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Multivariate Normal Inference based on Singly
Imputed Synthetic Data under Plug-in Sampling

Martin Klein, Ricardo Moura, Bimal Sinha

Abstract

In this paper we consider singly imputed synthetic data generated via plug-in
sampling under the multivariate normal model. Based on the observed synthetic
dataset, we derive a statistical test for the generalized variance, the sphericity test, a
test for independence between two subsets of variables, and a test for the regression
of one set of variables on the other. The procedures are based on finite sample theory.
Some simulation studies are presented which confirm that the proposed procedures
perform as expected.

Keywords: Multivariate normal, Pivotal quantity, Plug-in sampling, Statistical dis-
closure control, Tests for covariance structure.

1 Introduction

The release of synthetic data is a form of statistical disclosure control methodology that

is based on principles of multiple imputation for missing data (Rubin, 1993). The fully

synthetic data approach was originally proposed by Rubin (1993), and methodology for
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drawing inference based on fully synthetic data was developed by Raghunathan et al.

(2003). The partially synthetic data approach was originally proposed by Little (1993), and

methodology for drawing valid inference based partially synthetic data was developed by

Reiter (2003) and Reiter (2005). Drechsler (2011) provides a detailed account of synthetic

data.

The state of the art synthetic data methodology discussed above, uses concepts of

multiple imputation, and hence requires the release of multiple synthetic datasets in order

to obtain valid statistical inference. However, there are situations where it is desired to

release only a single synthetic dataset; see for example Hawala (2008), Kinney et al. (2011),

and Kinney et al. (2014). In a series of papers, Klein and Sinha (2015a,b,c,d); Moura et al.

(2017, 2018) derived model-based inferential procedures that can accommodate the single

imputation scenario. In this paper we extend this line of research by deriving procedures

for drawing valid inference about some features of the underlying covariance structure of

a multivariate normal population using a singly imputed synthetic dataset. It is assumed

that the synthetic dataset is generated via plug-in sampling (PLS).

The outline of the rest of this paper is as follows. In Section 2 we review the basic

modeling assumptions, and the PLS approach to generating synthetic data. In Section

3 we derive some inferential procedures for the covariance matrix based on the synthetic

data. Specifically, in Section 3.1 we consider inference for the generalized variance; in

Section 3.2 we consider the sphericity test; in Section 3.3 we consider testing independence

of two subsets of variables; and in Section 3.4 we consider a test of the regression of one

set of variables on the other. Section 4 contains some simulation studies to evaluate the

proposed methodology, and Section 5 contains some concluding remarks.
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2 Plug-in Sampling dataset generation

Before presenting the inferential procedures, a brief description is presented below on how

to create a synthetic dataset via PLS method, under the multivariate normal model.

Consider x = (x1, . . . , xp)
′ as the vector of variables assumed to be sensitive, i.e., which

cannot be released to the public. Consequently, X = (x1, . . . ,xn), with xi = (x1i, . . . , xpi),

i = 1, . . . , n, will be the original dataset which will be considered confidential. The dataset

is assumed to be normally distributed, that is,

xi
i.i.d.∼ Np(µ,Σ), i = 1, . . . , n,

where n > p.

From the original data, x̄ = 1
n

∑n
i=1 xi, the sample mean, and Σ̂ = S/(n − 1), the

sample covariance matrix, are computed, where S =
∑n

i=1(xi − x̄)(xi − x̄)′ is the sample

Wishart matrix, that is,

S|Σ ∼ Wp(n− 1,Σ). (1)

In order to generate one synthetic dataset via PLS (Klein and Sinha, 2015b) one can

obtain V = (v1, . . . ,vn), the new synthetic version of X, by drawing

vi
i.i.d.∼ Np

(
x̄,

S

n− 1

)
, i = 1, . . . , n.

