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Abstract

It is well documented that decadal climate variability (DCV) has a significant im-
pact on water resources in the Missouri River Basin (MRB). This project aims to
utilize multi-decadal simulations of Global Climate Models (GCM) from the Climate
Model Inter-comparison Project (CMIP5) to assess the DCV impact on water yield and
streamflow over the MRB using a widely utilized hydrology and crop model known
as the Soil and Water Assessment Tool (SWAT). We use low-resolution ( 100km x
100km) data from MIROC5 and HadCM3 GCMs with 57 years of climate simulations
at approximately 30,000 locations. The weather parameters included in the GCMs are
monthly precipitation, maximum/minimum temperatures, sea-level pressure, relative
humidity, and surface wind speed. We downscale all the parameters to match high reso-
lution (12km x 12km) observed data using a two-step procedure. First, GCM-simulated
weather parameters are spatially interpolated to the resolution of the observed data,
and then multiple linear regression (MLR) is used to capture features of the observed
data. The coefficients from regression are combined with hindcast data from the two
GCMs to compute monthly predictions of maximum/minimum temperatures, and pre-
cipitation to input into SWAT. A Weather Generator tool in SWAT is used to generate
the daily values necessary to input into SWAT using the monthly predictions and ob-
served weather statistics. We modified a previously developed Graphical User Interface
(GUI) in R to streamline the process and include more options for users. We explore
if the use of different GCMs and the additional weather parameters in the regression
models improve the accuracy of predicting the above-mentioned variables in the MRB.
The procedures and GUI developed in this project will allow the client to conduct nu-
merous studies with improved efficiency to assess sensitivity of water resources within
the MRB resulting from climate variability and change scenarios.
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1 Introduction

The Missouri River Basin (MRB) is the largest river basin in the United States, covering
more than 500,000 square miles and including parts of ten U.S. states, which amounts to
about one-sixth of the United States. The MRB is a very important agricultural region, with
12% of all U.S. farms and 28% of all land used for farming in the basin [9]. Approximately
90% of the basin’s cropland is not irrigated and is therefore entirely dependent on precipita-
tion. As climate variability and change impact fresh water availability, and thus agricultural
production, it is highly relevant to investigate expected climate conditions in the MRB, in
order to develop strategies to manage production in this essential agricultural region.

The Missouri River Basin is an excellent region to understand the effect of climate vari-
ability, particularly temperature and precipitation, on water and crop yields long-term, as
quality observations are available for validation. In order to assess crop and water yeilds,
data from Global Climate Models (GCM), downscaled to 12km x 12km grid resolution from
the original 100km x 100km, are used in conjunction with a hydrology and crop model,
the Soil Water Assessment Tool (SWAT), to predict crop and water yields in the MRB.
The primary objective of this project is to create an end-to-end tool that streamlines the
computational procedures to downscale data, input into SWAT and output understandable
results.

In this project we focus on: (1) generating high-resolution weather parameters (tempera-
ture and precipitation) by downscaling GCM data for monthly averages of these parameters
and inputting these parameters into SWAT, (2) improving the efficiency and accuracy of
model fitting and forecasting, and (3) improving the previously developed Graphical User
Interface (GUI) tool to perform calculations on data from either the HadCM3 or MIROC5
GCM data sets, input the downscaled data to SWAT, and visualize SWAT outputs.

The paper is organized as follows: Section 2 gives a detailed explanation of the back-
ground of the project and the work done by the UMBC HPCREU 2014 team. Section 3
describes the statistical and computing methods used in the project and outlines the results
obtained. Lastly, Section 4 summarizes the findings and gives suggestions for future work.

2 Background

Natural climate variability and climate change in regional temperature, precipitation, winds
and humidity have significant impacts on fresh water availability and agricultural output.
In order to better assess these challenges posed by the changing climate conditions, a multi-
institute (CRCES, Texas A&M, UMBC-JCET, NDMC) project supported by the US Depart-
ment of Agriculture-National Institute for Food and Agriculture (USDA-NIFA) was created
to assess the impacts of decadal climate variability on water availability and crop yields in
the Missouri River Basin [3]. The client-team from UMBC-JCET has used both daily and
monthly low resolution data for precipitation (pr), maximum, and minimum temperature
provided by the two Global Climate Models HadCM3 [7] and MIROC5 [11] to generate high
resolution data needed to run SWAT [4].

