -3.000, -0.999, -1.997, 1.001, 2.004, 2.002, 4.000)’
50 0.624 0.227 0.903 0.915 2.201e-05 (10.002, 2.000, 2.000, -3.000, -1.001, -2.000, 0.999, 2.001, 1.999, 4.001)’
100 0.105 0.198 0.819 0.880 1.463e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -2.002, 1.001, 2.000, 1.998, 4.000)’

Table 3.5: Inference for β and σ2 for MI PIS data with m = 10, n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.95 0.185 1.002 0.947 1.271e-06 (10.002, 1.999, 2.000, -2.999, -1.000, -2.000, 0.998, 1.999, 2.000, 3.999)’
0.5 0.949 0.186 1.003 0.952 7.804e-07 (10.000, 1.999, 2.000, -3.000, -1.000, -2.000, 0.999, 2.002, 2.000, 3.999)’
0.8 0.951 0.185 1.002 0.95 1.159e-06 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 1.000, 1.999, 2.000, 3.999)’
1 0.95 0.185 1.001 0.95 8.669e-07 (9.999, 2.001, 2.000, -3.000, -0.999, -2.001, 0.998, 2.000, 1.998, 3.997)’
2 0.949 0.185 1.001 0.947 1.070e-06 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.001, 4.000)’
3 0.949 0.185 0.999 0.951 1.210e-06 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.000, 4.001)’
4 0.956 0.184 0.999 0.95 8.738e-07 (10.001, 2.000, 2.000, -3.000, -1.001, -2.001, 1.001, 2.000, 1.999, 3.998)’
10 0.944 0.183 0.992 0.946 9.520e-07 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.000)’
20 0.929 0.180 0.982 0.944 9.566e-07 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.001, 2.000, 3.998)’
30 0.895 0.177 0.971 0.939 1.043e-06 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 3.997)’
50 0.790 0.172 0.951 0.938 7.767e-07 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.000)’
100 0.374 0.160 0.902 0.920 6.855e-07 (10.001, 2.001, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 2.000, 4.000)’

Table 3.6: Inference for β and σ2 for MI PIS data with m = 10, n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.95 0.058 1.001 0.949 9.535e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 2.000, 4.000)’
0.5 0.95 0.058 1.000 0.954 9.863e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
0.8 0.946 0.058 1.000 0.952 9.799e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
1 0.953 0.058 1.000 0.953 9.854e-12 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.001, 2.001, 4.001)’
2 0.953 0.058 1.000 0.951 1.011e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.000)’
3 0.951 0.058 1.000 0.95 1.006e-11 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
4 0.949 0.058 1.000 0.950 9.727e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
10 0.947 0.058 0.999 0.947 9.419e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.000)’
20 0.948 0.058 0.998 0.948 9.377e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
30 0.942 0.058 0.997 0.951 9.503e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’
50 0.938 0.058 0.995 0.949 9.948e-12 (10.001, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 4.000)’
100 0.884 0.057 0.989 0.946 9.302e-12 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 2.000, 4.000)’
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(a) σ2, m = 5 (b) β, m = 5

(c) σ2, m = 10 (d) β, m = 10

Figure 3.1: Variation in coverage of β and σ2 with respect to δ for MI PIS MLR data
(−·−·− n = 500, — n = 1000, −−− n = 10000)
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3.2 Posterior Predictive Sampling method

Procedure I

We consider the setup described in Section 2.2. The synthetic data are generated by

repeating the following steps below independently for each j = 1, . . . ,m.

(a) Draw (β∗j , σ
∗2
j ) from the posterior distribution (2.11) and (2.12).

(b) Draw zj = (zj1, . . . , zjn)′ ∼ Nn(Xβ∗j , σ
∗2
j In).

The released synthetic data are z1, . . . ,zm along with the matrix of predictor vari-

ables X. Similar as before the sufficient statistics for the synthetic data are: b∗j =

(X ′X)−1X ′zj and RSS∗j = (zj −Xb∗j)′(zj − Xb∗j), for j = 1, . . . ,m. It can be

shown that (b∗1,RSS∗1), . . . , (b∗m,RSS∗m) are jointly sufficient for (β, σ2). In view of the

sampling mechanism above, it follows that from the frequentist perspective, the joint

distribution of b∗1, . . . , b
∗
m, RSS∗1, . . . ,RSS∗m, β∗1, . . . ,β

∗
m, σ∗21 , . . . , σ

∗2
m , b and RSS has

the following hierarchical structure:

b∗j |RSS∗1, . . . ,RSS∗m,β
∗
1, . . . ,β

∗
m, σ

∗2
1 , . . . , σ

∗2
m , b,RSS ∼ Np(β

∗
j , σ

∗2
j (X ′X)−1)

RSS∗j |β∗1, . . . ,β∗m, σ∗21 , . . . , σ
∗2
m , b,RSS ∼ σ∗2j χ

2
n−p

β∗j |σ∗21 , . . . , σ
∗2
m , b,RSS ∼ Np(b, σ

∗2
j (X ′X)−1)

σ∗2j | b,RSS ∼ RSS

χ2
n−p+α−1

b ∼ Np(β, σ
2(X ′X)−1)

RSS ∼ σ2χ2
n−p

which are generated independently for j = 1, . . . ,m, whenever applicable.
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Hence we have f(b∗1, . . . , b
∗
m,RSS∗1, . . . ,RSS∗m,β

∗
1, . . . ,β

∗
m, σ

∗2
1 , . . . , σ

∗2
m , b,RSS)

=
m∏
j=1

(2πσ∗2j )−p/2
∣∣X ′X∣∣1/2 exp

[
− 1

2σ∗2j
(b∗j − β∗j )′(X ′X)(b∗j − β∗j )

]

×
m∏
j=1

(RSS∗j )
n−p
2
−1

2
n−p
2 Γ (n−p2 )

(σ∗2j )−(n−p)/2 exp

[
−

RSS∗j
2σ∗2j

]

×
m∏
j=1

(2πσ∗2j )−p/2
∣∣X ′X∣∣1/2 exp

[
− 1

2σ∗2j
(β∗j − b)′(X ′X)(β∗j − b)

]

×
m∏
j=1

(RSS)(n−p+α−1)/2

2(n−p+α−1)/2 Γ
(
n−p+α−1

2

)(σ∗2j )−(n−p+α−1)/2−1 exp

[
−RSS

2σ∗2j

]

× (2πσ2)−p/2
∣∣X ′X∣∣1/2 exp

[
− 1

2σ2
(b− β)′(X ′X)(b− β)

]
× (RSS)

n−p
2
−1

2
n−p
2 Γ (n−p2 )

(σ2)−(n−p)/2 exp

[
−RSS

2σ2

]

After integrating out β∗j ’s, b, RSS, simplifying we get,

(2π)−p/2

(
1
σ2

)p/2(∑m
j=1

1
2σ∗2j

)p/2
(

1
σ2 +

∑m
j=1

1
2σ∗2j

)p/2 ∣∣X ′X∣∣1/2

× exp

−1

2

(
1
σ2

)(∑m
j=1

1
2σ∗2j

)
(

1
σ2 +

∑m
j=1

1
2σ∗2j

)
β −

∑m
j=1

b∗j
2σ∗2j∑m

j=1
1

2σ∗2j


′

(X ′X)

β −
∑m

j=1

b∗j
2σ∗2j∑m

j=1
1

2σ∗2j




×
m∏
j=1

(2π)−p/2
(
2σ∗2j

)−p/2 ∣∣X ′X∣∣1/2 exp

−1

2
· 1

2σ∗2j

b∗j −
∑m

j=1

b∗j
2σ∗2j∑m

j=1
1

2σ∗2j


′

(X ′X)

b∗j −
∑m

j=1

b∗j
2σ∗2j∑m

j=1
1

2σ∗2j




×

 m∑
j=1

1

2σ∗2j

−
p

2
 1

σ2
+

m∑
j=1

1

σ∗2j

−
(m+ 1)(n− p) +m(α− 1)

2

(σ2)

n− p
2

 m∏
j=1

(σ∗2j )

n− p+ α− 1

2
+
n− p

2
+ 1
 exp

− m∑
j=1

RSS∗j
2σ∗2j



×
Γ

(
m(n− p+ α− 1) + (n− p)

2

)
(
Γ

(
n− p+ α− 1

2

))m(
Γ

(
n− p

2

))m+1 (2π)p/2
∣∣X ′X∣∣−1/2

 m∏
j=1

(RSS∗j )
n−p
2
−1

2
n−p
2


(3.8)
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It is clear from the expression above that the part involving β separates out in the

first line and it’s posterior distribution is obvious. We also observe that the quantity

inside the exponential in the second line vanishes for m = 1. We multiply the joint

distribution of (b∗1, . . . , b
∗
m,RSS∗1, . . . ,RSS∗m, σ

∗2
1 , . . . , σ

∗2
m ) in (3.8) by our usual prior,

and the parameters separate out as follows:

β |σ2,
m∑
j=1

b∗j
σ∗2j

,

m∑
j=1

1

σ∗2j
∼ Np

∑m
j=1

b∗j
σ∗2j∑m

j=1
1
σ∗2j

,

(
1 + σ2

(
m∑
j=1

1

σ∗2j

))
(X ′X)−1

 (3.9)

σ2

(
m∑
j=1

1

σ∗2j

)
∼ β′

(
m(n− p+ α− 1)− δ + 1

2
,
n− p+ δ − 1

2

)
(3.10)

so that σ2
(∑m

j=1 1/σ∗2j

)
is independent of both latent variables and data. The poste-

rior distributions are proper as long as n > max
{
p, p− δ + 1, p− α + 1, p− α + 1 + δ−1

m

}
.

The latent variables have the following distribution

g(σ∗21 , . . . , σ
∗2
m | b∗1, . . . , b∗m,RSS∗1, . . . ,RSS∗m)

∝

(∏m
j=1(σ∗2j )

)− 2n−p+α+1
2

(∑m
j=1

1
σ∗2j

)m(n−p+α−1)+p−δ
2

exp

−1

4

m∑
j=1

1

σ∗2j


b∗j −

∑m
j=1

b∗j
σ∗2j∑m

j=1
1
σ∗2j

′ (XX ′)
b∗j −

∑m
j=1

b∗j
σ∗2j∑m

j=1
1
σ∗2j

+ 2RSS∗j




If we make the transformation where σ2
j = 1/σ∗2j , then the distribution looks like

h(σ2
1, . . . , σ

2
m | b∗1, . . . , b∗m,RSS∗1, . . . ,RSS∗m)

∝

(∏m
j=1(σ2

j )
) 2n−p+α−1

2

(∑m
j=1 σ

2
j

)m(n−p+α−1)+p−δ
2

exp

[
−1

4

m∑
j=1

σ2
j

{(
b∗j −

∑m
j=1 σ

2
jb
∗
j∑m

j=1 σ
2
j

)′
(XX ′)

(
b∗j −

∑m
j=1 σ

2
jb
∗
j∑m

j=1 σ
2
j

)
+ 2RSS∗j

}]
(3.11)
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Let us denote the quantity inside the exponential of (3.11) as Q. Our goal here is to

sample from (3.11). If we make the following transformation

u1 =
m∑
j=1

σ2
j , u2 =

σ2
j∑m

j=1 σ
2
j

, . . . , um =
σ2
m∑m

j=1 σ
2
j

(3.12)

then with some abuse of notation for Q, we can sample (y1, y2, . . . , ym) using condi-

tional sampling and Accept-Reject algorithm in the following manner:

u1 |u2, . . . , um, data ∼
2χ2

nm−p+δ−1

Q
(3.13)

π(u2, . . . , um | data) ≤
B
(

2n−p+α−1
2

, . . . , 2n−p+α−1
2

)
(RSS∗min)

nm−p+δ−1
2

gDir(u2, . . . , um) (3.14)

where B(α1, . . . , αm) is the multivariate beta function, and gDir(u2, . . . , um) is the pdf

of an mth order Dirichlet
(

2n−p+α−1
2

, . . . , 2n−p+α−1
2

)
distribution.

Other transformations can be made along similar lines. Let us denote

w1 =
m∑
j=1

σ2
j , w2 =

σ2
1

σ2
1 + σ2

2

, w3 =
σ2

1 + σ2
2

σ2
1 + σ2

2 + σ2
3

, . . . , wm =
σ2

1 + σ2
2 + . . .+ σ2

m−1

σ2
1 + σ2

2 + . . .+ σ2
m−1 + σ2

m

(3.15)

Then (w1, . . . , wm) can be sampled similarly as before

w1 |w2, . . . , wm, data ∼
2χ2

nm−p+δ−1

Q
(3.16)

π(w2, . . . , wm | data) ≤

∏m
j=2 B

(
(2n−p+α−1)(j−1)

2
, 2n−p+α−1

2

)
(RSS∗min)

nm−p+δ−1
2

(
m∏
j=2

gj(wj)

)
(3.17)

where B(a, b) is the regular beta function, and gj(wj) is the pdf of a

Beta
(

(2n−p+α−1)(j−1)
2

, 2n−p+α−1
2

)
distribution, independently for j = 2, . . . ,m. One

advantage of this transformation is that the proposal distribution uses all independent

random variables. Immediately we can observe that, due to the fact if X ∼ Beta(a, b)
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then 1−X ∼ Beta(b, a), the following transformation would also work

w∗1 =
m∑
j=1

σ2
j , w

∗
2 =

σ2
2

σ2
1 + σ2

2

, w∗3 =
σ2

3

σ2
1 + σ2

2 + σ2
3

, . . . , w∗m =
σ2
m∑m

j=1 σ
2
j

(3.18)

with the only change being the parameters would be switched in the Beta function

and the parameters of the independent Beta distributions in (3.17).

The most intuitive transformation given the problem structure seems to be

v1 = σ2
1, v2 =

σ2
2

σ2
1

, . . . , vm =
σ2
m

σ2
1

(3.19)

so that (v1, v2, . . . , vm) can be sampled as

v1 | v2, . . . , vm, data ∼
2χ2

nm−p+δ−1

Q
(3.20)

π(v2, . . . , vm | data) ≤
B
(

2n−p+α−1
2

, . . . , 2n−p+α−1
2

)
(RSS∗min)

nm−p+δ−1
2

gInvDir(v2, . . . , vm) (3.21)

where gInvDir(v2, . . . , vm) is the pdf of anmth order Inverse-Dirichlet
(

2n−p+α−1
2

, . . . , 2n−p+α−1
2

)
distribution.

Lastly, the following transformation can also be made

y1 = σ2
1, y2 =

σ2
1

σ2
2

, y3 =
σ2

1 + σ2
2

σ2
3

, . . . , ym =
σ2

1 + · · ·+ σ2
m−1

σ2
m

(3.22)

so that (y1, v2, . . . , ym) can be sampled as

y1 | y2, . . . , ym, data ∼
2χ2

nm−p+δ−1

Q
(3.23)

π(y2, . . . , ym | data) ≤

∏m
j=2 B

(
(2n−p+α−1)(j−1)

2
, 2n−p+α−1

2

)
(RSS∗min)

nm−p+δ−1
2

(
m∏
j=2

g′j(yj)

)
(3.24)
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where g′j(yj) is the pdf of a Beta-Prime
(

(2n−p+α−1)(j−1)
2

, 2n−p+α−1
2

)
distribution, inde-

pendently for j = 2, . . . ,m. Since if X ∼ β′(a, b) then X−1 ∼ β′(b, a), the reciprocal

transformation would also work in (3.24).

Procedure II

We can adapt the approach in Section 2.2 to get

β |σ2, ψ1, . . . , ψm, data ∼ Np

( m∑
j=1

X ′X

1 + 2ψj

)−1( m∑
j=1

X ′X

1 + 2ψj
b∗j

)
, σ2

(
m∑
j=1

X ′X

1 + 2ψj

)−1


(3.25)

σ2 |ψ1, . . . , ψm, data ∼ Scale-inv-χ2

[
nm− p+ δ − 1,

1

nm− p+ δ − 1

(
m∑
j=1

RSS∗j
ψj

+

m∑
j=1

b∗j −
(

m∑
j=1

(1 + 2ψj)
−1

)−1( m∑
j=1

b∗j
1 + 2ψj

)′ X ′X
1 + 2ψjb∗j −

(
m∑
j=1

(1 + 2ψj)
−1

)−1( m∑
j=1

b∗j
1 + 2ψj

)
(3.26)

π(ψ1, . . . , ψm | data) ∝ |X ′X|−
1
2

(
m∑
j=1

1

1 + 2ψj

)− p
2
(

m∏
j=1

ψ−1
j (1 + ψ)−

2n−2p+α−1
2 (1 + 2ψj)

− p
2

)

×


m∑
j=1

b∗j −
(

m∑
j=1

(1 + 2ψj)
−1

)−1 m∑
j=1

b∗j
1 + 2ψj

′ X ′X
1 + 2ψjb∗j −

(
m∑
j=1

(1 + 2ψj)
−1

)−1 m∑
j=1

b∗j
1 + 2ψj

+
m∑
j=1

RSS∗j
ψj


−nm−p+δ−1

2

(3.27)

Now since

m∑
j=1

1

1 + 2ψj
≥

m∏
j=1

1

1 + 2ψj
; {·} ≥

m∑
j=1

RSS∗j
ψj
≥ m

(
m∏
j=1

RSS∗j
ψj

) 1
m

(3.28)
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We could have also done
∑m

j=1

RSS∗j
ψj
≥
∑m

j=1
RSS∗min

ψj
≥ mRSS∗min

∏m
j=1

(
1
ψj

) 1
m

instead.