Analogous to x̄ and Σ̂, we define v̄ = 1
n

∑n
i=1 vi as the PLS mean, and Σ̂? = S?/(n−1)

as the PLS covariance matrix, where

S? =
n∑
i=1

(vi − v̄)(vi − v̄)′. (2)

Note that (v̄,S?) are jointly sufficient for µ and Σ, and that v̄ and Σ? = S?/(n − 1) are

the unbiased estimators of µ and Σ, respectively (Klein and Sinha, 2015b).
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Based on (v̄,S?), Klein and Sinha (2015b) discussed inferential procedures regarding

the estimation of µ and Σ and also the inferential test and construction of confidence sets

for µ. In this paper, we develop appropriate inferential procedures for the generalized

variance |Σ|, sphericity test, test for independence of two subsets, and test for matrix of

regression coefficients of one subset on the other, all based on synthetic data generated

under plug-in sampling.

3 Tests for covariance structure

3.1 The Generalized Variance

The generalized variance is defined as |Σ| (Wilks, 1932) and it can be seen as a measure

of the scatter of a dataset (Anderson, 1984). The following theorem will be the basis for

the inferential procedures about the generalized variance.

Theorem 3.1. Define

T ?1 = (n− 1)p
|S?|
|Σ|

. (3)

where S? is defined as in (2). T ?1 is a pivotal random variable and its distribution can be

obtained from the decomposition

T ?1
st∼

(
p∏
i=1

Ai

)(
p∏
i=1

Bi

)
(4)

where
st∼ means ‘stochastic equivalent to’ and where A1, . . . , Ap, B1, . . . , Bp are indepen-

dently distributed such that Ai ∼ χ2
n−i and Bi ∼ χ2

n−i for i = 1, . . . , p.

Proof. See Appendix A.
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The (1− α) level confidence interval for |Σ| is given by(
(n− 1)p |S?|
t?1,1−α/2

,
(n− 1)p |S?|

t?1,α/2

)
where t?1,γ is the γth percentile of T ?1 in (3). For a given value δ0 > 0, a level α test for

H0 : |Σ| = δ0 vs. H1 : |Σ| 6= δ0

is to reject the H0 if

(n− 1)p
∣∣∣S̃?∣∣∣

δ0
≥ t?1,1−α/2 or

(n− 1)p
∣∣∣S̃?∣∣∣

δ0
≤ t?1,α/2,

where S̃ is the observed value of S̃.

To obtain the values of t?1,γ, one may use Monte Carlo simulation as follows:

Given n and p

1. Generate Ai ∼ χ2
n−i, Bi ∼ χ2

n−i, i = 1, ..., p, independently.

2. Calculate T ?1 = (
∏p

i=1Ai) (
∏p

i=1Bi).

3. Repeat steps 1-2M times and obtainM values of (3), which can be used to empirically

determine the cut-off value.

3.2 The Sphericity Test

The sphericity test consists of testing if the population covariance matrix Σ is a diagonal

matrix with all diagonal elements equal to some unknown value σ2, that is, Σ = σ2Ip. In

practical terms, one may test if a set of random variables are all independent and share the

same population variance, important condition for the analysis of variance scenario. Similar

to the criterion found in Muirhead (1982) which was first derived by Mauchly (1940), we

have the following theorem.
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Theorem 3.2. Define

T ?2 =
|S?|1/p

tr(S?)
(5)

where S? is defined as in (2). Under the assumption that Σ = σ2Ip, the distribution of the

pivotal random variable T ?2 can be obtained from the decomposition

T ?2
st∼ |Ω1Ω2|1/p

tr (Ω1Ω2)
(6)

where
st∼ means ‘stochastic equivalent to’ and Ω1 ∼ Wp

(
n− 1, Ip

n−1

)
is independent of

Ω2 ∼ Wp (n− 1, Ip).

Proof. See Appendix B.

A level α test for

H0 : Σ = σ2Ip vs. H1 : Σ 6= σ2Ip

reject the null hypothesis if, for an observed value S̃? of S?, we have∣∣∣S̃?∣∣∣1/p
tr(S̃?)

< t?2,α

where S̃? is an observed value of S?, and t?2,γ is the γth percentile of T ?2 in (5).

To obtain the values of t?2,γ, one may use Monte Carlo simulation as follows.

