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Summary 

 Many animals have color vision systems that are well suited to their local environments.  
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Changes in color vision can occur over long periods (evolutionary time), or over relatively short 

periods such as during development.  A select few animals, including stomatopod crustaceans, 

are able to adjust their systems of color vision directly in response to varying environmental 

stimuli.  Recently, it has been shown that juveniles of some stomatopod species that inhabit a 

range of depths can spectrally tune their color vision to local light conditions through spectral 

changes in filters contained in specialized photoreceptors.  The present study quantifies the 

potential for spectral tuning in adults of three species of Caribbean Neogonodactylus 

stomatopods that differ in their depth ranges to assess how ecology and evolutionary history 

influence the expression of phenotypically plastic color vision in adult stomatopods.  After 12 

weeks in either a full-spectrum “white” or a narrow-spectrum “blue” light treatment, each of the 

three species evidenced distinctive tuning abilities with respect to the light environment that 

could be related to its natural depth range.    A molecular phylogeny generated using 

mitochondrial cytochrome oxidase C subunit 1 (CO-1) was used to determine whether tuning 

abilities were phylogenetically or ecologically constrained.  Although the sister taxa N. wennerae 

and N. bredini both exhibited spectral tuning, their ecology (i.e. preferred depth range) strongly 

influenced the expression of the phenotypically plastic color vision trait.  Our results indicate 

that adult stomatopods have evolved  the ability to undergo habitat-specific spectral tuning, 

allowing rapid facultative physiological modification to suit ecological constraints. 



 

 3

Introduction 

There are many examples of visual systems adapted to local environmental conditions in 

aquatic environments (Lythgoe and Partridge 1989; Lythgoe 1990; Partridge and Cummings 

1999).  For example, in temperate communities, sympatric species of surfperch that occupy 

different microhabitats have spectral sensitivity variation correlated with illumination 

characteristics of each environment type (Cummings and Partridge 2001).  Scotopic spectral 

sensitivity can vary among populations of sand gobies (Pomatoschistus minutus) living under 

different light conditions (Jokela et al. 2003). Coral reef lutjanids (snapper fish) also have 

maximal photopigment absorbances (i.e. λmax) well-correlated with differing light conditions in 

the areas they inhabit (Lythgoe et al. 1994).  In cichlid fishes living in photically different 

habitats in Lake Malawi, long-wavelength shifted and UV-shifted clades exist, produced by 

interspecific variation in gene expression of subsets of cone opsin genes (Carleton and Kocher 

2001).  The feeding ecology and habitat preferences of these fishes are hypothesized to have 

induced an adaptive radiation in nuptial coloration as well (Allender et al. 2003). Invertebrate 

examples also are abundant, ranging from crustaceans to cephalopods (Morris et al. 1993; Cronin 

et al. 1994b; Marshall et al. 1999).   It is thought that changes in the sensitivities of visual 

systems with varying photic conditions act to increase visual contrast (McFarland and Munz 

1975), improving visual performance in given light environments. 

 Stomatopod crustaceans have a complex color vision system, often adapted to local 

photic conditions using an unusual response that involves plastic changes in photoreceptor 

filtering (Cronin et al. 2000).  Stomatopods make up a group of moderate-sized, benthic marine 

predators that branched off from other Malacostracans approximately 400 million years ago.  

Modern stomatopods (also known as mantis shrimp) are placed in seven superfamilies with over 
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450 species that occur mostly in coral reef environments (Ahyong and Harling 2000; Ahyong 

and Lowry 2001onwards).   Many species in the superfamilies Gonodactyloidea and 

Lysiosquilloidea have an intricate color vision system with up to ten photoreceptor classes in the 

“visible” spectrum (Manning et al. 1984; Cronin and Marshall 1989b; Cronin et al. 1994c; 

Cronin et al. 1994d; Marshall and Oberwinkler 1999; Harling 2000) as well as four or more 

classes of ultraviolet-sensitive receptors (Schiff 1963; Cronin et al. 1994d; Marshall and 

Oberwinkler 1999).  Some retinal classes of ommatidia contain colored intrarhabdomal filters 

that narrowly tune the sensitivities of underlying photoreceptors (Marshall et al. 1991; Cronin et 

al. 1994a).  Particular species that inhabit a wide depth range (from shallow intertidal to > 20 m) 

have evidenced phenotypically plastic modification of their color vision system, produced by 

changes in the colored filters in response to varying light environments (Cronin et al. 2001; 

Cronin and Caldwell 2002; Cheroske et al. 2003).  Stomatopod post-larvae maintained in 

laboratory lighting approximating shallow water (full-spectrum, white) or deep water (narrow-

spectrum, blue) shift their spectral sensitivities to improve the match to surrounding light 

conditions in as little as a few weeks (Ibid.).   

