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1. INTRODUCTION

Recently, a great deal of attention has been devoted to the
problem of the generation of coherent terahertz (THz) ra-
diation because of the many possible applications that
have been identified: from spectroscopic imaging to radar
systems and from security and medical to biological pur-
poses as well as pure research purposes. Unfortunately,
the number and types of THz sources available are not al-
ways adequate for all possible applications mentioned.
This has led to a great deal of activity to come up with
new designs and sources with different characteristics.
Free-electron lasers and synchrotron radiation are power-
ful THz sources, but their physical size limits their appli-
cation. More compact sources are based on photoconduc-
tivity (electro-optic devices) and optical rectification (all
optical devices). In the first case a femtosecond laser op-
erating in the visible or near-infrared regime is used to
create electron—hole pairs that accelerate through an ap-
propriate electric field. The resulting changing dipole
leads the generation of THz radiation.? These kinds of
devices are usually referred to as photoconductive anten-
nas. In the second case a femtosecond pulse interacts with
a nonlinear crystal with a second-order nonlinear suscep-
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tibility, generating a THz pulse through optical
rectification.’ Organic and inorganic electro-optic crystals
such as 4’-N,N-dimethylamino-4-N-methylstilbazolium
toluene-p-sulfonate (DAST), ZnTe, GaAs, and LiNbO3,4’5
as well as polymers,® have also been exploited. A wide
range of techniques are currently under investigation in-
cluding quantum cascading,7 optical parametric
oscillations,® and femtosecond pulse shaping.9 Most of
these sources produce THz pulses. Continuous THz
sources can be obtained through difference-frequency
generation in second-order nonlinear crystals. In this case
two cw optical pumps interact in the crystal and generate
coherent THz radiation at frequency Aw=w;—wy, where
w1 and wy are the frequencies of the pumps. For this pur-
pose, inorganic crystals such as GaP and GaSe,!! for ex-
ample, have been used. Most recently, organic crystals
(DAST) with large nonlinearity have been explored with
promising results.'*!® Some limitations of those tech-
niques include low tunability range or low efficiency or
both. Low efficiency is usually due to material absorption
at THz wavelengths. Typical conversion efficiencies ex-
perimentally achieved are of the order 7~ 10-6.1

In this paper, we study THz emission from a y?-doped,
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one-dimensional photonic crystal (1-D PC) on the basis of
a rigorous Green function approach and a three-
dimensional (3-D) vector model. THz radiation is gener-
ated via a difference-frequency generation process, in
which two nearly degenerate optical pumps of frequencies
w1 and wy generate a frequency wz=w;—wy found in the
THz range. The pumps are assumed to work in a collinear
configuration. The 1-D PC structures that we study are
known to exhibit some peculiar properties, such as field
localization, superluminal pulse propagation in the band-
gap, and high density of modes, to name a few, but the
structure is flexible enough that it can be optimized for
various and quite different purposes, including nonlinear
frequency conversion.™ Previously, the dispersive proper-
ties of photonic bandgap structures had been used to solve
the phase-matching problem using the optical rectifica-
tion effect.'® The use of 1-D layered structures, in order to
generate submillimeter wavelengths through difference-
frequency generation, was already anticipated by Bloem-
bergen and Sievers'® in 1970. In their seminal paper, the
authors discussed the properties of nonlinear optics, in
particular, of second-order phenomena, namely, second-
harmonic and sum- and difference-frequency generation
in such structures. Although Bloembergen and Sievers
considered infinite structures, the results they obtained
have general validity: They showed that the periodicity of
the layered structure can be used to compensate the nor-
mal dispersion of materials in order to obtain high con-
version efficiency through phase-matched second-order
interactions. On the other hand, as we will see later, in
the case of finite structures the efficiency of second-order
interaction is not directly linked to a phase-matching
term but rather to overlap integrals of the interacting
fields, as also discussed in Refs. 17 and 18. A first study of
THz emission in 1-D PCs that used a coupled-mode analy-
sis to describe multiple-field confinement, enhancement,
and overlap near the photonic band edge of 1-D photonic
bandgap structures was described in Ref. 19 That study,
which analyzed THz emission from a defect layer, showed
that it was possible, at least in principle, to obtain con-
tinuous and tunable sources from the sub-THz regime up
to 12 THz. The advantages of using finite 1-D PCs to gen-
erate THz radiation can be found in the flexibility of those
structures that allow achieving high conversion efficiency
either in a collinear or a noncollinear configuration owing
to high-field localizations.