Now we can use Accept-Reject algorithm to sample the latent variables as follows

π(ψ1, . . . , ψm | data) ≤

(∏m
j=1 B

(
nm−p+δ−1

2m
, nm−(2m−1)p+αm−δ−m+1

2

))
|X ′X|

1
2

(
m
∏m

j=1 RSS∗j
1
m

)nm−p+δ−1
2

(
m∏
j=1

g̃j
′(ψj)

)

where g̃j
′(ψj) is the pdf of a Beta-Prime

(
nm−p+δ−1

2m
, nm−(2m−1)p+αm−δ−m+1

2

)
distribu-

tion, independently for j = 1, . . . ,m. An advantage of this method is that the latent

variables need not be transformed before applying Accept-Reject algorithm.

Procedure III

In an attempt to reduce the complexity of the posterior distributions, Moura et al.

(2017a) propose drawing only a single posterior draw of the parameter, using which we

can then generate m replicates of the original data. This method is known as Fixed-

Posterior Predictive Sampling (FPPS). So we draw (β∗, σ∗) from (2.11) and (2.12), so

that our released data is zj = (zj1, . . . , zjn)′
iid∼ Nn(Xβ∗, σ∗2In) for each j = 1, . . . ,m.

Using the same notation as in Section 3.1, we can derive the posterior distribution of

the parameters as follows with exactly the same conditions for existence as in Section

2.2

β | b∗, σ2, t ∼ Np

(
b∗,

(
σ2 +

1 + 1
m

t

)
(X ′X)−1

)
(3.29)

tσ2 ∼ β′
(
n− p+ α− δ

2
,
n− p+ δ − 1

2

)
(3.30)

tS2
comb ∼ χ2

nm−p+δ−1 (3.31)

As we can see, we avoid the mess of complicated distribution of the latent variables,

and the independence of tσ2 and tS2
comb makes it easy to construct an pivot for σ2.
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The posterior distributions can be parametrized in a slightly different manner as

follows, again with the same conditions for existence as in Section 2.2

β | b∗, σ2, ψ ∼ Np

(
b∗, σ2

(
1 +

(
1 +

1

m

)
ψ

)
(X ′X)−1

)
(3.32)

σ2 | 2comb, ψ ∼ Scale-inv-χ2

(
nm− p+ δ − 1,

S2
comb

ψ(nm− p+ δ − 1)

)
(3.33)

ψ ∼ β′
(
n− p+ δ − 1

2
,
n− p+ α− δ

2

)
(3.34)

3.3 Partially Sensitive Data

Method I: Using only estimates of sensitive part to impute synthetic data

Plug-In Sampling

The original data now has the same setup as in Section 2.4 with both assumptions

r > p, n − r > p in effect. We synthesize m copies of the original data y = (y1,y2)

given by {y∗j = (y∗j1 ,y2) : j = 1, . . . ,m} whose sufficient statistics are given by

(b∗11 , . . . , b
∗m
1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2). We denote b∗1 = 1

m

∑m
j=1 b

∗j
1 . Then we

can derive the following posterior distributions in a similar manner as before

β |σ2, ψ, b∗1, b2 ∼ Np

[(
X ′1X1

1 + ψ
+
X ′2X2

m

)−1(
X ′1X1

1 + ψ
b∗1 +

X ′2X2

m
b2

)
,
σ2

m

(
X ′1X1

1 + ψ
+
X ′2X2

m

)−1
]

σ2 |ψ, b∗11 , . . . , b
∗m
1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2 ∼ Scale-inv-χ2

(
ν, τ 2

1

)

π(ψ | b∗11 , . . . , b
∗m
1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2)
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∝
∣∣∣∣X ′1X1

1 + ψ
+
X ′2X2

m

∣∣∣∣− 1
2

ψ−
(m−1)(r−p)

2
−1(1 + ψ)−

mp
2 e

(r−p)ψ
2

{
ντ 2

1

}− ν
2

where ν = n+ (m− 1)r − p+ δ − 1 and

ντ 2
1 =

m∑
j=1

(
b∗j1 − b∗1

)′ X1
′X1

1 + ψ

(
b∗j1 − b∗1

)
+m

(
b∗1 − b2

)′ (
(1 + ψ) (X1

′X1)
−1

+ (X2
′X2)

−1
)−1 (

b∗j1 − b∗1
)

+
m∑
j=1

RSS∗j1
ψ

+ RSS2

The posterior distributions are proper as long as r > p, n−r > max{p, p−rm−δ+1}.

Let us denote X ′Xψ,m =
X ′1X1

1 + ψ
+
X ′2X2

m
. Now since

X ′Xψ,m ≥
X ′X

m(1 + ψ)
=⇒ |X ′Xψ,m|−

1
2 ≤ m

p
2 (1 + ψ)

p
2 |X ′X|−

1
2

ντ 2
1 ≥

m∑
j=1

RSS∗j1
ψ

and using the fact that (1 + ψ)−
(m−1)p

2 ≤ 1 (as ψ > 0), we can sample from the

distribution of latent variables using the Accept-Reject algorithm as follows:

π(ψ | data) ≤
m

p
2 |X ′X|−

1
2 2

n+(m−2)p+δ−1
2 Γ

(
n+(m−2)p+δ−1

2

)
(r − p)

n+(m−2)p+δ−1
2

(∑m
j=1 RSS∗j1

)n+(m−1)r−p+δ−1
2

f̃ScaledChi(ψ)

where f̃ScaledChi(ψ) is the pdf of a Gamma
(
n+(m−2)p+δ−1

2
, r−p

2

)
distribution, which

interestingly is the same proposal distribution we used in Section 3.1 when r = n.

We would need another assumption n + (m − 2)p + δ − 1 > 0. All the expressions

coincide with our results earlier when all of y is sensitive.
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Posterior Predictive Sampling

We follow the same process as in Section 2.4 for the PPS case to derive the following

posterior distributions

β |σ2, ψ1, . . . , ψm, b
∗1
1 , . . . , b

∗m
1 , b2

∼ Np

( m∑
j=1

X ′1X1

1 + 2ψj
+X ′2X2

)−1( m∑
j=1

X ′1X1

1 + 2ψj
b∗j1 +X ′2X2b2

)
, σ2

(
m∑
j=1

X ′1X1

1 + 2ψj
+X ′2X2

)−1


σ2 |ψ1, . . . , ψm, b
∗1
1 , . . . , b

∗m
1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2 ∼ Scale-inv-χ2

(
ν, τ 2

1

)

π(ψ1, . . . , ψm | b∗11 , . . . , b
∗m
1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2)

∝

∣∣∣∣∣
m∑
j=1

X ′1X1

1 + 2ψj
+X ′2X2

∣∣∣∣∣
− 1

2
(

m∏
j=1

ψ−1
j (1 + 2ψj)

− p
2 (1 + ψj)

− 2r−2p+α−1
2

){
ντ 2

2

}− ν
2

where ν = n+ (m− 1)r − p+ δ − 1 as before and

ντ2
2

=
m∑
j=1

b∗j1 −
 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj

′ X1
′X1

1 + 2ψj

b∗j1 −
 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj


+

 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj

− b2

′ m∑
j=1

1

1 + 2ψj

−1 (
X1
′X1

)−1
+
(
X2
′X2

)−1

−1

 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj

− b2

 +

m∑
j=1

RSS∗j1
ψj

+ RSS2

The posterior distributions are proper as long as r > max
{
p, p− α + 1, n+(2m−1)p−αm+δ+m−1

m+1

}
,

n− r > max{p, p− rm− δ + 1}.
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Now using (3.28) we can write

(
m∑
j=1

1

1 + 2ψj

)
X ′1X1+X ′2X2 ≥

(
m∏
j=1

1

1 + 2ψj

)
X ′1X1+X ′2X2 ≥

(
m∏
j=1

1

1 + 2ψj

)
X ′X

(3.35)

Finally using (3.28) and (3.35) we can use Accept-Reject algorithm to sample the

latent variables as follows

π(ψ1, . . . , ψm | data) ≤

(∏m
j=1 B

(
n+(m−1)r−p+δ−1

2m
, (m+1)r−n−(2m−1)p+mα−δ−m+1

2m

))
|X ′X|

1
2

(
m
∏m

j=1 RSS∗j
1
m

)n+(m−1)r−p+δ−1
2

(
m∏
j=1

gj
′(ψj)

)

where gj
′(ψj) is the pdf of a Beta-Prime

(
n+(m−1)r−p+δ−1

2m
, (m+1)r−n−(2m−1)p+mα−δ−m+1

2m

)
distribution, independently for j = 1, . . . ,m.

Method II: Using whole data estimates to impute synthetic data

Plug-In Sampling

As in Section 2.4, our analysis in this case will be based solely on the synthetic part.

We require only r > p. The posterior distributions are given by

β |σ2, ψ, b∗1 ∼ Np

(
b∗1, σ

2

(
(X ′X)−1 +

ψ

m
(X ′1X1)−1

))
σ2 |ψ, b∗11 , . . . , b

∗m
1 ,RSS∗11 , . . . ,RSS∗m1 ∼ Scale-inv-χ2

(
ν̃, τ̃ 2

1

)
ψ ∼

χ2
n−p+δ−1

n− p
≡ Γ

(
n− p+ δ − 1

2
,
n− p

2

)

where ν̃ = rm−p+δ−1, ν̃τ̃1
2 = 1

ψ

(∑m
j=1 RSS∗j1 +

∑m
j=1

(
b∗j1 − b∗1

)′
(X1

′X1)
(
b∗j1 − b∗1

))
.

Interestingly, the last quantity is a sum of variation within samples and variation be-

tween samples. The posterior distributions are proper as long as r > max
{
p, p−δ+1

m

}
,

n > p− δ + 1 and the results match our expressions from Section 3.1 when r = n.
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Posterior Predictive Sampling

β |σ2, ψ1, . . . , ψm, b
∗1
1 , . . . , b

∗m
1

∼ Np

( m∑
j=1

ψ−1
j

)−1( m∑
j=1

b∗j1
ψj

)
, σ2

( m∑
j=1

ψ−1
j

)−1 (
(X ′1X1)

−1
+ (X ′X)

−1
)

+ (X ′X)
−1



σ2 |ψ1, . . . , ψm, b
∗1
1 , . . . , b

∗m
1 ,RSS∗11 , . . . ,RSS∗m1 ∼ Scale-inv-χ2

(
ν, τ̃2

2
)

π(ψ1, . . . , ψm | b∗11 , . . . , b
∗m
1 ,RSS∗11 , . . . ,RSS∗m1 )

∝

(
m∏
j=1

ψj

)−n−p+r+α+1
2

(
m∑
j=1

ψ−1
j

)− p
2
(

1 +

(
m∑
j=1

ψ−1
j

))− 2n−2p+α−1
2 {

ντ̃2
2
}− ν

2

where ν = m(r − 2)− p+ δ + 1 as before and

ντ̃2
2 =

m∑
j=1

b∗j1 −
 m∑
j=1

ψ−1
j

−1 m∑
j=1

b∗j1
ψj

−1′ ((X ′1X1)−1 + (X ′X)−1
)−1

ψjb∗j1 −
 m∑
j=1

ψ−1
j

−1 m∑
j=1

b∗j1
ψj

−1+
m∑
j=1

RSS∗j1
ψj

The latent variables can be sampled using Accept-Reject algorithm similarly as

before, using an Inverse-Dirichlet distribution as proposal distribution.
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Chapter 4

Bayesian Analysis of Singly

Imputed Synthetic Data under the

Multivariate Normal Model

In this chapter we present the Bayesian approach for analysis of singly imputed syn-

thetic data generated from a MVN population with both mean vector and covariance

matrix unknown. Assume the original confidential data are

X = (x1, . . . ,xn)
iid∼ Np(µ,Σ) (4.1)

where n > p, and define x̄ = 1
n

∑n
i=1 xi (sample mean) and W = Sx/(n− 1) (sample

variance) where Sx =
∑n

i=1(xi − x̄)(xi − x̄)′ is the sample Wishart matrix, to be

the unbiased estimates of µ and Σ respectively. We know that x̄ ∼ Np(µ,Σ/n),

Sx ∼ Wp(Σ, n − 1), x̄ is independent of Sx and (x̄,W ) are jointly sufficient for

(µ,Σ) when the original data are observed.
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4.1 Plug In Sampling method

The singly imputed synthetic data, denoted by Y = (y1, . . . ,yn), are obtained by

drawing

Y = (y1, . . . ,yn) |X iid∼ Np (x̄,W ) (4.2)

Define ȳ = 1
n

∑n
i=1 yi (sample mean based on Y ) and Sy =

∑n
i=1(yi − ȳ)(yi − ȳ)′

(sample Wishart matrix based on Y ). Clearly ȳ ∼ Np(x̄, n
−1W ), Sy ∼ Wp(W , n−1).

It follows from Lemma 1.2.1 that (ȳ,Sy) are jointly sufficient for (µ,Σ). Also ȳ is

independent Sy, because ȳ is independent of yi−ȳ as Cov(ȳ,yi−ȳ) = 0 ∀ i = 1, . . . , n.

The following discussion follows from the elucidation in Klein and Sinha (2015b).

Likelihood of (µ,Σ)

The conditional joint pdf of (ȳ,Sy), given (x̄,W ), is given by

f(ȳ,Sy | x̄,W )

=f(ȳ | x̄,W )f(Sy |W )

∝ |W |−1/2 exp
[
−n

2
(ȳ − x̄)′W−1(ȳ − x̄)

]
× |Sy|

(n−p−2)/2

|W |n−1/2
exp

[
−1

2
tr(SyW

−1)

]
=
|Sy|(n−p−2)/2

|W |n/2
exp

[
−n

2
(ȳ − x̄)′W−1(ȳ − x̄)− 1

2
tr(SyW

−1)

]
(4.3)

A similar calculation yields the joint pdf of (x̄,W ) as

f(x̄,W |µ,Σ) ∝ |W |
(n−p−2)/2

|Σ|n/2
exp

[
−n

2
(x̄− µ)′Σ−1(x̄− µ)− n− 1

2
tr(WΣ−1)

]
(4.4)
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We now combine the terms involving x̄ from the two exponents as

(ȳ − x̄)′W−1(ȳ − x̄) + (x̄− µ)′Σ−1(x̄− µ)

=
{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}′ {
W−1 +Σ−1

}
{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}
−
{
W−1ȳ +Σ−1µ

}′ {
W−1 +Σ−1

}−1 {
W−1ȳ +Σ−1µ

}
+ ȳ′W−1ȳ + µ′Σ−1µ

=
{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}′ {
W−1 +Σ−1

}
{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}
+ (ȳ − µ)′ (Σ +W )−1 (ȳ − µ)

where the simplification is due to (2.28). Now integrating out x̄ from the product of

the above two pdfs, we arrive at the following result.

Theorem 4.1.1. The joint pdf of (ȳ,Sy) is given by

fµ,Σ (ȳ,Sy) ∝
∫
S++
n

|Sy|
n−p−2

2 |Σ +W |−
1
2

|Σ|
n−1
2 |W |

p+1
2

e−
1
2 [n(ȳ−µ)′(Σ+W )−1(ȳ−µ)+tr(SyW−1)+(n−1) tr(WΣ−1)] dW

Posterior distributions of µ and Σ

We choose the non-informative joint prior: π(µ,Σ) ∝ |Σ|−
δ
2 on the parameters. The

posterior distribution can be computed by multiplying the expression inside the above

integral with the prior and the product splits up into exactly three parts corresponding

to the three conditional posterior distributions.

π(ȳ,Sy,W |µ,Σ)π(µ,Σ)

∝
(
|Σ +W |−

1
2 e−

1
2 [n(ȳ−µ)′(Σ+W )−1(ȳ−µ)]

)( |W |
n−p+δ−2

2

|Σ|
(n−p+δ−2)+p+1

2

e−
1
2 [tr((n−1)WΣ−1)]

)
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(
|Sy|

n−p+δ−2
2

|W |
(n−p+δ−2)+p+1

2

e−
1
2 [tr(SyW−1)]

)

which concedes that the posterior sampling will be done sequentially in the following

manner:

W |Sy ∼ W−1
p (Sy, n− p+ δ − 2) (4.5)

Σ |W ∼ W−1
p ((n− 1)W , n− p+ δ − 2) (4.6)

µ |Σ,W , ȳ ∼ Np

(
ȳ,

1

n
(Σ +W )

)
(4.7)

We can reformulate the above posterior distributions as:

Sy
−1/2WSy

−1/2 ∼ W−1
p (Ip, n− p+ δ − 2) (4.8)

W−1/2ΣW−1/2 ∼ W−1
p ((n− 1)Ip, n− p+ δ − 2) (4.9)

µ |Σ,W , ȳ ∼ Np

(
ȳ,

1

n
(Σ +W )

)
(4.10)

which has the benefit that Sy
−1/2WSy

−1/2 is independent of W−1/2ΣW−1/2 and

their posterior distributions are unconditional.

The posterior distributions are proper as long as n > max{p, 2p− δ + 1}.