Downscaling the daily maximum/minimum temperatures, and precipitation in MRB
using MIROC5 data was previously studied and implemented by the 2014 UMBC REU
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team [3]. They have used the daily data to model and their predictions were also at the
daily level. We, on the other hand, have used the data at the monthly level (monthly aggre-
gated daily data) and SWAT’s weather generator to produce predictions at the daily level to
be used for further processing by SWAT. There is interest in using monthly averaged data as
the downscaling is computationally easier, and faster. Also, simpler linear regression models
can be used, especially for precipitation.

The UMBC-JCET team previously focused on the MIROC5 data [8], but it came to
their attention that while the downscaled minimum and maximum temperature forecasts
are close to the observed temperature, this is not true for precipitation. This observation
lead the 2014 UMBC REU team to investigate ways to improve the quality of downscaling,
and ended up using the Tobit regression model [2] in their project as it is shown to be more
appropriate for mixed data, which daily precipitation is as it contains many zero values.

The 2014 REU team improved the quality of downscaling using MIROC5 data, paral-
lelized the downscaling code, and created a Graphical User Interface (GUI) in R that could
call functions to downscale data. However, the GUI did not run the parallelized downscaling
and could not directly input data into SWAT to get crop yield estimates.

We are interested in further improving the quality of downscaling by adding additional
weather parameters such as wind, sea level pressure, and average temperature to the re-
gression models. We investigate whether using monthly averages rather than daily data can
improve forecasting as monthly averaged data is not entirely mixed, and simpler linear re-
gression forms than Tobit regression could be used. We also investigate if using monthly data
as an input for SWAT from R is feasible. Finally, we add the ability to choose different GCM
models in the tool, namely MIROC5, and HadCM3 and explore the accuracy of predictions
from each model.

3 Methodology and Results

3.1 Data

For our study, we consider daily observed data for 57 years (1949-2005) provided by Mau-
rer [5] for the MRB. The model data being used comes from two different GCMs, MIROC5
and HadCM3. We use the following variables from the HadCM3 model data: precipitation,
near surface relative humidity, sea-level pressure, wind speed, maximum temperature, min-
imum temperature, and near surface air temperature. These variables are at every 3.75◦

longitude-2.5◦ latitude, making the resolution of HadCM3 data 417 km longitude, 277.8 km

latitude. The precipitation is recorded in kg/m2

s
, which is converted to mm

day
by multiplying

by a factor of 86,400. The near surface temperature, maximum temperature, and minimum
temperature are measured in K (Kelvin). The near surface wind is measured in m

s
and the

sea-level pressure is measured in pascals (Pa). Lastly, the relative humidity is recorded as %.
HadCM3 simulated data is available covering the entire earth, spanning from 0◦ to 356.25◦

longitude and −90◦ to 90◦ latitude. HadCM3 data follows a 360-day calendar whereas the
observed data follows the regular calendar. Prior to analysis, HadCM3 data is aligned by
repeating/discarding the last day(s) of each month depending on whether the month has 30
or 31 days, or for February, one or two values are discarded depending on whether the year
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Table 3.1: Variable Units by Model

Variables MIROC5 HadCM3
Maximum Temperature K K
Minimum Temperature K K
Near Surface Air Temperature K K
Precipitation mm

day
mm
day

Sea-level Pressure Pa Pa
Wind Speed m

sec
m
sec

is a leap year.
MIROC5 also provides data for the same set of variables, recorded in the same units.

MIROC5 data provides values every .125◦ latitude, .125◦ longitude. The range of spatial
data is from 34.9375◦ to 50.0625◦ latitude and from −120.0625◦ to −84.9375◦ longitude.
MIROC5 follows a 365-day calendar, which means that the MIROC5 data does not account
for leap years and thus has missing dates. In order to match the dates of MIROC5 data to
the observed data, data for the last day in February for each leap year is repeated.

Both of these GCMs contain ensembles which are essentially separate forecasts from
different simulations of the model for each location and time. Each ensemble contains daily
forecasts across a time range. These ensembles are averaged to find an average value from
the model for each location and time at the daily level. Next, the daily data is averaged by
month, resulting in monthly averaged data for 57 years, or 684 values for each location.

