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Current mainstream geographic information systems and maps in general depend 

on the user’s ability to derive meaning from the multi-layered nature of those maps. A 

complete answer to the question “what is relevant to my location of interest” should 

consider the user’s context and include records from multiple Geographical 

Information System (GIS) layers. The problem this research attempts to solve is the 

inability of organizations to query geospatial data in a way that conforms with the 

multi-layered nature of GIS data as well as the topological relationships that can exist 

between the GIS layers containing those geospatial objects. 

This dissertation extends the theory behind graphs (or networks) of objects with 

research into multilayer and semantic link networks to create a formal mathematical 

model of geographic objects and take advantage of relationships that exist among nodes 

within a single layer and across multiple layers. This includes the creation of a 



  

geospatial ontology that mathematically represents the relationships between different 

classes of geographic objects. The algorithms in this dissertation take traditional GIS 

queries and expand them using semantic reasoning and topological rules to include 

additional geographic objects that are relevant to the user, introducing the concept of a 

multi-layer Semantically Linked Network (mSLN). 

This research elevates traditional GIS operations into a common mathematical 

model to simplify the needs of an organization. This mathematical model has been 

proven to be correct and a framework based on the model has been designed to be easily 

implemented by organizations that utilize GIS systems. 

A prototype system, SAM-GIS has been developed and an empirical evaluation of 

this framework has been conducted using several real-life case studies relevant to local 

communities based on data from an actual local government population, along with a 

performance evaluation of the entire system. Results show that SAM-GIS provides 

expanded GIS search results with increased accuracy, precision and recall over those 

of traditional GIS systems. 
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Chapter 1: Introduction 

The development of geographic information systems emerged because of the need 

for organizations to manage data and information that contained location 

characteristics.  For example, a database can hold information about addresses but a 

search for nearby addresses requires the database to be aware of the geographic 

properties (coordinates, boundaries) of the objects and to provide the ability to make 

geographic calculations (for example, distance) from those properties. 

This chapter outlines the problems of current geographic information systems and 

their retrieval mechanisms and outlines the solution to this problem that this research 

proposes. 

1.1 Research Problem 

Current mainstream geographic information systems and maps in general depend 

on the user’s ability to derive meaning from the multi-layered nature of those maps. 

That is, a reader of a map (whether it is a paper map or an interactive map) views a 

series of geographic objects on that map (roads, houses, rivers, etc.) with labels for 

those objects and a legend defining the styles (such as colors or line thickness) 

associated with those objects to create meaningful insights from those maps.  

Figure 1 is a screen capture of a paper map representing the geologic properties of 

the soils contained within Howard County, Maryland.  Someone reading this map 

would associate the color-coded shapes with various locations in the region and look 

up the associated geologic formation in the legend to connect the shape on the map 

with the label associated with that shape. For example, areas with the “Baltimore 
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Complex” geological formation are identified with a green color on the map. Based on 

the legend a reader of the map can also determine that this geologic formation is based 

on extrusive igneous rocks.  If a user wanted to identify all locations in Howard County 

with a soil based on extrusive igneous rocks, they can identify the two geologic 

formations with that rock type (“James Run Formation” and “Baltimore Complex”), 

their colors from the legend (“Purple” and “Green”) and then pinpoint the relevant 

locations on the map with those colors. 

  

Figure 1: An example of a paper map derived from a GIS. 

Interactive maps take the concept of reading a paper map and expand it to allow the 

user to toggle the visibility of the different classes of geographic objects as well as the 

ability to “zoom in” to offer more detail. Users can zoom into a location either by using 
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the map’s built-in zoom and pan tools or by using a dedicated feature search (typically 

an address) that zooms into that address. 

End-users often request information that is in these systems, but it is not easily 

retrievable, and when organizations want to help end-users identify relevant geographic 

objects, developers or professionals must explicitly build these tools. 

A geographic information system (GIS) is an information system that stores and 

processes the geographic (or location) information associated with an organization. The 

goal of any GIS is to use location information (stored in a database) to supply answers 

to user queries. 

For example, a typical question presented to a GIS could be, “what are the closest 

parks to my house?”  This query involves the user’s location (the house) and a table (or 

GIS layer) containing a list of parks.  The distance between the user’s location and each 

of the parks is calculated, and it is used to create a relevance score for each park: the 

more relevant the park to the user (the closer it is), the higher the score. Parks with high 

relevance scores are returned to the user. 

However, a complete answer to the question “what is relevant to my location of 

interest” should consider the user’s context (why they are searching for relevant 

geographic objects) and include records from multiple GIS layers, such as topography, 

streams, etc. For example: 

• A citizen interested in new construction activity in their community could type 

in an address and a GIS should return nearby plats, site plans, permits, and 

capital projects. 

• A prospective home buyer might be interested in nearby schools and parks.  
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• A police commander might be interested in local crime statistics and compare 

it to road access. 

These are examples of end-users who do not have GIS expertise, yet they are the 

main recipients of this query result. When a query is submitted to a GIS it should 

produce records that are relevant to the user’s context based on different layers in a 

database.  However, in current systems these queries are usually pre-programmed. 

Additionally, as enterprises have transitioned to storing their data in dedicated 

enterprise database management systems (DBMS) they now look towards taking the 

data stored in those databases and turning them into actionable insights. This reflects 

the transition of enterprises from managing data and information to creating 

knowledge. One of the foundations of this transition is a data warehouse that reaches 

out to a diverse set of data sources (databases, web services, etc.) and aggregates or 

merges the data from those databases in a way that facilitates querying. 

An information system that can query data from multiple databases, understands 

the geographic properties of that data and the topological relationships between 

different types of geographic objects should facilitate the types of searches. 

To summarize, the problem this research attempts to solve is the inability of 

organizations to query geospatial data in a way that respects the multi-layered nature 

of GIS data as well as the topological relationships that can exist between the GIS layers 

holding those geospatial objects. 

1.2 Practical Statement of the Problem  

This research proposes a framework that solves the problems summarized in the 

earlier section. Specifically, it tries to answer the following questions: 
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• What is the best way for organizations (such as local governments) that 

heavily use GIS systems to access relevant geospatial data flexibly without 

the need for ad-hoc querying and custom development? Creating a 

framework that models the relationships between geographic objects can serve 

as the foundation for future analytical work regarding these datasets (such as 

data mining or analysis applications).  This could also save organizations a 

considerable amount of time by minimizing the total number of applications 

that need to be created. 

• Can we create a system that allows an end-user to query a GIS database 

and to have that database enhance answers to that query with additional 

information that is relevant to that query without the need for custom 

applications to be written by GIS professionals and developers?  Can we 

design interactive GIS systems (including maps) in a more generalized fashion 

as opposed to creating individual applications written to meet specific GIS 

query needs? 

1.3 Research Problems and Methodological Approach 

This dissertation extends the theory behind graphs (or networks) of objects with 

research into multilayer networks and semantic link networks to create a model of 

geographic objects and define a practical implementation of this system that can be 

integrated into existing GIS environments. 

Geographic objects exist as entities with natural topological relationships between 

them, notably distance relationships and this makes the existing research into object 
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graphs (or networks) a natural fit to model these types of relationships. Two extensions 

to graph networks that solidify this fit are detailed below.  

First, research into multilayer networks that structurally combine graph nodes into 

groups is a natural fit for the layered nature of geospatial data [1, 2]. Multilayer 

networks group objects in a graph in a logical way that respects distinct types (or 

classes) of objects and the unique relationships between those classes. For example, 

while individual parks, police stations, and houses are all types of geographic objects 

that are related to each other by distance, organizing these relationships under the 

framework of a multilayer network acknowledges that these objects can be organized 

into distinct groups such that there are relationships between objects (such as a 

closeness relationship) and relationships between types of objects (such as a 

relationship between “parks” and “schools”). 

 

Figure 2: An example of a multilayer network grouping nodes into zones, streets 

and parks. 
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Second, research into semantic link networks (SLNs) models the potential 

transitive relationships between objects  [3].  An SLN acknowledges that if a 

relationship between objects A and B exists and a relationship between objects B and 

C exists, then a relationship can be inferred between objects A and C. For example, as 

shown in Figure 3, Park A and Park B might not normally be considered similar or 

relevant to each other (if the distance between them is great), but if they share the same 

zoning there exists an informal link between the two parks.  A system that 

acknowledges a transitive relationship between two objects that might not be obvious 

based on a direct measure (such as distance) would help end-users identify latent 

relationships between those objects. 