Bayes Estimators of µ and Σ

µ̂BAYES = E(µ | ȳ,Sy) = EW EΣ E(µ | ȳ,Σ,W ) = EW EΣ E(ȳ) = ȳ

Σ̂BAYES = E(Σ | ȳ,Sy) = EW E(Σ |Sy,W ) = EW

(
(n−1)W

(n−2p+δ−3)
|Sy
)

=
(n− 1)Sy

(n− 2p+ δ − 3)2

|̂Σ|BAYES = E (|Σ| | ȳ,Sy) = EW E (|Σ| |Sy,W ) = EW
(
|W |E

(∣∣W−1/2ΣW−1/2
∣∣) |Sy)

=

(
p∏
j=1

n− 1

n− p+ δ − j − 3

)
E (|W | |Sy) =

(
p∏
j=1

n− 1

(n− p+ δ − j − 3)2

)
|Sy|

66



provided n > max{p, 2p− δ + 5}, and we use the results: If S ∼ W−1
p (Σ, ν) then

E (S) = (ν − p− 1)−1Σ if ν > p+ 1 (4.11)

E (|S|) = |Σ|
p∏
j=1

(ν − j − 1)−1 if ν > p+ 3 (4.12)

Credible Sets for |Σ| and µ

We see that Σ−1 |W ∼ Wp (W−1/(n− 1), n− p+ δ − 2), so

|Σ−1|
|W−1/(n− 1)|

∼
p∏
i=1

ui, where ui ∼ χ2
n−p+δ−i−1 independently for i = 1, . . . , p

which also shows that the quantity on the left hand side of the above relation is

independent of W . Here we use the following result: If S ∼ Wp(Σ, n) then

|S|
|Σ|
∼

p∏
i=1

ti, where ti ∼ χ2
n−i+1 independently for i = 1, . . . , p (4.13)

Thus using the above result similarly as before, we can get

|W−1|∣∣S−1
y

∣∣ ∼ p∏
j=1

vj, where vj ∼ χ2
n−p+δ−j−1 independently for j = 1, . . . , p

So we can define a pivot for the generalized variance |Σ| as N :=
∣∣ΣS−1

y

∣∣ where

N−1 ∼
∏p

i=1 ui
(n− 1)p

p∏
j=1

vj

where ui’s and vj’s are as above and they are all pairwise independent. A (1 − γ)

level credible set for |Σ| based on N is

[an,p,δ;γ |Sy| , bn,p,δ;γ |Sy|]
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where an,p,δ;γ and bn,p,δ;γ are any two constants that satisfy 1− γ = P (an,p,δ;γ ≤ N ≤

bn,p,δ;γ). The length of the credible interval is |Sy| (bn,p,δ;γ − an,p,δ;γ).

Next we define the pivot for µ as

T 2 := n(µ− ȳ)′S−1
y (µ− ȳ)

We will prove that T 2 is a pivot and derive a sampling scheme in what follows. We

notice that
√
nS−1/2

y (µ− ȳ) |Σ,W ∼ Np(0,A)

where A = S−1/2
y W 1/2(W−1/2ΣW−1/2 + Ip)W

1/2S−1/2
y , which is obviously defined

through the parameters (Σ,W ). If we can prove that the distribution of A is free

of (Σ,W ), then by using the fact that if Z ∼ Np(0,A) then Z ′Z ∼
∑p

i=1 λiχ
2
1i

where λ1, . . . , λp are the eigenvalues of A and χ2
1i are independent χ2

1 variables, we

can conclude that T 2 is a pivot. Taking Z =
√
nS−1/2

y (µ− ȳ), B = S−1/2
y WS−1/2

y it

finally follows that:

(a) the conditional distribution of T 2 |A is
∑p

i=1 λiχ
2
1i where λ1, . . . , λp are the roots

of |A− λIp| = 0 such that A |B d
=W−1

p ((n− 1)B, n− p+ δ − 2) + B by (4.9)

and B ∼ W−1
p (Ip, n− p+ δ − 2) by (4.8); and

(b) the unconditional distribution of T 2 is obtained by averaging over the joint dis-

tribution of the roots λ1, . . . , λp.

We have shown that T 2 is a pivotal quantity, and therefore a (1−γ) credible ellipsoid

for µ based on T 2 is given by

{
µ : T 2 ≤ cn,p,δ;γ

}
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where cn,p,δ;γ satisfies 1− γ = P (T 2 ≤ cn,p,δ;γ). From the above discussion, it follows

that the cut-off point cn,p,δ;γ can be obtained by simulating the distribution of T 2 as

follows.

1. Generate B ∼ W−1
p (Ip, n− p+ δ − 2).

2. Generate A |B ∼ W−1
p ((n− 1)B, n− p+ δ − 2) +B.

3. Generate λ1, . . . , λp, the roots of |A− λIp| = 0.

4. Generate T 2=
∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The volume of the credible ellipsoid is given by

Vµ(Y ) =
πp/2

Γ
(
p
2

+ 1
) (cn,p,δ;γ/n)p/2 |Sy|1/2

4.2 Posterior Predictive Sampling method

We return to the setup of the last section. Under the posterior predictive sampling

method, starting with a vague prior π(µ,Σ) ∝ |Σ|−α/2, the joint (imputed) posterior

distribution of µ and Σ, given X, can be represented as

Σ |X ∼ W−1
p ((n− 1)W , n− p+ α− 2)

µ |Σ,X ∼ Np

(
x̄, n−1Σ

) (4.14)

We assume throughout that n + α > 2p + 1. We now draw (µ,Σ) from the above

posterior, resulting in (µ∗,Σ∗), and then draw a random sample Y = (y1, . . . ,yn) as

iid from Np(µ
∗,Σ∗), which form the singly imputed synthetic data that are released.

Define ȳ = 1
n

∑n
i=1 yi (sample mean based on Y ) and Sy =

∑n
i=1(yi − ȳ)(yi − ȳ)′
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(sample Wishart matrix based on Y ) which are jointly sufficient for (µ,Σ) by Lemma

1.2.1. From Klein and Sinha (2015a), we have the following result.

Theorem 4.2.1. The joint pdf of ȳ and Sy is obtained by integrating out Σ∗ from

the joint pdf of (ȳ,Sy,Σ
∗) given by

f(ȳ,Sy,Σ
∗) ∝ e−

1
2 [n(ȳ−µ)′(Σ+2Σ∗)−1(ȳ−µ)+tr(SyΣ∗

−1)] |Σ + 2Σ∗|−
1
2 |Σ|

n−p+α−2
2

|Σ +Σ∗|−
2n−p+α−3

2 |Σ∗|−
p+1
2 |Sy|

n−p−2
2

Posterior distributions of µ and Σ

We choose the same prior π(µ,Σ) ∝ |Σ|−
δ
2 as before and attempt to compute the

posterior distribution as before by multiplying the expression inside the above integral

with the prior and the product should split up into exactly three parts corresponding

to the three conditional posterior distributions.

π(ȳ,Sy,W |µ,Σ) π(µ,Σ) ∝
(
|Σ + 2Σ∗|−

1
2 e−

1
2 [n(ȳ−µ)′(Σ+2Σ∗)−1(ȳ−µ)]

)
×
(
|Σ|

n−p+α−δ−2
2 |Σ +Σ∗|−

2n−p+α−3
2 |Σ∗|−

p+1
2 e−

1
2 [tr(SyΣ∗−1)]

)
(4.15)

We see that the part involving µ separates out nicely in front and thus it’s posterior

distribution is obvious. We will now work with the part inside the second parenthesis

involving just the determinants below.

|Σ|
n−p+α−δ−2

2 |Σ +Σ∗|−
2n−p+α−3

2 |Σ∗|−
p+1
2

=
∣∣∣Σ∗−1/2ΣΣ∗−1/2

∣∣∣n−p+α−δ−2
2

∣∣∣Ip +Σ∗−1/2ΣΣ∗−1/2
∣∣∣− 2n−p+α−3

2 |Σ∗|−
n+p+δ

2 (4.16)
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Next we combine equations 4.15 and 4.16 and multiply by the Jacobian of the trans-

formation Σ 7→ Σ∗−1/2ΣΣ∗−1/2 which is |Σ∗|p to get

π(ȳ,Sy,W |µ,Σ) π(µ,Σ)

∝
(
|Σ + 2Σ∗|−

1
2 e−

1
2 [n(ȳ−µ)′(Σ+2Σ∗)−1(ȳ−µ)]

)
(∣∣∣Σ∗−1/2ΣΣ∗−1/2

∣∣∣n−p+α−δ−2
2

∣∣∣Ip +Σ∗−1/2ΣΣ∗−1/2
∣∣∣− 2n−p+α−3

2

)
(
|Σ∗|−

n−p+δ
2 e−

1
2 [tr(SyΣ∗−1)]

)

which indicates that the posterior sampling will be done sequentially in the following

manner:

Σ∗ |Sy ∼ W−1
p (Sy, n− 2p+ δ − 1) (4.17)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(4.18)

µ |Σ,Σ∗, ȳ ∼ Np

(
ȳ,

1

n
(Σ + 2Σ∗)

)
(4.19)

where BII
p (a, b) denotes the matrix variate beta type II distribution as described in

Gupta and Nagar (2000). We can reformulate the above posterior distributions as:

S−1/2
y Σ∗S−1/2

y ∼ W−1
p (Ip, n− 2p+ δ − 1) (4.20)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(4.21)

µ |Σ,Σ∗, ȳ ∼ Np

(
ȳ,

1

n
(Σ + 2Σ∗)

)
(4.22)

which has the benefit that S−1/2
y Σ∗S−1/2

y is independent of Σ∗−1/2ΣΣ∗−1/2 and it’s

posterior distribution is unconditional.

The posterior distributions are proper as long as n > max{p, 2p − α + 1, 3p − δ, p −

α + δ, 2p− δ + 1}.
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Bayes Estimators of µ and Σ

µ̂BAYES = E(µ | ȳ,Sy) = EΣ∗ EΣ E(µ | ȳ,Σ,Σ∗) = EΣ∗ EΣ E(ȳ) = ȳ

Finding Σ̂BAYES seems very difficult.

|̂Σ|BAYES = E (|Σ| | ȳ,Sy) = EΣ∗ E (|Σ| |Sy,Σ∗)

= EΣ∗
(
|Σ∗|E

(∣∣∣Σ∗−1/2ΣΣ∗−1/2
∣∣∣) |Sy) =

 p∏
j=1

n+ α− δ − j
n− p+ δ − j − 3

E (|Σ∗| |Sy)

=

 p∏
j=1

n+ α− δ − j
(n− p+ δ − j − 3)(n− 2p+ δ − j − 2)

 |Sy|
provided that n > max{p, 2p − α + 1, p − α + δ, 3p − δ + 4}. We use (4.12) and the

following result for the above derivation: If V ∼ BII
p (a, b) then

E (|V |) =

p∏
j=1

a− 1
2
(j − 1)

b− 1
2
(j + 1)

if a >
p− 1

2
, b >

p+ 1

2
(4.23)

Credible Sets for |Σ| and µ

Let C = Σ∗−1/2ΣΣ∗−1/2. Then by (4.21), we have C−1 ∼ BII
p

(
n−p+δ−3

2
, n+α−δ

2

)
.

Also by (4.13) we can get,

∣∣Σ∗−1
∣∣∣∣S−1

y

∣∣ ∼ p∏
i=1

vj, where vj ∼ χ2
n−2p+δ−j independently for j = 1, . . . , p

We can define a pivot for |Σ| in the same manner as in the last section to be N :=∣∣ΣS−1
y

∣∣ where

N−1 ∼ |M |
p∏
j=1

vj
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where vj’s are defined as above, M ∼ BII
p

(
n−p+δ−3

2
, n+α−δ

2

)
and M is independent of

vj ∀j. Since the distribution of N is free of (Σ,Σ∗) we conclude that it is a pivot. A

(1− γ) level credible set for |Σ| is

[an,p,α,δ;γ |Sy| , bn,p,α,δ;γ |Sy|]

where an,p,α,δ;γ and bn,p,α,δ;γ are any two constants that satisfy 1− γ = P (an,p,α,δ;γ ≤

N ≤ bn,p,α,δ;γ). The length of the credible interval is |Sy| (bn,p,α,δ;γ − an,p,α,δ;γ).

Next we define the pivot similarly as in the last section for µ as

T 2 := n(µ− ȳ)′S−1
y (µ− ȳ)

We will prove that T 2 is a pivot and derive a sampling scheme in what follows. We

notice that
√
nS−1/2

y (µ− ȳ) |Σ,Σ∗ ∼ Np(0,A)

where A = S−1/2
y Σ∗1/2(Σ∗−1/2ΣΣ∗−1/2 + 2Ip)Σ

∗1/2S−1/2
y , which is obviously defined

through the parameters (Σ,Σ∗). If we can prove that the distribution of A is free

of (Σ,Σ∗), then by using the fact that if Z ∼ Np(0,A) then Z ′Z ∼
∑p

i=1 λiχ
2
1i

where λ1, . . . , λp are the eigenvalues of A and χ2
1i are independent χ2

1 variables, we

can conclude that T 2 is a pivot. Taking Z =
√
nS−1/2

y (µ− ȳ), B = S−1/2
y Σ∗S−1/2

y it

finally follows that:

(a) the conditional distribution of T 2 |A is
∑p

i=1 λiχ
2
1i where λ1, . . . , λp are the roots

of |A− λIp| = 0 such that B ∼ W−1
p (Ip, n− 2p+ δ − 1) by (4.20) and

A |B d
= GBII

p

(
n+ α− δ

2
,
n− p+ δ − 3

2
;B,O

)
+ 2B
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where GBII
p (a, b;Ω,Ψ ) denotes the generalized matrix variate beta type II dis-

tribution as described in Gupta and Nagar (2000). The above derivation follows

from (4.21) and the result: If V ∼ BII
p (a, b), Ap×p is a constant, non-singular

matrix then AV A′ ∼ GBII
p (a, b;AA′,O).

(b) the unconditional distribution of T 2 is obtained by averaging over the joint dis-

tribution of the roots λ1, . . . , λp.

We have shown that T 2 is a pivotal quantity, and therefore a (1−γ) credible ellipsoid

for µ based on T 2 is given by

{
µ : T 2 ≤ cn,p,α,δ;γ

}
where cn,p,α,δ;γ satisfies 1 − γ = P (T 2 ≤ cn,p,α,δ;γ). From the above discussion, it

follows that the cut-off point cn,p,α,δ;γ can be obtained by simulating the distribution

of T 2 as follows.

1. Generate B ∼ W−1
p (Ip, n− 2p+ δ − 1).

2. Generate A |B ∼ GBII
p

(
n+α−δ

2
, n−p+δ−3

2
;B,O

)
+ 2B.

3. Generate λ1, . . . , λp, the roots of |A− λIp| = 0.

4. Generate T 2=
∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The volume of the credible ellipsoid is given by

Vµ(Y ) =
πp/2

Γ
(
p
2

+ 1
) (cn,p,α,δ;γ/n)p/2 |Sy|1/2
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4.3 Simulation Studies

To conduct the simulation, the population distribution is taken to be the multivariate

normal model (4.1) with

p = 10, µ = 0.1×
(

1 2 . . . 10

)′
, Σ = 0.25Ip + 0.75Jp, (4.24)

where Ip is the p × p dimensional identity matrix and Jp is the p × p matrix of 1’s.

Based on Monte Carlo simulation with 104 iterations, we compute an estimate of the

coverage probability, the volume or length (as appropriate) of the respective credible

sets and the Bayes estimators of µ and |Σ|, where in all cases, the level of credibility

is set at 0.95.

In both PIS and PPS cases, increasing δ increases the coverage of |Σ| before it drops

off, the effect hastened for small values of n. We thus see the reverse-sigmoid shape

of the curve in all situations, it is wider in the PIS case, and the curve seems to shift

to the right with increasing α in the PPS case. So the best choice of δ to ensure

maximum coverage of |Σ| would increase with increasing α, in the PPS case.

For µ, we see that increasing δ slightly increases the coverage before decreasing

steadily, albeit at a much slower pace than that of |Σ|.

The size of the credible sets of both quantities shrink with either increasing n or δ.

Asymptotically the results conform to our expectations, with the inference worsening

for higher δ, quicker for |Σ| than µ. The better inference we get off the PIS method

than the PPS method attests to the trade-off between data utility and data privacy.