3.2 Downscaling

As the data from MIROC5 and HadCM3 are at a low resolution, of about a 100 km x 100 km
resolution and a 400 km x 200 km resolution respectively, while the observed data is at a 12
km x 12 km resolution, the downscaling procedure involves two steps: spatial interpolation
and regression.

In order to estimate values for weather parameters at locations where values are missing,
two different methods of interpolation are used, bilinear interpolation, and krigging. Bilinear
interpolation calculates weighted averages for locations within squares of locations that have
known values, using Equation 3.1 [10]. Given a square of certain latitudes and longitudes,
the corners at which we have data (in Figure 3.1 the red points), values within the square
can be estimated (in Figure 3.1 the green point). Then, the process is repeated to estimate
values between the interpolated points in order to calculate values for each location that is
needed to be at the same resolution as the observed data.

f(x, y) =
1

(x2 − x1)(y2 − y1)
(f(x1, y1)(x2 − x)(y2 − y) + f(x2, y2)(x− x1)(y2 − y)

+f(x1, y2)(x2 − x)(y − y1) + f(x2, y2)(x− x1)(y − y1))
(3.1)

Kriging also estimates values for locations that do not have known values using a weighted
average from values at locations with known values. The weights are determined by a
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Figure 3.1: Schematic of bilinear interpolation [1]

semivariogram model, and thus spacial correlations between known values [6], rather than
simply the distance between points, as in bilinear interpolation. Kriging is only used with
the HadCM3 data as we did not have access to raw data for MIROC5, but only data that
was already bilinearly interpolated, from the 2014 project.

Using the interpolated model data as the predictors and observed data as the response,
linear regression is employed to capture the features of observed data in the forecasted values.
Three separate models (Equations 3.2/ 3.3/ 3.4, 3.5, 3.6) are used with precipitation as the
response to determine which model best predicts precipitation. Only Model 1 (Equations
3.2/ 3.3/ 3.4) is used to predict maximum temperature and minimum temperature. In Model
2 (Equation 3.5) average temperature is added to Model 1 as a covariate and in Model 3
(Equation 3.6) sea level pressure and surface wind are added as covariates.

yasi = β0si + β1six1asi + εsi (3.2)

ybsi = β0si + β1six1bsi + εsi (3.3)

ycsi = β0si + β1six1csi + εsi (3.4)

ysi = β0si + β1six1si + β2six2si + εsi (3.5)

ysi = β0si + β1six1si + β2six2si + β3six3si + β4six4si + εsi (3.6)

Here, {yasi} is the 57×1 vector of observed precipitation for the period 1949-2005, {ybsi}
is the 57 × 1 vector of observed maximum temperature for the period 1949-2005, {ycsi} is
the 57 × 1 vector of observed minimum temperature for the period 1949-2005, {x1asi} is
the corresponding vector of model precipitation data, {x1bsi} is the corresponding vector of
model maximum temperature data, {x1csi} is the corresponding vector of model minimum
temperature data, {x2si} is the corresponding vector of model average temperature data,
{x3si} is the corresponding vector of model sea-level pressure data, {x4si} is the corresponding
vector of model wind data, and {εsi} is the vector of errors at location s for the month i.

Coefficients from the model for each latitude, longitude pair were combined with inter-
polated hindcast GCM data, for the years 1982-1990 to forecast precipitation, minimum
temperature, and maximum temperature values to be inputted into SWAT for those years.

We used diagnostics such as plotting the residuals to ensure constant variance and that
the residuals follow the expected N(0,1) distribution to initially check the fit of the models.
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Figure 3.2: Distribution of standardized MSE for each precipitation model across all loca-
tions, with vertical line at the mean.

Next, in order to test the accuracy of the predictions and fit of the models, we calculated
a standardized mean square error value defined in Equation 3.7. This is 1 − R2, thus,
small values are desirable and values above one indicate that the model does a poor job of
predicting precipitation or temperature.

SSEs

SSstot

=

∑
(ysi − ŷsi)2∑
(ysi − ȳsi)2

(3.7)

Here, ysi is the observed value for month i, ŷsi is the forecasted value for month i, and
ȳsi is the mean of all observed values at a given location s.

