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The Bremermann-Bekenstein bound is a fundamental bound on the maximal rate with which
information can be transmitted. However, its derivation relies on rather weak estimates and plau-
sibility arguments, which make the application of the bound impractical in the laboratory. In this
paper, we revisit the bound and extend its scope by explicitly accounting for the back action of
quantum measurements and refined expressions of the quantum speed limit. Our result can be
interpreted as an upper bound on the maximal rate of quantum learning, and we show that the
Bremermann-Bekenstein bound follows as a particular limit. Our results are illustrated, by first
deriving a tractable expression from time-dependent perturbation theory, and then evaluating the
bound for two time-dependent systems – the harmonic oscillator and the Pöschl-Teller potential.

PACS numbers: 03.67.-a, 03.67.Lx

I. INTRODUCTION

Recent breakthroughs in nanotechnology have led to
the development of smaller and more powerful devices
[1, 2], which mark the advent of the post-Moore era [3]
of the Information age [4]. In particular, the last few
years have seen the first industrial attempts at making
(semi-)quantum computers publicly available, such as the
DWave system [5] and IBM’s quantum experience [6].
Generally, quantum computers are expected to provide
an exponential speed-up over classical architectures [7–9]
for certain tasks such as to factorize large numbers [10]
or to search through unsorted databases [11, 12].
However, as Landauer pointedly remarked “informa-

tion is physical” [13], and hence also quantum comput-
ers are subject to the fundamental laws of physics such
as thermodynamics, special relativity, and quantum me-
chanics [14]. In order to be useful in practical appli-
cations, it will be inevitable for quantum computers to
communicate with their classical environment. Hence,
the natural question arises whether fundamental princi-
ples such as the uncertainty relations set constraints on
the rate with which quantum information can be com-
municated. The Bremermann-Bekenstein bound [14–17]
is an estimate for the upper bound on the rate of infor-
mation transmission, which is defined as the ratio of the
maximal amount of information stored in a given region
of space divided by the quantum speed limit time [18].
The quantum speed limit is the maximal rate with which
a quantum system can evolve, and it can be understood
as a physically sound formulation of the uncertainty re-
lation for energy and time [18].
Although conceptually insightful, the Bremermann-

Bekenstein bound can neither be considered satisfactory
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and nor practical for applications in quantum computing.
Its derivation explicitly assumes that the complete infor-
mation stored in a quantum system is accessible, i.e., it
neglects the loss of information due to the back action of
generic quantum measurements [19].
In this paper, we will revisit the Bremermann-

Bekenstein bound and propose its generalization to in-
clude the effect of quantum measurements. To this end,
we will study the maximal rate of quantum learning,
which is given by the ratio of the change of accessible in-
formation [20] during a small perturbation divided by the
quantum speed limit time [18]. We will see that the orig-
inal Bremermann-Bekenstein bound is included in our
approach as a special case. The general case, however,
is mathematically rather involved, and thus we will ex-
press the maximal rate of quantum learning by means of
time-dependent perturbation theory. Our general results
will then be illustrated for two experimentally relevant
case studies, namely the driven harmonic oscillator and
the Pöschl-Teller potential.

II. NOTIONS AND DEFINITIONS

Bremermann-Bekenstein bound. The fundamental
laws of physics govern the modes of operation of any
computer [21] and, thus, the processing of information
[14, 22]. Bremermann suggested that information pro-
cesses are limited by three physical barriers: the light,
the quantum, and the thermodynamic barrier. The light
barrier is a consequence of special relativity [23], which
bounds the rate of transmission by the speed of light. The
quantum barrier arises from Shannon’s definition for the
capacity of a continuous channel, Cmax = mc2/h [14],
which expresses that the maximum channel capacity is
proportional to the mass of the computer. The latter
can also be interpreted as a limit imposed by the first
law of thermodynamics. Finally, the second law asserts
that entropy of isolated systems cannot decrease. Thus,
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when I bits of information are encoded, the probability
of a given state decreases by 2−I , and consequently the
entropy decreases by a factor I kB ln 2.
However, it was quickly noted that this argumenta-

tion is somewhat dubious, since equating the maximal
amount of information processed in a computation can-
not be fully described by Shannon’s channel capacity.
Therefore, Bekenstein revisited the issue from a cosmo-
logical point-of-view [15–17]. Starting from an upper
bound on the information encoded in a system with en-
ergy E, Bekenstein derived the maximal rate with which
information can be transmitted [16],

