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Abstract: We investigate all-optical switching at the guided mode 
resonances originating near the Dirac point of a finite, 2-D photonic crystal 
consisting of a square lattice of dielectric columns possessing a cubic 
nonlinearity. The peculiar field localization properties of these Dirac-point 
guided mode resonances conspire to yield extremely low switching 
threshold at near-to-normal incidence for remarkably low filling factors of 
the nonlinear material. 
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1. Introduction 

Photonic crystals (PCs) or photonic band gap structures (PBGs) [1–5] have opened novel 
venues to control light localization at the nanoscale level and to enhance light-matter 
interactions in an unparalleled way. Any nonlinear phenomena, such as Raman scattering, 
quantum-dot and quantum-well emission, nonlinear harmonic generation, all-optical 
switching, just to name few, can in principle benefit from the high degree of light localization 
achievable in these structures. Among the numerous applications of PCs, we cite photonic 
crystal fibers [6], photonic crystal circuits [7] and photonic crystal super-prism structures [8]. 
The recent discovery of graphene [9], a purely two-dimensional electronic system where the 
conduction band and the valence band touch each other at the Dirac point leading to 
remarkable electronic transport properties [10], has sparked a renewed interest in the study of 
Dirac points in 2-D PCs [11–17]. In the case of PCs, two photonic bands touch as a pair of 
cones (Dirac cones) giving rise to a linear, instead of a parabolic, dispersion for photons. In a 
recent publication [18] we have studied the anomalous field localization properties in the stop 
band of a linear, 2-D PC made of an array of dielectric columns near its Dirac point. At 
normal incidence the crystal exhibits a Dirac point with 100% transmission. At angles slightly 
off the normal where the crystal is 100% reflective, instead of exponentially decaying fields 
as in a photonic stop band, the field becomes strongly localized and enhanced inside the 
crystal. We have explained that this anomalous localization is due to guided mode resonances 
(GMRs) that are the foundation of the Dirac point itself and also shape its adjacent band gap. 
In this work the anomalous localization properties and strong field enhancement near the 
Dirac point are used to boost Kerr nonlinearities and achieve switching and bistable response 
for low input intensities and low filling factor of the nonlinear material. In Section 2 we detail 
the main results of our study followed by a discussion and in Section 3 we present our 
conclusions. 

2. Results and discussion 

We start our analysis by showing in Fig. 1 the structure under investigation. 
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Fig. 1. Cross sectional view of a 2-D PC consisting of a square array (period a) of dielectric 
columns with radius r and relative permittivity ε. The structure possesses a finite number N of 
rows along the z-direction and a total length L = Na. We suppose that the columns are made of 
a nonlinear Kerr-type material with a generic cubic coefficient χ(3). A plane electromagnetic 
wave with the electric field parallel to the axis of the columns is incident on the structure with 
its k-vector in the (x,z) plane (in-plane coupling) forming an angle ϑ with respect to the z-
direction. 

In Fig. 2 we show the photonic band gap structure in the (ω,kx) plane for the following 
parameters: N = 5, r/a = 0.2, ε = 12.5 [16,18]. The photonic band gap structure has been 
calculated through the transmittance, i.e. the transmitted power divided the incident power. 
The numerical calculation has been performed using an in-house developed code based on the 
Fourier-modal-method (FMM) [19]. 
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Fig. 2. (a) Transmittance in the (ω,kx) plane. (b) Magnification of the transmittance around the 
Dirac point. The dashed line indicates the calculated dispersion of the Dirac-point GMR. The 
structure’s parameters are: N = 5, r/a = 0.2, ε = 12.5. 

In particular Fig. 2(a) shows the transmittance in the (ω,kx) plane for a wide frequency 
range. From Fig. 2(a) it is noted the overall conical shape of both the upper and lower pass 
band that touch each other at the Dirac point located at ωa/2πc≅0.54. An additional lateral 
pass band is also present. It is important to underline that here we are dealing with a finite 
structure along z. The pass bands are actually characterized by multiple Fabry-Perot-like 
transmission resonances due to the multiple interference effects of the field 
reflected/transmitted from each of the N rows of columns the structure is made of. This is a 
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typical characteristic of finite PCs even in lower dimensional systems such as 1-D 
multilayered structures [20]. Figure 2(b) shows instead a magnification of the transmittance 
near the Dirac point of the structure and the dispersion of the corresponding Dirac-point GMR 
calculated according to [18]. The dispersion curve located in the band gap of the structure 
corresponds to sharp reflection resonances for close-to-normal incident conditions. As 
discussed at length in [18], the Dirac-point GMR is characterized by an exceptionally 
dispersive coupling strength as function of the incident angle: at close-to-normal incidence 
the electric field is extremely localized over the columns with localization enhancement 
factors exceeding 107 for ϑ→0°. As the incident wave departs from the close-to-normal 
condition the coupling strength of the GMR dramatically decreases marking the transition 
from localized modes to stop-band evanescent modes. In Fig. 3 we show, as an example, the 
localization of the electric field for an incident angle ϑ = 0.1°. 
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Fig. 3. Cross sectional view of the field localization in the stop-band at the Dirac-point GMR 
for ϑ = 0.1°. The dashed circles indicate the position of the columns. 