Figure 3.2 shows the distribution of standardized MSE for each of the models for precipi-
tation for all locations, and Figure 3.3 shows the distribution of standardized MSE for each of
the minimum and maximum temperature. Table 3.2 summarizes this information, displaying
the mean standardized MSE for each model. For the SLR model, Model 1, predictions using
HadCM3 are slightly more accurate than MIROC5, with a .03 lower standardized MSE on
average. This is the same for Model 2. The standardized MSE value is improved with the
predictions using Model 2 for both GCMs. Predicted values from Model 3 are also slightly
more accurate than Model 2. The fit of the models using kriged HadCM3 data are essentially
identical to those of the models using bilinearly interpolated data. The SLR model is able to
predict minimum and maximum temperature with very high accuracy, as the standardized
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Figure 3.3: Distribution of standardized MSE for each temperature model across all loca-
tions, with vertical line at the mean.

MSE values are all below 0.1. As these results indicate, the models seem to perform better
at predicting maximum, and minimum temperatures than for precipitation.

Model: MIROC5 HadCM3 Bil HadCM3 Krig
Pr Model 1 0.8793 0.8477 0.8452
Pr Model 2 0.8262 0.8063 0.8065
Pr Model 3 NA 0.8033 0.7987
Min Temp 0.0967 0.0800 0.0800
Max Temp 0.0757 0.0701 0.0702

We additionally explored how the fit of the models differed for the approximately 30,000
locations for which we forecasted. Figure 3.4 shows maps of the standardized MSE by
location for predicted precipitation with Model 2 from MIROC5 data, predicted precipitation
with Model 2 from HadCM3 data, predicted maximum temperature from MIROC5 data
and predicted maximum temperature from HadCM3 data. Darker values depict lower, and
thus better standardized MSE and better fitted models, while lighter values depict higher
standardized MSE, meaning the model does not fit well at that location. The states outlined
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(a) (b)

(c) (d)

Figure 3.4: Plots of standardized MSE by location from (a) predicting precipitation by
Model 2 with MIROC5 data, (b) predicting precipitation by Model 2 with HadCM3 data, (c)
predicting maximum temperature with MIROC5 data, (d) predicting maximum temperature
with HadCM3 data.

represent the main area of the Missouri River Basin (although parts of Colorado, Iowa, and
other neighboring states are included in the basin’s area).

We can see that Model 2 has more accurate predictions in the eastern half of this region,
and does a poorer job in the western end of the region. This area is where the Rocky
Mountains begin, so there is an opportunity for future research to explore how the geography
of an area effects the ability of both Global Climate Models and the regression models used
in this study to predict precipitation. The prediction of maximum temperature are more
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Figure 3.5: Plot of observed precipitation values and forecasted precipitation values for
Model 1, 2, and 3 for MIROC5 and HadCM3

homogeneous across all locations, although there is a similar trend of the predictions being
slightly less accurate in the western region of the MRB.

Figure 3.5 compares the forecasted values of precipitation for each month from each
regression model for MIROC5 and HadCM3 (excluding Kriging), to the observed values of
precipitation for each month for the years 1982-1990, at one location. The location used for
Figure 3.5 is 40.1875◦ latitude, −102.6875◦ longitude, which is in the upper-eastern corner of
Colorado. We can see that the models are unable to predict sharp spikes in temperature, but
rather follow a relatively regular oscillation through the months. Note, the forecasts generate
some negative values, which does not actually make sense, but we decided to keep these
values, rather then set them to zero. The five models produce similar forecasts, although
they are not completely identical.

Finally, we were able to compare the accuracy of predicting precipitation using monthly
averaged data with the predictions using daily data by the 2014 REU team. The standardized
MSE calculated from the 2014 prediction, which used the SLR Model 1, is 0.7799999. Re-
ferring back to Table 3.2 the standardized MSE values for Model 1 generated with monthly
data are 0.8793, 0.8477, and 0.8452. Thus, the predictions using SLR are more accurate
when using daily data, but we are able to predict at almost the same accuracy by adding
additional covariates (as in Model 2 and Model 3).