 

Figure 3: An example of how an SLN derives a relationship between two parks 

that might not be originally obvious. 

1.4 Contributions of this Dissertation 

The aim of this research is to create a model of geospatial data that can be used to 

query objects from multiple databases or services and that respects the special nature 

of geographic objects and the relationships between them. Such a model can serve as a 

foundation for services that can query enterprise systems to provide intelligent insights. 

This research includes the following components. 
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A mathematical model of geographic relevance. This model will formalize 

common GIS concepts (such as layers and topology) mathematically and then extend 

these definitions to create a complete model that reflects the layered nature of 

geographic objects as well as semantically inferred links between these objects.  This 

mathematical formulation will be proven through theorems. 

An algorithmic approach for enhanced GIS query automation. The algorithms 

outlined in this dissertation will use the mathematical model to take traditional GIS 

queries and expand them to include additional geographic objects that are relevant to 

the user. 

An application of multi-layer and SLN graph theory. As described in Sections 

2.4 and 2.5, the mathematical theory behind these concepts have been developed in the 

past ten years but few practical applications have been developed. 

The generation of a geospatial ontology. As described in Section 2.3, research 

into ontologies for geographic applications typically focus on abstract concepts and 

web-based implementations such as RDL and OWL. This dissertation will outline the 

creation of a geospatial ontology that mathematically represents the relationships 

between different classes of geographic objects. 

A consolidation of GIS concepts. As described in Section 2.1, the practice of 

geographic information systems typically involves a series of tasks and workflows that 

are performed in isolation based on user requests. However, it is possible to abstract 

these tasks mathematically (using the concepts described above) to simplify the needs 

of an organization. 
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The implementation of a prototype system. The mathematical model described 

above is designed to be easily implemented by organizations that use GIS systems. This 

system is designed to take advantage of and extend existing GIS infrastructures. A 

white paper of this implementation is provided as an appendix. 

An evaluation of the model and framework. Evaluating the framework using the 

prototype system includes evaluating the framework using several real-life case studies 

relevant to local communities in Howard County, MD, USA as well as the evaluation 

of performance and network complexity for the system based on a typical local 

government population. 

A prototype system, SAM-GIS (Semantic Augmentation Model for GIS), has been 

created and provides relevant objects to a user based on the context and relevance 

specified above. This prototype system was developed on a database management 

system and uses the functionality provided by a relational database. 

The dissertation is structured as follows:  Chapter 2 outlines the existing research 

that provides the foundation of this research including the current structure and 

challenges of geographic information systems, research into geospatial ontologies and 

semantics, and research into geographic information retrieval.   Chapter 3 outlines the 

theoretical approach of this research including the generation of a geospatial ontology, 

the development of a model of geographic relevance and the query systems that utilize 

that model.  Chapter 4 discusses the implementation of the prototype system SAM-GIS 

and its applicability to common scenarios met by GIS users. Chapter 5 includes the 

experimental evaluation of the framework under this implementation, and Chapter 6 

summarizes this work and discusses potential avenues for future research. 
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Chapter 2: Background and Related Work 

This research combines the foundations of geographic information systems and 

context modeling and aims to use the mathematical principles behind multilayer 

networks and semantic link networks to create a system of relevance for geographic 

information retrieval. 

In this chapter, we first explore the evolution of geographic information systems, 

earlier research into context modeling, geospatial semantics and ontologies and their 

applications and research into geographic information retrieval. We then discuss earlier 

research and provide mathematical background into multilayer networks.  Finally, we 

explore the development of semantic link networks and their potential applications. 

2.1 Geographic Information Systems 

“Everything is related to everything else, but near things are more 

related than distant things” – Tobler’s First Law of Geography [4] 

We study Geography because almost every activity today has a geographic 

component.  Geographic information systems are the practical IT implementation of 

the principles of Geography and are the guiding applications of the research described 

in this dissertation. Additionally, this work is the built on the same technical 

foundations of traditional GIS systems. 

In this section we will define a geographic information system, outline the common 

structural elements of these systems, and list the typical applications that are enabled 

by these systems. 
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2.1.1 Definition of GIS 

While the nature and role of Geographic Information Systems (GIS) have 

evolved over the past forty years, for the purposes of this research we will define a GIS 

as a “general set of hardware and software tools that are used to facilitate the utilization 

of geographic information to analyze and model data and to solve problems” [5]. What 

makes a GIS special are the added analytical workflows enabled by the storage and 

usage of spatial (location) data. Other common terms associated with a GIS are spatial 

database, spatial analysis, and location analytics. 

Any spatial analysis is dependent on an assumption of spatial dependence:  The 

statistical recognition that some entity or process is spatially distributed in a non-

random manner [5].  Any analysis of geographic objects depends on the idea that there 

are natural patterns in this type of data and that concepts such as “proximity” matter to 

the user. 

 

Figure 4: Sample GIS Infrastructure 

A complete GIS, like many information systems, consists of components that 

facilitate the entry of geographic data, the storage of this geographic data and the 
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analysis or visualization of this geographic data.  Examples of these components are 

shown in Figure 4. These systems can be provided by commercial vendors (ESRI [6], 

Mapinfo [7], Manifold [8]) and open source projects such as QGIS [8], Geoserver [9], 

and OpenLayers [10]. 

Some geographic information systems focus on the Earth as a whole and require 

integrating the curvature of the Earth into calculations such as distance or area. 

Examples include systems that model global climate or trade routes. Other geographic 

information systems focus on local analysis of geographic locations and assume all 

objects in that area reside on a straight plane.  These systems are created by local or 

municipal governments along with the vendors and contractors that support these 

governmental information needs. 

A spatial data infrastructure (SDI) consists of “geospatial data along with 

agreements on technology standards, institutional arrangements and policies which will 

enable the discovery and use of geospatial information in a structured manner” [11].  

SDIs consist of the entirety of the GIS technologies described in this section as well as 

the interoperability of data and functions between organizations that use GIS data and 

technology. 

2.1.2 GIS Data Entry 

Most data in a geographic information system are entered using a dedicated GIS 

desktop application (such as QGIS) and stored in either the file system or a database 

that supports the storage of geographic objects. Organizations with GIS systems 

employ desktop applications or online interactive maps that provide access to these 

objects similar to how it was performed for many years using paper maps. 
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Geographic data “includes the information necessary to create, store and utilize 

digital representations of the Earth as well as the characteristics associated with specific 

locations and areas” [5].  Examples include the boundaries of water features as well as 

the political boundaries dividing countries.  Data with a location attached to it is also 

known as geospatial data. 

There are several aspects of geographic data that make it unique compared to non-

geographic data. First, since location information involves coordinates (a latitude and 

longitude in most cases) the nature of the data is inherently multi-dimensional. This 

multi-dimensionality lends itself to analysis using mathematical techniques and 

algorithms well-suited to multi-dimensional data such as those that utilize matrix 

operations.  This work will primarily use matrix-based operations as a basis for 

calculations. 

Data can be entered into a GIS in multiple ways. The primary method involves 

using a desktop GIS tool to digitize features. This can involve creating and editing 

nodes that make up a feature (points, lines and polygons), running geoprocessing 

operations (or geospatial functions) that perform specific set-based operations on the 

geometries, or by using drafting or architectural tools to enter the data into the system.  

An example of a GIS desktop data entry interface is shown in Figure 5. 
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Figure 5: Features in a desktop GIS edited by placing nodes to form a geometry 

or by performing processing operations on them. 

Additionally, as geographic information systems integrate with existing 

mainstream database-based systems, it has become possible to enter in geometries 

directly into these databases either by entering in coordinates (longitude/latitude) or 

by digitizing (digitally tracing features from a paper copy, scanned image or other 

reference) features using a web-based interface. This process, as shown in Figure 6, has 

allowed users to create geospatial objects without directly using GIS software, 

increasing the prevalence of records in enterprise databases with location and/or 

geometric attributes. 
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Figure 6: An example of digitizing features through a web interface. 

GIS data can also be imported using Extract-Transform-Load (ETL) tools:  Either 

the traditional tools provided by most DBMS packages or special-purpose GIS ETL 

tools. 

2.1.3 GIS Data Storage 

Geographic Information Systems have historically mimicked traditional database 

systems when storing geographic information. For example, the legacy Shapefile 

format [12] consists of a dBase database containing the tabular information augmented 

with additional files containing the geometries associated with those tabular records, as 

shown in Figure 7. 