The recommendation is to use δ = 10 in the PIS case, PPS case with α = 2, and

δ = 20 in the PPS case with α = 50.
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Table 4.1: Inference for µ and |Σ| for SI PIS MVN data with n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.8093 3.0625e-05 0.9531 1.0384e-09
0.5 0.8125 3.0607e-05 0.9552 1.0399e-09
0.8 0.8319 3.0254e-05 0.9595 1.1277e-09
1 0.8294 3.0172e-05 0.9581 1.0437e-09
2 0.8661 2.9942e-05 0.9572 1.0776e-09
3 0.8755 2.8962e-05 0.9501 1.0287e-09
4 0.8874 2.7952e-05 0.9533 1.0288e-09
5 0.9108 2.7679e-05 0.9542 1.0313e-09
10 0.9517 2.4692e-05 0.9494 9.6189e-10
20 0.8491 2.0096e-05 0.95 9.0293e-10
30 0.5135 1.6400e-05 0.9396 8.0198e-10
50 0.0303 1.1083e-05 0.9297 6.9183e-10
100 0 4.1404e-06 0.8979 4.9770e-10

Table 4.2: Inference for µ and |Σ| for SI PIS MVN data with n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.9353 7.5066e-06 0.9475 9.0069e-15
0.5 0.9347 7.4725e-06 0.9494 9.2580e-15
0.8 0.9379 7.4664e-06 0.947 9.1447e-15
1 0.9386 7.4609e-06 0.9491 8.9631e-15
2 0.9408 7.5066e-06 0.9516 9.4023e-15
3 0.9464 7.5633e-06 0.9505 9.4476e-15
4 0.9401 7.3873e-06 0.9492 9.0631e-15
5 0.9483 7.4442e-06 0.9462 8.7338e-15
10 0.9477 7.3689e-06 0.9478 9.3546e-15
20 0.9422 7.3092e-06 0.9442 8.9443e-15
30 0.9136 7.1060e-06 0.9532 9.6100e-15
50 0.7604 6.7308e-06 0.9519 9.2865e-15
100 0.1918 6.1571e-06 0.9465 8.3714e-15
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Table 4.3: Inference for µ and |Σ| for SI PPS MVN data with α = 2, n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.8259 4.0296e-05 0.9552 1.0947e-09
0.5 0.8561 4.0295e-05 0.9523 1.0695e-09
0.8 0.8521 4.0643e-05 0.9571 1.0774e-09
1 0.8745 4.0285e-05 0.9588 1.0814e-09
2 0.8862 3.8019e-05 0.9586 1.0862e-09
3 0.9157 3.7622e-05 0.9591 1.1022e-09
4 0.9444 3.6284e-05 0.9542 1.0461e-09
5 0.9556 3.5436e-05 0.9502 1.0046e-09
10 0.9864 3.0662e-05 0.9536 1.0498e-09
20 0.7985 2.2145e-05 0.9472 9.0976e-10
30 0.2629 1.6346e-05 0.9381 7.8479e-10
50 0.0001 8.8689e-06 0.9298 6.6995e-10
100 0 1.9857e-06 0.8784 3.9465e-10

Table 4.4: Inference for µ and |Σ| for SI PPS MVN data with α = 2, n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.974 9.4585e-06 0.9481 9.0549e-15
0.5 0.9722 9.2176e-06 0.955 9.4496e-15
0.8 0.975 9.2989e-06 0.949 9.3798e-15
1 0.9729 9.3212e-06 0.9552 9.8925e-15
2 0.9728 9.0660e-06 0.9522 9.6263e-15
3 0.9799 9.1529e-06 0.9477 8.8715e-15
4 0.9789 9.2158e-06 0.9569 9.8428e-15
5 0.9813 9.2459e-06 0.9541 1.0064e-14
10 0.9835 8.9542e-06 0.9494 8.8645e-15
20 0.9672 8.6689e-06 0.9489 8.7975e-15
30 0.924 8.4805e-06 0.9502 9.0701e-15
50 0.7123 8.1242e-06 0.9449 8.5905e-15
100 0.0291 6.8814e-06 0.9431 8.3882e-15
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Table 4.5: Inference for µ and |Σ| for SI PPS MVN data with α = 50, n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.0742 6.4298e-05 0.961 1.1587e-09
0.5 0.0841 6.3811e-05 0.9641 1.3207e-09
0.8 0.0826 6.4185e-05 0.9616 1.2371e-09
1 0.1073 6.3435e-05 0.9596 1.2032e-09
2 0.1248 6.1302e-05 0.9654 1.2527e-09
3 0.1657 6.0413e-05 0.9601 1.2380e-09
4 0.1925 5.8477e-05 0.9541 1.1280e-09
5 0.2418 5.7401e-05 0.9602 1.1985e-09
10 0.5246 4.7836e-05 0.9598 1.1788e-09
20 0.9323 3.5425e-05 0.953 1.0537e-09
30 0.963 2.6544e-05 0.948 9.4866e-10
50 0.1188 1.4721e-05 0.9335 7.2119e-10
100 0 3.2798e-06 0.9007 4.6731e-10

Table 4.6: Inference for µ and |Σ| for SI PPS MVN data with α = 50, n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.8845 9.7714e-06 0.9542 9.4786e-15
0.5 0.8776 9.7090e-06 0.9532 9.3734e-15
0.8 0.8921 9.7755e-06 0.9502 9.3442e-15
1 0.8949 9.6187e-06 0.9463 9.0667e-15
2 0.9002 9.7131e-06 0.9549 1.0231e-14
3 0.9110 9.7131e-06 0.9534 9.7385e-15
4 0.9151 9.6263e-06 0.9501 9.2920e-15
5 0.9147 9.5988e-06 0.9495 9.5697e-15
10 0.9489 9.4674e-06 0.9532 9.2661e-15
20 0.981 9.3402e-06 0.9496 9.1140e-15
30 0.9822 8.9777e-06 0.951 9.4796e-15
50 0.897 8.4004e-06 0.9466 8.8161e-15
100 0.1373 7.2256e-06 0.9427 8.1619e-15
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(a) |Σ| (PIS) (b) µ (PIS)

(c) |Σ|, α = 2 (PPS) (d) µ, α = 2 (PPS)

(e) |Σ|, α = 50 (PPS) (f) µ, α = 50 (PPS)

Figure 4.1: Variation in coverage of µ and |Σ| with respect to δ for SI MVN data
(— n = 1000, −−− n = 10000)
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4.4 Partially Sensitive Data

Method I: Using only estimates of sensitive part to impute synthetic data

Plug-In Sampling

Let us now assume, following from (4.1) that (x1, . . . ,xr) is sensitive and the rest

(xr+1, . . . ,xn) is not. The sufficient statistics for the sensitive part, assuming r > p,

is given by

x̄r =
1

r

r∑
i=1

xi ∼ Np

(
µ,
Σ

r

)
W (r) =

1

r − 1

r∑
i=1

(xi − x̄r)(xi − x̄r)′ ∼
Wp(Σ, r − 1)

r − 1

and the sufficient statistics for the non-sensitive part, assuming n− r > p, is given by

x̄n−r =
1

n− r

n∑
i=r+1

xi ∼ Np

(
µ,

Σ

n− r

)

W (n−r) =
1

n− r − 1

n∑
i=r+1

(xi − x̄n−r)(xi − x̄n−r)′ ∼
Wp(Σ, n− r − 1)

n− r − 1

We will impute the synthetic counterparts to the sensitive data using only the suffi-

cient statistics for the sensitive part so as to ensure the imputed data is independent

of the non-sensitive data. Thus we generate

y1, . . . ,yr
iid∼ Np

(
x̄r,W

(r)
)

so that the released data is (y1, . . . ,yr,xr+1, . . . ,xn). Since (x̄r,W
(r), x̄n−r,W

(n−r))

is the sufficient statistics of the original data, so by Lemma 1.2.1 (ȳr,W
(r)
y , x̄n−r,W

(n−r))
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is the sufficient statistics for the released data where

ȳr =
1

r

r∑
i=1

yi, ȳr | x̄r,W (r) ∼ Np

(
x̄r,

W (r)

r

)
W (r)

y =
1

r − 1

r∑
i=1

(yi − ȳr)(yi − ȳr)′, W (r)
y |W (r) ∼ Wp(W

(r), r − 1)

r − 1

We can then compute the likelihood of the released data and multiply it with our

regular prior π(µ,Σ) ∝ |Σ|
δ
2 to find the following posterior distributions

µ |Σ, ȳr,W (r), x̄n−r

∼Np

[(
r
(
Σ +W (r)

)−1
+ (n− r)Σ−1

)−1 (
r(Σ +W (r))−1ȳr + (n− r)Σ−1x̄n−r

)
,(

r
(
Σ +W (r)

)−1
+ (n− r)Σ−1

)−1
]

(4.25)

π(Σ,W (r) | ȳr,W (r)
y , x̄n−r,W

(n−r))

∝ exp
[
− r(n−r)

2
(ȳr − x̄n−r)′(nΣ + (n− r)W (r))−1(ȳr − x̄n−r)

]
∣∣nΣ + (n− r)W (r)

∣∣− 1
2
∣∣W (r)

∣∣− p+1
2 |Σ|−

n+δ−2
2

exp
[
−1

2
tr(Σ−1((n− r − 1)W (n−r) + (r − 1)W (r)))

]
exp

[
− r−1

2
tr(W (r)−1

W (r)
y )
]

(4.26)

The distributions of Σ and the latent matrix W (r) are inextricably entangled, we

would have to find a way to sample them computationally.
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Posterior Predictive Sampling

Assuming r > max{p, 2p− α + 1}, we generate a posterior draw (µ∗r,Σ
∗
r ) from

Σ |W (r) ∼ W−1
p

(
(r − 1)W (r), r − p+ α− 2

)
µ | x̄r,Σ ∼ Np

(
x̄r,

Σ

r

)

so that the released data is (y1, . . . ,yr,xr+1, . . . ,xn) where yi
iid∼ Np(µ

∗
r,Σ

∗
r ) for

i = 1, . . . , r. Thus the sufficient statistics for released data is (ȳr,W
(r)
y , x̄n−r,W

(n−r)),

the quantities are defined as in the preceding page, whose distributions are as follows

ȳr |µ∗r,Σ∗r ∼ Np

(
µ∗r,

Σ∗r
r

)
; W (r)

y |Σ∗r ∼
Wp(Σ

∗
r , r − 1)

r − 1

x̄n−r |µ,Σ ∼ Np

(
µ,
Σ

r

)
; W (n−r) |Σ ∼ Wp(Σ, n− r − 1)

n− r − 1

where the last two quantities need the assumption n − r > p for their distributions

to be defined. Then the likelihood of the released data is computed as

∫
π(ȳr |µ∗r,Σ∗r ) π(W (r)

y |Σ∗r ) π(µ∗r | x̄r,Σ)π(Σ∗r |W (r)) π(x̄r |µ,Σ) π(W (r) |Σ)

π(x̄n−r |µ,Σ) π(W (n−r) |Σ) dµ∗r dΣ
∗
r dx̄r dW

(r)

We integrate out µ∗r, x̄r, W
(r) one by one from the above likelihood and then multiply

with our usual prior π(µ,Σ) ∝ |Σ|
δ
2 to obtain the following posterior distributions

µ |Σ,Σ∗r , ȳr, x̄n−r

∼Np

[(
r (Σ + 2Σ∗r )

−1 + (n− r)Σ−1
)−1 (

r (Σ + 2Σ∗r )
−1 ȳr + (n− r)Σ−1x̄n−r

)
,(

r (Σ + 2Σ∗r )
−1 + (n− r)Σ−1

)−1
]

(4.27)
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π(Σ,Σ∗r | ȳr,W (r)
y , x̄n−r,W

(n−r))

∝ exp
[
− r(n−r)

2
(ȳr − x̄n−r)′(nΣ + 2(n− r)Σ∗r )−1(ȳr − x̄n−r)

]
|nΣ + 2(n− r)Σ∗r |

− 1
2 |Σ∗r |

2r−2p−4
2 |Σ +Σ∗r |

− 2r−p+α−3
2 |Σ|−

n−2r+p−α+δ+1
2

exp
[
−n−r−1

2
tr(Σ−1W (n−r))

]
exp

[
− r−1

2
tr(Σ∗r

−1W (r)
y )
]

(4.28)

We can check that the results of this section match the case when all responses

are sensitive, those obtained in Sections 4.1 and 4.2, by suppressing the quantities

x̄n−r,W
(n−r); replacing W

(r)
y =

Sy

n− 1
, ȳr = ȳ, r = n and W

(r)
y = W (in the PIS

case), Σ∗r = Σ∗ (in the PPS case).

Method II: Using whole data estimates to impute synthetic data

Plug-In Sampling

In this method, the released data is (y1, . . . ,yr,xr+1, . . . ,xn) where y1, . . . ,yr
iid∼Np (x̄,W ).

Then the portion of the likelihood of the released data required to calculate the pos-

terior distributions is computed as

∫ ( r∏
i=1

π(yi | x̄,W )

)
π(x̄ |µ,Σ) π(W |Σ) dx̄ dW

We integrate out x̄ from the above likelihood and then multiply with our usual prior

π(µ,Σ) ∝ |Σ|
δ
2 to obtain the following posterior distributions

W (r)
y

−1/2
WW (r)

y

−1/2 ∼ W−1
p ((r − 1)Ip, r − p+ δ − 2) (4.29)

W−1/2ΣW−1/2 ∼ W−1
p ((n− 1)Ip, n− p+ δ − 2) (4.30)

µ |Σ,W , ȳr ∼ Np

(
ȳr,
Σ

n
+
W

r

)
(4.31)
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where W
(r)
y =

∑r
i=1(yi − ȳr)(yi − ȳr)′, which is equivalent to Sy when r = n.

The distributions are proper as long as n > p, r > 2p− δ + 1.

Posterior Predictive Sampling

We draw (µ∗,Σ∗) from (4.14) so that the released data is (y1, . . . ,yr,xr+1, . . . ,xn)

where yi
iid∼ Np(µ

∗,Σ∗) for i = 1, . . . , r. Then the portion of the likelihood of the

released data required to calculate the posterior distributions is computed as

∫ ( r∏
i=1

π(yi |µ∗,Σ∗)

)
π(µ∗ | x̄,Σ) π(Σ∗ |W ) π(x̄ |µ,Σ) π(W |Σ) dµ∗ dΣ∗ dx̄ dW

We integrate out µ∗, x̄, W one by one from the above likelihood and then multiply

with our usual prior π(µ,Σ) ∝ |Σ|
δ
2 to obtain the following posterior distributions

S−1/2
y,r Σ∗S−1/2

y,r ∼ W−1
p (Ip, r − 2p+ δ − 1) (4.32)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(4.33)

µ |Σ,Σ∗, ȳr ∼ Np

(
ȳr,

1

n

(
Σ +

(
1 +

n

r

)
Σ∗
))

(4.34)

where Sy,r =
∑r

i=1(yi − ȳr)(yi − ȳr)′, which is equivalent to Sy when r = n.

The conditions for existence are r > 3p−δ, n > max{p, 2p−α+1, p−α+δ, 2p−δ+1}.

All the conditions for existence throughout this work can also be expressed as in-

equalities for δ, since once we have the data at hand, that would enable us to choose

a proper value of δ to get the best inference.
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Chapter 5

Bayesian Analysis of Multiply

Imputed Synthetic Data under the

Multivariate Normal Model

5.1 Plug In Sampling method

We return to the case of a standard MVN model where the original data has the

same structure as in Section 4.1. The multiply imputed synthetic data, denoted by

(Y1, . . . ,Ym), are obtained by drawing

Yj = (y1j, . . . ,ynj) |X
iid∼ Np (x̄, W ) independently for j = 1, . . . ,m (5.1)

We will now proceed to calculate the pdf of the multiply imputed synthetic data, for

which we will need to define a few quantities. Let ȳj = 1
n

∑n
i=1 yij, y

∗ = 1
m

∑m
j=1 ȳj

and Sy,j =
∑n

i=1(yij − ȳj)(yij − ȳj)′.
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Likelihood of (µ,Σ)

Using equation (4.3) and the fact that tr(AB) = tr(BA)

f(Y1, . . . ,Ym | x̄,W ) =
m∏
j=1

f(Yj | x̄,W ) =
m∏
j=1

f(y1j, . . . ,ynj | x̄,W )

∝
m∏
j=1

|Sy,j|(n−p−2)/2

|W |n/2
exp

{
−1

2

[
n(ȳj − x̄)′W−1(ȳj − x̄) + tr(W−1Sy,j)

]}

= |W |−nm/2
(

m∏
j=1

|Sy,j|(n−p−2)/2

)

× exp

{
−1

2

[
n

m∑
j=1

(ȳj − x̄)′W−1(ȳj − x̄) + tr(W−1

m∑
j=1

Sy,j)

]}

= |W |−nm/2
(

m∏
j=1

|Sy,j|(n−p−2)/2

)
exp

{
−1

2

[
nm(y∗ − x̄)′W−1(y∗ − x̄) + tr(W−1S∗y)

]}
(5.2)

where S∗y =
∑m

j=1 Sy,j + n
∑m

j=1(ȳj − y∗)(ȳj − y∗)′, whose distribution can be com-

puted as follows. Sy,j is the sample variance of iid r.v.’s y1j, . . . ,ynj and thus

Sy,j
iid∼ Wp(W , n − 1) for j = 1, . . . ,m, hence

∑m
j=1 Sy,j ∼ Wp(W ,m(n − 1)). Simi-

larly, it can be shown that n
∑m

j=1(ȳj − y∗)(ȳj − y∗)′ ∼ Wp(W ,m − 1). Now since

Cov(yij − ȳj, ȳj − y∗) = 0, all of the terms in the expression of the sum that is S∗y

are independent and S∗y ∼ Wp(W ,mn− 1). The final expression in equation 5.2 also

proves that given x̄ and W , y∗ is independent of S∗y, and (y∗,S∗y) is jointly sufficient

for (µ,Σ). The simplification in the last step comes from the following calculation:

n
m∑
j=1

(ȳj − x̄)′W−1(ȳj − x̄)− nm(y∗ − x̄)′W−1(y∗ − x̄)

=n

m∑
j=1

ȳ′jW
−1ȳj − 2n

(
m∑
j=1

ȳ′j

)
W−1x̄+ nmx̄′W−1x̄

−nmy∗′W−1y∗ + 2nmy∗
′
W−1x̄− nmx̄′W−1x̄
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=n

[
m∑
j=1

ȳ′jW
−1ȳj −my∗

′
W−1y∗

]

=n

[
m∑
j=1

(ȳj − y∗)′W−1(ȳj − y∗)

]

=n

[
m∑
j=1

tr((ȳj − y∗)′W−1(ȳj − y∗))

]
= n tr(W−1

m∑
j=1

(ȳj − y∗)(ȳj − y∗)′)

We now combine the terms involving x̄ from the two exponents of equations (5.2)

and (4.4) as

m(y∗ − x̄)′W−1(y∗ − x̄) + (x̄− µ)′Σ−1(x̄− µ)

=
{
x̄− [mW−1 +Σ−1]−1[mW−1y∗ +Σ−1µ]

}′ {
mW−1 +Σ−1

}
{
x̄− [mW−1 +Σ−1]−1[mW−1y∗ +Σ−1µ]

}
−
{
mW−1y∗ +Σ−1µ

}′ {
mW−1 +Σ−1

}−1 {
mW−1y∗ +Σ−1µ

}
+my∗

′
W−1y∗ + µ′Σ−1µ

=
{
x̄− [mW−1 +Σ−1]−1[mW−1y∗ +Σ−1µ]

}′ {
mW−1 +Σ−1

}
{
x̄− [mW−1 +Σ−1]−1[mW−1y∗ +Σ−1µ]

}
+ (y∗ − µ)

′
(
Σ +

W

m

)−1

(y∗ − µ)

where again the last step uses the result (2.28). Now integrating out x̄ from the

product of the two pdfs of equations (5.2) and (4.4), we arrive at the following result.