The field is exceptionally squeezed inside the columns with a typical, dipolar-like 
localization profile. Localization enhancements exceeding 104 are noted in the central row. 
Those features are extremely well suited to boost the nonlinear properties of the columns. In 
this case we suppose that the columns possess a Kerr-type cubic nonlinearity so that their 
local nonlinear permittivity is dependent on the local field intensity following the usual 

relation: ( ) 23
NL Eε ε χ= + . Figure 4 reports the results of the nonlinear transmittance as 

detailed in the figure caption. The nonlinear calculation has been performed using a mean 
field approach as in [21]. 

#186966 - $15.00 USD Received 13 Mar 2013; revised 2 May 2013; accepted 2 May 2013; published 8 May 2013
(C) 2013 OSA 20 May 2013 | Vol. 21,  No. 10 | DOI:10.1364/OE.21.011862 | OPTICS EXPRESS  11866



 

Fig. 4. (Left panel) Linear transmittance (red) and nonlinear transmittance (circles) with the 
onset of optical bistability for different incident angles along the Dirac-point GMR. The 
control parameter is σ = 2χ(3) Iin/ε0c where Iin is the input intensity, ε0 the vacuum permittivity 
and c the speed of light in vacuo. The marks on the linear transmittance (triangle, circle, 
square) indicate the tuning conditions for the nonlinear calculations reported in the right panel. 
(Right panel) Nonlinear transmittance vs. input intensity for the incident angle reported in the 
left panel. Note the change in scale for the input intensity as the incident angle increases. 

As expected, in agreement with the decrement of the field localization when the incident 
field departs from the close-to-normal condition, the threshold intensity for the onset of the 
optical bistability and switching increases for increasing incident angles. It is also interesting 
to note in the right panel how, depending on the tuning conditions on the linear resonance, the 
nonlinear transmittance passes from an optical limiting behavior (green curve and red curve) 
to a full hysteresis cycle (blue curve). To have an idea of the actual intensities needed to 
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achieve optical bistability and switching we provide in Table 1 a synoptic prospect which 
refers to the cubic nonlinearity of two widely used materials for nonlinear optical 
applications, namely silica and chalcogenide glasses. Silica is mainly used for temporal 
soliton propagation in optical fibers [22], while chalcogenide glasses are mainly used for 
nanoscale photonic applications [23] due to their extremely high cubic nonlinearity and low 
two-photon absorption. The cubic nonlinearity of many dielectric and semiconductor 
materials falls in between the range set by chalcogenide glasses and silica. It is worthwhile to 
note that the proper material choice should be done consistently with the known limitation to 
all-optical switching set by material’s two-photon absorption [24]. 

Table 1.  

σ 
Chalcogenide 

χ(3) = 4.4*10−20 m2/V2 
Silica 

χ(3) = 3.4*10−22 m2/V2 

10−7 3*105 W/cm2 3.9*107 W/cm2 

6*10−7 1.8*106 W/cm2 2.3*108 W/cm2 

2*10−5 6*107 W/cm2 7.8*109 W/cm2 

The values of the control parameter refer to the three cases studied in the left panel of Fig. 
4. For example, in the first case (σ = 10−7) the corresponding input intensity for the onset of 
optical bistability is ~0.3 MW/cm2 for chalcogenide glasses and ~40MW/cm2 for silica. In 
both cases we are speaking of extremely low intensity, well below the GW/cm2 range typical 
of nonlinear optical phenomena. These results are even more remarkable if we consider that 
the filling factor of the nonlinear material (ratio between the area of the column and the area 
of the elementary cell) is in our case only ~10%. The kind of resonances explored in this 
work require the use of a collimated light beam with an angular divergence Δϑ~0.1° which, 
roughly speaking, corresponds to a beam waist w0 = λ/(πΔϑ)~200λ. This value of the beam 
waist is compatible, for example, with the degree of focusing necessary to obtain an intensity 
~GW/cm2 from a Ti:sapphire laser at λ = 800nm. 

3. Conclusions 

In conclusion, we have studied all-optical switching at the Dirac-point GMR [18] and shown 
that extremely low switching intensities can be achieved even for structures in which the 
effective volume of the nonlinear material is remarkably small. This property may pave the 
way to a great variety of nonlinear devices such as: self-tunable optical sensing structures for 
laser eye protection, switches, optical memories, and advanced nanocircuits. In particular, the 
strong dependence of the Dirac-point GMR on the incident angle has applications in 
nonlinear angularly selective filters and collimators. Moreover, similar concepts may also be 
applied to harmonic generators and parametric amplifiers, which we plan to examine in future 
studies. 
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