 Although previous work has only involved postlarvae, adult mantis shrimp of individual 

species can occur in different depth/light environments as well. The genus Neogonodactylus 

consists of approximately 20 species with typical ecology for gonodactyloids, occurring over a 

range of depths on coral reefs in the tropical eastern Pacific, western tropical Atlantic, Caribbean 

and Gulf of Mexico (Manning 1995).  Some of the western Atlantic species of Neogonodactylus 

occur parapatrically segregated by habitat depth.  Along the shores of the southeastern United 

States, N. wennerae is most common at depths from 10-30 meters (Manning 1969; Manning and 

Heard 1997). As such, this taxon should experience large fluctuations in light environments and 
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would be a likely species in which spectral tuning would evolve.  In contrast, N. oerstedii 

commonly occurs in waters less than 5 meters and rarely down to 29 m, and N. bredini is most 

common in the intertidal in 2 meters or less of water.  These species would therefore experience 

relatively homogenous light environments and the evolution of spectral tuning would be unlikely 

in such taxa.  However, until 1997, N. wennerae was incorporated into N. bredini when Manning 

and Heard (1997) separated N. bredini into two species based on two minor morphological 

differences and their different depth ranges. Thus, if spectral tuning does exist in adults, the 

expression of this trait may be influenced by phylogenetic affinity as well as habitat. 

Given what is currently known about how light environments can influence visual systems in 

stomatopods and about the ecology of closely-related Neogonodactylus species, the research 

reported here explores whether the visual system in adult stomatopods is labile and whether this 

physiologically-adaptive sensory system relates to features of stomatopod habitats or phylogeny.  

Using laboratory light treatments, we examined the abilities of three closely-related species to 

express phenotypically plastic color vision changes.  The physiologically-adaptive color vision 

trait of these three species was mapped onto a molecular phylogeny to assess how quickly this 

trait can evolve in recently diverged species and the degree to which spectral tuning is a function 

of ecology or shared evolutionary history.   Currently, only two distantly-related stomatopod 

species (both Pacific species, from different superfamilies) have been reported to have 

phenotypically plastic color-vision (Cronin et al. 2001; Cheroske et al. 2003).  If this 

physiological tuning is an inherent trait to all stomatopods with complex color vision, then 

environmentally induced spectral changes in sensitivity should be exhibited in many species 

regardless of habitat.  In contrast, if expression of the trait is influenced by the ecology of each 

species, only those occurring over a wide depth range (>10 m) should show spectral acclimation 
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to different light conditions.  

 

Materials and Methods 

 Adult individuals (35-50 mm in length) of N. oerstedii Hansen 1895 and N. wennerae 

Marshall and Heard 1997 were purchased from tropical fish suppliers in Florida.  N. oerstedii 

also were collected in nearshore, shallow water (<5 meters) off Key Largo in September 2001 

(n=8) and March 2002 (n=6).  Additional N. wennerae (n=9) were collected from a “live rock” 

mount at approximately 7 m depth in the Gulf of Mexico near Tampa.  We hand-collected adult 

N. bredini Manning 1969 (29-45 mm, n=10) from intertidal coral rubble (<1 meter) at two sites 

in Bermuda during July of 2003.  All animals were transported to the aquarium facility at 

University of Maryland, Baltimore County (U.M.B.C.) in Baltimore, Maryland.   

 Animals were assigned randomly to individual 10-gallon saltwater aquaria, each with an 

Aqua-Clear Mini side-mounted water filter, 50W submersible heater and 18W fluorescent light 

source.  Aquaria in the “white” light treatment were illuminated by GE Aquarays full-spectrum 

tubes, while “blue” light aquaria were illuminated by GE Aqua-Blue tubes surrounded by three 

layers of “Lagoon Blue” (HT 186) plastic stage lighting filter material (Lee Filters, Burbank CA) 

that absorbed wavelengths >550 nm.  Animals were fed frozen shrimp two times per week, and 

25% water changes were made once a month.  Stomatopods were maintained under light 

treatments for 12 weeks before their visual systems were examined as described next. 