 

Figure 7: An example of a Shapefile on a file system. The DBF is a dBase 

database, and the SHP file contains geometries associated with those database 

records. 

Modern database management systems such as Oracle, SQL Server, and 

PostgreSQL have augmented their functionality with support for geospatial data 

associated with the records in their tables, as shown in Figure 8. This has allowed GIS 
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functionality to be integrated into databases that would not normally hold geospatial 

data. For example, a traditional customer database might hold information about a 

customer’s address, but with the addition of spatial columns, this information can be 

associated with the coordinates of the same address. 

 

Figure 8: The same dataset represented as a SQL Server database table.  The 

geometry is stored as a binary blob associated with traditional database rows. 

One issue with many GIS implementations is that while the problem of storing GIS 

data in databases has been mostly solved, many of these were not designed for 

interaction and interoperability. Many GIS implementations are self-contained and 

collaboration among multiple GIS organizations has historically been problematic  

[13]. 

2.1.4 GIS Data Analysis and Visualization 

There are multiple ways to use the data stored in a geographic information system 

to provide meaningful insights for users.  Historically, the geographic objects were 

rendered using paper layout tools to create a map that could be converted to a postscript 

format such as PDF or printed to create a paper map. 
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Interactive Maps and Dashboards 

Additionally, the development of online interactive maps extended this concept to 

provide dynamic functionality for their users. 

 

Figure 9: An example of an online GIS Interactive Map 

Figure 9 is an example of a typical GIS interactive map. These interactive maps 

expose a subset of the functionality provided by desktop GIS applications. There are 

two challenges created when designing an online interactive map. First, since 

interactive maps typically run inside of a user’s browser and the designer of that 

interactive map does not have control over the performance of the machines running 

that web browser, interactive maps cannot perform the full set of functions a desktop 

application can. Second, creating an effective web-based user interface that can work 

on multiple devices (desktops, tablets, mobile phones) puts restrictions on the interface 

elements that can easily fit on the screen. 
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More recently, database technology has transitioned to more interactive dashboards 

and summaries of data that provide answers to specific questions presented by users.  

This type of reporting does not necessarily require a map for visualization but can 

provide summarized information about the data from their geographic properties.  For 

example, a report can aggregate crime statistics based on the zip code of the crime. 

Many COVID-19 dashboards base their statistics on geographic properties of a 

government jurisdiction. While this type of reporting does not require a map to be 

displayed, it does depend on the geographic properties of the required datasets to 

produce the report. 

Abstracting GIS Operations 

Experienced GIS users perform a variety of tasks in their day-to-day work. Existing 

research has tried to abstract these common tasks and analyses into various categories. 

If common GIS operations can be abstracted into a series of primitives a model of GIS 

data can be designed to fulfill those operations.  

Table 1 shows a summary of common GIS analytical operations [14].  A goal of 

this dissertation is to abstract many of these operations into a common mathematical 

model. 
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Table 1: A classification of common GIS Operations 

Search operations Locational Analysis Terrain Analysis 

Interpolation 
Spatial Search 
Thematic Search 
Reclassification 

Buffer 
Corridor 
Overlay 
Thiessen/Voronoi 

Slope/Aspect 
Watershed 
Drainage/Network 
Viewshed 

Distribution/ 
Neighborhood 

Spatial Analysis Measurements 

Cost/Diffusion/Spread 
Pattern/Dispersion 
Centrality/Connectedness 
Shape 

Multivariate Analysis 
Pattern/Dispersion 
Centrality/Connectedness 
Shape 

Measurements 

 

Any abstraction of GIS needs to work independently of the data fed into the GIS 

and should represent a consistent logical view of geographic information.  Our model 

should be a single comprehensive model of geographic data that combines many of the 

existing GIS functions as described above. 

A location of interest given by a user represents a type of context that would be 

useful to the user’s interactions with the system.  This can provide an additional filter 

when querying a database.  In the next section we will explore the concept of context 

and how it is modeled in computer systems. 

2.2 Context Modeling 

When humans communicate with each other, the participants do not need to 

explicitly convey every idea necessary for the conversation to take place, particularly 

background information [15].  In this section we define context in the abstract, review 

earlier attempts to model context, and ultimately move towards a definition more 

suitable for computation. 
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Ubiquitous Computing 

The idea that computers might be embedded in the environment or might learn to 

work together based on that environment came to the forefront in the early 1990s [16].  

Ubiquitous computing is the idea that computers can interact with humans in any 

scenario. When the term was developed, desktop computers were common and the idea 

of having a computer follow a human wherever they go (like they currently do with 

mobile phones) was relatively new.  

This trend described a move away from the concept of a computer that worked in 

isolation. If a computer could be embedded into its environment based on various 

contextual factors (such as the time of day or the location of the device) then it becomes 

increasingly important to define abstract representations of the data and records stored 

on that computer. 

We first need a definition of a computer model since the development of a model 

of context is one of the goals of this research. A model is a simplified abstraction 

representing some aspect of reality.    Model Driven Development (MDD) is an 

approach to developing software that proposes using machine-readable models at 

various levels of abstraction as its main artifacts. The purpose of MDD is to take 

abstract models of natural concepts and convert them into concrete models that can be 

modeled using mathematics and computation [17]. 

When designing these models, we need specific tools and mathematical formalisms 

to create the elements required for MDD.  This section introduces definitions of context 

and proceeds to describe ways to model context in information systems. 
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2.2.1 Definitions of Context 

The Merriam Webster dictionary defines context as “the interrelated conditions in 

which something exists or occurs” [18].  This definition alone is not enough to provide 

a mathematical and computational foundation upon which to create applications which 

use context [19], therefore we examine the literature to look at prior attempts to define 

context in a way that proves useful to developing information systems. 

Context is defined by [20] as “any information that can be used to characterize the 

situation of an entity. Elements for the description of this context information fall into 

five categories: individuality, activity, location, time, and relations.” Another definition 

states that context “is any information that can be used to characterize the situation of 

an entity. An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and applications 

themselves” [17]. Other definitions on context are based on example and are built 

around a specific application [21, 22]. Context is an operational term in that something 

is context if it used in the interpretation of data [23].  Since data is modeled and 

analyzed for a specific application, we apply context to that application. 

From a knowledge perspective, the following are true:  [24] 

• Context is knowledge, and knowledge is context. 

• Context is defined with respect to a focus of attention (knowledge use). 

• At any given moment there is external knowledge and contextual knowledge. 

• Pieces of contextual knowledge are structured around the focus of attention. 

• Contextual knowledge has a granularity that depends on the distance to the 

focus of attention. 
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• Context structure evolves dynamically with the focus of attention. 

• Context is relative to an observer. 

A key aspect of most definitions of context is that an object’s context usually 

involves contextual elements such as physical properties like time and temperature or 

non-physical “human” properties like beliefs and desires [15, 25, 26].  Most definitions 

of context include the following [22]: 

• Location – This includes physical location as well as electronic locations (such 

as IP addresses). 

• Identity – Applications can be developed to store user information such as their 

preferences, knowledge and detailed activity logs of physical space movements 

and electronic artifact manipulations. 

• Time – This can include time in an absolute sense as well as relative time (the 

position in a sequence). 

• Environment or Activity – The artifacts and physical location of the current 

situation. 

Contextual elements can also be defined by the institutions that structure both the 

ongoing and activity and social relations which the activity is embedded [27].   

There have been adaptations or alternatives to the definitions of context in terms of 

different domains and applications but ultimately any definition of context has proven 

to be narrow or subjective and a framework to consistently define context in any 

universal fashion has proven difficult [28]. 

A relation is an aspect of context that refers to a dependency between two objects 

that emerge from the circumstances these two objects are involved in [20].  Therefore, 
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context does not only include the intrinsic qualities that an object has but can also 

include the relationships between multiple objects and the effect of those relationships 

on those intrinsic properties. 

For example, if Person A asks Person B to turn off the light in a room, Person A 

has not specified which light to turn off, but a shared context between the two people 

lets Person B know that Person A means the light for the room they are leaving. To 

come to that conclusion, they needed to know their location in addition to the location 

of all light switches in the area. With that information they can identify the most likely 

candidate light switch to turn off and act on that information.  This example shows how 

the computer science definition of context derives from our human understanding of 

context. Models of context are adapted from our human sense of context-awareness 

[29]. 