The paper is organized as follows. In Section 1 we dis-
cuss the properties that a 1-D PC structure should have
to efficiently generate THz radiation. In Sections 2 and 3
we develop a 1-D model and 3-D model, respectively, both
based on the Green function theory. The results of the two
models are then compared. In Section 4 we study the be-
havior of THz generation in a counterpropagating pump
configuration.

2. GENERAL CONSIDERATIONS

We are studying THz generation via a second-order pro-
cess, which means we have two pumps and four second-
order processes involved and four generated fields. Three
of those fields are generated at optical frequencies
(2w1,2w9, w1+ wg), while the fourth is generated in the
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Fig. 1. Transmission spectrum of a 1-D periodic structure. The
elementary cell is made by two layers of refractive index n;
=1.8 and ny=1.4 at the frequency \g=1 um. The higher-index
layer exhibits a normal dispersion. The thicknesses of the two
layers are, respectively, d,=\o/2n,ds=N¢/4n,. The structure is
surrounded by air (ny=1). The transmission is a function of the
normalized frequency w/wy, where wy=2mc/\,. In the inset is re-
ported the spectrum of THz frequencies as a function of THz. The
dark region in the inset is the part of the THz spectrum for which
all the undesired second-order processes fall in the gap.

THz region (w;—w,). The efficiency of optical processes is,
in general, much greater than THz generation, and so
those processes cannot be ignored. The first challenge is
to inhibit any undesired process. The transmission spec-
trum of a 1-D PC is characterized by wide bandgaps and
relatively narrow transmission peaks. Frequencies that
fall inside the gap correspond to modes that are not sup-
ported by the cavity and have poor localization
properties,?’ so that if a generated frequency falls inside
the gap, the related process is practically inhibited. The
key to efficient THz generation is then to find a structure
in which all the generated frequencies, except the THz,
are tuned inside a transmission gap. The two optical
pumps (w; and wy) are nearly degenerate (w;~ wy~ w);
therefore, one important condition is to design a 1-D
structure such that the frequency 2w happens to fall in-
side a gap.

As an example, in Fig. 1 we show the transmittance of
a 1-D structure composed of 40 periods of alternating lay-
ers (n1~1.8,ny~1.4) whose thicknesses are chosen to be
a=\N/2n; and b=N\/4ng, respectively, where \ is the refer-
ence wavelength A=1 um. The high-index layers are as-
sumed to possess normal dispersion, whereas, for simplic-
ity, the low-index material is assumed to be
dispersionless. Figure 1 thus suggests that if the pumps
w1 and wy are chosen near the first-order band edge, as
indicated, then the frequencies 2w;,2wy, and w;+wq are
to be found somewhere inside the second-order bandgap,
and their generation will be suppressed. On the other
hand, the wave at the difference frequency w;—w, (THz)
will be tuned within the first passband, away from any
gap, and so it will not be inhibited.

3. PLANE-WAVE APPROACH

In this section we follow a plane-wave approach to de-
scribe the multiwave interaction. We deal with a six-field
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problem: two pumps (w; and wy), the second harmonics (
2w; and 2w,), the upconverted or sum frequency (w;
+wy), and the downconverted or difference frequency (w;
—wy). We have to solve a system of six coupled, second-
order differential equations:
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In the system of Eqs. (1), d? is the nonlinear optical co-
efficient. It is assumed to be 100 pm/V for all processes, a
practical but sensible value for many semiconductor ma-
terials.

