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Abstract—We present CyBERT, a domain-specific Bidirec-
tional Encoder Representations from Transformers (BERT)
model, fine-tuned with a large corpus of textual cybersecurity
data. State-of-the-art natural language models that can process
dense, fine-grained textual threat, attack, and vulnerability in-
formation can provide numerous benefits to the cybersecurity
community. The primary contribution of this paper is providing
the security community with an initial fine-tuned BERT model
that can perform a variety of cybersecurity-specific downstream
tasks with high accuracy and efficient use of resources. We
create a cybersecurity corpus from open-source unstructured
and semi-unstructured Cyber Threat Intelligence (CTI) data and
use it to fine-tune a base BERT model with Masked Language
Modeling (MLM) to recognize specialized cybersecurity entities.
We evaluate the model using various downstream tasks that can
benefit modern Security Operations Centers (SOCs). The fine-
tuned CyBERT model outperforms the base BERT model in the
domain-specific MLM evaluation. We also provide use-cases of
CyBERT application in cybersecurity based downstream tasks.

I. INTRODUCTION

Transformer-based natural language models such as Bidi-
rectional Encoder Representations from Transformers (BERT)
[1] and GPT [2] are state of the art methods that enable
computers to process text data. While the decoder-based GPT
is constrained to generative natural language use cases, BERT
is an encoder-based transformer model trained on the entire
English Wikipedia [3] and Brown Corpus [4]. BERT provides
substantial results across tasks such as machine translation
[5], natural language inference [6], and question answering
systems [7], due to its bidirectional and context-dependent
architecture. In addition, there exist a variety of large, general-
domain pre-trained BERT models re-purposed for a multitude
of downstream tasks [8].

Natural language tasks that require processing over a large
corpus of general text data benefit tremendously from the pre-
trained BERT models. In 2019, Google introduced BERT into
its search engine, and has expanded its usage and testing over
the past two years [9]. Through query sampling and rank-
based evaluation, they determined that BERT provides proven
improvements in tasks such as search, document retrieval,
and ranking across a diversity of general-domain text. Google
compared the relevance of the returned query responses using
the BERT-based search engine and the traditional search en-
gine which primarily uses PageRank. The main improvement
comes from BERT’s bidirectional architecture and enhanced
attention mechanism, giving it the ability to handle conver-
sational queries. Conversational queries are those that are

entered into the search engine as full sentences rather than
as a a collection of related keywords. Using BERT to process
conversational queries enables a search engine to understand
a user’s query more like a person would and produce better
retrieval results.

Though there are clear benefits of using the general pre-
trained BERT models for domain-independent use cases, they
do not provide state of the art results for tasks that re-
quire domain-specific, fine-grained text. The word distribu-
tions of the general corpus on which BERT was trained on
(Wikipedia and the Brown Corpus) differ tremendously from
many domain-specific corpora, such as those in cybersecurity
and medicine. Directly applying general language models
like BERT to domain-specific text mining tasks has many
limitations, such as the inherent inability to represent domain-
specific terms that it is unfamiliar with (terms and context that
do not exist in the general corpus used to train the model).

To address this problem, many researchers use an approach
called fine-tuning to seed general pre-trained transformer
models like BERT with additional text from the domain to
better adapt the model to a domain-specific tasks [10]–[12].
In this way, the general transformer model can learn domain
specific features through minimal weight adjustments, without
undergoing the resource intensive task of training from scratch.

For example, BioBERT [13] is a domain-specific BERT
model, fine-tuned on large-scale biomedical corpora. BioBERT
significantly outperformed the general BERT model on
biomedical named entity recognition, relation extraction, and
question-answering tasks.

In the similar way that bio-medical tasks rely on adapted
word representations, cybersecurity domain texts also contain
a drastically different vocabulary than that of the corpus used
to train the original BERT model. As the amount of Cyber
Threat Intelligence (CTI) continues to increase on the web,
cybersecurity text mining is becoming an increasingly integral
task in Security Operations Centers (SOCs). Cybersecurity
professionals utilize information gained from CTI sources to
aid in vulnerability management, threat filtering, and adver-
sarial behavior prediction. There are many benefits to the
increasing presence of CTI sources across the web, such as
access to large-scale unlabeled training data. However, the
detriment to the large amount of CTI available is the inability
for cybersecurity professionals to gain valuable and actionable
insights across all sources. There have been several models
and pipelines proposed to ease the information overload of



cybersecurity professionals, and shift the processing load to
natural language models [14]–[19]. CyBERT can support
existing pipelines by providing the ability to contextually
understand cybersecurity threats, exploits, attack-vectors, and
adversaries.