Context reasoning is the process of taking source data (from databases or sensors) 

in order to make interpretations about the context of that data using some type of rule-

based logical inference [30].  This can be done to provide insight into the data (data 

mining or statistical inference) or to help resolve inconsistent information when 

bringing together data from different sources.  Traditionally such context reasoning 

systems have been extensions of existing applications which can be difficult to support 

or not adaptable to other systems. Therefore, it would help to separate any context 

reasoning system from the source system. A data warehouse is an example of a tool to 

facilitate this separation [15]. 
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2.2.2 Computational Applications of Context 

If a software system can incorporate implicit information about a user’s 

environment then the software can gain the ability to adjust its behaviors according to 

the available information in that environment [30]. 

The development of applications that integrate the user’s environment started with 

the concept of situational computing. Situational computing refers to the ability of 

computing devices to detect, interpret and respond to aspects of a user’s local 

environment based on the sensors installed on the user’s device. This functionality can 

be added to existing applications or can be the centerpiece of new types of applications 

[31]. 

While situational computing focused primarily on the transition to mobile 

computing and therefore the location of the user, the idea of a user’s situation expanded 

to include the different contexts described in Section 2.2.1.  The goal of context-aware 

systems are to move computing devices into the background of human activity and for 

those devices to provide natural and unencumbered interaction with the user [32].   

Context-Awareness 

From the perspective of the computing system, context-awareness is the capability 

to provide relevant services and information to users based on their situational 

conditions  [15, 33].  A system is context-aware if it uses context to provide relevant 

information or services to the user [34]. 

In computer science and mathematics the study of context-awareness has been 

applied to artificial intelligence research [35], information retrieval applications [36], 

sensor networks [37] , multimedia retrieval, [36] and human-computer interaction [26, 
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27].  Mathematical formalizations of context-awareness have been developed to 

provide a basis for these applications [35]. 

Context-Sensitive Systems 

A context-sensitive system (CSS) is a computer system that uses context to 

provide more relevant services or information to support users performing their tasks 

[38]. There are two types of applications described by these systems: continuous 

applications which take into account the user’s situation and discrete applications 

which take separate pieces of data about a system and evaluate how they overlap [21]. 

A focus of context-sensitive systems is to enhance human-to-computer or 

computer-to-computer interactions to mimic human-to-human interactions [38]. 

A context-sensitive system needs to deal with the following issues:  Which kinds 

of information to consider contextual, how to represent this information, how to acquire 

and process it, how to integrate the context usage in the system and how to present it 

[38]. 

Challenges in the creation of context-sensitive systems include a lack of conceptual 

tools and methods to account for context-awareness. These systems are typically driven 

by the method of data entry (for example, sensor-driven applications) rather than 

representing an abstraction of the system being modeled.  Another challenge includes 

the ability to distribute, modify and reuse these applications in different organizations 

[25, 39].  An ideal model of context should be adaptable to any organization and 

accommodate any user. 
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Context-Aware Computing 

Context-aware computing (CAC) is defined as the application of additional code 

to existing software that makes that software aware of its context. It takes the 

information in a user’s physical and electronic environment and uses that as a context 

for the interaction between humans and computers [25, 40]. This definition emphasizes 

the context that software operates in with a focus on mobile devices which can easily 

change context (such as location or proximity) [40] and not the context of data 

independent of the user’s interactions with that data.  While context-aware computing 

has been researched for the past 30 years it has become increasingly relevant in the past 

few years due to the emergence of the “Internet of Things” [41].  Additionally, as 

mobile devices have proliferated in society and the size of these devices have shrunk it 

has become increasingly difficult to design user interfaces around these size limitations. 

Considering the sensor-based data a mobile device generates in the background, it 

makes sense to try to use the mobile device’s contextual information (for example, its 

location) to aid the user when interacting with their mobile devices. Similarly, the use 

of context-aware applications can hide the user from having to adapt to a computer’s 

interface and instead can let the computer intelligently make sense of the user’s context 

(for example, in a smart home situation) to anticipate what that user might want to do 

[32]. 

Applications that are context-aware observe user behavior and use this information 

to determine why a situation is occurring.  This is the responsibility of the designer of 

the application using this information. The designer uses incoming context to determine 

why a situation is occurring and uses this to encode actions in the application [34].   
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Such systems generally rely on triggers.  These triggers take a user’s context and 

pass it to a program to be processed [21]. For example, a location trigger can send a 

message to a user when they have entered a restaurant. 

Additional features of context-aware applications include  [34]: 

• Contextual Sensing – The ability to detect contextual information and present 

it to the user, augmenting the user’s sensory system. 

• Contextual Adaptation – The ability to execute or modify a service 

automatically based on the current context. 

• Contextual Resource Discovery – Allows context-aware applications to locate 

and exploit resources and services that are relevant to the user’s context. 

• Contextual Augmentation – The ability to associate digital data with the 

user’s context. 

Designing computer systems to be context-aware provides the ability to enhance 

the interaction between humans and computers and make communication richer.  An 

alternative definition of a context-aware system is one that “uses context to provide 

relevant information and/or services to the user, where relevancy depends on the user’s 

task” [34]. 

A problem with developing context-aware systems is the existence of a mismatch 

between the context-awareness exhibited by humans and attempts for computers to 

mimic those systems.  In the next section we describe attempts to rectify this by creating 

models that computationally describe context, work reliably, and have the intelligence 

to execute actions that reflect the user’s context [29]. 



 

28 
 

This work includes the evaluation of the relevancy of geographic objects to a user 

and this definition suits that task. We use the features of context-aware applications 

described earlier to focus this research. 

2.2.3 Models of Context 

Providing a good model of context can reduce the complexity of context-aware 

applications and can improve their maintainability and evolvability.  A good model can 

also reconcile a human understanding of their environment with how a computer 

understands the same environment. This has led to the development of more formal 

representations of context in computer systems [42]. 

This section outlines several proposed approaches to context modeling and 

provides guidelines to evaluate them. 

Widget-Based Context Modeling 

Widget-based context modeling involves the extension of the concept of a device 

driver to system interfaces. It provides a low-level interface for systems or devices 

(such as sensors) that want to communicate with each other. In this model the rules 

defining context are hard-coded into the interfaces [25]. 

Service-Based Context Modeling 

Service-based context modeling resembles the client-server infrastructure that the 

World Wide Web or that an enterprise system would use. This type of modeling utilizes 

multiple web servers that store context information and exposes web services with 

protocols such as XML or JSON to communicate messages between these servers [39].  

The advantage of these systems is that they are accessible by any computer system, 

especially those that are web-based, that can access the services. This can help make 
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these systems platform agnostic:  Changing the configuration of an input to the model 

(sensors, services, and devices) is independent of other inputs to the system. 

Another benefit of a service-based model is that it offloads the computational 

burden of these systems to each sensor. This converts the modeling problem to a 

primarily infrastructure-based challenge. 

The creation of a service-based model of context includes the following. These 

requirements reflect the web standards used on the Internet today: 

• Designing the data formats and protocols used by the infrastructure. These 

standards are the glue that allows the separate pieces of the infrastructure to 

interoperate. Ideally, these formats and protocols are as simple as possible. 

• The data formats and the protocols need to be rich enough to cover the diverse 

range of sensors and assorted types of contexts. 

• A distinction needs to be made between the data provided by the inputs and the 

contextualized data communicated through the services. This can be facilitated 

through the creation and implementation of metadata describing this translation. 

Blackboard Model 

The blackboard model centralizes the data from diverse sources into a central 

repository. This repository, which resembles a data warehouse, handles all rule-based 

inference of context and relays the results of this context back to the sources [43]. 

The blackboard model adopts a data-centric rather than a process-centric point of 

view. The repository receives input from all sources and stores them centrally. Other 

devices can access this repository and receive messages based on preset filters [23].   
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An advantage to the blackboard model is that the central repository provides a 

standard communication link for each component which is the same for all devices that 

use the blackboard and avoids the need to provide a peer-to-peer link between all 

devices on the network.  Like the service-based model, when one input fails on the 

network there is no disruption to the communication between the other inputs and the 

repository and any other devices that try to access the repository. Since a blackboard is 

database-driven, the data in the repository can be archived and audited like any other 

server-based system. 

A disadvantage is that there is an overdependency on that central repository, 

however using modern infrastructure practices the repository can be built with 

redundancy and reliability. 

Model Considerations 

When designing a model of context we aim to consider the following factors:  [23] 

• Efficiency – Is deriving context computationally efficient and time efficient? 