1. Generate W1 ∼ Wp(n− 1, Ip
n−1), and W2 ∼ Wp(n− 1, Ip), independently.

2. Calculate T ?2 = |W1W2|1/p
tr(W1W2)

3. Repeat steps 1-2M times and obtainM values of (5), which can be used to empirically

determine the cut-off value of (5).
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3.3 Testing the independence of two subsets of variables

Another feature of the covariance matrix that one might be interested in analyzing is if a

set of variables is independent of other set, which is in fact the same as analyzing if the

regression of one set on the other is equal to zero (Anderson, 1984).

For the construction of the procedures for the independence of subsets test, it is impor-

tant to begin by considering partitions of Σ, S and S? as follows:

Σ =

Σ11 Σ12

Σ21 Σ22

 , S =

S11 S12

S21 S22

 , S? =

S?11 S?12

S?21 S?22

 (7)

where Σ11, S11 and S?11 are p1 × p1 (p1 < p) matrices and let us consider p2 = p− p1.

We consider the problem of testing if the partition matrix Σ12 is a null matrix, and

have the following theorem.

Theorem 3.3. Define

T ?3 =
|S?|

|S?11| |S?22|
(8)

where S? is defined as in (2) and partitioned as in (7). Under the assumption that Σ12 = 0,

the distribution of the pivotal random variable T ?3 can be obtained from the decomposition

T ?3
st∼ |Ω|
|Ω11| |Ω22|

(9)

where
st∼ means ‘stochastic equivalent to’, for Ω ∼ Wp

(
n− 1, W

n−1

)
and W ∼ Wp(n−1, Ip),

and where

Ω =

Ω11 Ω12

Ω21 Ω22

 ,
partitioned in the same way as Σ.

Proof. See Appendix C.

7



The assumption of independence between two sets of variables, that is, the test of

hypothesis

H0 : Σ12 = 0 vs. H1 : Σ12 6= 0,

will be rejected if for an observed value S̃? of S? we have∣∣∣S̃?∣∣∣∣∣∣S̃?11∣∣∣ ∣∣∣S̃?22∣∣∣ < t?3,α

for α-significance level, where t?3,γ is the γth percentile of T ?3 in (8).

To obtain the values of t?3,γ, one may use Monte Carlo simulation as follows:

Given n, p and p1

1. Generate W1 ∼ Wp(n− 1, Ip), and W2 ∼ Wp(n− 1, W1

n−1), independently.

2. Obtain

W2 =

W11 W12

W21 W22


where W11 is a p1 × p1 matrix.

3. Calculate T ?3 = |W2|
|W11||W22|

4. Repeat steps 1-3M times and obtainM values of (8), which can be used to empirically

determine the cut-off value of (8).

3.4 Test for the regression of one set of variables on the other

In the previous section, one may find the procedure to test a very particular case of the

regression of one set of variates on the other, but one might be interested in characterizing

the dependence between two sets of variables, that is, if a subset of variables are constrained
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to have a linear relation, in some way, to the other subset. (Anderson, 1984; Muirhead,

1982). Thus, one is interested in testing if ∆ = Σ12Σ
−1
22 is equal to some ∆0.

The following Theorem will be important to construct an inferential procedure for the

above matrix parameter.

Theorem 3.4. Define

T ?4 =

∣∣∣(S?12 (S?22)
−1 −∆

)
S?22

(
S?12 (S?22)

−1 −∆
)′∣∣∣

|S?11.2|
(10)

where S? is defined as in (2), partitioned as in (7) and

S?11.2 = S?11 − S?12 (S?22)
−1 S?21. (11)

For ∆ = Σ12Σ
−1
22 where Σ partitioned as in (7), the distribution of the pivotal random

variable T ?4 can be obtained from the decomposition, for p1 ≤ p2,

T ?4
st∼

∣∣Ω12Ω
−1
22 Ω21

∣∣∣∣Ω11 −Ω12Ω
−1
22 Ω21

∣∣ (12)

where
st∼ means ‘stochastic equivalent to’, for Ω ∼ Wp

(
n− 1, W

n−1

)
and W ∼ Wp(n−1, Ip),

and where

Ω =

Ω11 Ω12

Ω21 Ω22

 ,
partitioned in the same way as Σ.

Proof. See Appendix D.