CyBERT can do this by contextually learning fine-grained
cybersecurity domain information. For example, as human
cybersecurity professionals read CTI samples, a diversity
of knowledge is required to gain actionable insight on the
information. For example, when reading about a malware
related exploit, a series of deductions are made to understand
the type of malware, its probable destinations, and behavior.
Cybersecurity threat hunters will typically use context clues
in the CTI to examine the exploit. Similarly, CyBERT will be
able to use both general knowledge as well as linguistic rules
to reason about the exploit and its likely relations.

There is no public model to our knowledge that uses a
BERT-based approach to represent cybersecurity text data. The
primary contribution of this paper is the development of Cy-
BERT, which is a BERT model fine-tuned with Masked Lan-
guage Modeling (MLM) as well as for several cybersecurity-
related downstream tasks. CyBERT can be beneficial for the
cybersecurity community due to its ability to adapt to a
diversity of tasks that several groups of organizations, cy-
bersecurity professionals, and tools can integrate. We provide
examples of use-cases by testing CyBERT on cybersecurity
NER, Multi-class classification, and Cybersecurity Knowledge
Graph (CKG) improvement downstream tasks.

Our work makes three main contributions:
• CyBERT: A Pre-trained contextualized embedding for the

cybersecurity domain (Section III-C2),
• Labeled Datasets to fine-tune related cybersecurity down-

stream tasks (Section III-A, III-C1 and IV), and
• Analysis of CyBERT performance on NER, Multiclass

Classification, and Cybersecurity Knowledge Graph com-
pletion (Section IV).

The organization of this paper is as follows. In Section
II we provide an overview of the related work and back-
ground concepts on textual cybersecurity data, natural lan-
guage models, and the fine-tuning process. Section III includes
the methodology for creating a cybersecurity corpus to fine-
tune BERT, developing a cybersecurity MLM dataset, and
fine-tuning BERT with MLM. We showcase the fine-tuned
CyBERT on a variety of cybersecurity specific down-stream
tasks in Section IV and conclude and discuss future work in
Section V.

II. RELATED WORK

A. Leveraging Textual Cybersecurity Data
Developments in cybersecurity attacks, vulnerabilities, and

threat actors has led to a shift in developing further, more
sophisticated methods for safeguarding critical systems. The
integration of machine learning and artificial intelligence for
cybersecurity tasks has grown over the past decade. Examples
of AI-enabled cybersecurity tasks include enhanced intru-
sion detection and prevention systems [20], attack prediction

strategies [21] and malware analysis [22]. Examples of type
of training data used for these systems include server and
application logs, malware binaries, and network traffic. A large
portion of this data is open sourced, and is often referred
to as Cyber Threat Intelligence (CTI). This data can be
collaboratively shared with the greater public for precaution,
use in research, or as part of an integrated patch management
system found in modern Security Operations Centers (SOCs).
In addition, a large amount of CTI is also found in the form of
unstructured, and semi-structured text. Textual cybersecurity
information is most often found on security blogs, social
media, conversation forums, the dark web, as well as within
several github repositories [23]. This information is typically
documented by subject matter experts such as cyber analysts,
security engineers, and researchers, within academia and the
greater public and private technology sectors.

Though the security community benefits tremendously from
open sourced CTI, this information, whether it is text or
other forms of cybersecurity data, is typically spread across
multiple sources, providing difficulty in providing quick and
insightful information to the automated systems that require
the information for operation. Several AI-based cybersecurity
systems have been developed to integrate disparate cyber-
security information. For example, Mittal et al. developed
CyberTwitter, which mines threat intelligence from Twitter
and generates actionable alerts for cybersecurity threats and
exploits [19]. Similar methods have been developed that lever-
age a Cybersecurity Knowledge Graph (CKG) to represent
and store cybersecurity intelligence to be used as training
data for AI-based cybersecurity systems, or from extraction
or ingestion pipelines [14]–[18], [24], [25].