This becomes especially important when designing real-time applications that 

must evaluate context immediately. 

• Configurability – Is the model adaptable to different situations? Can it 

efficiently add new data sources or new factors in its analysis without 

compromising the overall data model? 

• Robustness – Can the model handle missing or incomplete data? In a sensor 

network, can it handle a malfunction with one of its sources? In a GIS, datasets 

are gradually built and refined and might contain incomplete data until 

digitization efforts are completed. 
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• Simplicity – Can a model of context be designed so that its mathematical 

foundations are intuitive? Can such a model be easily programmed as software, 

for example, as a series of queries and stored procedures associated with a 

relational database? If it is not, then the practical applications of such a model 

are limited. 

Both the service-based and blackboard models function as middleware. This allows 

a focus on the model itself rather than the individual inputs and data sources feeding 

into the model [15].  The blackboard model will be the primary template for this work 

with extensions that reflect a service-based model. 

2.2.4 Ontology-Based Context Modeling 

Ontology is a branch of metaphysics dedicated to the study of the nature of beings 

and things related to those beings. From an information systems perspective ontology 

is “a formal naming and definition of the types, properties and interrelationships of the 

entities that fundamentally exist for a particular domain of discourse” [44]. 

Practically, an ontology defines “a common vocabulary for researchers who need 

to share information in a given domain. It includes machine-interpretable definitions of 

basic concepts in the domain and relations among them” [45]. 

Ontologies allow users to share a common understanding of the structure of 

information in their domain, enables re-use of domain knowledge, makes domain 

assumptions explicit, separates domain knowledge from operational knowledge, and 

helps analyze domain knowledge [45].  Note that these characteristics overlap some of 

the aims of both service-based context modeling and the blackboard model described 
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in the earlier section. Therefore, ontologies have been thought of as an effective tool in 

modeling context. 

Ontologies in Information Systems 

The users of a computer system will approach the data and applications associated 

with those systems in unique ways depending on their context. In any data-driven 

application the differing needs and backgrounds of the users will lead to different 

viewpoints and assumptions about the same subject-matter. The difference among 

viewpoints can lead to poor communication between users of these systems, create 

difficulties in identifying system requirements, limit interactivity and limit 

interoperability.   This difference can also limit the potential for re-use and sharing 

when developing applications [46].  Section 2.1 discussed how GIS professionals re-

create paper and interactive maps because GIS applications derive from the problems 

those professionals are asked to solve rather than a shared conceptualization of 

geospatial concepts. 

An ontology embodies a shared worldview with respect to a given domain. This 

world view is conceived as a set of concepts such as entities, attributes and processes, 

their definitions and inter-relationships. Another definition of ontology refers to it as a 

formal, explicit specification of a shared conceptualization. A conceptualization refers 

to an abstract model of some phenomenon in the world by having named the relevant 

concepts of that phenomenon. Explicit means that the type of concepts used, and the 

constraints on their use are explicitly defined. Formal refers to the fact that the ontology 

should be machine readable, which excludes natural language. Shared reflects the 
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notion that an ontology captures consensual knowledge, that is, it is not private to some 

individual, but accepted by a group [47, 48]: 

Properties of Ontologies 

Ontologies can be generic or specific. A classification of ontologies from generic 

to specific include [48, 49]: 

• Generic ontologies - Generic ontologies describe general concepts, 

independent of any task or domain (e.g., time, space, etc.). 

• Domain ontologies - Domain ontologies describe concepts for a specific 

domain (such as physics or biology). 

• Application ontologies - They describe concepts which are necessary for a 

specific application. Application ontologies depend on both the domain and the 

generic ontologies. 

At a high-level, ontologies can be abstracted from existing systems that describe 

common situations. These ontologies can be shared, reused, and adapted to other 

systems.  On the other hand, low-level ontologies work as a specification of what the 

system was designed for. In other words, they reflect a specific application [48]. 

An example of an ontology could involve furniture. Concepts of furniture include 

“furniture”, “chairs”, “tables” or “beds”.  The interrelationships between these concepts 

could include: 

• Chair is a type of furniture. 

• Chair is adjacent to table (for example, in a dining room set). 

Classes are the typical focus of most ontologies. Classes describe concepts in the 

domain of interest. We can also have subclasses (for example, when the chair is a type 
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of furniture). We can even define properties for our classes (like the type of chair, the 

materials used, or their size) [45]. 

An ontology should include: 

• A set of classes and properties attached to those classes. 

• A taxonomy of those classes (defining subclasses). 

• Restrictions on the properties of those classes. 

• Instances of those classes. 

The process of creating an ontology usually involves the following steps [45]:   

• Defining the domain of interest and examining previously defined ontologies 

for that domain. 

• Defining all terms in the domain of interest. What concepts are important to the 

user of a system? 

• Defining the classes in the domain. This can be top-down (starting with the 

definition of the most general concept in the domain) or bottom-up (starting 

with the definition of the most specific classes in the domain). One class can be 

represented by multiple terms. 

• Defining the relationships between classes. These relationships can be 

hierarchical or peer-to-peer depending on the domain. 

• Defining the properties of classes that are important to the user. These are the 

characteristics of the objects in the classes that can be derived from their data 

sources. 

• Describing the types of values those properties can contain. 

• Populating instances of these classes with data. 
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This work includes the creation of a geospatial ontology and will attempt to mimic 

the process outlined above. 

Benefits of Ontologies 

Ontologies attempt to solve the problem of inconsistent perspectives on information 

by establishing formal definitions of the conceptualizations described earlier [46]. This 

includes: 

• Providing unambiguous and consistent definitions for terms in a software 

system.  Any systems as part of an application should use those definitions to 

maintain compatibility between those two systems. 

• Providing a shared understanding of concepts through these consistent 

definitions.  While individual users can provide their personalized perspectives 

on these concepts a common understanding is required for interoperability. 

• Establishing a network of relationships between concepts in the system. This 

work describes a graph-based model of geographic relationships, and this will 

require a network of relationships to be defined. 

Since ontologies represent concepts and their relationships and context are a type 

of relationship between concepts, we can use ontology to help model context.  

Ontologies are useful for modeling context because they help to provide common 

terminologies and rich semantics to enable knowledge sharing and reuse between 

different systems.   Ontologies can also function as an infrastructure piece of a context-

aware system. 

Evaluating Ontologies 

Ontologies can be evaluated using the following criteria: 
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• Clarity – Terms must be defined through necessary and sufficient conditions 

so that they can be identified unambiguously and communicated effectively. 

• Coherence – Definitions must be consistent. 

• Ontological Commitment – Ontologies should make just enough claims about 

the domain to support the intended knowledge sharing and reuse. 

• Encoding Bias – Ontologies should be specified at the knowledge level without 

depending on a particular symbol-level encoding. 

• Extensibility – Ontologies should offer a conceptual foundation for anticipated 

and potentially anticipated tasks. 

Ontology-Based Models 

An ontology-based context model represents knowledge, concepts and 

relationships about a domain and describes specific situations in a domain [42, 46].   

When designing computer systems intended to gather information from different 

sources (like sensors) and communicate meaningfully with each other, each of these 

different sources must share a common ontology and communication language [50]. 

Most research into ontology-based context modeling involves the development of 

a data structure and a language such as OWL (web ontology language) [51, 52]. 

For the purposes of this research, ontology is the categorization of objects and their 

relationships to other objects. 

2.2.5 Challenges with Context Modeling 

The biggest challenge with context modeling is that most of the literature on context 

focuses on its philosophical and linguistic origins or on user-level modeling languages. 

When a generalized system is proposed, it involves the creation of general data schemas 
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(RDF, UML, XML) that conceptually model a system and provide interoperability 

between systems but does not include a data-driven aspect.  Since most context models 

are fairly complicated (in order to remain flexible) they tend to be harder to manage 

[24]. Additionally, there have been very few attempts to apply a rigorous mathematical 

model of context because of this complexity and even those attempts have proven 

overly complex [53, 54] and therefore impractical for a production environment. 

The model of context described in this work will consider these challenges as well 

as the factors listed earlier when describing models of context (efficiency, 

configurability, robustness, simplicity). 

2.3 Geospatial Modeling 

The concepts related to context modeling (such as ontology and semantics) have 

been extended to geospatial data. These efforts have been developed either as an 

extension to traditional GIS applications (explored in Section 2.1) or by incorporating 

factors related to geospatial data to existing context-modeling frameworks (explored in 

Section 2.2). In this section, we outline attempts to apply and extend concepts related 

to context modeling to geographic objects. 