In the undepleted pump regime, all the recombination
processes can be neglected, and the formal solution of sys-
tem (1) is
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where ®,* and @, are the right-to-left (RTL) and left-to-
right (LTR) linear propagating modes of the
structure,?*? respectively, at frequency , with
=2w1,2w9,w1+wg,w;—wye. The propagation modes are
steady-state waves, and in each layer they have the form
of a superposition of forward- and backward-propagating
plane waves (the general solution of the Helmoltz equa-
tion), with suitable coefficients that can be calculated
through a standard matrix transfer method.?® Moreover,
the LTR mode satisfies the boundary conditions

’
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compatible with a plane wave that propagates from left to
right. The RTL mode satisfies the boundary conditions
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compatible with a plane wave that propagates from right
to left. In Eq. (2), A;,A5,B;, and By are complex coeffi-
cients that have the dimensions of an electric field. These
coefficients are uniquely determined by the boundary con-
ditions. In the special case of LTR incidence, B; and B,
are zero, while A; and A, are the magnitude of the pumps’
electric fields at the first interface. On the other hand, in
the case of RTL incidence, A; and A, are zero, while B;
and B, are the magnitudes of the pumps’ electric fields at
the last interface. In this section we will study only the
case of LTR incidence, so B; and By are set to zero. In
Eq. (2), G, is the Green function at frequency o
=2w1,2w9, w1+ w9, W1 — Wy: 122

1 [eoye@ne 0=z<¢

Gl = (@ | @00 e<z<L @ O

where t(w) is the transmission of the structure at fre-
quency w.
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In the plane-wave regime, the conversion efficiency #» of
a process is defined by the ratio of the intensity of the gen-
erated wave I, and the sum of the input pump intensities
Iyump: 1=1g/ 21, ymp. In this case, forward #* and backward
7~ conversion efficiencies can be defined without ambigu-
ity as follows: 7*=I5/3Inp, Where I are the intensities
of the generated electromagnetic field in the forward (+)
and backward (-) directions. Taking into account the re-
lation between the intensity and the electric field for the
plane waves (in complex notation) I= ey c|E|?, we have for
the conversion efficiencies of the four generated waves
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Fig. 2. Conversion efficiency versus generated THz frequency.
The solid curve is the total conversion efficiency, defined as 7
= D2ay + M2yt Ny rwy+ Twj-w, The long-dashed curve is the forward
THz conversion e%ﬁciency 7mh, multiplied by 100. The short-
dashed curve is the backward THz conversion efficiency 7 1y,
multiplied by 100. The two pumps are arranged as shown in Fig.
3. The intensity is assumed to be 10 GW/cm? for each pump.
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Fig. 3. Transmission spectrum as a function of the normalized
frequency near the band edge. w; is fixed on the band-edge reso-
nance, whereas w, is moved back in frequency.
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Fig. 4. Transmission and square modulus of the overlap inte-
grals as a function of the second pump’s normalized frequency
(lower scale) versus the THz-generated frequency (upper scale).
Dark curve, the transmission (T); dark dashed curve, the sum of
all the THz overlap integrals (I, tot); gray curve, the THz for-
ward overlap integral (Ipy, for); gray dashed curve, the backward
overlap integral (Irq, back); and gray short-dashed curve, the
sum of the overlap integrals of all the other generated frequen-
cies, the optical ones (ZI,y).

where grating (z) is the grating of the second-order non-
linearity. I; is the intensity of the pump at frequency
w1,I5 is the intensity of the second pump, @ is the ratio
I,/1,, and I, is the total intensity I1+I5. From Eq. (4), it
follows that we have the higher conversion efficiency for
the difference frequency (and the sum frequency) when
the two pumps are balanced (I;=1,). So we will consider
only the case I1=1I,. The total conversion efficiency 7 is
defined as the sum of all the conversions efficiencies:
Tot=27;. In Fig. 2 we report 7, as a function of the gen-
erated THz radiation. The total intensity is fixed to a
value of 20 GW/cm? (10 GW/cm? for each pump). w; is
tuned at the band edge, whereas wq is chosen such that
(w1—wy) ranges from 1 to approximately 10 THz (see Fig.
3) and in such a way that the second harmonic always
falls inside the second-order gap to suppress its conver-
sion efficiency. As shown in Fig. 2, the undepleted pump
approximation is well verified also for the relatively in-
tense, incident fields we are considering. The conversion
efficiencies of Eqs. (4) are proportional to the product of
the square of the frequency (L/\)? and a term that repre-
sents the structure’s properties via an overlap integral
that we focus on below:
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In Fig. 4 we report the behavior of the integral overlap as
a function of wy (lower scale) and the generated THz fre-
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quency (upper scale). We have greater total efficiency at 1
THz, when the two pumps are both tuned to the band-
edge resonance, and the largest forward efficiency at 2.5
THz, when the wgy is tuned to the second transmission
resonance. This suggests that if one wishes to generate a
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Fig. 5. Overlap integrals as functions of the normalized first pump frequency w;/w,, for four generated frequencies: (a) w;—wy
=1 THz, (b) ;- wy=2.4 THz, (¢) w;-wy=5 THz, (d) w;—wy=7.5 THz. Black curve, the transmission; black dashed curve, the sum of the
THz overlap integrals (Overlap Tot); gray curve, the forward THz overlap integral (Overlap F); gray dashed curve, the backward overlap
integral (Overlap B).
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low THz frequency (~1 THz), better results can be ob-
tained with a structure having broader resonances, such
that both pumps can be tuned within the same resonance.
For example, with a similar structure (25 periods instead
of 40) the overlap integrals at 1 THz (and so the conver-
sion efficiency) are nearly double. Moreover, the structure
(at least for LTR incidence) will generate efficiently up to
3—-4 THz, as the overlap integral becomes progressively
smaller at higher frequencies.