One of our goals for creating CyBERT is to provide the
security community with state-of-the art, continuously updated
cybersecurity langauge models that can be used for a variety
of cybersecurity specific downstream tasks. Systems such
as those described above, can leverage the CyBERT model
for capabilities such as Named Entity Recognition (NER),
intelligence classification, and knowledge augmentation and
integration.

The next section describes the evolution of natural language
models, as well as the state-of-the art architecture of BERT.

B. Evolution in Natural Language Processing Models

There are a variety of Natural Language Processing (NLP)
techniques for representing textual data. The most basic mod-
els include bag of words (one-hot encoding) where each
element in a vector maps to a unique word or token (n-
gram) in the vocabulary of a corpus [26]. Though these
techniques are still powerful for tasks such as search, they
are often used in conjunction with modern models that have
the ability to capture the semantics of the words, as well as
with more computational efficiency. Distributional similarity
based representations such as Word2Vec [27] and GloVE
[28] are examples of such models and are often referred to
as neural word embeddings. Neural word embeddings are
dense representations where each word is represented by a



real-valued vector. Words are also represented using context
similarity. This means that words that have similar semantic
meaning, will have a similar representation.

These methods remained the state of art until language
models such as transformers like BERT [1] and GPT [2]
were developed. Unlike neural word embeddings, language
modeling trains with deep, hierarchal representations that
can capture contextual, high-level information such as long-
term dependencies and sequential context. Models that are
pretrained with language modeling can later be fine-tuned for
domain-specific downstream tasks. In our previous work, we
fine-tuned the GPT-2 transformer model with cybersecurity
text and generated fake textual cybersecurity CTI as part of a
data-poisoning experiment [12].

C. BERT and Transfer Learning

BERT is a type of encoder transformer language model,
which maps an input sequence, such as a sequence of words
(sentence), into a high dimensional space (n dimensional vec-
tor) [1]. Other transformer models such as GPT, are examples
of decoder models which take the vector from the encoder
and produces an output sequence (prediction) for a given task.
Transformers are therefore upgraded versions of traditional
encoder-decoder models that do not use Recurrent Neural
Networks (RNN), but rely solely on a multi-head attention
mechansim to capture significant semantic features in a given
input sequence. Applications of BERT specifically, include
text classification, summarization, paragraph-based question-
answering, and information retrieval.

In this paper, our goal is to fine-tune state of the art pre-
trained BERT model with cybersecurity domain information
and leverage the model for cybersecurity tasks. Fine-tuning is
an example of transfer learning, a method that applies existing
knowledge to a new, but similar problem. The pre-trained
BERT model is popularly used as a base model that provides
general features, but can be augmented for specific tasks [10]–
[12].

III. METHODOLOGY

We create cybersecurity bidirectional encodings by fine-
tuning the base BERT model (bert-base-cased) with Masked
Language Modeling (MLM), utilizing a large corpus of unla-
beled cybersecurity text. The fine-tuning approach allows us to
yield higher accuracy with much less data and training time
in comparison to learning from scratch. The resulting fine-
tuned model can be used for tasks such as vulnerability and
exploit search, cybersecurity based-NER, and cybersecurity
knowledge graph (CKG) completion [18], [29].

The methods for our approach are displayed in Figure 1.
We first create a cybersecurity corpus by collecting unla-
beled, textual cybersecurity data from a variety of sources
such as open source blogs [30] standardized by the security
community, National Vulnerability Database (NVD) [31], and
Common Vulnerabilities and Exposures (CVE) [32] records.
Using the cybersecurity corpus, we extend the base BERT

model’s vocabulary to include fine-grained cybersecurity do-
main entities. Once the vocabulary is extended to fit the
cybersecurity domain, and the embedding space updated,
we use the cybersecurity corpus to fine-tune the pre-trained
base BERT model (bert-base-cased) with Masked Language
Modeling (MLM).

CyBERT leverages the basic architecture of the base BERT
model, bert-base-cased. Details on the bert-base-cased archi-
tecture can be found in Section III-C2. We discuss more
thoroughly the creation of the cybersecurity dataset used to
fine-tune the base BERT model in Section III-A, the process
of using fine-tuning with MLM in section III-C1 and III-C2
and later discuss methods for fine-tuning CyBERT for various
downstream text mining tasks in Section IV.