In order to test

H0 : ∆ = ∆0 vs. H1 : ∆ 6= ∆0
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one should reject the null hypothesis if for an observed value S̃? of S? we have∣∣∣∣(S̃?12 (S̃?22)−1 −∆0

)
S̃?22

(
S̃?12

(
S̃?22

)−1
−∆0

)′∣∣∣∣∣∣∣S̃?11.2∣∣∣ > t?4,1−α

for α-significance level, where t?4,γ is the γth percentile of T ?4 in (10).

To obtain the values of t?3,γ, one may use Monte Carlo simulation as follows:

Given n, p and p1

1. Generate W1 ∼ Wp(n− 1, Ip), and W2 ∼ Wp(n− 1, W1

n−1), independently.

2. Obtain

W2 =

W11 W12

W21 W22


where W11 is a p1 × p1 matrix.

3. Calculate D = W12W
−1
22 W21

4. Calculate T ?4 = |D|
|W11−D|

5. Repeat steps 1-4 M times and obtain M values of (10), which can be used to empir-

ically determine its cut-off value.

4 Simulations

We now provide a set of simulations to evaluate the performance of the four tests presented

in this work. All the simulations were performed using software Pythonr and codes can

be accessed at https://github.com/ricardomourarpm/PLS_VarianceStructure.
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Under the multivariate normal model with p = 4 µ = (1, 2, 3, 4)′ we consider four

different covariance matrices

Σ1 = I4, Σ2 = 5I4, Σ3 =


1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1

 Σ4 =


1 0.5 0 0

0.5 2 0 0

0 0 3 0.2

0 0 0.2 4

 (13)

chosen this way to illustrate the performance for all tests presented in the previous section.

We used Monte Carlo simulations with 105 iterations and estimated probability of not re-

jecting the null hypothesis when the null hypothesis is true (1−P (Type I error)) for nominal

α = 0.05 significance level. For every iteration the PLS single imputed dataset is created

using the method in Section 2 and the sample sizes considered are n = 10, 20, 100, 500.

Table 1 shows for any value of n and for selected covariance matrices defined in (13)

the estimated coverage values for:

• test for the Generalized Variance found in Section 3.1 under the column Generalized

Variance and selected Σ3 and Σ4;

• Sphericity test found in Section 3.2 under the column Sphericity and selected Σ1 and

Σ2;

• Independence test found in Section 3.3 under the column Independence and selected

Σ1 and Σ4, for p1 = 1 and p1 = 2, respectively;

• Test for the regression of one set of variables on the other found in Section 3.4 under

the column Regression and selected Σ3 and Σ4, for p1 = 2 and p1 = 1, respectively.

We may observe that all values in the table are approximately equal to the nominal

value 0.95, as expected.
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Gener. Variance Sphericity Independence Regression

Σ3 Σ4 Σ1 Σ2 Σ1 Σ4 Σ3 Σ4

n p1 = 1 p1 = 2 p1 = 2 p1 = 1

10 0.949 0.950 0.950 0.950 0.951 0.951 0.949 0.952

20 0.948 0.949 0.951 0.950 0.950 0.950 0.950 0.951

100 0.950 0.951 0.949 0.950 0.951 0.951 0.950 0.951

500 0.950 0.950 0.949 0.950 0.949 0.950 0.950 0.951

Table 1: Estimates of 1 − P (Type I error) for the tests of Sections 3.1, 3.2, 3.3, and 3.4 for n =

10, 20, 100, 500, p1 = 1, 2, µ = (1, 2, 3, 4)′ and Σ1, Σ2, Σ3 and Σ4 defined in (13).

5 Concluding Remarks

Under the assumption of a multivariate normal distribution on the original data, we derived

appropriate likelihood-based exact inference procedures using singly imputed synthetic data

generated under plug-in sampling method. In particular, inference procedures have been

developed for the Generalized Variance, the Sphericity test, the test of independence of one

subset of variables from other subset, and also for the regression vector of one subset on

the other. Simulation studies demonstrate that the four procedures perform as expected,

for all sample sizes, even for small sample sizes.
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Appendix A Proof of Theorem 3.1

From the proof of Theorem 3.1 in Klein and Sinha (2015b), we have that

S? ∼ Wp

(
n− 1,

S

n− 1

)
(14)

which by Theorem 3.2.15 in Muirhead (1982) leads to the fact that

(n− 1)p
|S?|
|S|
|S ∼

p∏
i=1

χ2
n−i. (15)

The above distributional result is independent of S. In turn, from Theorem 7.5.3 in An-

derson (1984), it follows that

|S|
|Σ|
∼

p∏
i=1

χ2
n−i (16)

where the χ2
n−i variables are all independent. Therefore it is easy to observe that T ?1 in

(3) will have the distribution of the independent product of (15) and (16), completing the

proof.