İ ≤ I

τQSL
≤ πE

~ ln 2
, (1)

where E is the energy in the receiver’s frame and τQSL is
the minimal time necessary to transmit this information,
i.e., the quantum speed limit time [18, 24, 25].
It is worth emphasizing that although insightful the

Bremermann-Bekenstein bound (1) is a rather weak up-
per limit on the rate with which information can be trans-
mitted, or entropy be produced in a quantum system [26].
The reason is that in Eq. (1) the total information stored
in a quantum system is assumed to be accessible. This is
generally not the case, since accessing information is ac-
companied by the back-action of quantum measurements
[19] – in simple terms “the collapse of the wave-function”.
Accessible information. For the sake of simplicity,

imagine that we have only access to a projective observ-
able A =

∑

α aαΠα, where aα are the measurement out-
comes, and Πα are the projectors into the eigenspaces
corresponding to aα. Typically, the post-measurement
quantum state ρ suffers from a back-action, i.e, informa-
tion about the quantum system is lost in the measure-
ment [27]. How much information is lost is quantified by
Holevo’s information [20],

χ = S(ρ)−
∑

α

pα S(ρα) , (2)

where S(ρ) = −tr {ρ ln (ρ)} is the von-Neumann entropy,
and ρα = ΠαρΠα is the post-measurement state. Fur-
ther, pα = tr {Παρ} denotes the probability to obtain the
αth measurement outcome. Note that the present argu-
ments readily generalize to arbitrary POVM’s instead of
projective measurements [19, 28].
The Holevo information (2) is always non-negative

χ ≥ 0, which follows from the concavity of the entropy
[19]. However any perturbation of the system leads to a
change in Holevo information, which is always nonpos-
itive, ∆χ ≤ 0, [29]. In other words, any perturbation
allows to access more information than retrieved by the
first measurement.
Therefore, χ (2) is our natural starting point to define

“quantum learning”. Any change in χ due to some con-
trolled perturbation decreases our ignorance about the
quantum system. We will further assume that all pertur-
bations can be expressed as unitary maps U , and thus

we can write for the change of χ during time τ ,

∆χ = −
∑

α

pα(τ)S(ρα(τ)) + pα(0)S(ρα(0)) . (3)

Note that restricting ourselves to unitary perturbations is
a judicious choice, since this guarantees that the total in-
formation, S(ρ), remains unaffected by the perturbation.
Hence, the only effect of the perturbation is a change in
accessible information. To now define the maximal rate
of quantum learning we need the quantum speed limit
time, τQSL.
Quantum speed limit. The quantum speed limit orig-

inally arose by a careful derivation of Heisenberg’s uncer-
tainty relation of energy and time [24, 25]. More recently,
it has found applications in virtually all areas of quan-
tum physics, and the quantum speed limit has become
an active area of research, see a recent review [18] and
references therein.
For driven systems, the quantum speed limit time from

the geometric approach has proven to be practical [30],

τQSL =
~

2Eτ
sin2[L(ρ(0), σ(τ))] , (4)

where Eτ = min
{

1/τ
∫ τ

0 dt ‖ρ(t)H(t)‖p
}

, and H is
the Hamiltonian generator of the unitary map U =
exp

(

−i/~
∫ τ

0 dtH(t)
)

. The norm is given by ‖A‖p =

(tr {|A|p})1/p, with p ∈ {1, 2,∞} [30]. Further, L de-
notes the Bures angle,

L(ρ(0), σ(τ)) = arccos
(

√

〈Ψ0|σ(τ) |Ψ0〉
)