A. Cybersecurity Corpus Creation

Fine-tuning a base BERT model requires an extensive
domain dataset. In order to train BERT to better recognize
cybersecurity domain information, we created a cybersecurity
text corpus to fine-tune the base BERT model. Our corpus
includes a combination of free text and semi-structured text
data, which contains both general and localized, fine-grained
cybersecurity domain information.

Our corpus can be considered the gold standard for cy-
bersecurity data due to the inclusion of widely utilized and
referenced resources used in the cybersecurity community. The
free-text examples in our repository are composed of news
articles and technical reports found on open sources such
as social media sites like Twitter1, and repositories such as
vendor-managed documentation hubs. Security news articles
are reliable resources used by cybersecurity analysts and
engineers to stay informed on emerging vulnerabilities and ex-
ploits. A considerable fraction of the security news article data
in our cybersecurity corpus comes from Krebs on Security,
which is a global resource referenced by Security Operations
Centers (SOCS) at a variety of organizations [30]. It is also
referred to by multiple security bloggers who use the resources
to provide current, up to date information to their followers.
Krebs on Security is composed of reports describing recent,
medium to high impact exploits and vulnerabilities detected by
security analysts either in the wild, or within organizations and
includes both general and fine-grained cybersecurity exploit
and vulnerability information.

On the other hand, the resource APT Reports is a technical
repository that focuses on documenting low-level information
on malware-specific attacks and Advanced Persistent Threat
(APT) groups [33]. An example of a more structured form of
cybersecurity data includes the CVE database, maintained by
MITRE Corporation [32]. This data is structured in both JSON
and XML formats and contains structured fields to segment
the data easily. Some examples of the fields are ”attack
means”, ”product name”, ”exploit target”, and ”vulnerability
description”. CVE database is a common resources used by
corporations to track vulnerabilities and exploits associated

1https://www.twitter.com



Fig. 1. Architecture Diagram for fine-tuning of the pre-trained BERT model to create CyBERT.

with popular products they produce and utilize. CVE data
is also commonly ingested in SOC Intrusion Detection and
Prevention Systems (IDS and IPS) [34]. The CVE datasets
have also aided us in creating Named Entity Recognition
(NER) datasets, described in Section IV.

By including both general and fine-grained CTI, we can
fine-tune the general BERT model to learn a diversity of
domain cybersecurity information that is otherwise not present
in the original corpus utilized to train BERT.

The security news category contains 500 articles from
Krebs on Security. The vulnerability reports contain 16,000
Common Vulnerability and Exposures (CVE) records provided
by MITRE Corporation and National Vulnerability Database
(NVD) from years 2019-2020. Lastly, we collect 500 technical
reports on APTs from the available APTNotes repository.

B. Vocabulary Extension

Before fine-tuning BERT with Masked Langauge Modeling
(MLM), we first extend the base model’s vocabulary with
domain specific words and resize the original embedding
matrix to include unique cybersecurity tokens. During fine-
tuning tasks, modifications are only made to the embedding
space, but not to the tokenizer vocabulary. It is important
for cybersecurity domain-specific tokens to be present in
the vocabulary due to the lack of cybersecurity words and
subwords in the base model tokenizer vocabulary. The base
model tokenizer contains 28,996 words. During the MLM task,
the model will randomly mask 15% of the tokens from an
input sentence with the objective of predicting the original
vocabulary ID of the masked word, based on term context.
By adding this step before the MLM fine-tuning process, we

can ensure that the MLM output will locate the the nearest
predictions in BERTs vocabulary to the transformed vectors.
The final hidden vectors are fed into a output softmax over the
vocabulary. Therefore, the MLM predictions take into account
the position of an input token in the sentence, and the location
can be derived from BERT’s vocabulary. BERT’s extended
cybersecurity vocabulary will represent top k predictions for a
word and subword at a particular location in an input sentence.
The input term will be tokenized into words and subwords
within BERT’s extended tokenizer.

A resource intensive way of learning the vocabulary of
a specific domain is through pre-training the model from
scratch on a new corpus of domain-specific task, typically
as large as the original Wikipedia and Brown corpus used
to train the base BERT model [35]. An alternative is to use an
extension method, where a domain-specific vocabulary can be
added to an existing vocabulary. These terms will be randomly
initialized when added, but will be learned during the MLM
fine-tuning process [36].