Appendix B Proof of Theorem 3.2

From (1), (14) and from Theorem 3.2.5. in Muirhead (1982), we observe that

S̃? = S−1/2S?S−1/2|S ∼ Wp

(
n− 1,

Ip
n− 1

)
(17)

and

˜̃S? = Σ−1/2SΣ−1/2|Σ ∼ Wp (n− 1, Ip) . (18)
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Considering (5), we will have

T ?2 =
|S?|1/p

tr (S?)
=

∣∣∣S1/2S̃?S1/2
∣∣∣1/p

tr
(
S1/2S̃?S1/2

) =

∣∣∣S̃?S∣∣∣1/p
tr
(
S̃?S

) =

∣∣∣S̃?Σ1/2 ˜̃S?Σ1/2
∣∣∣1/p

tr
(
S̃?Σ1/2 ˜̃S?Σ1/2

)
=

∣∣∣S̃? ˜̃S?Σ
∣∣∣1/p

tr
(
S̃? ˜̃S?Σ

) .
Under the assumption that Σ = σ2Ip, one may conclude that T ?2 will have the same

distribution as
|Ω1Ω2|1/p

tr (Ω1Ω2)

where Ω1 ∼ Wp

(
n− 1, Ip

n−1

)
is independent of Ω2 ∼ Wp (n− 1, Ip).

Appendix C Proof of Theorem 3.3

Considering Σ, S and S? partitioned as in (7) and from Proposition 1.3.2 in Kollo and

Rosen (2005), we have that

|S?| = |S?22| |S?11.2|

where S?11.2 = S?11 − S?12 (S?22)
−1 S?21. Therefore, we will have T ?3 in (8) as

T ?3 =
|S?11.2|
|S?11|

=
|S?11.2|∣∣S?11.2 + S?12 (S?22)

−1 S?21
∣∣

=
|S?11.2| |S11.2|−1∣∣S?11.2 + S?12 (S?22)

−1 S?21
∣∣ |S11.2|−1

=

∣∣∣S̃?11.2∣∣∣∣∣∣S̃?11.2 + S
−1/2
11.2 S

?
12 (S?22)

−1 S?21S
−1/2
11.2

∣∣∣ .
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where S̃?11.2 = S
−1/2
11.2 S

?
11.2S

−1/2
11.2 and S̃11.2 = S11 − S12 (S22)

−1 S21. From Theorems 3.2.5

and 3.2.10 in Muirhead (1982), we have

S̃?11.2|S ∼ Wp1

(
n− 1− p2,

Ip1
n− 1

)
. (19)

From the previous result we conclude that we only need to focus on the random variable

S
−1/2
11.2 S

?
12 (S?22)

−1 S?21S
−1/2
11.2 = ΓΓ′

where Γ = S
−1/2
11.2 S

?
12 (S?22)

−1/2.

From Theorem 3.2.10 in Muirhead (1982), we have that

S?12|S,S?
22
∼ Np1,p2

(
S12S

−1
22 S

?
22,
S11.2

n− 1
⊗ S?22

)
(20)

a matrix normal distribution, which leads to the fact that

S
−1/2
11.2 S

?
12|S,S?

22
∼ Np1,p2

(
S
−1/2
11.2 S12S

−1
22 S

?
22,

Ip1
n− 1

⊗ S?22
)

and, consequently to

Γ = S
−1/2
11.2 S

?
12(S

?
22)
−1/2|S,S?

22
∼ Np1,p2

(
S
−1/2
11.2 S12S

−1
22 (S?22)

−1/2,
Ip1
n− 1

⊗ Ip2
)
.