Up to now we have used a fixed value of w; to maximize
its localization properties while tuning wy to lower fre-
quencies. This may not be the best choice, but it provides
a good qualitative picture of what one may expect for
structures similar to our own. If the desired outcome is a
tunable device with only one tunable pump, the situation
we have described is suitable. In Fig. 5 we show what
happens to the overlap integrals if we tune w; away from
the band edge, for the generation of 1, 2.4, 5, and 7.5 THz.
The result is that only for the highest frequency (7.5 THz)
the chosen configuration is not ideal. The plane-wave ap-
proach offers a complete description for all the optical fre-
quencies because it allows the calculation of the conver-
sion efficiency as long as the spatial properties of the
emitted fields are those of plane waves. In fact, this model
offers only partial information on THz emission in that,
although it allows a correct estimation of the conversion
efficiency, diffraction of the generated THz waves is not
taken into account, and we have little or no information
on the spatial distribution of the radiation. This aspect of
THz generation will be discussed in Section 4 with the
help of a 3-D model.

4. THREE-DIMENSIONAL APPROACH

In this section we develop a 3-D model to simulate the
spatial characteristic of THz generation. The THz signal
is generated from the interaction of two optical pumps in
a volume that can be approximated with a cylinder of ra-
dius R (equal to the pumps’ spot size) and length equal to
the length of the 1-D PC structure (See Fig. 6). As ex-
plained in Section 3, we can neglect all the recombination
terms. The THz field, according to Maxwell’s equations,
satisfies the vectorial equation

V XV X E - 0?uyeE = 2¢,d?:E,E;. (6)

Equation (6) has the formal solution
E= Mowzf dV’G(r,r’)Zeoj(Z):ElE;, (7)
v

where G(r,r’) is the dyadic Green function of the prob-

lem; d@ is the nonlinear tensor; E; and E, are the pump
fields. Without lack of generality we will study the con-
figuration E;//E;//PNL. As the THz wavelength is much
greater compared with the length of the structure, the
structure itself may be considered a point source of THz
radiation. In Eq. (7) we can use the free-space dyadic
Green function.?® In the far-field approximation, the dy-
adic Green function reduces to the simple form?
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Fig. 6. Configuration of the 3-D simulations. The pumps enter
the structure at normal incidence; the interactive area is a cylin-
der of radius R equal to the spot size and length L equal to the
photonic crystal length.—PBG, H.

1 ) rer
Gij(r,r’)=(5,j—xixj)mexp(zkor)exp —ikg —

(8)

Assuming a plane-wave form for the pump fields from
Egs. (6) and (7), we arrive at the following expression for
the electric field:

E = poe0’d PALA; expl(ikor)

I-—= 1, )

where Ix=f€dx’ exp{~i kol (x x')/r]}d}(x")D3(x")" grating
(x"),eJ; is the Bessel function of order 1, p?=y?+22, and A
and A, are the amplitudes of the pump fields E; and E,.

From Eq. (9) the square modulus of the electric field
and the Poynting vector (S) can easily be calculated. The
intensity of the electromagnetic field is given by the
modulus of the Poynting vector. It comes out that the
emission is directional, namely, the intensity of the elec-
tromagnetic field is largest near the x axis and the direc-
tion of the Poynting vector is nearly along the x axis.
Moreover, even if the emission is not in the form of a
plane wave, we have that |S|<E-E’.