Spatial Models of Context 

Modeling context in a geospatial domain generally includes information about the 

locations of the user and the location of the objects in their environment.  This can 

include geometric coordinates such as latitude and longitude that represent points or 

areas in a metric space. Symbolic coordinates represent identifiers such as room 

numbers or labels that represent locations [42].   
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Even if physical location is not a primary context for an application, a spatial 

organization of context can still be beneficial. Modeling geographic objects can be 

defined at distinct levels of abstraction [42, 55]. These include: 

• Tier 0 - An ontology representing physical reality based on an assumption of 

one real world. 

• Tier 1 - Observations of reality at a given location that produces some kind of 

measurement value. 

• Tier 2 – Single observations are grouped with individual objects that are defined 

by uniform properties. 

• Tier 3 – Social Reality – All objects and relations that are created by social 

interactions. 

• Tier 4 – Modeled Rules that are used by cognitive agents (both human and 

software) for deduction. 

The nature of geographic objects can blur the types and strength of relationships 

between those objects. For example, boundaries between objects can be loosely defined 

(for example, between the end of a river and the ocean it flows into). Geographic 

objects can be one-dimensional, two-dimensional, or three-dimensional with different 

topological rules defining the different types of relationships between objects, 

particularly objects of different dimensions.  The same object, such as a river, can be 

represented as a two-dimensional object (the path of the river) or a three-dimensional 

object (the area of land covered by water), and the nature of geographic objects can 

change over time (the width of a river depends on the amount of rainfall in the area). 

Bona-fide boundaries represent those boundaries caused by the physical nature of the 
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Earth (for example, the location of rivers and mountains) and fiat boundaries are 

artificially created boundaries that are projected onto the Earth arbitrarily, such as 

political boundaries [56]. 

Ultimately, determining the nature of the relationship between geographic objects 

can be accomplished with ontologies, but any model of geography will sometimes 

depend on arbitrary (or consensus) agreements on the nature of these objects and the 

relationships between them. 

2.3.1 Geospatial Ontologies 

When examining the semantic relationships between diverse types of geographic 

objects, ontologies can be helpful because they provide explicit and formal definitions 

of thematic entities and their relationships [47, 57].  For example, an ontology explicitly 

defines the relationships between parks and streets (a park should be adjacent to a street 

since that street provides transportation to the park). 

Geographic systems can be said to already contain semantic information related to 

the geographic objects they contain in the form of strong metadata and multinational 

standards [55].  In existing geographic information systems, ontologies can also be 

formed as a digital gazetteer which is a modern version of traditional paper mapping 

and location lookup systems. Applications of digital gazetteers include geocoders, 

navigation systems, and geographic information retrieval systems  [58].  A downside 

of gazetteers is that they are traditionally limited to manually compiled lists of 

toponyms (place names) and depend on a basic retrieval mechanism, so ontologies can 

potentially expand on the traditional role gazetteers have played in geographic 

information systems [59, 60]. It is generally believed that ontologies can help enhance 
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organizations’ existing spatial data infrastructures by establishing relationships 

between the different datasets (or layers) in that SDI [61]. There have also been 

recommendations for GIS practitioners to explore the semantic operability of their 

datasets as it relates to datasets from other organizations [55]. 

Semantic Heterogeneity in Geospatial Datasets 

Geospatial datasets that can, on the surface, represent the same objects can differ in 

their interpretation since some concepts can be interpreted differently depending on 

local ordinances or different perceptions or interpretations of those objects [62]. For 

example, while many local jurisdictions differentiate between paved roadways and 

“dirt” roadways, the proper dataset to place gravel roadways is open to interpretation. 

A local politician and a state politician might have different perspectives on the 

geographic landscape [63]. Ontologies and the development of conceptual graphs can 

be used to resolve these semantic heterogeneities [57, 64]. 

What is the difference between a hill and a mountain? What differentiates a river 

from a stream? The differences in interpreting these terms stems from both the physical 

phenomena related to geography (such as plate tectonics) and the different types of 

human activity that relate to these phenomena (humans adapt to living next to a river 

differently than they would if they lived near an ocean) [65, 66].  A practical example 

of semantic heterogeneity is found in the differing spatial reference systems (or 

projections) used by GIS practitioners in different organizations, however most GIS 

software can automatically reconcile those differences with minimal effort [55]. 
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Existing Ontological Approaches to Geospatial Data 

Ontologies can also be useful when dealing with heterogeneous data (different 

layers and different types of objects), especially data originating from different 

organizations with different definitions of common geographic terms  [67-69].  The 

relationships between geographic layers can be implied when these layers are 

visualized on a paper or interactive map, but these relationships are not fully 

mathematically represented or formalized [5].  For example, a map can convey to the 

user the relationship between a street, a river, and the bridge on that street crossing that 

river. However, databases holding geographic data do not formalize this relationship 

nor provide a mathematical representation of the strength of the relationship between 

these classes of objects. 

Ontologies tend to be hierarchical in nature, and this is true for geospatial data 

(rivers and lakes can both be classified as bodies of water), but geospatial ontologies 

can also be defined by functional relationships between objects [65, 66].  For example, 

a road can cross a stream at a bridge, but this does not imply a hierarchical relationship 

between roads, streams, or bridges). Additionally, ontological relationships need to 

consider different types of geospatial objects (points, lines, and polygons) and the 

topological relationships that exist between those objects.  The interpretation of these 

relationships can vary by organization and this can create ambiguity when attempting 

to define the relationships between geospatial datasets [65]. 

Typically, geospatial ontologies can be used to facilitate the interoperability and 

integration of diverse geospatial systems and most research into geospatial ontologies 

focus on web service implementations [61, 70, 71].  For this research, a geospatial 
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ontology will help establish semantic relationships between different types of 

geographic objects. 

In each domain, multiple ontologies can be developed to represent different 

interpretations of the same shared dataset.  These ontologies can be merged into a 

central ontology representing the entire domain (ontology alignment) [69]. 

Existing research into geospatial ontologies acknowledges the need for geospatial 

ontologies to support the semantic search of geospatial objects. In fact, several 

researchers have outlined or designed systems to programmatically create these 

ontologies. A generalized framework for geospatial semantic search outlines the 

following necessary components [57]: 

• An ontology defined to represent the thematic knowledge in the repository of 

geographic datasets; the thematic classes are organized in a taxonomy, and 

besides subsumption, other semantic relations can be set between thematic 

classes, which can also be defined through description logic axioms.  

• Different algorithms to semi-automatically add new datasets to the repository, 

and consequently introduce new knowledge to the ontology. 

• A set of semantic services to enable external clients to find, translate and 

integrate thematic information from different datasets in the repository.  

Early attempts at describing geospatial ontologies started with the development of 

mathematical formalisms describing the topological relationships between classes of 

geospatial objects using set theory [72]. Other attempts extended these set-based 

definitions by utilizing Boolean logic and matrix operations to describe a prototypical 
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ontological structure [73-75].  There have also been preliminary attempts at geospatial 

ontology alignment or harmonization [76]. 

Recent attempts at creating formal processes for creating geospatial ontologies 

generally involve the extension of GIS applications through the use of web services 

[67].  These attempts extend ISO standard web services such as WFS, WMS and CSW 

[70, 77]. 

Attempts to use ontologies to directly solve geospatial problems have emerged in 

the past few years.  These applications include assisting in the observation and analysis 

of raster data  [69, 78], emergency management  [79] and transportation networks [80]. 

2.3.2 Geographic Semantics and Similarity 

The previous section described the semantics of geospatial objects in terms of the 

relationships between the classes (or layers) describing those objects.  In this section 

we summarize prior research into semantics of individual geospatial objects as well as 

the nature of the relationships between those objects. 

Geographic Relevance 

For geospatial applications, similarity measures play a core role in understanding 

and handling semantic heterogeneity and in enabling interoperability between services 

and data repositories. When we talk about semantics, we refer to the inherent meaning 

of the geographic objects and the relationships between them in addition to a strict 

definition of their relationships [81]. 

Geographic relevance can be defined as “the quality of an entity in geographic 

space or its representation in an information system.”  This quality is expressed as the 

relation between an entity or its representation and the actual context of using the 
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representation [82]. While similarity describes a relationship between two geographic 

objects, relevance refers to the relationship between any geographic object and the user. 