, (5)

where we assume for the sake of simplicity that the initial
state is pure, ρ(0) = |Ψ0〉 〈Ψ0|.
Generally, the operator norm, p = ∞, gives the

sharpest bound [30], however the Hilbert-Schmidt or
Frobenius norm, p = 2, behaves qualitatively similiar,
and it is significantly easier to compute [18, 31]. Thus
for the sake of simplicity, we will work in the following
with the quantum speed limit time expressed in terms of
the Hilbert-Schmidt norm.
Generalized Bremermann-Bekenstein bound. Having

established all the ingredients, we can now move on to
define the maximal rate of quantum learning. To this
end, imagine the following situation: an experimentalist
obtains a quantum state ρ0 and they have access to a
quantum observableA, such as magnetization, parity etc.
Generally the experimentalist can then retrieve χ (2) bits
of information about the quantum state. Now lets further
assume that the experimentalist can unitarily perturb
the quantum system, and measure the same observable
A again. Due to this perturbation the additional amount
of ∆χ (3) has become accessible. The rate with which χ
changes is upper bounded by the quantum speed limit,

|χ̇| 6 |∆χ|
τQSL

≡ |Ω| , (6)
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where we call Ω the maximal rate of quantum learning.
We stress again that the present arguments readily ap-
ply to POVMs, and we are not restricted to projective
measurements.
It is easy to see that Eq. (6) is a generalization of the

Bremermann-Bekenstein bound accounting for accessibil-
ity of quantum information. To this end, assume that the
post-measurement state can be written in terms of some
inverse temperature β as ρα = exp (−βHα). Then we
can write Eq. (3) as

∆χ = β

[

∑

α

(pα(τ) 〈Hα(τ)〉 − pα(0) 〈Hα(0)〉)
]

. (7)

Thus we further obtain,

|χ̇| ≤ |Ω| = β∆E

τQSL
, (8)

where ∆E = 〈H(τ)〉 − 〈H(0)〉, and Hα = ΠαHΠα.
Equation (8) is formally identical to the generalized
Bremermann-Bekenstein bound derived in Ref. [26] from
quantum thermodynamic considerations.

III. ILLUSTRATIVE CASE STUDIES

The remainder of this analysis is dedicated to illustra-
tive case studies of the maximal rate of quantum learn-
ing (6). For non-trivial systems computing both χ and
τQSL quickly becomes mathematically involved. There-
fore, we first derive an expression for Ω by means of time-
dependent perturbation theory.

A. Time-dependent perturbation theory

Consider an arbitrary time-dependent Hamiltonian,

H(t) = H0 + δλ V (t) , (9)

where H0 describes the unperturbed system, and V (t) is
an arbitrary time-dependent perturbation that plays the
role of an external agent of small amplitude δλ. Then
the unitary time-evolution operator can be written as a
Dyson series [32] in linear order of δλ as,

Ũ(t) ≡
(

I− i
δλ

~

∫ t

0

ds e
i

~
H0sV (s)e−

i

~
H0s

)

e−
i

~
H0t .

(10)

Note Ũ(t) is the truncated Dyson series for the time-
evolution operator in the Schrödinger picture, and that

we have δλ → 0 : Ũ(t) → U(t) = e−
i

~
H0t, recovering

the unperturbed expression of the time-evolution opera-
tor. In the following, it will be convenient to adopt the

notation: I(t) =
∫ t

0
ds e

i

~
H0sV (s)e−

i

~
H0s.

Strictly speaking Ũ(t) is not a valid time-evolution op-
erator, since due to the truncation the normalization of

the time-evolved states is violated. Therefore, we need
to introduce a normalization function N(t),

〈Ψ(t)|Ψ(t)〉 = 1

N(t)
〈Ψ0|Ũ(t)†Ũ(t)|Ψ0〉 = 1 , (11)

from which we obtain

N(t) = 1 + i
δλ

~
〈(I†(t)− I(t))〉Φ

+

(

δλ

~

)2

〈I†(t)I(t)〉Φ ,

(12)

where 〈·〉Φ = 〈Φ(t)| · |Φ(t)〉, |Φ(t)〉 = U(t)|Ψ0〉. Accord-
ingly, the time-dependent density operator becomes

ρ(t) = |Ψ(t)〉〈Ψ(t)|

=
1

N(t)

(

I− i
δλ

~
I(t)

)

e−
i

~
H0tρ0e

i

~
H0t

(

I+ i
δλ

~
I†(t)

)

= ρin(t) + δρ(t) ,
(13)

where ρin(t) = e−
i

~
H0t ρ0 e

i

~
H0t/N(t), and δρ(t) =

iδλ (ρin(t)I†(t) − I(t)ρin(t))/~, and where we only col-
lected terms which are at most linear in δλ.
Change of accessible information. From Eq. (13) it is

then straight forward to compute ∆χ (3). In particular,
the probability to obtain measurement outcome α after
the perturbation, pα(τ) reads

pα(τ) = tr {Παρ(τ)}
=
∑

k,α

〈k| {|α〉〈α| (ρin(τ) + δρ(τ))} |k〉

= pinα (τ) + tr {δρα(τ)} .