 We assessed spectral changes of intrarhabdomal filters in the two sets of ommatidia 

where they occur (Row 2 and Row 3 of the midband; see Marshall et al. 1991) using 

microspectrophotometry.  Our methods are explained in detail elsewhere (Cronin and Marshall 

1989a) but are described briefly here.  Eyes were cryosectioned to 14 µm at -30º C and sections 
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mounted between microscope coverslips in mineral oil.  Each section then was placed on a 

microscope stage and a circular, linearly polarized, 1.5 µm diameter, monochromatic beam of 

light was passed through a clear area of the preparation.  The beam was scanned from 400-700 

nm at 1 nm intervals to create a reference scan.  It then was moved to pass through an 

intrarhabdomal filter and again spectrally scanned to measure the absorbance of the filter.  In 

histological sections that were parallel to the long axis of the photoreceptors, intrarhabdomal 

filter lengths were estimated to the nearest ocular unit (± 0.5 µm) along the longitudinal axis 

using a calibrated ocular micrometer. Three to five replicate spectral scans and also length 

measurements (=sampling units) of each of the four filter classes were recorded and averaged per 

animal and then averaged for all animals (=experimental units) within a treatment.  Spectral 

absorbances of all intrarhabdomal filter classes were compared using the wavelength of 50% 

absorbance (with peak absorbance normalized to 100%) on the long wavelength limb of each 

curve.  Spectral and filter length data were analyzed statistically using a one-way ANOVA with a 

significance level of p < 0.05. 

Mitochondrial cytochrome oxidase C subunit 1 (CO-1) was sequenced from seven 

Caribbean Neogonodactylus species as well as four other species from the Gonodactylidae 

identified by Barber and Erdmann (2000) as members of the sister clade to the Neogonodactylus. 

PCR amplifications were done using primers HCO and LCO (Folmer et al. 1994) following the 

methods of Barber and Erdmann (2000). Five microliters of PCR product were prepared for 

sequencing through digestion with 0.5 units of Shrimp Alkaline Phosphatase and 5 units of 

Exonuclease for 30 minutes at 37 ºC, followed by an inactivation step at 80 ºC for 15 minutes. 

PCR products were then sequenced using Big Dye (Ver 3.1, Applied Biosystems Corp.) 

chemistry and visualized with an ABI 377 automated DNA sequencer. Forward and reverse 
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sequences were compiled and proofread in Sequencher 4.2, and then aligned by eye. 

Phylogenetic relationships were determined by maximum likelihood in PAUP (Swofford 

2002) using model parameters determined by ModelTest 3.0 (Posada and Crandall 1998). The 

optimal topology was determined through a heuristic search, using 1000 random addition 

replicates, and 1000 bootstrap replicates were performed with 10 random addition replicates to 

determine robustness of the topology. 

 

Results 

 No changes in Row 2 intrarhabdomal filter classes were observed in response to variation 

in light environment (Figure 1), a result consistent with previous studies (Cronin et al. 2001; 

Cronin and Caldwell 2002; Cheroske et al. 2003). The plastic response of Row 3 filters to 

different photic conditions varied among the three Neogonodactylus species used in this study.  

Both the proximal and distal Row 3 filters in N. wennerae were short-wavelength shifted in blue-

light treated animals compared to white-light treated (Figure 1).  Distal filters were shifted by 

approximately 15 nm, while proximal filters differed by approximately 8 nm (Table 1).  

Proximal filters in blue-treated animals also were significantly shorter in length relative to those 

of white-light treated animals (Figure 2, F1,5 = 36.03, p < 0.005).  In N. bredini, distal Row 3 

filters spectrally differed by approximately 16 nm (absorbing at shorter wavelengths in blue-

treated animals), but there were no significant spectral differences in Row 3 proximal filters 

between light treatments (Figure 1, Table 1).  Significant variation in filter length also was found 

in N. bredini Row 3 proximal filters between light treatments (Figure 2, F1,8 = 15.19, p < 0.005); 

proximal filters in blue-light treated animals were approximately 30% shorter in length compared 

to filters in white-light treated animals.  There was no significant difference in spectral properties 
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or in length of either class of Row 3 filter in N. oerstedii (Figure 1 & 2, Table 1). 

To examine how evolution and ecology influence the expression of this phenoptyically-

plastic color vision trait, we constructed a molecular phylogeny using representatives from the 

three Neogonodactylus species of these experiments as well as other Caribbean stomatopod 

species. A total of 553bp of mitochondrial CO-1 was obtained from each of 16 individual 

stomatopods representing seven of the extant Neogonodactylus in the Caribbean and four 

outgroup taxa. Sequences aligned easily with no gaps or insertions and translated without stop 

codons. Of these characters, 187 were variable with 22 (11.2%) first, 1 (0.5%) second and 164 

third (98.3%) third position changes, resulting three total amino acid changes, only one within 

the ingroup. 