We use the extension method in order to add cybersecurity
domain tokens to the original tokenizer. The first step to extend
the vocabulary is to develop a list of ranked tokens from
the cybersecurity corpus. We first utilize a word tokenizer
from spaCy [37] to extract tokens within the cybersecurity
corpus. We then find the inverse document frequency (IDF)
for each token, and rank the tokens in order of most to least
significant. We add the 1000 highest IDF rank words to the
base vocabulary. The size of CyBERT vocabulary is therefore
29,996 terms.

We then resize the embedding matrix of the BERT model to
match the extended vocabulary size. During the MLM tuning



process, new embedding vectors will be added to represent
the extended vocabulary with cybersecurity terms. Once the
vocabulary is updated with common cybersecurity terms and
the embedding matrix of the model is resized, we can start
fine-tuning the model on the cybersecurity corpus using MLM.
The MLM fine-tuning process for CyBERT is described in the
next section.

C. Fine-Tuning with Masked Language Modeling

The BERT architecture is a transformer encoder model that
is able to contextually process text data. BERT expands pre-
vious transformer architectures by introducing bi-directional
training, allowing words to be defined by their context rather
than pre-fixed definition. Specifically, BERT uses a method
called Masked Language Modeling (MLM) to learn an internal
representation of an input, such as a sentence. With this
method, BERT does not process the input from left to right
to predict the next word, but rather, an entire sentence is fed
as input to BERT, where some tokens in the model will be
randomly (or selectively) removed. The task for BERT is to
identify an appropriate word to fill the blank in a given input
sentence.

The CyBERT model re-applies MLM on the general BERT
model by fine-tuning with the cybersecurity corpus described
in Section III-A. We can then use CyBERT for many re-
lated downstream tasks such as cybersecurity Named Entity
Recognition (NER), threat classification, and Cybersecurity
Knowledge Graph (CKG) completion, which is described in
Section IV.

The process of fine-tuning with MLM is displayed in Figure
1. We first split the text corpus into train and test MLM
datasets, where the test dataset contains randomly masked
tokens and the train dataset contains unmasked counterparts
for the respective test samples. We then use the datasets to train
the base BERT model to learn an internal representation of
the cybersecurity corpus during the fine-tuning process. These
steps are more thoroughly described in the following sections.

1) Creating a Cybersecurity Masked Langauge Modeling
Dataset: We first use the cybersecurity corpus described in
Section III-A to create a training dataset to fine-tune the
general BERT model using MLM. For each text file in the
corpus, we separate the text into a set of sentences and employ
standard text cleaning techniques (removing special characters,
converting to lowercase, and removing sentences less than 50
characters). We were able to retain more than 70% of the
cleaned corpus. The list of cleaned, split lines, will serve as
the labeled dataset for the MLM task described in Section
III-C2. The test set for the MLM training contains samples
of masked sentences for each CTI sentence in the labeled set.
More specifically, for each sentence in the labeled set, we
create a corresponding masked sample by removing 15% of
the tokens in the sentence, at random. An example of a masked
data sample can be found in Figure 1.

2) Training CyBERT: We fine-tune the base BERT model
with Masked Language Modeling (MLM) using the datasets
created in the previous section (Section III-C1) to produce

CyBERT. Using the HuggingFace library [38], we load the
bert-base-cased pre-trained model as the base model. The
bert-base-cased model has 12 layers (transformer blocks), a
hidden size of 768, and 12 self-attention heads, and is case-
sensitive. To avoid over-fitting we limit the MLM fine-tuning
process to one epoch and set the sequence length to 128.

We first preprocess the cybersecurity corpus by using the
BertTokenizer to split the CTI samples into a list of sentences.
After tokenization, the text is divided into three tensors, input
ids, token type ids, and attention mask. A copy of the input ids
are added to a labels tensor, which is later used to calculate
loss. We employ a random masking approach, and assign a
15% probability that a token will be masked (any token, except
for the CLS and SEP tokens).

The input tokens produce a logits output embedding where
the vector length is equal to the size of the extended vo-
cabulary. The predicted token is extracted from logits using
softmax and argmax transformation. The loss is calculated
as the difference between the output probability distributions
for each predicted token and the one-hot encoded labels. We
achieve a loss value of 0.1451.