(14)

where pinα (τ) = tr
{

Παρ
in(τ)

}

. Similarly, the von-
Neumann information of the post-measurement state
ρα(τ) becomes

S(ρα(τ)) = −tr {ρα(τ) log ρα(τ)}
= −tr

{

(ρinα (τ) + δρα(τ)) log(ρ
in
α (τ) + δρα(τ))

}

= S(ρinα (τ)) − tr {δρα(τ)} − tr
{

δρα(τ) log ρ
in
α (τ)

}

.

(15)

Finally, collecting Eqs. (14)-(15) and substituting into
(3) an approximate expression for ∆χ can be written as

∆χlin =
∑

α

∆χin
α + tr {δρα(τ)} [pinα (τ) − S(ρinα (τ))]

+ pinα (τ)tr
{

δρα(τ) log ρ
in
α (τ)

}

,

(16)

where ∆χin
α = −pinα (τ)S(ρ

in
α (τ)) + pα(0)S(ρα(0)).

Quantum speed limit. Having derived an expression
for the numerator of Ω (6), we continue by also expressing
the quantum speed limit time, τQSL (4), by means of
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perturbation theory. The time-dependent fidelity, F =
[cos (L)]2, can be written as

F (ρ(0), ρ(τ)) ≃
√

〈ρin(τ)〉Ψ0
+

1

2

〈δρ(τ)〉Ψ0
√

〈ρin(τ)〉Ψ0

(17)

where 〈·〉Ψ0
= 〈Ψ(0)| · |Ψ(0)〉. Now further employing a

small-angle approximation, sin2[arccos(x)] ≃ 1 − x2, an
approximate expression for the quantum speed limit time
τQSL reads

τ linQSL ≃ ~

2Elin
τ

[1− 〈ρin(τ)〉Ψ0
− 〈δρ(τ)〉Ψ0

], (18)

and the Hilbert-Schmidt norm of the dynamics becomes

Elin
τ = 1/τ

∫ τ

0

dt ‖H0ρ
in(t) + δλV (t)ρin(t) +H0δρ(τ)‖2 .

(19)

Maximal rate of quantum learning. Collecting
Eqs. (16), (18), and (19) we obtain an expression for the
maximal rate of quantum learning, Ω (6),

Ωlin ≡ 2Elin
τ

∑

α(∆χin
α + tr {δρα(τ)} [pinα (τ)− S(ρinα (τ))] + pinα (τ)tr

{

δρα(τ) log ρ
in
α (τ)

}

)

~ [1− 〈ρin(τ)〉Ψ0
− 〈δρ(τ)〉Ψ0

]
. (20)

Equation (20) might look mathematically involved, how-
ever as we will see in the following, time-dependent per-
turbation theory allows to analytically solve for Ω in more
complex systems. Observe that only the numerator of
Ωlin depends on the choice of measurements, whereas
the denominator is fully determined by the initial state
|Ψ(0)〉. We also note that the eigenvalue energy spec-
trum governs Ω, which will be further illustrated below
by comparing different potentials, namely the harmonic
oscillator and the Pöschl-Teller well.
Choice of observables. To proceed with the analysis

we now have to become more specific. Below we will eval-
uate Ωlin for two experimentally relevant systems. Both,
the harmonic oscillator and the Pöschl-Teller potential
posses symmetric eigenfunction. Thus we choose for il-
lustrative purposes the quantum observableA to measure
the symmetry of a quantum state with two outcomes,
that we label e for even and o for odd. The correspond-
ing projectors read

Πe =
∑

n

|2n〉〈2n| and Πo =
∑

n

|2n+ 1〉〈2n+ 1| .

(21)
Having chosen the observable, we can now analyze Ω (6)
and Ωlin (20) for specific systems.