Therefore, we will have that, for p1 ≤ p2,

ΓΓ′|S,S?
22
∼ Wp1(p2,

Ip1
n− 1

,∆)

with non-central matrix ∆ = S
−1/2
11.2 S12S

−1
22 (S?22)

−1S−122 S21S
−1/2
11.2 . Let us now observe that

we may decompose the non-central matrix as ∆ = ∆1∆2∆
′
1, for ∆1 = S

−1/2
11.2 S12S

−1/2
22 and

∆2 = S
−1/2
22 (S?22)

−1S
−1/2
22 . Since, again from Theorem 3.2.10 in Muirhead (1982), one has

S12|Σ,S22 ∼ Np1,p2

(
Σ12Σ

−1
22 S22,Σ11.2 ⊗ S22

)
(21)
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we conclude that, under the hypothesis of Σ12 = 0,

∆1|Σ,S22 ∼ Np1,p2

(
p10p2 ,S

−1/2
11.2 Σ11.2S

−1/2
11.2 ⊗ Ip2

)
.

Since S11.2|Σ11.2 ∼ Wp1(Σ11.2, n−1−p2), we observe that the first element of the Kronecker

product, namely S
−1/2
11.2 Σ11.2S

−1/2
11.2 is the inverse of a Wishart matrix, independent of Σ,S22.

Concerning ∆2, it is easy to show that it is independent of S or Σ. From Theorem

3.2.10, we have

S?22|S22 ∼ Wp2(n− 1,
S22

n− 1
) (22)

which leads to

∆2 ∼ Wp2(n− 1,
Ip2
n− 1

).

In conclusion, T ?3 under the hypothesis Σ12 = 0 is a decomposition of random variables

whose distributions are independent from the original dataset and from the PLS single

synthetic dataset.

One may note that the proof for this theorem was executed considering p1 ≤ p2. For

p1 > p2 it is just a matter of considering initially the decomposition

|S?| = |S?11| |S?22.1|

where S?22.1 = S?22 − S?21(S?11)−1S?12, and proceed analogously.

Appendix D Proof of Theorem 3.4

Let us consider, one more time, Σ, S and S? partitioned as in (7). Let

∆? = S?12 (S?22)
−1 , ∆̂ = S12S

−1
22 and ∆ = Σ12Σ

−1
22 .
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From (20) and (21), we immediately obtain

∆?|S,S?
22
∼ Np1,p2

(
∆̂,

S11.2

n− 1
⊗ (S?22)

−1
)

and

∆̂|S22 ∼ Np1,p2

(
∆,Σ11.2 ⊗ S−122

)
.

Since

(∆? −∆) |S,S? ∼ Np1,p2

(
∆̂−∆,

S11.2

n− 1
⊗ (S?22)

−1
)

we get

Γ? = S
−1/2
11.2 (∆? −∆) (S?22)

1/2 |S,S? ∼ Np1,p2

(
S
−1/2
11.2

(
∆̂−∆

)
(S?22)

1/2 ,
Ip1
n− 1

⊗ Ip2
)

(23)

and conclude that, for p1 ≤ p2,

Γ?Γ?′|S,S? ∼ Wp1

(
p2,

Ip1
n− 1

,Ω

)
with non-central matrix Ω = S

−1/2
11.2

(
∆̂−∆

)
S?22

(
∆̂−∆

)′
S
−1/2
11.2 . Let us now consider

the decomposition Ω = Ω1Ω2Ω
′
1 where

Ω1 = S
−1/2
11.2

(
∆̂−∆

)
S

1/2
22 and Ω2 = S

−1/2
22 S?22S

−1/2
22

Since (
∆̂−∆

)
|S,S? ∼ Np1,p2

(
0p1,p2 ,Σ11.2 ⊗ S−122

)
we get

Ω1|S,S? ∼ Np1,p2

(
0p1,p2 ,S

−1/2
11.2 Σ11.2S

−1/2
11.2 ⊗ Ip2

)
which is in fact independent of S?, S and Σ due to the independence of S

−1/2
11.2 Σ11.2S

−1/2
11.2

as seen in the proof of Theorem 3.3 in Appendix C. From (22), we immediately observe

that

Ω2 ∼ Wp2(n− 1,
Ip2
n− 1

)
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also independent of S?, S and Σ. Thus the distribution of Ω is independent of S?, S and

Σ, and consequently is also the distribution of Γ?Γ?′ .