To further test the performance of CyBERT, we run a fill-in-
the-blank assessment test the model’s ability to fill in relevant
terms on unseen CTI samples. We use the fill function from
the HuggingFace library for the assessment. We also compare
the output tokens to the base BERT model. We randomly
mask attack vector, vulnerability, and adversary terms in the
experimentation set consisting of fifty CTI samples. The fill
function returns the top 5 predicted tokens for each masked
sample.

CyBERT consistently filled in blanks with either correct
term (as the highest rank output token) or with a term that
provides a similar contextual meaning. In addition to the
highest rank output token, CyBERT also consistently returned
contextually relevant terms in its top 5, in comparison to
BERT, which at times returned non-cybersecurity related (gen-
eral) terms.

For example, for the following CTI sample,
‘Easily exploitable vulnerability allows low priv-
ileged attacker with [MASK] access via multiple
protocols to compromise MySQL Server.’

CyBERT and BERT predict the top five fill-in tokens for the
[MASK] placeholder. A comparison of CyBERT and BERT
output tokens for the fill-in-the-blank assessment in Table I.

CyBERT was able to predict the correct term with 98%
confidence. In addition to predicting the correct term, CyBERT
returned contextually relevant terms that pertain to the context
of the exploit. The MySQL server attack is an example of
privelege escalation, relevant to the third highest ranked word
(root). In addition, this was a network-based attack, so the
second highest term (local) and fourth highest term (remote)
are relevant. This example shows that CyBERT was able to
determine the MySQL server attack was a remote, privilege
escalation attack and fill in the correct terms. BERT did
not have the same internal representation of domain-specific
cybersecurity information and as a result, did not return any



CyBERT BERT (bert-base-cased) CyBERT Score BERT Score
network easy 0.9825 0.1802
local multiple 0.0007 0.0709
root direct 0.0008 0.0327
remote secure 0.0007 0.0239
system unlimited 0.0007 0.0231

TABLE II
CYBERT AND BERT RANKED PREDICTIONS FOR CTI

FILL-IN-THE-BLANK TASK. ‘NETWORK’ IS THE CORRECT RESULT
IDENTIFIED BY CYBERT.

fine-grained cybersecurity terms, but rather generic terms that
do not properly indicate a remote privilege escalation attack.

IV. DOWNSTREAM TASKS WITH CYBERT

The cybersecurity community can leverage several down-
stream NLP tasks to augment security workloads in tradi-
tional Security Operations Centers (SOCs). In this section,
we describe several methods in which CyBERT can aid in
various SOC-related activities such as cybersecurity based
Named Entity Recognition (NER), threat classification, and
Cybersecurity Knowledge Graph (CKG) completion. Each of
the above mentioned tasks are more discretely described in the
following sections. For each of the tasks, we further fine-tune
CyBERT to fit the particular use-cases listed above.

A. Cybersecurity Named Entity Recognition

Named Entity Recognition (NER) can be beneficial for the
cybersecurity community in a variety of ways. In particular,
NER models allow cybersecurity professionals to efficiently
extract relevant attack and vulnerability information from
unstructured textual Cyber Threat Intelligence (CTI). CTI text
contains specialized domain entities such as exploit target and
attack means which are not interpreted by models trained with
general-purpose NER datasets.

Improving NER tasks for the cybersecurity domain can
increase situational awareness within an organization by au-
tomating information retrieval and extraction tasks across large
quantities of CTI. This allows security analysts to efficiently
gain a high level view and understanding of general exploit
patterns, attack schemas, and potential vulnerabilities. In a
SOC setting, these NER models can integrate cybersecurity-
based search with general search engines as well as domain-
specific cybersecurity engines such as Shodan [39], to im-
prove rankings and relevance of exploit, attack vector, and
vulnerability search results by grouping CTI samples based
on similarity.

There is a lack of large-scale public cybersecurity text
analytics datasets available in the public. Harvard Dataverse
published a cybersecurity-based NER dataset, containing do-
main labels for 1000 cybersecurity tweets [40]. Similarly, we
have also developed a cybersecurity NER dataset in previous
research [41]. Though both of the datasets contain labeled
entities specialized to the cybersecurity domain, they differ in
their specificity. While the Harvard Dataverse dataset contains
more broad cybersecurity labels (aimed for social media
studies) our dataset contains fine-grained labels that would
be found on sources such as CVE and NVD. For this study,

Named Entities
Attack-Pattern
Course-of-Action
Exploit-Target
Malware
Software
Version
Vulnerability

TABLE III
LABELED ENTITIES IN CYBERSECURITY NER DATASET.

our goal is to train BERT to recognize a variety of fine-
grained cybersecurity entity types. Our cybersecurity corpus
also primarily contains fine-grained information. Therefore,
we fine-tune CyBERT using our previously developed NER
model and evaluate CyBERT against low-level cybersecurity
entities.