Theorem 5.1.1. The joint pdf of (y∗,S∗y) is given by

fµ,Σ(y∗,S∗y) ∝
∫
S++
n

∣∣Σ + W
m

∣∣− 1
2

|Σ|
n−1
2 |W |

nm−n+p+1
2

(
m∏
j=1

|Sy,j|(n−p−2)/2

)

e
− 1

2

[
n(y∗−µ)

′
(Σ+W

m )
−1

(y∗−µ)+tr(S∗yW
−1)+(n−1) tr(WΣ−1)

]
dW
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Posterior distributions of µ and Σ

We choose the same prior on the parameters and follow the same procedure as in

Section 4.1 to get the following (conditional) posterior distributions:

W |S∗y ∼ W−1
p

(
S∗y, nm− p+ δ − 2

)
(5.3)

Σ |W ∼ W−1
p ((n− 1)W , n− p+ δ − 2) (5.4)

µ |Σ,W ,y∗ ∼ Np

(
y∗,

1

n

(
Σ +

W

m

))
(5.5)

We can reformulate the above posterior distributions as:

S∗y
−1/2WS∗y

−1/2 ∼ W−1
p (Ip, nm− p+ δ − 2) (5.6)

W−1/2ΣW−1/2 ∼ W−1
p ((n− 1)Ip, n− p+ δ − 2) (5.7)

µ |Σ,W ,y∗ ∼ Np

(
y∗,

1

n

(
Σ +

W

m

))
(5.8)

which has again the same benefit that S∗y
−1/2WS∗y

−1/2 is independent ofW−1/2ΣW−1/2

and their posterior distributions are unconditional. It is interesting to observe that

plugging in m = 1 in the above formulas yields the same results we obtained for singly

imputed plug-in sampling data as in Section 4.1.

The posterior distributions are proper as long as n > max{p, 2p− δ + 1}.

Bayes Estimators of µ and Σ

µ̂BAYES = E(µ |y∗,S∗y) = EW EΣ E(µ |y∗,Σ,W ) = EW EΣ E(y∗) = y∗

Σ̂BAYES = E(Σ |y∗,S∗y) = EW E(Σ |S∗y,W ) = EW

(
(n−1)W

(n−2p+δ−3)
|S∗y
)

=
(n− 1)S∗y

(nm− 2p+ δ − 3)(n− 2p+ δ − 3)
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|̂Σ|BAYES = E
(
|Σ| |y∗,S∗y

)
= EW E

(
|Σ| |S∗y,W

)
= EW

(
|W |E

(∣∣W−1/2ΣW−1/2
∣∣) |S∗y)

=

(
p∏
j=1

n− 1

n− p+ δ − j − 3

)
E
(
|W | |S∗y

)
=

(
p∏
j=1

n− 1

(nm− 2p+ δ − 3)(n− 2p+ δ − 3)

)∣∣S∗y∣∣
provided n > max{p, 2p− δ + 5}, and we use the results (4.11) and (4.12).

Credible Sets for |Σ| and µ

In the same way as in Section 4.1 we can define a pivot for |Σ| as Nm :=
∣∣ΣS−1

y

∣∣
where

N−1
m ∼

∏p
i=1 ui

(n− 1)p

p∏
j=1

vj

where ui ∼ χ2
n−p+δ−i−1 independently for i = 1, . . . , p; vj ∼ χ2

nm−p+δ−j−1 indepen-

dently for j = 1, . . . , p; and they are all pairwise independent. A (1−γ) level credible

set for |Σ| based on Nm is

[an,p,m,δ;γ |Sy| , bn,p,m,δ;γ |Sy|]

where an,p,m,δ;γ and bn,p,m,δ;γ are any two constants that satisfy 1− γ = P (an,p,m,δ;γ ≤

Nm ≤ bn,p,m,δ;γ). The length of the credible interval is |Sy| (bn,p,m,δ;γ − an,p,m,δ;γ).

Next we define the pivot for µ as

T 2
m := n(µ− y∗)′S∗y

−1(µ− y∗)

We will derive the distribution of T 2
m similarly as in Section 4.1. We notice that

√
nS∗y

−1/2(µ− y∗) |Σ,W ∼ Np(0,A)
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where A = S∗y
−1/2W 1/2(W−1/2ΣW−1/2 +m−1Ip)W

1/2S∗y
−1/2 which is obviously de-

fined through the parameters (Σ,W ). If we can prove that the distribution of A is

free of (Σ,W ), then by using the fact that if Z ∼ Np(0,A) then Z ′Z ∼
∑p

i=1 λiχ
2
1i

where λ1, . . . , λp are the eigenvalues of A and χ2
1i are independent χ2

1 variables, we

can conclude that T 2 is a pivot. Taking Z =
√
nS∗y

−1/2(µ−y∗), B = S∗−1/2
y WS∗−1/2

y

it finally follows that:

(a) the conditional distribution of T 2 |A is
∑p

i=1 λiχ
2
1i where λ1, . . . , λp are the roots

of |A− λIp| = 0 such that A |B d
= W−1

p ((n− 1)B, n− p+ δ − 2) + m−1B by

(5.7) and B ∼ W−1
p (Ip, nm− p+ δ − 2) by (5.6); and

(b) the unconditional distribution of T 2 is obtained by averaging over the joint dis-

tribution of the roots λ1, . . . , λp.

We have shown that T 2 is a pivotal quantity, and therefore a (1−γ) credible ellipsoid

for µ based on T 2 is given by

{
µ : T 2 ≤ cn,p,m,δ;γ

}
where cn,p,m,δ;γ satisfies 1 − γ = P (T 2 ≤ cn,p,m,δ;γ). From the above discussion, it

follows that the cut-off point cn,p,m,δ;γ can be obtained by simulating the distribution

of T 2 as follows.

1. Generate B ∼ W−1
p (Ip, nm− p+ δ − 2).

2. Generate A |B ∼ W−1
p ((n− 1)B, n− p+ δ − 2) +m−1B.

3. Generate λ1, . . . , λp, the roots of |A− λIp| = 0.

4. Generate T 2=
∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.
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The volume of the credible ellipsoid is given by

Vµ(Y ) =
πp/2

Γ
(
p
2

+ 1
) (cn,p,m,δ;γ/n)p/2

∣∣S∗y∣∣1/2

Simulation Studies We have the same setup as in the last chapter, and we no-

tice similar behavior, except as m is big inference is obviously better, but there is

an increased perceived disclosure risk, which again points to the trade-off between

quality of inference and privacy. We also see that asymptotically the coverage for µ is

unaffected by increase in δ. As we increase m, coverage improves, which is apparent

for higher δ when we compare to the case of m = 1.
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Table 5.1: Inference for µ and |Σ| for MI PIS MVN data with m = 5, n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.8608 2.0972e-05 0.9532 7.7485e-11
0.5 0.8654 2.1152e-05 0.9576 8.083e-11
0.8 0.8714 2.1071e-05 0.9536 7.7724e-11
1 0.8769 2.0950e-05 0.9524 7.4056e-11
2 0.8968 2.1075e-05 0.9549 8.3019e-11
3 0.901 2.0453e-05 0.9486 7.3772e-11
4 0.9094 2.0498e-05 0.9528 7.7908e-11
5 0.9271 2.0013e-05 0.9491 7.3588e-11
10 0.9473 1.8518e-05 0.9498 7.6129e-11
20 0.8914 1.6498e-05 0.9533 7.5433e-11
30 0.6842 1.4602e-05 0.9388 6.4412e-11
50 0.1581 1.1732e-05 0.9441 6.3722e-11
100 0 6.2396e-06 0.9218 4.9502e-11

Table 5.2: Inference for µ and |Σ| for MI PIS MVN data with m = 5, n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.946 5.8077e-06 0.954 7.5415e-16
0.5 0.9412 5.7425e-06 0.9529 7.4118e-16
0.8 0.9392 5.6669e-06 0.9469 6.9455e-16
1 0.9372 5.7574e-06 0.9463 7.4841e-16
2 0.9419 5.7320e-06 0.9538 7.5244e-16
3 0.9457 5.7057e-06 0.9487 6.7614e-16
4 0.9432 5.7221e-06 0.951 7.3456e-16
5 0.9496 5.7975e-06 0.9509 7.159e-16
10 0.9478 5.624e-06 0.951 7.437e-16
20 0.9448 5.6056e-06 0.9524 7.3618e-16
30 0.9158 5.4522e-06 0.9441 6.7509e-16
50 0.8404 5.4233e-06 0.9446 6.5821e-16
100 0.4101 5.0887e-06 0.9507 6.6923e-16
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Table 5.3: Inference for µ and |Σ| for MI PIS MVN data with m = 10, n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.8796 1.9733e-05 0.9501 4.9617e-11
0.5 0.8708 1.9997e-05 0.9498 5.0604e-11
0.8 0.8827 1.9946e-05 0.9553 5.2025e-11
1 0.8763 1.9716e-05 0.9528 4.9584e-11
2 0.8945 1.9689e-05 0.9581 5.2159e-11
3 0.9162 1.9539e-05 0.9494 4.8426e-11
4 0.9225 1.9659e-05 0.9532 4.9263e-11
5 0.923 1.8594e-05 0.9551 5.2248e-11
10 0.9495 1.8103e-05 0.9469 4.6541e-11
20 0.8951 1.5746e-05 0.952 4.7451e-11
30 0.7074 1.4186e-05 0.9459 4.4338e-11
50 0.1661 1.1251e-05 0.9379 3.9822e-11
100 0 6.7094e-06 0.919 3.0661e-11

Table 5.4: Inference for µ and |Σ| for MI PIS MVN data with m = 10, n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.9482 5.6025e-06 0.9496 4.6263e-16
0.5 0.9456 5.5416e-06 0.9495 4.4142e-16
0.8 0.939 5.4727e-06 0.9511 4.5672e-16
1 0.9445 5.486e-06 0.9534 4.8759e-16
2 0.9417 5.405e-06 0.9478 4.6308e-16
3 0.9463 5.4666e-06 0.9471 4.3834e-16
4 0.9458 5.4953e-06 0.9487 4.5177e-16
5 0.946 5.4846e-06 0.9503 4.6882e-16
10 0.949 5.4524e-06 0.9498 4.3575e-16
20 0.9425 5.3725e-06 0.9511 4.7028e-16
30 0.9264 5.3382e-06 0.9519 4.8632e-16
50 0.8401 5.1636e-06 0.953 4.6459e-16
100 0.4597 4.9643e-06 0.9475 4.5159e-16
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(a) |Σ|, m = 5 (b) µ, m = 5

(c) |Σ|, m = 10 (d) µ, m = 10

Figure 5.1: Variation in coverage of µ and |Σ| with respect to δ for MI PIS MVN
data (— n = 1000, −−− n = 10000)
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Extensions of the Methodology to Other Scenarios

Only Part of y is Sensitive

Method I: Using only estimates of sensitive part to impute synthetic data

With the same notation as in Section 4.4, we impute m-copies of the sensitive part

of the data as follows, independently for j = 1, . . . ,m

y1j, . . . ,yrj
iid∼ Np

(
x̄r,W

(r)
)

so that the released data is {Yj = (y1j, . . . ,yrj,xr+1, . . . ,xn) : j = 1, . . . ,m}. Assum-

ing both r > p and n − r > p, the sufficient statistics for the released data is given

by (ȳ
(r)
1 ,W

(r)
y,1 , . . . , ȳ

(r)
m ,W

(r)
y,m, x̄n−r,W

(n−r)) where independently for j = 1, . . . ,m

ȳ
(r)
j =

1

r

r∑
i=1

yij, ȳ
(r)
j | x̄r,W (r) ∼ Np

(
x̄r,

W (r)

r

)
W

(r)
y,j =

1

r − 1

r∑
i=1

(yij − ȳ(r)
j )(yij − ȳ(r)

j )′, W
(r)
y,j |W (r) ∼ Wp(W

(r), r − 1)

r − 1

x̄n−r =
1

n− r

n∑
i=r+1

xi ∼ Np

(
µ,

Σ

n− r

)

W (n−r) =
1

n− r − 1

n∑
i=r+1

(xi − x̄n−r)(xi − x̄n−r)′ ∼
Wp(Σ, n− r − 1)

n− r − 1

Let us denote

y∗r =
1

m

m∑
j=1

ȳ
(r)
j

Then the likelihood of the released data is computed as

∫ ( m∏
j=1

π(ȳ
(r)
j | x̄r,W (r)) π(W

(r)
y,j |W (r))

)
π(x̄r |µ,Σ) π(W (r) |Σ) π(x̄n−r |µ,Σ)

π(W (n−r) |Σ) dx̄r dW
(r)
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We integrate out x̄r from the above likelihood and then multiply with our usual prior

π(µ,Σ) ∝ |Σ|
δ
2 to obtain the following posterior distributions

µ |Σ,y∗r ,W (r), x̄n−r

∼Np

(r(Σ +
W (r)

m

)−1

+m(n− r)Σ−1

)−1(
r

(
Σ +

W (r)

m

)−1

y∗r +m(n− r)Σ−1x̄n−r

)
,

(
r

(
Σ +

W (r)

m

)−1

+m(n− r)Σ−1

)−1
 (5.9)

π
(
Σ,W (r) |y∗r ,W

(r)
y,1 , . . . ,W

(r)
y,m, x̄n−r,W

(n−r)
)

∝
∣∣(m(n− r) + r)Σ + (n− r)W (r)

∣∣− 1
2
∣∣W (r)

∣∣− r(m−1)+p+1
2 |Σ|−

m(n−r)+r+δ−2
2

exp
[
−mr(n−r)

2
(y∗r − x̄n−r)

′ (
(m(n− r) + r)Σ + (n− r)W (r)

)−1
(y∗r − x̄n−r)

]
exp

[
−1

2
tr
(
Σ−1

(
m(n− r − 1)W (n−r) + (r − 1)W (r)

))]
exp

[
− r−1

2
tr

(
W (r)−1

(
m∑
j=1

W
(r)
y,j

))]
(5.10)

Method II: Using whole data estimates to impute synthetic data

For this method, we impute m-copies of the sensitive part of the data as follows,

independently for j = 1, . . . ,m

y1j, . . . ,yrj
iid∼ Np (x̄,W )

so that the released data is {Yj = (y1j, . . . ,yrj,xr+1, . . . ,xn) : j = 1, . . . ,m}. Then

the portion of the likelihood of the released data required to calculate the posterior

distributions is computed as
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∫ ( m∏
j=1

π(y1j, . . . ,yrj | x̄,W )

)
π(x̄ |µ,Σ) π(W |Σ) dx̄ dW

We integrate out x̄ from the above likelihood and then multiply with our usual prior

π(µ,Σ) ∝ |Σ|
δ
2 to obtain the following posterior distributions

S∗(r)y

−1/2
WS∗(r)y

−1/2 ∼ W−1
p (Ip, rm− p+ δ − 2) (5.11)

W−1/2ΣW−1/2 ∼ W−1
p ((n− 1)Ip, n− p+ δ − 2) (5.12)

µ |Σ,W ,y∗r ∼ Np

(
y∗r ,

Σ

n
+
W

rm

)
(5.13)

where S∗(r)y =
∑m

j=1

∑r
i=1(yij − y∗r)(yij − y∗r)′ =

∑m
j=1

∑r
i=1(yij − ȳj)(yij − ȳj)′ +

r
∑m

j=1(ȳj − y∗r)(ȳj − y∗r)′, so S∗(r)y coincides with S∗y when r = n; it is an analogue of

S∗y in the case of partially sensitive data.

5.2 Posterior Predictive Sampling method

We again consider the setup described in Section 4.2. The synthetic data are generated

by repeating the following steps below independently for each j = 1, . . . ,m.

(a) Draw (µ∗j ,Σ
∗
j ) from the posterior distribution (4.14).

(b) Draw Yj = (yj1, . . . , yjn)′ ∼ Np(µ
∗
j ,Σ

∗
j ).

We mention the distributions of all the quantities involved below.

The pdf of released data is

f(Y1, . . . ,Ym |µ∗1, . . . ,µ∗m,Σ∗1 , . . . ,Σ∗m)
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∝
m∏
j=1

∣∣Σ∗j ∣∣−n2 |Sy,j|n−p−2
2 exp

{
−1

2

[
tr
(
Σ∗j
−1Sy,j

)
+ n(ȳj − µ∗j)′Σ∗j

−1(ȳj − µ∗j)
]}
(5.14)

where ȳj = 1
n

∑n
i=1 yij, Sy,j =

∑n
i=1(yij − ȳj)(yij − ȳj)′ as in the last section.

The pdf of the imputed parameters is

f(µ∗1, . . . ,µ
∗
m,Σ

∗
1 , . . . ,Σ

∗
m | x̄,W )

∝
m∏
j=1

|W |
n−p+α−2

2∣∣Σ∗j ∣∣n+α2 exp

{
−1

2

[
n(µ∗j − x̄)′Σ∗j

−1(µ∗j − x̄) + (n− 1) tr
(
WΣ∗j

−1
)]}
(5.15)

Finally the pdf of the original data is given by equation (4.4).