Let us now consider

τ ? =

∣∣(∆? −∆)S?22 (∆? −∆)′
∣∣

|S?11.2|
=

∣∣Γ?Γ?′
∣∣∣∣∣S̃?11.2∣∣∣ .

Recalling Γ? as defined in (23) and S̃?11.2 as defined and distributed as in (19), it is obvious

that τ ? will have a distribution independent of any parameter, besides n and p.

References

Anderson, T. W. (1984). An introduction to multivariate statistical analysis (3rd ed. ed.).

Wiley.

Drechsler, J. (2011). Synthetic datasets for statistical disclosure control: theory and imple-

mentation, Volume 201. Springer Science & Business Media.

Hawala, S. (2008). Producing partially synthetic data to avoid disclosure. Proceedings of

the Joint Statistical Meetings, American Statistical Association, 1345–1350.

Kinney, S., J. Reiter, and J. Miranda (2014). Synlbd 2.0: Improving the synthetic longitu-

dinal business database. Statistical Journal of the International Association for Official

Statistics 30, 129–135.

Kinney, S., J. Reiter, A. Reznek, J. Miranda, R. Jarmin, and J. Abowd (2011). Towards

unrestricted public use business microdata: The synthetic longitudinal business database.

International Statistical Review 79, 362–384.

18



Klein, M. and B. Sinha (2015a). Inference for singly imputed synthetic data based on

posterior predictive sampling under multivariate normal and multiple linear regression

models. Sankhya B 77-B(2), 293–311.

Klein, M. and B. Sinha (2015b). Likelihood based finite sample inference for singly imputed

synthetic data under the multivariate normal and multiple linear regression models.

Journal of Privacy and Confidentiality 7 (1), 43–98.

Klein, M. and B. Sinha (2015c). Likelihood-based finite sample inference for synthetic data

based on exponential model. Thailand Statistician 13 (1), 33–47.

Klein, M. and B. Sinha (2015d). Likelihood-based inference for singly and multiply imputed

synthetic data under a normal model. Statistics and Probability Letters 105, 168–175.

Kollo, T. and D. Rosen (2005). Advanced Multivariate Statistics with Matrices. Springer.

Little, R. (1993). Statistical analysis of masked data. Journal of Official Statistics 9 (2),

407.

Mauchly, J. W. (1940). Significance test for sphericity of a normal n-variate distribution.

The Annals of Mathematical Statistics 11 (2), 204–209.

Moura, R., M. Klein, C. A. Coelho, and B. Sinha (2017). Inference for multivariate regres-

sion model based on synthetic data generated under fixed-posterior predictive sampling:

comparison with plug-in sampling. REVSTAT - Statistical Journal 15 (2), 155–186.

Moura, R., M. Klein, J. Zylstra, C. Coelho, and B. Sinha (2018). Inference for multivariate

regression model based on synthetic data generated using plug-in sampling. Center for

Statistical Research and Methodology (CSRM) Research Report Series (#2018-02). U.S.

Census Bureau.

19



Muirhead, T. (1982). Aspects of Multivariate Statistical Theory. John Wiley & Sons, Inc.

Raghunathan, T., J. Reiter, and D. Rubin (2003). Multiple imputation for statistical

disclosure limitation. Journal of Official Statistics 19, 1–16.

Reiter, J. (2003). Inference for partially synthetic public use microdata sets. Survey Method-

ology 29, 181–188.

Reiter, J. (2005). Releasing multiply imputed, synthetic public use microdata: an illustra-

tion and empirical study. Journal of Royal Statistical Society 168, 185–205.

Rubin, D. (1993). Discussion: Statistical disclosure limitation. Journal of Official Statis-

tics 9, 461–468.

Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika, 471–

494.

20


	ScholarWorksCoverSheet_publicDomain1
	RRS2019-06
	RRS2019-06_title.pdf
	PLSVariance-1.pdf