The THz emission obtained by pumping the 1-D PC
structure may be compared with the emission obtained
from an equivalent bulk and that of an equivalent dipole.
In Fig. 7 we show both bulk and equivalent dipole emis-
sions for the generation of 1, 2.5, 5, and 7.5 THz.

The equivalent bulk is composed of a nonlinear mate-
rial of length L1 equal to the sum of all the nonlinear lay-
ers in the 1-D PC structure. The emission from that struc-
ture is found following the model developed by Shen.?

The equivalent dipole is a point dipole of intensity
given by the sum of all the dipoles distributed in the 1-D
PC structure. Although the point dipole is an idealization,
comparing this case with the 1-D PC and the bulk shows
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that the 1-D PC and the bulk have a much more direc-
tional emission. That directionality is due to the fact that
in both cases the dipoles are excited by highly directional
optical pumps. As predicted by the plane-wave approach,
the emission from the 1-D PC structure can be much
higher than the emission from the bulk. In particular, at 1
and 2.5 THz, Figs. 7(a) and 7(b), we have an enhancement
of nearly 6 with respect to the bulk. At 5 THz the emission

n
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from the 1-D PC and from the bulk are nearly equal. At
7.5 THz there is no advantage in using the 1-D PC.

To evaluate the conversion efficiency, we calculate the
flux of the Poynting vector through a close surface and di-
vide it by the flux of the pumps through the input surface
S (a circle of radius R). For example, we can enclose the
source in a cylinder of radius ¢ and length 2d, where d
> L (far-field approximation). In that case we have

a 2 a 2m d 2m
J dppJ d(PSx(dyP’ (P) - f dppJ d(PSx(_ d’P, 90) + af dx,J d(p[Sy(x',a, QD)COS ¢+ Sz(x”ay (P)Sin (P]
0 0 0 0 -d 0

mR2eyc(A% + A2)

Note that the Poynting vector goes to zero far from the x
axis. So if in Eq. (10) the radius a is taken large enough to
contain the peak of the emission, we identify three contri-
butions to the conversion efficiency: forward (7*), back-
ward (77), and lateral (%'2f) conversion efficiencies, as fol-
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The forward and the backward conversion efficiencies are
proportional to the flux of the Poynting vector through the
basis of the cylinder. The lateral conversion efficiency is
proportional to the flux of the Poynting vector through the
lateral surface of the cylinder.

It turns out that the emission through the lateral sur-
face is negligible with respect to the emission through the
basis of the cylinder. Expressions (11) can be recast in the
following form:

(b)
3000 2.5THz
----- Bulk
= 2000 -—- Dipole
Sid o
) PBG
1000 - _
0 Il \\
40000 -20000 0 20000 40000
z[um]
] 600
(@) 75THz |
S Bulk
-—— Dipole
— PBG
oY il ) PO e
40000 -20000 0 20000 40000
z[pm]

Square modulus of the electric field, at a plane parallel to the yz plane, with distance of 4 cm from the source, in the forward

direction as a function of the z coordinate. Solid curves, the photonic crystal emission; dashed curves, the equivalent dipole emission;
short-dashed curves, the equivalent bulk emission. (a) w;—ws=1 THz, (b) ;- wy=2.5 THz, (¢) w;—wy=5 THz, and (d) w;—-wy=7.5 THz.
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A 2)? Q L\
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with

1 1 1
_ 2 2, 27 |2
I;q_ 7TL2.£y2+22r4(J1) [ra(a +2IL|

+2%r Re(IxLx*)]ds ,

-1 1
I, = — y—2+ZZF(J1)2[_ ra(a® + 22)|L?
+2°r Re(L.L, ) ]ds. (13)

In Egs. (13) Lx=f€dx’x’ exp[—iko(axx' /)]0 (x")DF(x')"
grating (x'). The a-dimensional quantities I ;'q and I, play
in the conversion efficiency of the 3-D model the same role
as the overlap integrals defined in Eq. (5).