The Cybersecurity NER dataset was created through super-
vised methods using the BRAT rapid annotation tool [42]. We
provided a group of three human annotators approximately 500
samples of unstructured text files from the following sources:

• Common Vulnerabilities and Exposures [32]
• Microsoft Bulletins [43]
• Adobe Bulletins [44]
• After Action Reports [45]
The annotators populated their annotations using the com-

munity standard, BRAT rapid annotation tool, which is an
online environment used for collaborative text annotation [42].

For each unlabeled sample, we assigned three annotators.
We used the inter-annotator agreement of 66% (2/3 anno-
tators must agree) to determine the most accurate labels.
The final NER dataset includes 46,838 labeled entities and
corresponding terms. The labeled entities in our NER dataset
are displayed in Table IV-A.

We used the NER dataset to fine-tune CyBERT for a
cybersecurity NER task. We first split the 46,838 labels into
training (train), development (dev), and testing (test) datasets,
using a 70/15/15 split respectively. Once we split the text, we
extract the NER entity classes across the three files and dump
them into a labels file, later used for NER fine-tuning. We
set a maximum sequence length to 128, batch size to 16, a
learning rate to 0.01. We train the model for four epochs.

The F1, precision, recall, and loss metrics for the test and
dev sets are displayed in Table VI. After fine-tuning CyBERT
on a cybersecurity NER task, we can use it to recognize named
entities in unseen cybersecurity texts. For example, for the
following CTI sample,

‘CVE-2014-0137 SQL Injection Vulnerability in
the saved report delete action in the ReportCon-
troller in Red Hat CloudForms Management Engine
(CFME) before 5.2.3.2 allows remote authenticated
users to execute arbitrary SQL commands via un-
specified vectors related to MiqReportResult.exits.’

CyBERT recognized the following entities, shown in Table
IV. In addition to sampling CyBERT, we also provided the
same sample to an annotator. The labeled entities matched
CyBERT’s labeled entities, except for discrepancies between
software and attack-pattern. For example, the annotator labeled



Word Predicted Entity Score
CVE-2014-0137 Vulnerability 0.9916
SQL Software 0.9933
Injection Attack-Pattern 0.9952
saved report deleteaction Exploit-Target 0.9958
ReportController Software 0.9958
CFME Software 0.9947
5.2.3.2 Version 0.9932
commands Attack-Pattern 0.9763
MiqReportResult.exits Exploit-Target 0.9922

TABLE IV
NER PERFORMANCE FOR UNSEEN CVE SAMPLE.

Data Set F1 Precision Recall Loss
Test 0.811 0.802 0.823 0.531

Evaluation 0.879 0.874 0.883 0.414

TABLE VI
TEST AND EVALUATION METRICS FOR CYBERT NER.

SQL and Injection as Attack-Pattern, while CyBERT labeled
SQL as Software, with with high confidence. On the other
hand, CyBERT labeled Injection correctly, and in a real
world SOC context, SQL and Injection would appear as a
single entity. Therefore, this particular discrepancy would
not negatively impact SOC operations in normal operation.
However, we are actively working on methods to reduce such
instances and improve CyBERT entity prediction by creating
additional NER datasets to provide CyBERT with diverse sets
of examples and more training data.

B. Multi-Class Classification

Another task that is particularly helpful for the cybersecurity
community is multi-class classification. We further fine-tune
CyBERT to perform multi-class classification. There are sev-
eral use-cases where multi-class classification can be beneficial
for cybersecurity operations. Cybersecurity analysts and threat
hunters can use automated classification tooling to categorize
types of attacks, vulnerabilities, adversaries, as well as attack-
vectors. In particular, tools that can predict potential attack
vectors given textual descriptions of vulnerabilities can auto-
matically create mappings of attack and vulnerability pairings,
which can later also be used as training data for AI-based cyber
defense systems such as a Cybersecurity Knowledge Graph
(CKG). This can reduce workloads for analysts who typically
need to sift through attack details to categorize various types
of attack vectors.