B. The harmonic oscillator

Many phenomena in nature can be described, exactly
or approximately by a harmonic potential [33]. Exam-
ples include explaining decoherence in experiments with
harmonic optical traps [34], and as testbed for quantum
thermodynamics [35–38] and quantum computation [39].
The Hamlitonian reads,

H(t) =
p2

2m
+

mω2
0

2
x2 −mω2

0λ(t) x , (22)

0 τ

t

0

δλ

λ
(t
)

FIG. 1. (color online) Depiction of the two driving protocols
(23) λ1(t) (black line) and λ2(t) (orange line).

with H0 = p2/2m + mω2
0x

2/2, and V (t) = −mω2
0λ(t)x

is the perturbation. For our present purposes H(t) is
particularly elucidating, since its dynamics can be solved
analytically [40]. Therefore, we can study the range of
validity of the linear approximation developed above.
We will continue for specificity with the two protocols

λ1(t) = δλ

(

1− et/τ

1− e

)

and λ2(t) = δλ
t

τ
, (23)

with δλ ≪ 1. These two protocols are depicted in Fig. 1.
Finally, we assume that the system is initially prepared in
its ground state |Ψ(0)〉 = |0〉, with corresponding eigen-
value E0 = ~ω0/2.
In Appendix A, we summarize the analytical solu-

tion of the dynamics, which was originally developed
in Ref. [40]. Fig. 2 summarizes our findings from time-
dependent perturbation theory for δλ = 5 × 10−2. We
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FIG. 2. (color online) Maximal rate of quantum learning for
the time-dependent the quantum harmonic oscillator (22) ini-
tially in its ground state |0〉. Insets: Change of Holevo infor-
mation (upper left panel), and the quantum speed limit time
(upper right panel). Exact results are the black solid line
(exponential protocol) and dark blue solid line (linear proto-
col), and first-order approximations are the red dashed line
(exponential protocol) and the light blue dashed line (linear
protocol) with parameters δλ = 5× 10−2 and ω0 = 1.

compare linear approximation (dashed lines) with exact
solutions (solid lines) for the exponential protocol λ1(t)
as well as for the linear λ2(t) [see Eq. (23)].
We observe perfect agreement between linear approx-

imation and exact results, which is guaranteed by the
aforementioned renormalization procedure (12). This
can be seen, by noting that ∆χ is negative for all quench
times τ , which is a consequence of the complete positivity
of the dynamics. This result is also known as a quantum
version of the data processing lemma [19]: the informa-
tion content of a signal cannot be increased by a physical
local operation. In other words “post-processing” cannot
increase information, thus the measurement performed in
the end of our process cannot give a χf (τ) > χ(0).

For either parameterization Ω is finite for infinitely
short perturbations, τ = 0. For very short quench times
we notice an abrupt decay which can be explained by
the sudden approximation [41]: for very rapid changes,
the system cannot respond on the same time scale, and
the initial state remains unchanged. For τ > 0 we ob-
serve strong oscillatory behavior. Even small perturba-
tions are sufficient to induce transitions away from the
ground state, which can be attributed to Fermi’s golden
rule [32]. In the limit τ ≫ 1, Ω approaches a constant
value, which is determined by the quantum adiabatic ap-
proximation [41].
The oscillation can be most easily understood from

the quantum speed limit time (4). The sine of the Bures
angle, sin2[L], between the two states of the harmonic os-
cillator ρ(0) and ρ(τ) oscillates approaching a finite value
for τ → ∞. Consider that the time-evolved density ma-

trix oscillates around the initial state described by ρ(0)
due to the small perturbation. For large switching times,
the angle tends to a constant value, since in the adiabatic
limit no oscillations are present. The period of the oscil-
lations Ω is inversely proportional to the natural angular
frequency of the harmonic oscillator, T = 2π/ω0. Every
minimum value for the maximal rate of learning occurs
for specific switching times, in our case in multiples of 2π
given that ω0 was set to the unit.
Generally, Fig. 2 contains experimentally relevant in-

formation. For instance, the global minimum of Ω corre-
sponds to the maximal rate, with which information can
be learned about a quantum system evolving in time. We
also notice that the two protocols λ1(t) and λ2(t) (23)
yield qualitatively similar behavior, but that the linear
protocol appears to be more effective, i.e., |Ω| is larger.
Finally, we also compare our results from perturbation

theory with the exact solutions. In Fig. 3a we plot Ω for
δλ = 0.3 and in Fig. 3b for δλ = 0.5. We observe that
perturbation theory still gives qualitatively correct be-
havior, but also that perturbation theory underestimates
the magnitude of Ω.
As a main result we have established the relation be-

tween the accessible information and dynamic response
of the system. These results could prove useful to design
optimal strategies to maximize the rate with which in-
formation can be retrieved from a quantum system given
a particular observable.