Geographic relevance corresponds to a user’s intentions and how that relevance relates 

to a user’s environment. 

Defining a formal abstraction of the relationships between geographic objects using 

semantic similarity as a measure of the strength of that relationship can lead to a 

generalization of geospatial data analysis [83, 84]. 

Relevance in Navigation 

By identifying patterns in user behavior, a system can attempt to predict the future 

behavior of that user in the form of relevant search results.  This requires recording user 

behavior as a sequence of navigation actions and then using these patterns to produce 

geographic objects that might continue that pattern [85]. 

As described earlier, traditional GIS applications rely on a series of hard-coded 

search mechanisms, notably a keyword search on objects. A weakness of a keyword-

search approach is that the choice of keywords (or aliases) provided by the user dictates 

the nature of results returned to the user, rather than the meanings of those terms [86, 

87].  For example, a user might think they are searching for a stream when in a GIS 

database the object they are searching for is a river because that user either does not 

know the difference between the two or the organization producing the GIS database 

has made a distinction between the two concepts (stream or river) that the user is 

unaware of. 

A better navigation system should acknowledge the user’s context by attempting to 

understand their intent.  This includes a user’s interest in items local to them, such as a 
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search for restaurants nearby. Modern mobile applications handle this with explicit 

searches dedicated to using the mobile device’s GPS location, but these searches tend 

to be hard-coded and specific to pre-designated classes of geographic objects (such as 

a listing of restaurants). 

When discussing the similarity of geographic objects, we need to be aware of the 

different meanings of “similarity” depending on the type of application that performs 

a similarity search. A well-defined geospatial ontology (as described in the previous 

section) determines the type and strength of relationships but does not go deeper to 

examine the relationships between the geospatial objects themselves. 

A framework that can define how similarity can be computed may include the 

following steps [88]: 

1. Definition of application area and intended audience. 

2. Selection of context and search (query) and target concepts. 

3. Transformation of concepts to canonical form. 

4. Definition of an alignment matrix for concept descriptors. 

5. Application of constructor specific similarity functions. 

6. Determination of standardized overall similarity. 

7. Interpretation of the resulting similarity values. 

When examining geospatial semantics, different organizations and different users 

have different interpretations of the meaning of geospatial concepts and applications 

[76].  For example, multiple government departments might have differing definitions 

of what “open space” means. A local government parks department maintains a 

geospatial dataset containing park and playground polygons.  A state park department 
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maintains a dataset of state parks, and a local government public works department 

might contain open space that are not parks of any kind.  When a user queries a 

geographic information system to show all land that cannot be built, it must, at a 

minimum, query all these datasets (see Figure 10 for an example of an open space query 

results). 

 

Figure 10: A query for open space might return results from two different 

datasets: Easements (in brown) and parks (in green). 

Additionally, geospatial relationships require additional calculations (such as 

distance or overlap) that go beyond the simple traversal of a graph (such as when 

querying an RDF graph) [84, 89]. We do not simply acknowledge the existence of a 

relationship between two geospatial objects; we also mathematically define and 

calculate that relationship based on a topological measurement on those objects. 
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Approaches to identifying semantically-relevant objects in a geographic search 

include adapting the collaborative filtering method to state that objects relevant to users 

in a specific geographic area in the past are relevant to current users searching in the 

same area [87].  That is, we can use past geographic searches to predict the context of 

users to focus future searches. 

Applications of research into geospatial semantics and the use of knowledge graphs 

include those related to crime analysis, transportation networks and communication 

networks [90]. 

A challenge in the definition and interpretation of similarity measures is a lack of 

formal definition or facility to interpret the results of similarity calculations to provide 

geographic context.  This research aims to provide that formal mathematical definition 

of similarity and semantics for geographic objects. It also tries to create a method to 

interpret a user’s context (such as their current geographic location if they are using a 

mobile device) to enhance the results of a semantic search. 

Geographic Information Retrieval 

Geographic Information Retrieval (GIR) can be defined as the relationship 

between a user’s geographic needs and the spatiotemporal expression of geographic 

objects in the user’s surrounding environment [91, 92]. GIR is considered a specialized 

branch of information retrieval. It includes all the concepts associated with information 

retrieval with an emphasis on spatial and geographic indexing and retrieval [81, 93]. 

Many GIR implementations use pre-existing geographic web services to facilitate their 

queries [94]. 
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A user’s needs can be defined in many ways, such as the nearest object to a location 

or the boundary containing a location.  In the GIS field these are known as topological 

constraints [5]. Examples of topological constraints include: 

• Boundary constraints – What boundaries are relevant to the location of interest? 

For example, the school district containing a house location. 

• Nearest neighbor – Finding the nearest (by distance) geographic object to the 

location of interest. For example, the park nearest to the user’s location. This 

type of metric can have different representations based on the different ways 

one can calculate it. For example, if a park can only be accessed by a road 

network, then we must travel along that network to determine the distance to 

that park.  Also, if we want to prioritize geographic artifacts by distance, how 

does this translate into a relevance score [92]?  

• Adjacency – If the location of interest is a line or polygon then we might be 

interested in adjacent geometries. For example, if commercial zoning is 

adjacent to residential zoning. 

Geographic information retrieval research focuses on two areas. The first is the 

acknowledgement that an increasing amount of computing happens on mobile devices 

such as phones and that given their limited screen real estate it is expedient to focus the 

output of mobile computing systems on geographically relevant results [82].  The 

second is an emphasis on identifying geographically relevant artifacts from text corpora 

[95, 96]. 

Traditional geographic information retrieval examines both the thematic, 

geographic and temporal aspects of objects [71].  Thematic information includes 
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attributes associated with a geographic object such as the name of a location and 

various measurements associated with that location. Geographic information includes 

the geometries (including coordinates) associated with a location [93].  Temporal 

information accounts for changes in thematic or geographic information over time, 

such as changing political boundaries. 

These algorithms can also help with querying indirect locations. An indirect 

location refers to a location inferred from a user’s query. For example, a query for one 

park indirectly reveals other amenities to the user [97]. 

Many GIR queries come in the form of a triplet, <what, relation, where>, where 

“what” and “where” are geographic objects with a relationship between the two [89, 

98].  There are two types of relationships we can define of this type:  relationships 

between classes of objects and relationships between objects of the same class. In GIR 

we define relationships between classes of objects by setting up an ontology on those 

classes. For example, we can define the class “address point” to be contained within 

“school boundary.”  Within an individual layer, we can define geographic relationships 

between them. For example, two addresses can have a relationship defined by the 

relative distance between them. 

A query to a geographic information retrieval system generally involves the 

retrieval of keywords from a document of interest and then applying mathematical 

operations like those used in a geographic information system.  Place names are 

resolved to geometries with coordinates and stored in a spatial database. Then the 

spatial similarity between the objects is computed by distance or topology measure 

[93]. 
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A model for geospatial information retrieval from a traditional spatial data 

infrastructure (SDI) is a quadruple: 

��, �, �, �	�
, ���
 

Where S is the collection of all services (WMS and WFS) offered by the 

infrastructure, T is the collection of all feature types provided by the SDI, Q is the 

representation of a user’s query, and R is a function that determines how relevant a 

feature �� is for a query �
 [99]. 

References to geographic objects can be linked using a geospatial ontology. For 

example, any references to cities within the same country can be linked together. 

Geographic retrieval systems should be able to process these types of queries:  Pure 

textual queries that involve a keyword match between geographic terms (like city 

names), pure spatial queries that exploit geospatial ontologies (all hotels within a given 

geographic area), and textual queries with place names (all hotels within a named city) 

[96]. 

Ranking Geographic Objects 

The above work reflects a desire to query a knowledge base to find all relevant 

documents for the user but does not include a ranking or a prioritization of the returned 

results. 

In geographic information retrieval, the weighting and ranking mechanisms are 

based on characteristics of geographic objects such as distance and topology. To 

estimate the relevance of a geographic object for a given user context, distance and 

topological relationships need to be converted into a similarity score. The strength of 

these relationships can be measured and evaluated independently or they can be 
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aggregated into a single similarity measure [100].  Similarity between geographic 

objects also needs to include the relative distribution of objects to the user’s context. 

For example, if a user is searching for any restaurants nearby and there are ten 

restaurants within a city block of the user, no single restaurant would have a strong 

enough similarity to the user to be significant [55, 92]. 