Likelihood of (µ,Σ)

We want the likelihood of released data given the parameters. To that end, we

compute the product of equations (5.14), (5.15) and (4.4) to obtain the joint pdf of

all the quantities at play.

f(Y ∗1 , . . . ,Y
∗
m,µ

∗
1, . . . ,µ

∗
m,Σ

∗
1 , . . . ,Σ

∗
m, x̄,W |µ,Σ)

∝ exp

[
−1

2

m∑
j=1

{
tr
(
Σ∗j
−1Sy,j

)
+ n(ȳj − µ∗j)′Σ∗j

−1(ȳj − µ∗j) +

n(µ∗j − x̄)′Σ∗j
−1(µ∗j − x̄) + (n− 1) tr

(
WΣ∗j

−1
)}]

×

(
m∏
j=1

∣∣Σ∗j ∣∣− 2n+α
2 |Sy,j|

n−p−2
2

)
|W |

m(n−p+α−2)+n−p−2
2 |Σ|−

n
2

× exp

[
−1

2

{
n(x̄− µ)′Σ−1(x̄− µ) + (n− 1) tr

(
WΣ−1

)}]
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Our goal is to integrate out everything else from the joint pdf except for the released

data. We first attempt to integrate out µ∗j ’s. Combining terms for µ∗j from inside

first exponent we get

(ȳj − µ∗j)′Σ∗j
−1(ȳj − µ∗j) + (µ∗j − x̄)′Σ∗j

−1(µ∗j − x̄)

= 2

(
µ∗j −

ȳj + x̄

2

)′
Σ∗j
−1

(
µ∗j −

ȳj + x̄

2

)
+

1

2
(x̄− ȳj)′Σ∗j

−1(x̄− ȳj)

After integrating out all the µ∗j ’s we are left with the following

f(Y ∗1 , . . . ,Y
∗
m,Σ

∗
1 , . . . ,Σ

∗
m, x̄,W |µ,Σ)

∝ exp

[
−1

2

m∑
j=1

{
tr
(
Σ∗j
−1Sy,j

)
+
n

2
(x̄− ȳj)′Σ∗j

−1(x̄− ȳj) + (n− 1) tr
(
WΣ∗j

−1
)}]

×

(
m∏
j=1

∣∣Σ∗j ∣∣− 2n+α−1
2 |Sy,j|

n−p−2
2

)
|W |

m(n−p+α−2)+n−p−2
2 |Σ|−

n
2

× exp

[
−1

2

{
n(x̄− µ)′Σ−1(x̄− µ) + (n− 1) tr

(
WΣ−1

)}]

Next we combine terms for x̄ from the exponents to get

1

2

n∑
j=1

(x̄− ȳj)′Σ∗j
−1(x̄− ȳj) + (x̄− µ)′Σ−1(x̄− µ)

=

x̄−
1

2

m∑
j=1

Σ∗j
−1 +Σ−1

−11

2

m∑
j=1

Σ∗j
−1ȳj +Σ−1µ

′1

2

m∑
j=1

Σ∗j
−1 +Σ−1


x̄−

1

2

m∑
j=1

Σ∗j
−1 +Σ−1

−11

2

m∑
j=1

Σ∗j
−1ȳj +Σ−1µ


+

µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj

′Σ + 2

 m∑
j=1

Σ∗j
−1

−1−1

µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj


+

1

2

 m∑
j=1

ȳ′jΣ
∗
j
−1ȳj −

 m∑
j=1

Σ∗j
−1ȳj

′ m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj
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After integrating out x̄ what remains is

f(Y ∗1 , . . . ,Y
∗
m,Σ

∗
1 , . . . ,Σ

∗
m,W |µ,Σ)

∝ exp

−n
2

µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj

′Σ + 2

 m∑
j=1

Σ∗j
−1

−1−1

µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj


×

∣∣∣∣∣∣12
m∑
j=1

Σ∗j
−1 +Σ−1

∣∣∣∣∣∣
− 1

2

exp

−1

2


m∑
j=1

tr
(
Σ∗j
−1Sy,j

)
+

n

2

 m∑
j=1

ȳ′jΣ
∗
j
−1ȳj −

 m∑
j=1

Σ∗j
−1ȳj

′ m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




×

 m∏
j=1

∣∣Σ∗j ∣∣− 2n+α−1
2 |Sy,j |

n−p−2
2

 |W |m(n−p+α−2)+n−p−2
2 |Σ|−

n
2

× exp

−n− 1

2
tr

W
 m∑
j=1

Σ∗j
−1 +Σ−1


The posterior distribution of µ is already evident, since we are going to use a vague

prior involving only Σ. Finally integrating out W , we have

f(Y ∗1 , . . . ,Y
∗
m,Σ

∗
1 , . . . ,Σ

∗
m |µ,Σ)

∝

∣∣∣∣∣∣Σ + 2

 m∑
j=1

Σ∗j
−1

−1∣∣∣∣∣∣
− 1

2

exp

−n
2

µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj

′
Σ + 2

 m∑
j=1

Σ∗j
−1

−1−1µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




× exp

−1

2


m∑
j=1

tr
(
Σ∗j
−1Sy,j

)
+

n

2

 m∑
j=1

ȳ′jΣ
∗
j
−1ȳj −

 m∑
j=1

Σ∗j
−1ȳj

′ m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj
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×

 m∏
j=1

∣∣Σ∗j ∣∣− 2n+α−1
2 |Sy,j |

n−p−2
2

 |Σ|−n2
∣∣∣∣∣∣
m∑
j=1

Σ∗j
−1 +Σ−1

∣∣∣∣∣∣
−m(n−p+α−2)+n−1

2

×

∣∣∣∣∣∣12
m∑
j=1

Σ∗j
−1 +Σ−1

∣∣∣∣∣∣
− 1

2
∣∣∣∣∣∣Σ + 2

 m∑
j=1

Σ∗j
−1

−1∣∣∣∣∣∣
1
2

Theorem 5.2.1. The likelihood of (Y ∗1 , . . . ,Y
∗
m) can be obtained by integrating out

Σ∗1 , . . . ,Σ
∗
m from

fµ,Σ(Y ∗1 , . . . ,Y
∗
m,Σ

∗
1 , . . . ,Σ

∗
m) ∝

∣∣∣∣∣∣Σ + 2

 m∑
j=1

Σ∗j
−1

−1∣∣∣∣∣∣
− 1

2

exp

−n
2

µ−
 m∑
j=1

Σ∗j
−1

−1

 m∑
j=1

Σ∗j
−1ȳj

′Σ + 2

 m∑
j=1

Σ∗j
−1

−1−1µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




× exp

−1

2


m∑
j=1

tr
(
Σ∗j
−1Sy,j

)
+

n

2

 m∑
j=1

ȳ′jΣ
∗
j
−1ȳj −

 m∑
j=1

Σ∗j
−1ȳj

′ m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




×

 m∏
j=1

∣∣Σ∗j ∣∣− 2n+α−1
2 |Sy,j |

n−p−2
2

∣∣∣∣∣∣
m∑
j=1

Σ∗j
−1

∣∣∣∣∣∣
− 1

2

|Σ|−
n−1
2

∣∣∣∣∣∣
m∑
j=1

Σ∗j
−1 +Σ−1

∣∣∣∣∣∣
−m(n−p+α−2)+n−1

2

(5.16)

Posterior distributions of µ and Σ

We multiply the same prior as before with the likelihood above, which results in the

posterior distribution neatly separating out into three parts as follows:

π(µ |Σ,Σ∗1 , . . . ,Σ∗m,Y ∗1 , . . . ,Y ∗m)π(Σ |Σ∗1 , . . . ,Σ∗m,Y ∗1 , . . . ,Y ∗m)π(Σ∗1 , . . . ,Σ
∗
m |Y ∗1 , . . . ,Y ∗m)

=π(µ,Σ,Σ∗1 , . . . ,Σ
∗
m |Y ∗1 , . . . ,Y ∗m)

∝π(µ,Σ,Σ∗1 , . . . ,Σ
∗
m,Y

∗
1 , . . . ,Y

∗
m)

=π(Y ∗1 , . . . ,Y
∗
m,Σ

∗
1 , . . . ,Σ

∗
m |µ,Σ)π(µ,Σ)
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∝

∣∣∣∣∣∣Σ + 2

 m∑
j=1

Σ∗j
−1

−1∣∣∣∣∣∣
− 1

2

exp

−n
2

µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj

′
Σ + 2

 m∑
j=1

Σ∗j
−1

−1−1µ−
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




×

∣∣∣∣∣∣∣
 m∑
j=1

Σ∗j
−1

1/2

Σ

 m∑
j=1

Σ∗j
−1

1/2
∣∣∣∣∣∣∣
m(n−p+α−2)−δ

2

×

∣∣∣∣∣∣∣
 m∑
j=1

Σ∗j
−1

1/2

Σ

 m∑
j=1

Σ∗j
−1

1/2

+ Ip

∣∣∣∣∣∣∣
−m(n−p+α−2)+n−1

2

×

(∏m
j=1

∣∣∣Σ∗j ∣∣∣− 2n+α−1
2

)
∣∣∣∑m

j=1Σ
∗
j
−1
∣∣∣m(n−p+α−2)−δ+1

2

exp

−1

2


m∑
j=1

tr
(
Σ∗j
−1Sy,j

)
+

n

2

 m∑
j=1

ȳ′jΣ
∗
j
−1ȳj −

 m∑
j=1

Σ∗j
−1ȳj

′ m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




From the above set of equations, the requisite posterior distributions are as follows

(obtained after multiplying by the Jacobian of the transformation

Σ 7→
(∑m

j=1Σ
∗
j
−1
)1/2

Σ
(∑m

j=1Σ
∗
j
−1
)1/2

which is
∣∣∣∑m

j=1Σ
∗
j
−1
∣∣∣−p)

µ |Σ,Σ∗1 , . . . ,Σ∗m,Y ∗1 , . . . ,Y ∗m ∼ Np

 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj

 ,
1

n

Σ + 2

 m∑
j=1

Σ∗j
−1

−1
(5.17) m∑

j=1

Σ∗j
−1

1/2

Σ

 m∑
j=1

Σ∗j
−1

1/2

∼ BII
p

(
m(n− p+ α− 2) + p− δ + 1

2
,
n− p+ δ − 2

2

)
(5.18)
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and the latent matrices have the following distribution

g(Σ∗1 , . . . ,Σ
∗
m |Y ∗1 , . . . ,Y ∗m)

∝

∣∣∣∑m
j=1Σ

∗
j
−1
∣∣∣−m(n−p+α−2)+2p−δ+1

2(∏m
j=1

∣∣∣Σ∗j ∣∣∣ 2n+α−1
2

) exp

−1

2


m∑
j=1

tr
(
Σ∗j
−1Sy,j

)
+ (5.19)

n

2

 m∑
j=1

ȳ′jΣ
∗
j
−1ȳj −

 m∑
j=1

Σ∗j
−1ȳj

′ m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




∝

∣∣∣∑m
j=1Σ

∗
j
−1
∣∣∣−m(n−p+α−2)+2p−δ+1

2(∏m
j=1

∣∣∣Σ∗j ∣∣∣ 2n+α−1
2

) exp

−1

2

m∑
j=1

tr
(
Σ∗j
−1Sy,j

)

exp

−n
4

m∑
j=1

ȳj −
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj

′Σ∗j−1

ȳj −
 m∑
j=1

Σ∗j
−1

−1 m∑
j=1

Σ∗j
−1ȳj




(5.20)

where we can notice that the quantity inside the last exponential vanishes when

m = 1.

The posterior distributions for the parameters exist provided

n > max
{
p, 2p− δ + 1, p− α + 2 + δ−2

m

}
.

Following the development before for the MI PPS MLR case, here the following

transformation should work to sample from the above distribution

Σ1 = Σ∗1 ,Σ2 = Σ∗1
− 1

2Σ∗2Σ
∗
1
− 1

2 , . . . ,Σm = Σ∗1
− 1

2Σ∗mΣ
∗
1
− 1

2 (5.21)

so that the proposal density of (Σ1,Σ2, . . . ,Σm) when we apply Accept-Reject would

be matrix variate Dirichlet Type-II (matrix analogue of Inverted Dirichlet distribu-

tion).
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FPPS

For the FPPS case, we produce a single copy (µ∗,Σ∗) from the posterior distribution

(4.14) and use it to generate m samples Yj = (yj1, . . . , yjn)′
iid∼ Np(µ

∗,Σ∗) for each

j = 1, . . . ,m. Using the same notation as in Section 5.1, we can derive the posterior

distribution of the parameters as follows with exactly the same conditions for existence

as in Section 4.2

Σ∗ |S∗y ∼ W−1
p

(
S∗y, nm− 2p+ δ − 1

)
(5.22)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(5.23)

µ |Σ,Σ∗,y∗ ∼ Np

(
y∗,

1

n

(
Σ +

(
1 +

1

m

)
Σ∗
))

(5.24)

We can reformulate the above posterior distributions as:

S∗y
−1/2Σ∗−1/2S∗y ∼ W−1

p (Ip, nm− 2p+ δ − 1) (5.25)

Σ∗−1/2ΣΣ∗−1/2 ∼ BII
p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(5.26)

µ |Σ,Σ∗,y∗ ∼ Np

(
y∗,

1

n

(
Σ +

(
1 +

1

m

)
Σ∗
))

(5.27)
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Chapter 6

Bayesian Analysis of Singly

Imputed Synthetic Data under the

Multivariate Regression Model

In terms of the MVR model, in our context, we consider several sensitive response

variables yj, j = 1, . . . ,m, originating the vector of response variables y = (y1, . . . , ym)′,

and a vector of p non-sensitive predictors x = (x1, . . . , xp)
′. We assume that y |x ∼

Nm(B′x,Σ), with B and Σ unknown, and the original data consist of

{(y1i, . . . , ymi, x1i, . . . , xpi) : i = 1, . . . , n}. We write Y = (y1 · · ·yn)′ with yi =

(y1i, . . . , ymi)
′ and X = (x1 · · ·xn)′ with xi = (x1i, . . . , xpi)

′. We also assume that

rank(X) = p < n and n ≥ m + p. We are thus considering the following regression

model

Yn×m = Xn×pBp×m + En×m (6.1)

where En×m ∼ Nn,m(O,Σ⊗In). It is well known that based on the original data, B̂ =

(X ′X)−1X ′Y is the MLE and the UMVUE of B, distributed as B̂ ∼ Np,m(B,Σ ⊗
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(X ′X)−1), independent of Σ̂ = 1
n
(Y −XB̂)′(Y −XB̂) = 1

n
Y ′(In−PX)Y which is

the MLE of Σ, with nΣ̂ ∼ Wm(Σ, n − p). Therefore S = nΣ̂
n−p will be the UMVUE

of Σ. We use the following two standard results for deriving of the distribution of

the MLEs, that we will keep using continuously, which can be found in Gupta and

Nagar (2000) or Kollo and Rosen (2005) or Anderson (2003):

• IfX ∼ Nn,p(M ,V ⊗U), then forDr×n, Cp×s with rank(D) = r ≤ n, rank(C) =

s ≤ p, we have DXC ∼ Nr,s(DMC,C ′V C ⊗DUD′).

• If X ∼ Nn,p(O,Σ ⊗ Ψ ) where Ψn×n is symmetric idempotent with rank(Ψ ) =

q ≥ p. Then X ′X ∼ Wp(Σ, q).

6.1 Plug In Sampling method

The synthetic data consist of a single synthetic version of Y generated based on the

Plug- in method as described below. From the original data {(y1i, . . . , ymi, x1i, . . . , xpi) :

i = 1, . . . , n}, after estimating B and Σ by B̂ and S, respectively, we generate the

synthetic data, denoted as V = (v1 · · ·vn)′ where vi = (v1i, . . . , vmi)
′, are indepen-

dently distributed as

vi | B̂,S ∼ Nm(B̂′xi,S), i = 1, . . . , n (6.2)

so that V ∼ Nn,m(XB̂,S ⊗ In). Our goal is to draw inference on B based on the

synthetic data {(v1i, . . . , vmi, x1i, . . . , xpi) : i = 1, . . . , n}. Towards this end, let us

define

B∗ = (X ′X)−1X ′V ∼ Np,m(B̂,S ⊗ (X ′X)−1) (6.3)

(n− p)S∗ = (V −XB∗)′(V −XB∗) = V ′(In − PX)V ∼ Wm (S, n− p) (6.4)
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From Moura et al. (2021) we have the following result.

Theorem 6.1.1. The joint pdf of (B∗,S∗) is given by

fB,Σ (B∗,S∗) ∝
∫
S++
n

|S∗|
n−p−m−1

2 |Σ + S|−
p
2

|Σ|
n−p
2 |S|

m+1
2

e−
1
2

tr[(Σ+S)−1(B∗−B)′(X′X)(B∗−B)+(n−p)(S∗S−1+SΣ−1)] dS

We see that B∗ and S∗ are separable above, showing that they are independent, with

B∗ |S ∼ Np,m(B, (Σ + S)⊗ (X ′X)−1) and (n− p)S∗ |S ∼ Wm (S, n− p).

Posterior distributions of B and Σ

We choose the standard non-informative prior π(B,Σ) ∝ |Σ|−
δ
2 , and multiply it

with the likelihood of the released data to obtain the following

S |S∗ ∼ W−1
m ((n− p)S∗, n− p−m+ δ − 1) (6.5)

Σ |S ∼ W−1
m ((n− p)S, n− p−m+ δ − 1) (6.6)

B |Σ,S,B∗ ∼ Np,m(B∗, (Σ + S)⊗ (X ′X)−1) (6.7)

We can reformulate the above posterior distributions as:

S∗−1/2SS∗−1/2 ∼ W−1
m ((n− p)Im, n− p−m+ δ − 1) (6.8)

S−1/2ΣS−1/2 ∼ W−1
m ((n− p)Im, n− p−m+ δ − 1) (6.9)

B |Σ,S,B∗ ∼ Np,m(B∗, (Σ + S)⊗ (X ′X)−1) (6.10)

which has the benefit that S∗−1/2SS∗−1/2 ⊥ S−1/2ΣS−1/2 and their posterior distri-

butions are unconditional.
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The posterior distributions are proper as long as n > max{m+ p− 1, 2m+ p− δ}.

We can get the equivalent results for MVN model by plugging p = 1, m = p; and

that of the MLR model by plugging m = 1.