C. The Pöschl-Teller potential

As a second example, we analyze an anharmonic oscil-
lator, which is described by the Pöschl-Teller potential,

H(t) =
p2

2m
− 1

2
ν(ν + 1) sech2(x) − ηλ(t)x , (24)

where η is a constant.
The Pöschl-Teller potential was originally introduced

to study vibrational excitations in polyatomic molecules
[42]. Since then it has been applied to describe a wide
variety of processes ranging from neutron scattering [43]
to many-body systems [44], and in the description of
symmetries of spin-orbit coupling for quantum relativis-
tic systems [45–47]. On the experimental side, Eq. (24)
has proven useful in quantum optics [48] and to describe
different refraction indices according to the parameters of
the setup [49]. Moreover, Eq. (24) has been used in the
laboratory to describe quantum dots in semiconductors
nanoelectronics and in the modeling of optoelecetronic
devices [50, 51].
In contrast to the time-dependent harmonic oscillator

(22), the dynamics of Pöschl-Teller potential (24) is not
analytically known . Therefore, we have to rely on our re-
sults from time-dependent perturbation theory (20). For
the numerical analysis we chose ν = 20 and set as the
initial state |Ψ(0)〉 = |10〉. Moreover, Ωlin was computed
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FIG. 3. (color online) Comparison of the exact (black, solid
line) and approximated result (red, dashed line) for the maxi-
mal rate of quantum learning for quantum harmonic oscillator
(22) initially in its the ground state |0〉. In plot (a) we have
δλ = 0.3 and in (b) δλ = 0.5, and as before ω0 = 1 and
for λ1(t) (23). Insets: Change of Holevo information (upper
left panel), ∆χ, and quantum speed limit τQSL (upper right
panel) as a function of the switching time τ .

again for the parity as observable (21) and the driving
protocols in Eq. (23) with δλ = 0.1.
Our results are summarized in Fig. 4. Similar to the

harmonic oscillator, the short time behavior is fully char-
acterized by the sudden approximation, and by the adi-
abatic approximation for long quench times τ . However,
we also observe that the oscillations are smaller, which
suggests that the Pöschl-Teller potential is less suscepti-
ble to the specific driving protocol. Overall, however, our
findings for the harmonic oscillator (22) in Fig. 2 and for
the Pöschl-Teller potential (24) in Fig. 4 are remarkably
similar.
Comparison of the systems. For the chosen parame-

ter, ν = 20, the low-lying eigenenergies are well approxi-
mated by an harmonic oscillator of ω0 = 18.65 and where
the ground state energy is shifted by Ec = −209.325, see

0 5 10
τ

−100.00

−99.94

−99.88

Ω

×10−4 ×10−6

0 5 10
τ

−8

−4

0

∆
χ
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τ

0

4

8

τ
Q
S
L

FIG. 4. (color online) Ωlin (20) for the time-dependent Pöschl-
Teller potential (24) with |Ψ(0)〉 = |10〉, ν = 20, and η = 1.
Insets: Change of Holevo information (lower left panel), and
the quantum speed limit time (lower right panel). Results are
for λ1(t) (23) (light green, solid line) and for λ2(t) (23) (dark
green, solid line) with δλ = 0.1.

−2 −1 0 1 2
x

−200

−100

0

V
(x
)

Harm. Osc.

Pöschl-Teller

FIG. 5. (color online) Harmonic approximation of the Pöschl-
Teller potential. The black dashed lines are the first five en-
ergy eigenenergies of the harmonic oscillator (black line) with
ω0 = 18.65 shifted by Ec = −209.325; blue solid lines repre-
sent the first five eigenenergies for the Pöschl-Teller potential
(22) with ν = 20.

Fig. 5. Thus we would expect similar behavior for the
maximal rate quantum learning Ωlin (20).