To model this scenario, we created an Attack Prediction
dataset using 5,000 CVE records that can be used to fine-
tune CyBERT for multi-class classification of exploit types and
vulnerabilities. The dataset contains two columns, Description

DESC EXPLT
The Pallets Project Flask
version Before 0.12.3 contains a
CWE-20:Improper Input Validation
Vulnerability in Flask that
can result in large amount of memory usage.

DoS

TABLE VII
ATTACK PREDICTION DATASET SAMPLE.

(DESC) and Exploit (EXPLT). The description column con-
tains vulnerability details, and the exploit column contains a
category in which the vulnerability description falls under. We
named the categories using CVE’s vulnerability and exploit
classes. We tested with the following five category types:

• DoS
• SqlInjection
• XSSDirectoryTraversal
• BypassCredentials
• InformationGain
A DoS CVE sample from the Attack Prediction dataset

is shown in Table VII. We split the 5,000 records into a
train/test set using a 70/30 split and radomly mix the dataset
to ensure there are examples containing all five categories
across both the train and test sets. Next, we format the dataset
further to the features the out of box BERT classifier uses.
The BERT classifier uses four features to make predictions:
guid, which is an identifier that represents a unique instance
in the dataset, text a which is the text to be classified, text b
which denotes the relationship between sentences, and label
which represents the classes a given text sample belongs to. We
format the dataset using the guid, text a and label fields. The
guid is a numerical value that represents the sample number,
text a represents the attack description, and label represents
the attack types. We use the BERT’s tokenization package
to perform preprocessing operations. The preprocessing steps
include, converting whitespace characters to spaces, tokenizing
the text, adding [CLS] and [SEP] tokens to mark the beginning
and end of input sentences as well as mapping the words in
the dataset to indexes found within the extended vocabulary
we created in Section III-B. We set the sequence length to 128
and use the tokenizer to pad sentences larger than length 128.
We train the model for three epochs and obtain a loss value
of 0.0148 and a 98% evaluation accuracy.

Similar to the NER downstream task, the output of this
system can be further be used as training input for various
AI-based cyber defense systems. We discuss these examples
in further detail in Section V.

V. CONCLUSION

CyBERT is a fine-tuned BERT model trained on a large
corpus of Cyber Threat Intelligence that contextually under-
stands information in text about the cybersecurity domain. We
fine-tuned the initial BERT model using Masked Language
Modeling and an extended cybersecurity vocabulary in order
to train it to learn an internal representation of fine-grained
cybersecurity terms, concepts, and their relationships.

CyBERT can provide many benefits to the cybersecurity
community, especially in Security Operation Center (SOC)
settings that perform downstream tasks such as cybersecurity
information extraction, attack prediction, and classification.
We provide examples of CyBERT’s performance on these
tasks and its applications to real-world SOC settings by
evaluating CyBERT on NER and attack classification tasks.

Once the cybersecurity entities have been identified using
the CyBERT named entity recogntion, we can use them



to create semantically rich Cybersecurity Knowledge Graphs
(CKG). CKG allows effective use of CTI to evaluate and
mitigate evolving risks. This helps solve organizational needs
that require processing the raw data feeds and appropriately
representing them. Knowledge graphs have become an impor-
tant way to represent CTI due to their reasoning capabilities
that are applied on the interconnected entities. In addition, the
attack category output from the CyBERT classifier can be used
for CKG entity clustering.

Another interesting downstream task that we are actively
pursuing is using CyBERT to support Cybersecurity Knowl-
edge Graph (CKG) completion. In order to first create and
then complete these graphs, it is important to identify relations
between different entities identified by the cybersecurity NER.
Pingle et al. [17] provide a more traditional approach to an
ontology based relationship extraction. In the same setup,
CyBERT’s contextualized embeddings can be used in place
of the Word2Vec based cybersecurity embeddings. A simple
feed forward network can then be trained to predict relations
between entities. The resulting relations along with extracted
entities can then be asserted into the cybersecurity knowledge
graph.

We are actively training CyBERT with increased compute
and building larger NER training datasets. The CyBERT
model versions are publicly available on the CyBERT Github
repository: https://github.com/priyankaranade1/CyBERT
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