Bayes Estimators of B and Σ

B̂BAYES = E(B |B∗,S∗) = ES EΣ E(B |B∗,Σ,S) = ES EΣ E(B∗) = B∗

Σ̂BAYES = E(Σ |B∗,S∗) = ES E(Σ |S∗,S) = ES

(
(n−p)S

(n−p−2m+δ−2)
|S∗

)
=

(n− p)2S∗

(n− p− 2m+ δ − 2)2

|̂Σ|BAYES = E (|Σ| |B∗,S∗) = ES E (|Σ| |S,S∗) = ES
(
|S|E

(∣∣S−1/2ΣS−1/2
∣∣) |S∗)

=

(
m∏
j=1

n− p
n− p−m+ δ − j − 2

)
E (|S| |S∗) =

(
m∏
j=1

n− p
n− p−m+ δ − j − 2

)2

|S∗|

provided n > max{m + p − 1, 2m + p − δ + 4}, and we use the results (4.11) and

(4.12).

Credible Sets for |Σ| and B

We see that Σ−1 |S ∼ Wm (S−1/(n− p), n− p−m+ δ − 1), so by using (4.13)

|Σ−1|
|S−1/(n− p)|

∼
m∏
i=1

ui, where ui ∼ χ2
n−p−m+δ−i independently for i = 1, . . . ,m

which also shows that the quantity on the left hand side of the above relation is

independent of S. Similarly we can get

|S−1|∣∣S∗−1/(n− p)
∣∣ ∼ m∏

j=1

vj, where vj ∼ χ2
n−p−m+δ−j independently for j = 1, . . . ,m
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So we can define a pivot for the generalized variance |Σ| as N :=
∣∣ΣS∗−1

∣∣ where

(n− p)−2mN−1 ∼

(
m∏
i=1

ui

)(
m∏
j=1

vj

)

where ui’s and vj’s are as above and they are all pairwise independent. A (1 − γ)

level credible set for |Σ| based on N is

[an,p,δ;γ |S∗| , bn,p,δ;γ |S∗|]

where an,p,δ;γ and bn,p,δ;γ are any two constants that satisfy 1− γ = P (an,p,δ;γ ≤ N ≤

bn,p,δ;γ). The length of the credible interval is |S∗| (bn,p,δ;γ − an,p,δ;γ).

Next we define the pivot for B as

T :=
|(B −B∗)′(X ′X)(B −B∗)|

|(n− p)S∗|

We will prove that T is a pivot and derive a sampling scheme in what follows. We first

notice that the Wishart distribution is defined through the matrix normal distribution

in the following manner: Let Y ∼ Nn,p(O,Ψ ⊗In) and define V = Y ′Y , n ≥ p, then

V ∼ Wp(Ψ , n). That fact combined with (X ′X)1/2(B−B∗) ∼ Np,m(O, (Σ+S)⊗Ip)

due to (6.7) gives us, for p ≥ m,

(B −B∗)′(X ′X)(B −B∗) |Σ,S ∼ Wm(Σ + S, p)

Therefore, we have T = |H| × |G/(n− p)| where

H = (Σ + S)−1/2(B −B∗)′(X ′X)(B −B∗)(Σ + S)−1/2
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G = S∗−1/2S1/2(S−1/2ΣS−1/2 + Im)S1/2S∗−1/2

we have H |Σ,S ∼ Wm(Im, p), so H is independent of (Σ,S) and H ∼ Wm(Im, p).

That implies H is independent of G, and we show that the distribution of G is free

of (Σ,S). In a similar manner as in Section 4.1, we notice that conditionallyG |G0 ∼

W−1
m ((n− p)G0, n− p−m+ δ − 1)+G0, andG0 ∼ W−1

m ((n− p)Im, n− p−m+ δ − 1)

due to (6.9) and (6.8) respectively. This concludes the proof of the fact that T is a

pivot for B. Using (4.13) the distribution of T is given by

T |G ∼

(
m∏
i=1

χ2
p−i+1

)
× |G/(n− p)| (6.11)

G |G0 ∼ W−1
m ((n− p)G0, n− p−m+ δ − 1) +G0 (6.12)

G0 ∼ W−1
m ((n− p)Im, n− p−m+ δ − 1) (6.13)

Remark 6.1.1. If one wants to test the significance of a set of regression coefficients

or more generally of a linear combination of these regression coefficients, AB = C

where A is a k × p matrix with rank(A) = k ≤ p and k ≥ m, one may define

TC :=

∣∣∣(C −AB∗)′ {A(X ′X)−1A′}−1
(C −AB∗)

∣∣∣
|(n− p)S∗|

(6.14)

and proceed by noting that

TC |G ∼

(
m∏
i=1

χ2
k−i+1

)
× |G/(n− p)| (6.15)

G |G0 ∼ W−1
m ((n− p)G0, n− p−m+ δ − 1) +G0 (6.16)

G0 ∼ W−1
m ((n− p)Im, n− p−m+ δ − 1) (6.17)

Remark 6.1.2. To infer about ABD = ∆ where A is a k× p matrix as before and

D is a m× r matrix with rank(D) = r ≤ k, we start with ∆∗ = AB∗D and propose
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to use

T∆ :=

∣∣∣(∆−∆∗)′ {A(X ′X)−1A′}−1
(∆−∆∗)

∣∣∣
|(n− p)D′S∗D|

(6.18)

whose distribution is obtained as follows

T∆ | G̃ ∼

(
m∏
i=1

χ2
r−i+1

)
×
∣∣∣G̃/(n− p)∣∣∣ (6.19)

G̃ | G̃0 ∼ W−1
r

(
(n− p)G̃0, n− p−m+ δ − 1

)
+ G̃0 (6.20)

G̃0 ∼ W−1
r ((n− p)Ir, n− p−m+ δ − 1) (6.21)

6.2 Posterior Predictive Sampling method

We return to the setup of the last section. Under the posterior predictive sampling

method, starting with a vague prior π(B,Σ) ∝ |Σ|−α/2, the joint (imputed) posterior

distribution of B and Σ, given Y , can be represented as

Σ |S ∼ W−1
m ((n− p)S, n− p+ α−m− 1)

B |Σ, B̂ ∼ Np,m(B̂,Σ ⊗ (X ′X)−1)

(6.22)

We assume n + α > 2p + m throughout. We now draw (B̃, Σ̃) from the above

posterior, and then draw a random sample V ∼ Nnm(XB̃, Σ̃ ⊗ In), which form the

singly imputed synthetic data. Define

B∗ = (X ′X)−1X ′V ∼ Np,m(B̃, Σ̃ ⊗ (X ′X)−1) (6.23)

(n− p)S∗ = V ′(In − PX)V ∼ W−1
m (Σ̃, n− p) (6.24)

From Moura et al. (2017b) we have the following result.

Theorem 6.2.1. The joint pdf of B∗ and S∗ is obtained by integrating out Σ̃ from
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the joint pdf of (B∗,S∗, Σ̃) given by

f(B∗,S∗, Σ̃) ∝ e
− 1

2
tr
[
(Σ+2Σ̃)

−1
(B∗−B)′(X′X)(B∗−B)+(n−p)(S∗Σ̃−1)

]

×
∣∣∣Σ + 2Σ̃

∣∣∣− p2 |Σ|n−p+α−m−1
2

∣∣∣Σ + Σ̃
∣∣∣− 2n−2p+α−m−1

2
∣∣∣Σ̃∣∣∣−m+1

2 |S∗|
n−p−m−1

2

Posterior distributions of B and Σ

We multiply the above likelihood with our usual prior π(B,Σ) ∝ |Σ|−
δ
2 and the

Jacobian of the transformation Σ 7→ Σ̃−1/2ΣΣ̃−1/2 which is
∣∣∣Σ̃∣∣∣m to get

Σ̃ |S∗ ∼ W−1
m ((n− p)S∗, n− p− 2m+ δ) (6.25)

Σ̃−1/2ΣΣ̃−1/2 ∼ BII
m

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2

)
(6.26)

B |Σ, Σ̃,B∗ ∼ Np,m(B∗, (Σ + 2Σ̃)⊗ (X ′X)−1) (6.27)

We can reformulate the above posterior distributions as:

S∗−1/2Σ̃S∗−1/2 ∼ W−1
m ((n− p)Im, n− p− 2m+ δ) (6.28)

Σ̃−1/2ΣΣ̃−1/2 ∼ BII
m

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2

)
(6.29)

B |Σ, Σ̃,B∗ ∼ Np,m(B∗, (Σ + 2Σ̃)⊗ (X ′X)−1) (6.30)

which has the benefit that S∗−1/2Σ̃S∗−1/2 is independent of Σ̃−1/2ΣΣ̃−1/2 and it’s

posterior distribution is unconditional.

The posterior distributions are proper as long as n > max{m+p−1,m+2p−α, 3m+

p− δ − 1,m+ p− α + δ − 1, 2m+ p− δ}.
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Bayes Estimators of µ and Σ

B̂BAYES = E(B |B∗,S∗) = EΣ̃ EΣ E(B |B∗,Σ, Σ̃) = EΣ̃ EΣ E(B∗) = B∗

Finding Σ̂BAYES seems very difficult.

|̂Σ|BAYES = E (|Σ| |B∗,S∗) = EΣ̃ E
(
|Σ| | Σ̃,S∗

)
= EΣ̃

(∣∣∣Σ̃∣∣∣E(∣∣∣Σ̃−1/2ΣΣ̃−1/2
∣∣∣) |S∗)

=

(
m∏
j=1

n− p+ α− δ − j + 1

n− p+ δ −m− j − 2

)
E
(∣∣∣Σ̃∣∣∣ |S∗)

=

(
m∏
j=1

n− p+ α− δ − j + 1

(n− p+ δ −m− j − 2)(n− p+ δ − 2m− j − 1)

)
|S∗|

provided that n > max{m + p− 1,m + 2p− α,m + p− α + δ − 1, 3m + p− δ + 3},

by using (4.12) and (4.23).

Credible Sets for |Σ| and M

Let C = Σ̃−1/2ΣΣ̃−1/2. Then by (6.29), we have C−1 ∼ BII
p

(
n−p+δ−m−1

2
, n−p+α−δ

2

)
.

Also by (4.13) we have,

∣∣∣Σ̃−1
∣∣∣∣∣S∗−1/(n− p)

∣∣ ∼ m∏
j=1

vj, where vj ∼ χ2
n−p+δ−2m−j+1 independently for j = 1, . . . ,m

We can define a pivot for |Σ| in the same manner as in the last section to be N :=∣∣ΣS∗−1
∣∣ where

(n− p)−mN−1 ∼ |M |
m∏
j=1

vj

where vj’s are defined as above, M ∼ BII
p

(
n−p+δ−m−1

2
, n−p+α−δ

2

)
and M is indepen-

dent of each vj. Since the distribution of N is free of (Σ, Σ̃) we conclude that it is a
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pivot. A (1− γ) level credible set for |Σ| is

[an,p,α,δ;γ |S∗| , bn,p,α,δ;γ |S∗|]

where an,p,α,δ;γ and bn,p,α,δ;γ are any two constants that satisfy 1− γ = P (an,p,α,δ;γ ≤

N ≤ bn,p,α,δ;γ). The length of the credible interval is |S∗| (bn,p,α,δ;γ − an,p,α,δ;γ).

Next we define the pivot for B as

T :=
|(B −B∗)′(X ′X)(B −B∗)|

|(n− p)S∗|

We will prove that T is a pivot and derive a sampling scheme in what follows. Since

(X ′X)1/2(B −B∗) ∼ Np,m(O, (Σ + 2Σ̃)⊗ Ip) due to (6.30), then for p ≥ m,

(B −B∗)′(X ′X)(B −B∗) |Σ, Σ̃ ∼ Wm(Σ + 2Σ̃, p)

Therefore, for

H = (Σ + 2Σ̃)−1/2(B −B∗)′(X ′X)(B −B∗)(Σ + 2Σ̃)−1/2

G = S∗−1/2Σ̃1/2(Σ̃−1/2ΣΣ̃−1/2 + 2Im)Σ̃1/2S∗−1/2

we haveH |Σ, Σ̃ ∼ Wm(Im, p), soH is independent of (Σ, Σ̃) andH ∼ Wm(Im, p).

That implies H is independent of G, and we show that the distribution of G is

free of (Σ, Σ̃). In a similar manner as in Section 4.2, we notice that G |G0 ∼

GBII
p

(
n−p+α−δ

2
, n−p−m+δ−1

2
;G0,O

)
+2G0, andG0 ∼ W−1

m ((n− p)Im, n− p− 2m+ δ)

due to (6.29) and (6.28) respectively. This concludes the proof of the fact that T is
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a pivot for B. Using (4.13) the distribution of T is given by

T |G ∼

(
m∏
i=1

χ2
p−i+1

)
× |G/(n− p)| (6.31)

G |G0 ∼ GBII
p

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2
;G0,O

)
+ 2G0 (6.32)

G0 ∼ W−1
m ((n− p)Im, n− p− 2m+ δ) (6.33)

Remark 6.2.1. If one wants to test the significance of a set of regression coefficients

or more generally of a linear combination of these regression coefficients, AB = C

where A is a k × p matrix with rank(A) = k ≤ p and k ≥ m, one may define

TC :=

∣∣∣(C −AB∗)′ {A(X ′X)−1A′}−1
(C −AB∗)

∣∣∣
|(n− p)S∗|

(6.34)

and proceed by noting that

TC |G ∼

(
m∏
i=1

χ2
k−i+1

)
× |G/(n− p)| (6.35)

G |G0 ∼ GBII
p

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2
;G0,O

)
+ 2G0 (6.36)

G0 ∼ W−1
m ((n− p)Im, n− p− 2m+ δ) (6.37)

Remark 6.2.2. To infer about ABD = ∆ where A is a k× p matrix as before and

D is a m× r matrix with rank(D) = r ≤ k, we start with ∆∗ = AB∗D and propose

to use

T∆ :=

∣∣∣(∆−∆∗)′ {A(X ′X)−1A′}−1
(∆−∆∗)

∣∣∣
|(n− p)D′S∗D|

(6.38)

whose distribution is obtained as follows

T∆ | G̃ ∼

(
m∏
i=1

χ2
r−i+1

)
×
∣∣∣G̃/(n− p)∣∣∣ (6.39)
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G̃ | G̃0 ∼ GBII
r

(
n− p+ α− δ

2
,
n− p− 2m+ r + δ − 1

2
; G̃0,O

)
+ 2G̃0 (6.40)

G̃0 ∼ W−1
r ((n− p)Ir, n− p− 2m+ δ) (6.41)

For (6.40), we use the following result: Let V ∼ BII
p (a, b). Then for a constant matrix

A of size q × p such that rank(A) = q ≤ p,

AV A′ ∼ GBII
q

(
a, b− 1

2
(p− q);AA′,O

)
(6.42)

6.3 Random design matrix X

When the prediction variables X, just as the dependent variables Y , are observed,

then it is appropriate to consider X as a random matrix. Following Bilodeau and

Brenner (1999), the model most commonly encountered assumes

Y = XB + E, E ∼ Nn,m(O,Σ ⊗ In),X ∼ Nn,p(O,Ω ⊗ In),E ⊥⊥X

where the errors are independently distributed of the prediction variables. The con-

ditional model

Y |X ∼ Nn,m(XB,Σ ⊗ In)

is thus identical to the case of a fixed X. Then B̂ is still the unbiased estimate of B,

the distribution of S is free of X, and B̂ is still independent of S. We proceed by

assuming a Inv-Wishart prior on Ω that is independent of the prior on (B,Σ), i.e.

π(B,Σ,Ω) = π(B) π(Σ)π(Ω) where a priori Ω ∼ W−1
p (V0, ν0), provided V0 > 0,

ν0 > p − 1. For the sake of simplicity, we consider V0 = Ip. In the PIS case, the
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posterior distributions are as follows

Ω ∼ W−1
p (Ip, ν0 +m) (6.43)

S |S∗ ∼ W−1
m ((n− p)S∗, n− p−m+ δ − 1) (6.44)

Σ |S ∼ W−1
m ((n− p)S, n− p−m+ δ − 1) (6.45)

B |Σ,S,B∗,Ω ∼ Tp,m

(
n−m− p+ 1

2
,B∗,Ω−1,Σ + S

)
(6.46)

where Tp,m(n,M ,Σ,Ω) denotes the matrix variate t-distribution as described in

Gupta and Nagar (2000). We can reformulate the above posterior distributions as:

Ω ∼ W−1
p (Ip, ν0 +m) (6.47)

S∗−1/2SS∗−1/2 ∼ W−1
m ((n− p)Im, n− p−m+ δ − 1) (6.48)

S−1/2ΣS−1/2 ∼ W−1
m ((n− p)Im, n− p−m+ δ − 1) (6.49)

B |Σ,S,B∗,Ω ∼ Tp,m

(
n−m− p+ 1

2
,B∗,Ω−1,Σ + S

)
(6.50)

The posterior distributions are proper as long as ν0 > p−1, n > max{m+p−1, 2m+

p− δ}.