3.3 SWAT Linkage

SWAT needs input data at the daily level. Since we predict precipitation, maximum/minimum
temperatures at the monthly level, we need to generate predictions for these variables at the
daily level to input into SWAT. In other words, we need to disaggregate monthly predictions
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Figure 3.6: Methodology used to process data from raw model data to crop and water yields

to daily. We use SWATs Weather Generator to generate daily values using the monthly
predictions produced by our method. SWAT can be used with multiple different weather
generators as long as the necessary daily data is generated. SWATs default weather gen-
erator is the WXGEN weather generator model. The WXGEN weather generator model
generates daily data from monthly data for precipitation, maximum half hour rainfall, solar
radiation, maximum and minimum temperature, relative humidity, and wind speed. SWAT
needs daily data for six variables: precipitation, maximum and minimum temperature, solar
radiation, relative humidity, and wind speed. By using the weather generator, we capture
the daily climate variability from the observed data while monthly variability is captured
from our predictions. The daily data produced for precipitation, maximum and minimum
temperature are combined with the observed daily data for the other three variables using
a R procedures to generate .wgn files, which are then sent to SWAT as input.

Figure 3.6 illustrates the entire process of preparing the data to input into SWAT and
get crop yield outputs from weather parameter data. The blue boxes represent the stages
of the data, while the red ovals represent the methodology used to process each step of the
data.

3.4 Graphical User Interface (GUI)

The Graphical User Interface (GUI), Figure 3.7, is a medium in which a user can communi-
cate with and utilize a device. For our research, it was developed to output various statistical
calculations including downscaling and regression on the given GCM data set. This inter-
active tool allows the user to streamline the process of downscaling GCM data, performing
regression, forecasting, inputting the data into SWAT and visualizing the output. The dif-
ferent models can more quickly be compared to one another. Also, the modeling process
was generalized so that it can be implemented for any GCM, whether it is from MIROC5 or
HadCM3.

First, the GUI allows the user to choose which GCM data to use. Next, the user has the
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Figure 3.7: GUI Screenshot

ability to pick the locations for which they wish to make calculations for. This option allows
the user to cut down the run time if they are only interested in predictions for a certain area.
The GUI loads the appropriate data which can then be downscaled from the chosen GCM.
Before running any regressions, the user has the option to plot a correlation matrix of the
variables that are used in the modeling for each GCM, as in Figure 3.8. This allows the user
to better understand which model they may want to use, based on the correlations between
the variables.

The GUI provides more than one option for interpolation as well as more than one option
for regression modeling. For each month and each variable type, the user can use bilinear
interpolation to generate high-resolution data, or Kriging to do the same (only for HadCM3).
Furthermore, the user has the option to predict precipitation, minimum temperature, or
maximum temperature, as well as which model they wish to use to predict precipitation.

Next, the user can use the downscaled coefficients created in the previous step to forecast
their chosen weather parameter. Once the predictions are made, the user can visualize the
predictions in relation to the observed data in the form of a time series plot.

4 Concluding Remarks

Our results show that predictions based on monthly data are similar to those based on daily
data. Using monthly averaged data makes the computations simpler and much faster. It
takes much less time to run the GUI using monthly data and as a result, there is not a
need for a parallelization option in the GUI. The main reason is that using monthly data
only has 684 data points for the 57 year time span compared to roughly 20,520 data points
for the daily data. Using monthly data additionally allowed us to make predictions for the
entirety of the 57 years, without having to divide the process by month. Our predictions for
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Figure 3.8: GUI Screenshot

minimum temperature and maximum temperature were strong, yielding standardized MSE
values less than 0.1 at many locations. However, the predictions were weak for precipitation,
yielding high standardized MSE values of 0.8-0.9 at many locations. However, we did see
an increase in prediction strength when adding covariates to the regression models, which is
an improvement from previous regression models. Also, both GCM’s offered similar overall
predictions, showing that the user is not only limited to using one specific GCM. One last
thing to note is that the prediction accuracy appears dependent on geographic features of
the various locations. For example, the predictions were strongest at locations that are
geographically flat, while the locations with the weakest predictions occur densely in the
Rocky Mountains. Overall, it may prove beneficial to investigate further research in using
different GCMs as well as exploring the impact of geographic characteristics and possibly
incorporating this into a future regression model.

The GUI allows a user to make various statistical calculations such as downscaling and
regression, and perform operations such as forecasting, inputting data into SWAT, and
visualizing the data, with a few button clicks. It should offer the ability to perform many
different tests, with different GCM models, interpolation methods, and regression models,
quickly without having to write code. Thus, allowing for efficient testing in the future.
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