In Fig. 8 we compare the behavior of the overlap inte-
grals in the two models. Although the two models have
the same qualitative behavior, there are some quantita-
tive differences owing to the fact that, on the one hand,
the 3-D model neglects the internal details of the struc-
ture for the THz frequency, whereas, on the other hand,
the 1-D model neglects the 3-D aspect of the emission.
The localization of the field grows with frequency, while
the emission spread goes in the other direction. So, at
higher frequencies, the field localization becomes domi-
nant, and the 1-D model makes more accurate predic-
tions, whereas at lower frequencies it is the 3-D model
that becomes more accurate. THz frequencies lie in the
transition region between those two regimes. In Fig. 9 we
plot the field localization (the square modulus of the 1-D
PC modes) moving from the microwaves to the far infra-

1.2
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8 o EqOverlap Tot
— — Overlap Forward
0.8 o EqOverlap Forward
-~ -+ Overlap Backward
F\D / v EqOverlap Backward
o
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\
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1.0 35 6.0 8.5

Fig. 8. Overlap integrals (curves) and their equivalents for the
3-D model (points) as functions of the generated THz frequency.
Solid curve and circles, the total (sum of the forward and back-
ward) overlaps (Overlap Tot and EqOverlap Tot); dashed curve
and squares, the forward overlaps (Overlap Forward and
EqOverlap Forward); short-dashed curve and triangles, the back-
ward overlaps (Overlap Backward and EqOverlap Backward).
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Fig. 9. Field localization as a function of the propagation coor-
dinate x, for several incidence frequencies v, in the plane-wave
approximation. Solid curve, »=100THz; dashed curve, v
=10 THz; short-dashed curve, v=1 THz; dashed—dotted curve, v

=0.1 THz. Gray curve, the refractive index grating of the
structure.

red. If there is no localization, we will have a constant
value of 1; otherwise, we will see oscillations and may be
high-localization zones. It is clear that, from this point of
view, THz frequencies represent a transition region. Even
if we do not have strong-field localization, one cannot as-
sume that THz radiation is not affected by the structure.

5. FOUR-GATE SYSTEM

As shown by Centini et al.,26 the use of the 1-D PC struc-
ture as a four-gate system, namely, the structure is
pumped from both sides, modifies the field distribution of
the pumps inside the structure. This effect allows us to
change the conversion efﬁciencyz6 and the ratio of the for-
ward and backward emissions by changing the phase dif-
ference between the RTL and LTR input fields. The over-
lap integrals [Egs. (5) and (13)] become functions of the
phase differences Ap; and Agy between the RTL and LTR
incident fields at frequencies w; and wy, respectively. In
particular, pumping from both sides makes it possible to
control (a) field localization in the active layers and (b) the
amount of relative forward and backward THz emissions.
To take advantage of effect (a), we need the pumps to be
tuned at the transmission peaks near the band edge,
where the field is most intense. To take advantage of ef-
fect (b), we need the LTR and RTL modes of the generated
frequency to have different localization properties.

In Fig. 10 we report field localization of the structure’s
modes (LTR and RTL) for 1, 2.5, 5, and 7.5 THz. At 1 THz
the field is not affected by the structure: There is no field
localization, and the LTR and RTL are practically the
same and flat. In this case we may not change the balance
of the forward and backward emissions. Moreover, the
two pumps are tuned at the band edge, and we expect to
have higher conversion efficiency. At 2.5 THz, LTR and
RTL mode localizations are sensibly different. We expect
to be able to change the balance of the forward and back-
ward emissions in an equally sensible way. In that only
one pump is tuned at the band edge, we do not expect to
fully exploit field localization effects. At 5 and 7.5 THz the
LTR and RTL modes are still localized differently, and so
we can partially control the directionality of the emission.
But the efficiency of the process will not be as high as also
having the second pump tuned far from the band edge.
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Fig. 10. Field localization as a function of the propagation coordinate x, in the case of LTR incidence (solid curves) and RTL incidence
(dashed curves). The frequency v is (a) 1 THz, (b) 2.5 THz, (¢) 5 THz, (d) 7.5 THz.