In the PPS case, the posterior distributions are as follows:

Ω ∼ W−1
p (Ip, ν0 +m) (6.51)

Σ̃ |S∗ ∼ W−1
m ((n− p)S∗, n− p− 2m+ δ) (6.52)

Σ̃−1/2ΣΣ̃−1/2 ∼ BII
m

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2

)
(6.53)

B |Σ, Σ̃,B∗,Ω ∼ Tp,m

(
n−m− p+ 1

2
,B∗,Ω−1,Σ + 2Σ̃

)
(6.54)
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We can reformulate the above posterior distributions as:

Ω ∼ W−1
p (Ip, ν0 +m) (6.55)

S∗−1/2Σ̃S∗−1/2 ∼ W−1
m ((n− p)Im, n− p− 2m+ δ) (6.56)

Σ̃−1/2ΣΣ̃−1/2 ∼ BII
m

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2

)
(6.57)

B |Σ, Σ̃,B∗,Ω ∼ Tp,m

(
n−m− p+ 1

2
,B∗,Ω−1,Σ + 2Σ̃

)
(6.58)

The posterior distributions are proper as long as ν0 > p− 1, n > max{m+ p− 1,m+

2p− α, 3m+ p− δ − 1,m+ p− α + δ − 1, 2m+ p− δ}

The Bayes estimators and credible sets in both cases are still exactly the same.
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Chapter 7

Bayesian Analysis of Multiply

Imputed Synthetic Data under the

Multivariate Regression Model

7.1 Plug In Sampling method

With the same setup as in in Section 6.1, we now generateM copies of the original data

V1, . . . ,VM where Vi
iid∼ Nn,m(XB̂,S ⊗ In) for i = 1, . . . ,m. The sufficient statistics

for the released data is given by (B∗1 ,S
∗
1), . . . , (B∗M ,S

∗
M) where for i = 1, . . . ,M

B∗i = (X ′X)−1X ′Vi
iid∼ Np,m(B̂,S ⊗ (X ′X)−1) (7.1)

(n− p)S∗i = (Vi −XB∗i )′(Vi −XB∗i ) = V ′i (In − PX)Vi
iid∼ Wm (S, n− p) (7.2)

It can be shown that, similar to Sections 3.1 and 5.1, (B
∗
M , S̃

∗
M) is sufficient for (B,Σ)

whereB
∗
M = 1

M

∑M
i=1B

∗
i , S̃

∗
M =

∑M
i=1(B∗i−B

∗
M)′(X ′X)(B∗i−B

∗
M)+(n−p)

∑M
i=1 S

∗
i .
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We follow the same procedure as in Section 6.1 to obtain the conditional posterior

distributions which we state below without proof

S | S̃∗M ∼ W−1
m

(
S̃∗M ,Mn− p−m+ δ − 1

)
(7.3)

Σ |S ∼ W−1
m ((n− p)S, n− p−m+ δ − 1) (7.4)

B |Σ,S,B∗M ∼ Np,m

(
B
∗
M , (Σ + S/M)⊗ (X ′X)−1

)
(7.5)

We can reformulate the above posterior distributions as:

S̃∗M
−1/2SS̃∗M

−1/2 ∼ W−1
m (Im,Mn− p−m+ δ − 1) (7.6)

S−1/2ΣS−1/2 ∼ W−1
m ((n− p)Im, n− p−m+ δ − 1) (7.7)

B |Σ,S,B∗M ∼ Np,m

(
B
∗
M , (Σ + S/M)⊗ (X ′X)−1

)
(7.8)

which has the benefit that S̃∗M
−1/2SS̃∗M

−1/2 is independent of S−1/2ΣS−1/2 and their

posterior distributions are unconditional.

The posterior distributions are proper as long as n > max{m+ p− 1, 2m+ p− δ}.

Bayes Estimators of B and Σ

B̂BAYES = E(B |B∗M , S̃∗M) = ES EΣ E(B |B∗M ,Σ,S) = ES EΣ E(B
∗
M) = B

∗
M

Σ̂BAYES = E(Σ |B∗M , S̃∗M) = ES E(Σ | S̃∗M ,S) = ES

(
(n−p)S

(n−p−2m+δ−2)
| S̃∗M

)
=

(n− p)S̃∗M
(n− p− 2m+ δ − 2)(Mn− p− 2m+ δ − 2)

|̂Σ|BAYES = E
(
|Σ| |B∗M , S̃∗M

)
= ES E

(
|Σ| |S, S̃∗M

)
= ES

(
|S|E

(∣∣S−1/2ΣS−1/2
∣∣) | S̃∗M)

=

(
m∏
j=1

n− p
n− p−m+ δ − j − 2

)
E
(
|S| | S̃∗M

)
=

(
m∏
j=1

n−p
(Mn−p−m+δ−j−2)(n−p−m+δ−j−2)

)∣∣∣S̃∗M ∣∣∣
provided n > max{m+ p− 1, 2m+ p− δ + 4}, we use the results (4.11) and (4.12).
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Credible Sets for |Σ| and B

In the same way as in Section 6.1 we can define a pivot for |Σ| as NM :=
∣∣∣ΣS̃∗M−1

∣∣∣
where

(n− p)−mN−1
M ∼

(
m∏
i=1

ui

)(
m∏
j=1

vj

)

where ui ∼ χ2
n−p−m+δ−i independently for i = 1, . . . , p; vj ∼ χ2

Mn−p−m+δ−j indepen-

dently for j = 1, . . . , p; and they are all pairwise independent. A (1−γ) level credible

set for |Σ| based on NM is

[
an,p,m,δ;γ

∣∣∣S̃∗M ∣∣∣ , bn,p,m,δ;γ ∣∣∣S̃∗M ∣∣∣]

where an,p,m,δ;γ and bn,p,m,δ;γ are any two constants that satisfy 1− γ = P (an,p,m,δ;γ ≤

NM ≤ bn,p,m,δ;γ). The length of the credible interval is
∣∣∣S̃∗M ∣∣∣ (bn,p,m,δ;γ − an,p,m,δ;γ).

Next we define the pivot for B as

TM :=

∣∣∣(B −B∗M)′(X ′X)(B −B∗M)
∣∣∣∣∣∣S̃∗M ∣∣∣

We will derive the distribution of TM similarly as in Section 6.1. We first notice that

due to (7.5), for p ≥ m,

(B −B∗M)′(X ′X)(B −B∗M) |Σ,S ∼ Wm(Σ + S/M, p)

Thus for

HM = (Σ + S/M)−1/2(B −B∗M)′(X ′X)(B −B∗M)(Σ + S/M)−1/2

GM = S̃∗M
−1/2S1/2(S−1/2ΣS−1/2 + Im/M)S1/2S̃∗M

−1/2
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we have HM |Σ,S ∼ Wm(Im, p), so HM is independent of (Σ,S) and HM ∼

Wm(Im, p). That implies HM is independent of GM , and we show that the dis-

tribution of GM is free of (Σ,S). In a similar manner as in Section 6.1, we notice

that GM |G0,M ∼ W−1
m ((n− p)G0,M , n− p−m+ δ − 1) + G0,M/M , and G0,M ∼

W−1
m (Im,Mn− p−m+ δ − 1) due to (7.7) and (7.6) respectively. This concludes

the proof of the fact that TM is a pivot for B. Using (4.13) the distribution of T is

given by

TM |GM ∼

(
m∏
i=1

χ2
p−i+1

)
× |GM/(n− p)| (7.9)

GM |G0,M ∼ W−1
m ((n− p)G0,M , n− p−m+ δ − 1) +G0,M/M (7.10)

G0,M ∼ W−1
m (Im,Mn− p−m+ δ − 1) (7.11)

Remark 7.1.1. If one wants to test the significance of a set of regression coefficients

or more generally of a linear combination of these regression coefficients, AB = C

where A is a k × p matrix with rank(A) = k ≤ p and k ≥ m, one may define

TC,M :=

∣∣∣(C −AB∗M)′ {A(X ′X)−1A′}−1
(C −AB∗M)

∣∣∣∣∣∣(n− p)S̃∗M ∣∣∣ (7.12)

and proceed by noting that

TC,M |GM ∼

(
m∏
i=1

χ2
k−i+1

)
× |GM/(n− p)| (7.13)

GM |G0,M ∼ W−1
m ((n− p)G0,M , n− p−m+ δ − 1) +G0,M/M (7.14)

G0,M ∼ W−1
m (Im,Mn− p−m+ δ − 1) (7.15)

Remark 7.1.2. To infer about ABD = ∆ where A is a k× p matrix as before and

D is a m×r matrix with rank(D) = r ≤ k, we start with ∆∗ = AB
∗
MD and propose
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to use

T∆,M :=

∣∣∣(∆−∆∗)′ {A(X ′X)−1A′}−1
(∆−∆∗)

∣∣∣∣∣∣(n− p)D′S̃∗MD∣∣∣ (7.16)

whose distribution is obtained as follows

T∆ | G̃M ∼

(
m∏
i=1

χ2
r−i+1

)
×
∣∣∣G̃M/(n− p)

∣∣∣ (7.17)

G̃M | G̃0,M ∼ W−1
r

(
(n− p)G̃0,M , n− p−m+ δ − 1

)
+ G̃0,M/M (7.18)

G̃0,M ∼ W−1
r (Ir,Mn− p−m+ δ − 1) (7.19)

7.2 Posterior Predictive Sampling method

We adapt the procedure in Section 6.2 in the multiple imputation scenario in what fol-

lows. We begin by producingM posterior draws of the parameters (B̃1, Σ̃1), . . . , (B̃M , Σ̃M)

from (6.22), which we use to spawn M samples of the released data V1, . . . ,VM where

Vi ∼ Nn,m(XB̃i, Σ̃i⊗In) drawn independently for i = 1, . . . ,m. The sufficient statis-

tics for the released data is given by (B∗1 ,S
∗
1), . . . , (B∗M ,S

∗
M) where independently for

i = 1, . . . ,M

B∗i = (X ′X)−1X ′Vi ∼ Np,m(B̃i, Σ̃i ⊗X ′X−1
) (7.20)

(n− p)S∗i = V ′i (In − PX)Vi ∼ Wm

(
Σ̃i, n− p

)
(7.21)

We then follow the same procedure as in Section 6.2 to obtain the conditional posterior

distributions which we state below without proof

B |Σ, Σ̃1, . . . , Σ̃M ,B
∗
1 , . . . ,B

∗
M

∼Np,m

( M∑
i=1

B∗i Σ̃
−1
i

)(
M∑
i=1

Σ̃−1
i

)−1

,

Σ + 2

(
M∑
i=1

Σ̃−1
i

)−1
⊗ (X ′X)−1

 (7.22)
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(
M∑
i=1

Σ̃−1
i

)1/2

Σ

(
M∑
i=1

Σ̃−1
i

)1/2

∼ BII
m

(
M(n− p+ α−m− 1) +m− δ + 1

2
,
n− p+ δ −m− 1

2

)
(7.23)

and the latent matrices have the following distribution

g(Σ̃1, . . . , Σ̃M |B∗1 , . . . ,B∗M ,S∗1 , . . . ,S∗M )

∝

∣∣∣∣∣
M∑
i=1

Σ̃−1
i

∣∣∣∣∣
−M(n−p+α−m−1)+2m−δ+p

2

(
M∏
i=1

∣∣∣Σ̃i

∣∣∣ 2n−p+α2

) etr

[
−n− p

2

M∑
i=1

Σ̃−1
i S∗i

]

× etr

−1

2

M∑
i=1

(
2Σ̃i

)−1

B∗i −
(

M∑
i=1

B∗i Σ̃
−1
i

)(
M∑
i=1

Σ̃−1
i

)−1
′

(
X ′X

)B∗i −
(

M∑
i=1

B∗i Σ̃
−1
i

)(
M∑
i=1

Σ̃−1
i

)−1
 (7.24)

where we can notice that the quantity inside the last exponential vanishes when

M = 1.

The posterior distributions for the parameters exist provided n > max{p, 2m− δ+ p,

p− α +m+ 1 + δ−2
M
}.

We can double check the accuracy of our results in Chapters 6 and 7 by verifying

that they match those of Chapters 4 and 5 when we plug in m = p, p = 1.

FPPS

For the FPPS case, we produce a single copy (B̃, Σ̃) from the posterior distribution

(6.22) and use it to create M samples Vi
iid∼ Nn,m(XB̃, Σ̃ ⊗ In) for i = 1, . . . ,m.

Using the same notation as in Section 7.1, we derive the posterior distribution of the
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parameters as follows with exactly the same conditions for existence as in Section 6.2

Σ̃ | S̃∗M ∼ W−1
m

(
S̃∗M ,Mn− p− 2m+ δ

)
(7.25)

Σ̃−1/2ΣΣ̃−1/2 ∼ BII
m

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2

)
(7.26)

B |Σ, Σ̃,B∗M ∼ Np,m

(
B
∗
M ,

(
Σ +

(
1 +

1

M

)
Σ̃

)
⊗ (X ′X)−1

)
(7.27)

We can reformulate the above posterior distributions as:

S̃∗M
−1/2Σ̃S̃∗M

−1/2 ∼ W−1
m (Im,Mn− p− 2m+ δ) (7.28)

Σ̃−1/2ΣΣ̃−1/2 ∼ BII
m

(
n− p+ α− δ

2
,
n− p−m+ δ − 1

2

)
(7.29)

B |Σ, Σ̃,B∗M ∼ Np,m

(
B
∗
M ,

(
Σ +

(
1 +

1

M

)
Σ̃

)
⊗ (X ′X)−1

)
(7.30)
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Chapter 8

Future Work

In this concluding chapter, we point out a few directions to which future research can

be carried out.

1. We would like to examine how the inference is affected by the choice of other

(non-informative) priors, probability matching priors, and also prions which are

conjugate in nature with a suitable choice of the hyperparameters so as not to

affect data influence.

2. It is clear from the simulation results in the preceding chapters that the cov-

erage is a decreasing function of δ. It is desirable to express the nature of this

dependence exactly, or even within bounds.

3. We can also look into construction of highest posterior density (HPD) sets of

the parameters discussed in various chapters of this dissertation. This will

necessitate a judicial choice of the cut-off points of the proposed credible sets.

4. Another future research topic would be to explore conditions for valid infer-

ence for the scenarios we have discussed here and consider extensions of our
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methodology to non-ideal situations that frequently mar real life data (i.e., sce-

narios where the imputer and/or data analyst overfit or underfit the regression

model; the imputer’s model is the regression of y on x, but the data analyst’s

model is the regression of x on y; non-normal errors; y’s have unequal variances

and/or are correlated; only part of y is sensitive; response and covariates are all

sensitive; original data contain missing observations; multiple y-variables are

synthesized, while multiple x-variables are not; the original data are from a

census, not a sample; and so on). It is also imperative to verify our results by

application to real-life data, like the application to CPS data as carried out in

Klein and Sinha (2015a), Klein and Sinha (2015b), and Klein et al. (2019).

5. In the context of Chapter 3 and Chapter 5, it is desirable to carry out the

frequentist analysis of the MI PPS MLR and MI MVN cases as well. We can

also look into the issue of sampling of latent matrices in the case of multiply

imputed MVN and MVR PPS data which has not been addressed. Another

task would be to finish the partially synthetic data case for MI PPS MVN and

MVR data.

6. Since one of our prime objectives is to provide valid inference while protecting

privacy, we would like to devise methods to quantify privacy in the synthetic

data (for e.g., Disclosure Risk Analysis as discussed in Klein and Sinha (2015b))

and observe the trade-off between quality of inference and privacy of survey

respondents. It is worth mentioning here that since the data generating methods

are still the same as in the frequentist case, the disclosure risk is the same for the

cases considered here as in Klein and Sinha (2015a), Klein and Sinha (2015b),

and Klein et al. (2019).

7. An excellent new direction of research would be to beyond the models con-

sidered here, and to develop both frequentist and Bayesian analysis of singly
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and multiply imputed data under a GLM framework; and also based on Noise

Multiplied data, building on the work of Klein et al. (2014), Klein and Sinha

(2015a) and Klein and Sinha (2015b).
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Appendices
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Proof of (4.12)

Let us find out E(|S|) when S ∼ W−1
p (ν,Σ). We denote Γm(a) to be the multivariate

gamma function given by Γm(a) = π
m(m−1)

4

∏m
i=1 Γ

(
a− 1

2
(j − 1)

)
for a > m−1

2
.

E(|S|) =
|Σ|

ν
2

2
νp
2 Γp

(
ν
2

) ∫ |S|− ν−2+p+1
2 etr

(
−1

2
tr (ΣS−1)

)
dS

=
2

(ν−2)p
2 Γp

(
ν−2

2

)
2
νp
2 Γp

(
ν
2

) × |Σ|

=
|Σ|
2p
×
Γp
(
ν
2
− 1
)

Γp
(
ν
2

)
=
|Σ|
2p
×
∏p

j=1 Γ
(
ν
2
− 1− 1

2
(j − 1)

)∏p
j=1 Γ

(
ν
2
− 1

2
(j − 1)

)
=
|Σ|
2p
×

∏p
j=1 Γ

(
ν
2
− 1− 1

2
(j − 1)

)∏p
j=1

(
ν
2
− 1− 1

2
(j − 1)

)
Γ
(
ν
2
− 1− 1

2
(j − 1)

)
= |Σ|

p∏
j=1

(ν − j − 1)−1

The second equality hold true when ν > p+3, to ensure the pdf of the Inverse-Wishart

distribution inside the integral is defined.

Proof of (4.23)

Let us find out E(|V |) when V ∼ BII
p (a, b). We denote Bm(a, b) to be the multivariate

beta function given by Bm(a, b) = Γm(a)Γm(b)/Γm(a+ b).

E(|V |) = Bp(a, b)−1

∫
|V |a+1−p+1

2 |Ip + V |−(a+1+b−1) dV

=
Bp(a+ 1, b− 1)

Bp(a, b)

=
Γp(a+ 1)Γp(b− 1)

Γp(a+ b)
× Γp(a+ b)

Γp(a)Γp(b)

=

p∏
j=1

Γ
(
a+ 1− 1

2
(j − 1)

)
Γ
(
b− 1− 1

2
(j − 1)

)
Γ
(
a− 1

2
(j − 1)

)
Γ
(
b− 1

2
(j − 1)

) =

p∏
j=1

a− 1
2
(j − 1)

b− 1
2
(j + 1)
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The second equality requires the conditions a + 1 > p−1
2

, b − 1 > p−1
2

, to ensure the

pdf of the matrix variate beta type II distribution inside the integral is defined. Now

the first condition is already guaranteed, since V ∼ BII
p (a, b) gives us a > p−1

2
, and

also b > p−1
2

which is not enough for the second one. So put together, for this result

to hold true, we need a > p−1
2

, b > p+1
2

.
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