Modeltest 3.0 determined the optimal model to be GTR+I+G with empirical base 

frequencies, six substitution types (0.4351 14.7593 0.9800 1.6315 13.8116), gamma shape 

parameter = 1.9843, and the proportion of invariable sites = 0.6305. Results from 1000 random 

addition replicates recovered two topologies with –lnL = 2666.89636 (Figure 3). These 

topologies differed only in that one showed N. bredini from Bermuda more closely related to N. 

wennerae than to N. bredini from the Bahamas, while the other showed these three taxa in an 

unresolved trichotomy. The Neogonodactylus formed a strongly supported monophyletic group 

(100% bootstrap support). Within this clade, N. curacaoensis and N. spinosissima were sister 

taxa (82% bootstrap support), N. oerstedii from Belize was more closely related to N. austrinis 

than to N. oerstedii from Florida (87% bootstrap support), and N. wennerae and N. bredini were 

very closely related (98% bootstrap support) although their precise relationship was equivocal. 
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Discussion 

Stomatopods have some of the most complex color vision systems in the animal kingdom 

and also may have some of the most plastic.  In this report, we show that the light induced, 

spectral tuning of photostable, colored filters within individual photoreceptors, previously 

described only in postlarvae, also can occur in adult animals, indicating ecologically mediated, 

physiological plasticity.  While the response varied among species, these visual filters changed 

both spectrally and in their lengths.  The cichlid fish, Aequidens pulcher, is the only other well-

documented example of an animal that adaptively responds to spectral changes in laboratory 

light treatments, expressing ontogenetic neural and behavioral changes in varying light 

conditions (Braun et al. 1997; Kröger et al. 1999; Kröger et al. 2003).   Further, whereas cichlids 

require at least 17-19 months to affect a change, these changes in stomatopods occur within 

approximately 12 weeks, indicating that facultative responses can occur extremely rapidly. 

 The ecology of the three Neogonodactylus species studied here, specifically the photic 

properties of typical habitats, as well as evolutionary history seem to be  contributing factors in 

the ability to express the phenotypically plastic color vision trait.  The most ecologically 

restricted species, N. oerstedii, occurs primarily in shallow water and expresses spectrally 

invariant intrarhabdomal filters in different light conditions.  Lengths of intrarhabdomal filters in 

this species also did not vary significantly between the light treatments.  Thus, the capacity for a 

phenotypically plastic change in color vision in this species seems to be limited, at best. Since its 

adult depth range rarely exceeds a few meters, the largely invariant lighting conditions it 

experiences do not require active spectral tuning. 

In contrast, N. wennerae is found over a wide range of depths (commonly 10-20 m but 

also <5 m) and is likely to experience a wide variety of ambient light environments. As seen in 
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our previous work, the reduction in intensity as well as the narrow spectrum of deeper water 

habitats can elicit the physiologically-adaptive changes in stomatopod color vision (Cheroske et 

al. 2003).  While it is known that stomatopod visual systems can vary with organism size and 

also with intensity (Dore et al. 2005; Dore et al. in press), the fact that we sampled similar-sized 

adults during daylight hours indicates that these factors did not influence our results.  Here, both 

Row 3 filters were spectrally short-wavelength shifted in blue-light treated animals compared to 

white-light treated individuals.  In addition, proximal Row 3 filters in blue-light animals were 

significantly shorter in length than those in white-light animals.  Previous histological work 

suggests that the density per unit length of stomatopod intrarhabdomal filters is relatively 

consistent, based on transverse sections of filters of various lengths containing constant-sized 

pigment vesicles (Marshall et al. 1991).  Therefore, shorter filters should reduce the overall filter 

absorbance, allowing more and broader-spectrum light to be transmitted to underlying 

photoreceptors.  Thus, both the spectral and the length changes in filters modify the spectrum of 

light reaching the underlying photoreceptors.  Changes in the distal Row 3 filter affect spectral 

tuning not only of the distal photoreceptor but also of the proximal photoreceptor tier.   

N. bredini has an intermediate visual response to a varying light environment.  Unlike N. 

wennerae, only the distal Row 3 filter class varied spectrally with light treatments in this species.  