Above we have seen that these two potentials appear
not be equally susceptible to perturbations. This, how-
ever, is not the case. The different behavior of Ωlin and in
particular the size of the fluctuations are governed by the
choice of the initial state. If both harmonic oscillator and
Pöschl-Teller potential are initialized in the correspond-
ing ground states with the same eigenenergy the resulting
Ωlin is almost identical. Correcting for the relative mag-
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FIG. 6. (color online) Comparison of Ωlin (20) for the Pöschl-
Teller potential (blue line) and the harmonic oscillator (black
line).

nitude of the perturbation, we choose δλHO = 2.87×10−4

for the harmonic and δλPT = 10−1 for the Pöschl-Teller
potential. The numerical results for the exponential pro-
tocol λ1(t) (23) can be found in Fig. 6.

We observe that for short quench times and for long
quench times the agreement is almost perfect. For inter-
mediate quench time, however, the Pöschl-Teller poten-
tial and its harmonic approximation are “out of sync”.
This difference evidences of the nonlinear (nonharmonic)
properties of the Pöschl-Teller potential (24).

IV. CONCLUDING REMARKS

In this analysis we have obtained three main results:
(i) we have revisited the Bremermann-Bekenstein bound
and generalized the maximal rate of information trans-
mission to account for the effect of measurements; (ii)
our new bound can be interpreted as a maximal rate of
quantum learning, which presents an important applica-
tion of the quantum speed limit time; and (iii) we have
computed approximate expressions from time-dependent
perturbation theory, which we are able to show to be
exact for small enough perturbations.

Our results were illustrated for two experimentally rel-
evant systems, namely the driven harmonic oscillator and
the Pöschl-Teller potential. In particular, our compar-
ison of the maximal rate of quantum learning for the
Pöschl-Teller potential and its harmonic approximation
suggests a wide range of applicability also for more com-
plex systems. However, for the present purposes and for
pedagogical reasons we chose simple systems, analytical
driving protocols, and tractable observables.

Next steps. A more realistic approach would take into
account the fact that electronic devices processes infor-
mation manipulating electric currents. In addition, it
would be interesting to investigate how our present re-
sults have to modified, if we account for the relativistic
nature of electrons.
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Appendix A: Time evolution operator

In this appendix we outline the analytical solution of
the dynamics induced by the time-dependent harmonic
oscillator (22). To begin, we write the Hamiltonian H(t)
subject to an external perturbation V (t) in interaction
picture

HI(t) = eiH0t/~(H0 + V (t))e−iH0t/~

= H0 + eiH0t/~ V (t) e−iH0t/~ ,
(A1)

and consequently we write the time-dependent wave func-
tion as ΨI(t) = UI(t, t0)ΨI(t0).
Magnus expansion. The time-evolution operator can

be written as a solution of

i~
dU(t, t0)

dt
= H(t)U(t, t0) . (A2)

Such linear differential equations of the form dY (t)/dt =
A(t)Y (t), with the inital value Y (t0) = Y0 and A(t) be-
ing a n× n matrix with time-varying coefficients, can be
solved using the so-called Magnus expansion [52]. Gen-
erally, we can thus write

deΩ

dt
e−Ω = A(t) , (A3)

where exp(Ω(t, t0)) is expressed as an infinite series:
exp(Ω(t, t0)) =

∑

k Ωk(t, t0). Magnus noticed that A(t)
can be found using a Poincaré-Hausdorff matrix iden-
tity, and also that the problem can be solved relating the
time derivative of Ω(t, t0) with other special functions.
In Ref. [53] this expansion is used, and we identify Y (t)
as the time-evolution operator U(t, t0) and A(t) is the
time-dependent Hamiltonian H(t). After some lines of
algebra one can show [53]
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A
′

n+1 =

{

−CAn

2
+

B1

2
(CA1

CAn−1
+ CA2

CAn−2
+ · · · )

}

H(t) , (A4)

where A
′

n is the derivative of the nth element of the expansion of A(t), CAB = [A,B], and Bi’s are the Bernoulli
numbers. It is interesting to note that this formulation respects the time ordering of the operators. Finally, each term
An can be obtained by integrating over time in Eq. (A4).
Now, recognizing exp[A(t, t0)] = U(t, t0), we have for the time-evolution operator in interaction picture

UI(t, t0) = exp

(

∑

n

An

)

= exp

(
∫ t

t0

HI(t1)

i~
dt1 −

1

2

∫ t

t0

dt2

∫ t2

t0

[HI(t1)

i~
,
HI(t2)

i~

]

dt1 + · · ·
)

.. (A5)

It is the easy to see that for the harmonic oscillator (22) we also have

[H(t1),H(t2)] = 2if(t1) f(t2) sin(ω0(t1 − t2)) , (A6)

where f(t) = −
√

mω3
0~/2 λ(t).