In the conversion efficiency formulas, in the case of
LTR plus RTL incidence, the only factors that change are
the overlap integrals, Eq. (5), and the corresponding
quantity in the 3-D model, Eqgs. (13). In Egs. (5) and (13),
fl):;l(z) must be replaced by ®21(2)+<I);1(2)exp(iAgol), and
fl)fwz(z) must be changed to (I”_'wZ(z) +<I>:w2(z)exp(iA<p2). Be-
cause in the case of symmetric or nearly symmetric struc-
tures, ¢, (z)=~¢_(L-z), the following condition is satisfied:
I (-A@y,~Agg)=T*(Agy,Agy)

This means that if the behavior of the forward overlap
integral is known, then the backward overlap integral is
also known. The phase differences Ap; and Ay can be
chosen (at each frequency) in order to maximize the total
conversion efficiency (%*+ 7~), namely, the sum of the for-
ward and backward overlap integrals, as well as the for-
ward or the backward conversion efficiency.

In Fig. 11 we show what happens when Ap; and Agg
are chosen in order to maximize the total conversion effi-
ciency. Note that Ap; and Agy have a different value for
each frequency. The forward and the backward overlap in-
tegrals, as well as the sum of the two, are plotted as func-
tions of the generated THz frequency. Comparing the be-
havior of the total overlap integral with the case of LTR
incidence (Fig. 8), we find an enhancement factor of
nearly 4 at 1 THz, which translates to an enhancement
factor of nearly 20 with respect to the bulk. Moreover, the
four-gate system is always more efficient than the one-
sided incidence, but any significant advantage quickly
goes away as the second pump moves away from the band
edge, and the generated frequency increases. The maxi-
mum efficiency is reached almost always when the for-
ward and the backward emissions are nearly equal. The

4
—_— —— Opverlap tot
£ EqOverlap tot
& 3 o qOverlap to
2 — — Overlap forward
= = EqOverlap forward
E" 2 ---- Overlap backward
E +  EqOverlap backward
o
1
0 \ '\:\\:‘2__—:?"?‘;}:8»_1__
2.5 5.0 7.5
v [THz]
Fig. 11. Overlap integrals (curves) and their equivalents for the

3-D model (points) in the case of both sides’ incidence. For both
pumps, the phase difference between the LTR and the RTL
beams is chosen in order to maximize the total conversion effi-
ciency. Solid curve and circles, the total overlaps; the dashed
curve and squares, the forward overlaps; the short-dashed curve
and the triangles, the backward overlaps.

3-D and the 1-D models show some quantitative differ-
ences for reasons that were discussed earlier. In Fig. 12
we show what happens when A¢; and Ay are chosen in
order to maximize the forward conversion efficiency. Ac-
cording to Fig. 10, near 1 THz, we cannot control the di-
rection of the emission. In that case forward and back-
ward emissions are similar. As one moves to higher
frequencies, control of the directionality of the emission
increases, and the efficiency drops.



Mattiuceci et al.

4
= —— Overlap tot
& 3 o EqOverlap tot
o
= ——- Overlap forward
; +  EqOverlap forward
.i.: 2 —--- Overlap backward
o EqOverlap backward
=)

Fig. 12. Overlap integrals (curves) and their equivalents for the
3-D model (points) in the case of both sides’ incidence. For both
pumps, the phase difference between the LTR and the RTL
beams is chosen in order to maximize the forward conversion ef-
ficiency. Solid curve and circles, the total overlaps; the dashed
curve and squares, the forward overlaps; the short-dashed curve
and the triangles, the backward overlaps.

6. CONCLUSION

We have developed a 3-D model able to simulate THz
emission from a photonic crystal structure via difference-
frequency generation. The model allows the calculation of
the conversion efficiency as well as the spatial properties
of the emission. This model also shows that 1-D PC struc-
tures are versatile and powerful devices, able to effi-
ciently generate THz frequencies. The general analysis on
THz emission in a photonic crystal structure carried out
in this study is a useful overview that will allow us to
properly design structures for specific purposes.

In this paper we have not referred to any particular
material, and so our results have general validity, thanks
in part to the fact that 1-D PCs with similar characteris-
tics can be obtained by one’s adjusting the number of pe-
riods or the index contrast or both. A structure with low
index contrast and large number of periods behaves like a
structure with a high index contrast and fewer periods.
Moreover, we stress that not all materials suitable for
stratification have been characterized in the THz regime,
and, at the present time, the best candidate for nonlinear
material appears to be GaAs, which has already been
used to generate THz pulses via optical rectification.’

Corresponding author M. Scalora can be reached by
e-mail at michael.scalora@us.army.mil.
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