Nevertheless, by retaining phenotypic plasticity in this filter class, N. bredini is able to tune both 

of the underlying photoreceptor tiers.  While proximal filters of Row 3 did not change spectrally, 

their lengths varied adaptively with light environment. N. bredini typically occurs in waters as 

shallow as or shallower than N. oerstedii, so the presence of any ability for spectral tuning is 

surprising. The limited ability to adapt to shifting light conditions in N. bredini is likely a result 

of recent shared evolutionary history with N. wennerae, a species that maintains a full 
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complement of adaptive reactions. The two species are morphologically quite similar, differing 

only in the length of the rostral spine and in ventral coloration of the eyestalks (Manning and 

Heard 1997), and our phylogenetic analyses confirm that they are very closely related. However, 

despite the morphological and genetic similarity of these two species, it seems their ecology has 

rapidly shaped the expression of adaptive visual traits.   

Stomatopods are common benthic marine predators in shallow tropical and temperate 

waters.  With their numerous pelagic stages, larval stomatopods often travel passively with major 

water currents and can disperse hundreds of miles, potentially expanding population distributions 

(Reaka 1986; Reaka-Kudla 2000; Reaka 2001).  The ecological and physiological requirements 

of individual species can affect the successful establishment of a population and thus the ultimate 

distribution of the species.  In other gonodactyloid species (e.g. Haptosquilla glyptocercus; H. 

pulchella), accurate predictions of species distributions need to consider not only large scale 

water flow patterns but also specific depth and habitat preferences, proving that local ecology 

can influence population biology in these animals (Barber et al. 2000; Barber et al. 2002a; 

Barber et al. 2002b).   As their ranges shift over evolutionary time, species encounter changing 

photic environments.  By altering intrarhabdomal filter transmission spectra and lengths, 

stomatopods can increase the overlap between photoreceptor spectral sensitivity and the 

available spectrum of light allowing excellent visual function in a range of photic habitats 

(Cronin et al. 2001; Cheroske et al. 2003).  The varying visual abilities of closely related mantis 

shrimp species are directly linked with their particular habitat preferences, suggesting that the 

evolution of sensory flexibility can proceed remarkably swiftly.  Such flexibility, when present, 

allows individuals that move into new depth environments, such as during juvenile migrations or 

when adults hunt for new domiciles, to make efficient use of the available light in a matter of 
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weeks. 

Results of the current work suggest that specific habitat characteristics influence the 

maintenance of a phenotypically plastic color vision trait in at least some mantis shrimps, and 

that such a trait can be modified rapidly in recently diverged species.  Sensory systems operate at 

the interface between an animal and its environment, and one might expect these systems to 

maintain a measure of flexibility that reflects the evolutionary path taken by a species and that is 

available should its range continue to change.  Evolutionary flexibility in sensory function could 

well be common in species that encounter diverse habitats with divergent assortments of stimuli. 
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Table 1.  Comparison of absorbance curves from the Row 3 filters in three species of 
Neogonodactylus after 12 weeks in blue or white light treatments.  Data are mean 50% 
absorbance points (nm) with 1 standard deviation in parentheses.  Asterisks designate 
statistically significant differences between treatments at p < 0.05. 
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Figure 1.  Relative absorbances of four classes of intrarhadomal filters in three species of 
Neogonodactylus.  Top panels display data from white light-treated animals; lower panels are 
from blue light-treated animals.  (All curves represent means of all animals within a given 
treatment group).  Shorter-wavelength Row 2 classes are represented in yellow (distal) and 
orange (proximal).  Longer-wavelength Row 3 classes are represented in red (distal) and purple 
(proximal).  Both distal and proximal Row 3 filters are short-wavelength shifted in blue light-
treated N. wennerae relative to homologous filter classes in white light-treated animals (left 
panels).  Distal Row 3 filters in blue light-treated N. bredini (center panels) were short-
wavelength shifted significantly compared to white light-treated animals.  Row 3 filters in N. 
oerstedii (left panels) did not vary among light treatments.  There were no significant spectral 
changes in either Row 2 filter in any of the Neogonodactylus species. 
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A.                                          Row 3 distal filters

0

5

10

15

20

25

N. wennerae N. bredini N. oerstedii

Le
ng

th
 (µ

m
)

(5)      (4)                     (7)      (3)                     (8)      (6)    

 

B.                                        Row 3 proximal filters
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Figure 2.  Intrarhabdomal filter lengths in three Neogonodactylus species under blue (grey bars) 
and white (white bars) light treatments.  Values are means for all individuals within a treatment 
of each species and error bars represent ± 1 standard deviation.  Asterisks designate statistically 
significant differences between treatments at p < 0.05.  Numbers in parentheses represent the 
sample size for each corresponding bar.   
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Figure 3. One of two maximum likelihood topologies with length of –lnL = 2666.89636 
produced from a GTR+I+G model and a heuristic search with 1000 random addition replicates. 
Bootstrap values are from 1000 bootstrap replicates with 10 random addition replicates. 
 
 