Thus, we obtain the exact expression for U(t, t0) in the Schrödinger picture

U(t, t0) =
(

exp[iβ] exp[i(αa† + α∗a− γ)]
)

exp[−iH0t/~] , (A7)

where a† and a are the creation and annihilation operators respectively, and the coefficients are

α =

√

mω3
0

2~

∫ t

t0

dt
′

eiω0t
′

λ(t
′

) , (A8)

β = −mω3
0

2~

∫ t

t0

dt2

∫ t2

t0

dt1 λ(t1) λ(t2) sin(ω0(t1 − t2)) , (A9)

γ =
mω2

0

2~

∫ t

t0

dt
′

λ2(t
′

) . (A10)

Note that as λ(t) → 0 all terms α, β and γ vanish, and we recover the time evolution operator for the non-perturbed
harmonic oscillator, U(t0, t) → exp[−iH0t/~].
Method of generating functions. An alternative solution was proposed by Husimi [40]. In his approach one writes

the time-dependent solution as Ψ(x, t) =
∑

n cn(t)e
−iH0t/~Ψn(x), and we have

i~
dcm
dt

=

∞
∑

n=0

cnf(t)e
i(m−n)ω0txmn and i~

dc(t)

dt
= H(t) c(t) , (A11)

where xmn =
∫

ΨmxΨn, and Hmn(t) = −f(t)ei(m−n)ω0txmn are the elements of the matrix H(t).
The latter can be solved by the method of iteration, and we find a formal solution as an infinite series,

c(t) = c(0)

(

1 +
1

i~

∫ t

0

H(t1) dt1 +

(

1

i~

)2 ∫ t

0

H(t1) dt1

∫ t1

0

H(t2) dt2 + · · ·
)

= S(t, 0)c(0) . (A12)

The nth term of S(t, 0) reads

Sn(t, 0) =
(−1)n

n!

∫ t

0

· · ·
∫ t

0

dt1 dt2 · · · dtn T>(H(t1)H(t2) · · · H(tn)) (A13)

where T> is the time-ordering operator.
Using Wick’s theorem to write the time-ordered products in Eq. (A13) in terms of normal ordered products,

simplifies the problem for operators that annihilates the vacuum. The time-ordered operator in Eq. (A13) can be
written as contractions of field operators, which are commutators [54, 55],

T>(A(t1)B(t2)) = [A+(t1), B
−(t2)] + : A(t1)B(t2) : (A14)

where : AB : is the normal order for the field operators. We have used t1 > t2 in the last equation.
Now, writing the Hamiltonian in interaction picture, H(t) can be expressed as a function of V (t). The time-ordering

in Eq. (A14) will be applied over the perturbation which is a proportional to the creation and annihilation operators,
a(ti) and a†(tj). In conclusion, we have that Husimi’s approach is fully equivalent to Ref. [53].
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Thus, we can also write [40]

Umn(t, t0) =
e−i(t−t0)/2+iσ/2

√
2n+mm!n!

e−W/2 C(m,n|W )(ξ + iξ̇)m(η − iη
′

)n (A15)

where the coefficients are given by

f(t) = −mω2
0xλ(t) , (A16)

σ =

∫ t

0

dt
′

∫ t
′

t0

dt
′′

sin(t
′ − t

′′

)f(t
′

)f(t
′′

) , (A17)

W =
1

2

∫ t

t0

∫ t

t0

cos(t
′ − t

′′

)f(t
′

)f(t
′′

)dt
′

dt
′′

, (A18)

C(m,n|W ) =

minm,n
∑

l=0

m! n!

l!(m− l)!(n− l)!
(−W )−l , (A19)

ξ + iξ̇ = −ie−it

∫ t

0

du eiuf(u) , (A20)

η − iη
′

= −i

∫ t

0

du eiuf(u) . (A21)
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