The properties of semantic similarity measures in geographic information systems 

have been explored in [83, 87, 101]. The semantic analysis and querying of geographic 

objects has been explored in [102-105]. Semantic similarity has been used to measure 

land cover change [106], in disaster planning and management [107],  and in military 

applications  [84]. 

There are several limitations with current GIR techniques which this research hopes 

to address: First, most techniques define web-based frameworks (like XML and GML) 

to define geographic relationships and do not apply a rigorous mathematical framework 

[108].  They do not have enough constructs to express data semantics [71].  Second, 

while these types of XML-based querying systems could be used to imply transitive 

relationships (using OWL and RDL), these transitive geographic relationships could 

use a more formal mathematical definition. This research aims to use the research on 

both multilayer networks and semantic link networks to address these two issues. 

2.3.3 Spatial Data Mining 

Applying traditional data mining techniques to spatial datasets can be a challenge 

because many spatial phenomenon and patterns are not independent [109, 110].  As 

mentioned in earlier sections, many aspects of geographic features are dependent on 

structural properties of the Earth such as plate tectonics and environmental factors.  
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Cities have historically been built near bodies of water such as rivers and oceans and 

the ability of rivers to deliver water to those cities is dependent on the topography of 

that river relative to the mountains that are typically the source of that water. 

Spatial autocorrelation refers to the idea that two objects that are close to each 

other should share similar properties.  It is an extension and application of Tobler’s 

Law.  Many properties that are plotted on a map, such as population or crime are not 

randomly distributed throughout a geographic domain.  For example, population 

concentrates around city centers.  Spatial autocorrelation is a basis for many spatial 

data mining techniques such as anomaly detection:  If a geographic region does not 

share the same properties as their neighbors for any given metric, then the spatial 

autocorrelation is negative, and we can say that this is an anomalous result that deserves 

investigation. 

Spatial data mining techniques derive from both the natural geographic properties 

of the Earth (of which spatial autocorrelation is one) and existing non-spatial data 

mining techniques.  Most existing clustering algorithms can be used for spatial 

clustering if two of the fields in the dataset represent the coordinates of the geographic 

objects.  There has been work on creating specialized clustering algorithms such as ST-

DBSCAN which separates the criteria for clusters by geographic distance and by time 

[111]. 

Spatial heterogeneity refers to the idea that, independent of the phenomenon of 

spatial autocorrelation, there will be a natural variation in the distribution of objects in 

a geographic domain.  Co-location refers to the idea that two different classes of 

objects can exist within proximity to each other.  For example, airports and train 
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stations tend to be near each other as part of a transportation network.  Most research 

into co-locations typically involve either detecting the existence of heterogeneous 

objects that exist in the same location [112-114] or detecting anomalous activities that 

occur in the same location (cross-outliers) [115]. Spatial mixture research investigates 

the diversity and general co-occurrence of different types of objects in the same 

geographic region [116]. 

Since many geographic patterns lie within certain geographic restrictions, many 

techniques have been developed to focus these specialized patterns.  For example, 

clustering techniques have been developed that identify clusters that concentrate near 

linear features such as roads or rivers  [117, 118].  Geospatial extensions to anomaly 

detection techniques have also been developed [119, 120]. 

Many geographic features lend themselves to graph-based analysis.  This research 

attempts to extend graph techniques to geospatial applications.  Since many GIS 

databases are very large with many complex features, there have also been attempts to 

optimize these types of algorithms  [121, 122]. 

2.4 Multilayer Networks 

A model of geospatial objects over many layers needs to be based on a data 

structure that respects the multi-layered nature of geospatial data. Network or graph 

theory can provide the structure that models these relationships and research into 

multilayer networks can model the multi-layered nature of geospatial data. 

This type of modeling has produced many theories as to the properties and 

organizational principles of these networks. One theory includes the premise that even 
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randomly generated graphs have certain observable properties that mimic those in the 

natural world [123, 124]. 

Further research into the properties of these networks has revealed that many real-

world networks, particularly biological ones, contain network motifs.  These motifs 

represent networks within networks or, more generally, networks of networks [125]. 

The net result of this research was that networks themselves, if their purpose is to 

model real-world properties of nature, must become more adaptable to the flexible and 

dynamic structure of real-world systems [126].  In particular, modeling the properties 

of a system as one individual network or multiple, yet isolated networks, has proven 

limited in their ability to model natural systems [127]. Specifically, this practice 

oversimplifies  the natural complexity of these systems which could lead to misleading 

results [128]. For example, when modeling a transportation network, if every modality 

of transportation (bus, train, vehicle, etc.) were modeled as a single network, some of 

its structure would be lost. A bus network can provide an analysis of the time it takes 

for a passenger to move from one destination to another using a bus, but if a user wants 

to model a transportation network where the passenger needs to get off of a train and 

gets on a bus at the same location (the train station), the time required to move from 

the train to the bus is not modeled if every location is represented by one node in that 

transportation network. 

Therefore, we examine the properties of a multilayer network, or a network of 

networks where each network is interactive and interdependent with each other. The 

applications of multilayer networks have been investigated in many research domains 
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including infrastructure networks [129],  social networks [130-132], transportation 

[133, 134], and biology [135]. 

A multilayer network is a set of networks (or layers) containing objects (depicted 

as nodes of the networks) connected across multiple dimensions.  Example objects are 

neighborhoods, streets, or parks, and the connections (edges) between them that reflect 

a similarity (or relevance) between them. In many cases, there exists a transitive 

relationship between objects. For example, when compared, two properties might not 

appear to be similar but a common reference to a geographic location (such as a zoning) 

indirectly links them together. Research into semantic link networks (SLNs) explores 

these transitive relationships. 

A multiplex network is a subset of multilayer networks that consists of a series of 

individual networks (layers) and a set of relationships (represented as probabilities) 

between those layers [136].  A multiplex network imposes a stricter mathematical 

formalism that will be used in this research. Each layer represents a distinct interaction 

between the nodes on the network [137].  In Figure 11 below, we have a multiplex 

network with three layers. If M represents the number of layers in a multiplex network, 

then in this example M = 3.  Each layer can be thought of as an individual network (or 

graph) where a node represents an object (such as a location) and an edge between the 

nodes represents a relationship between those nodes. In a multilayer network, given N 

nodes we can represent the complete set of nodes as: 

���⃗ = (��, … , ��) 

Given M layers we can represent the complete set of layers in our multiplex as: 

���⃗ = (��, … , ��) 
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Figure 11: An example of a multilayer network. Each layer �� is represented as 

an individual graph. 

Representing three different layers �� … �� as isolated graphs presents problems 

when attempting to fully model the connectivity of each node (for example, between 

zoning and streets).  We need to properly model the interconnected nature of these 

layers. That is, if there exists a relationship between the networks, we need to represent 

that relationship.  Therefore, we look at the inter-layer correlations between the layers 

[133]. 

Another way of describing a multilayer network is a series of nodes connected to 

each other with multiple linkages [138]. This definition makes a distinction between a 

series of interconnected or interdependent networks on one hand [139], and our 

definition of a multiplex network on the other, which makes the assumption that every 

node in the network has a counterpart in each layer [128].  By this definition, each node 

� ∈ � can be represented as a vector containing elements representing the value in each 

layer. 

��⃗ = [�� … ��] 
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Figure 12: Multilayer network with inter-layer correlations. 

In Figure 12 we represent the same multiplex network as before, however, we have 

highlighted inter-layer correlations as edges (vertical dotted lines) in the network. That 

is, the step of changing layers as a step in our network is treated with its own dedicated 

edge and a value (known as a penalty) for traversing from one layer to another [140].  

Thinking about the random walk between nodes among the different layers, it is 

theoretically possible to move from a given node in any layer to any node in a different 

layer if we use multiple steps. To reduce the complexity of our multiplex construction, 

a rule where we only allow travel between nodes on the same layer or between layers 

at the same node is enforced [141]. 

If we want to travel from one node to another node in a different layer then we must 

use at least two steps, as shown in Figure 13. One step is necessary to change layers 

(the dotted vertical edge) and another step is needed to change node (the solid edges on 
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each layer). We say a minimum of two steps because there might be situations where 

travel is restricted, and we must navigate the network to reach our destination. 

 

Figure 13: Travel along a multiplex network with restrictions. 

In the next sections we investigate the mathematical properties of multiplex 

networks. 

2.4.1 Matrix Representation of Multiplex Networks 

Since networks can be represented by matrices [131] this representation can be 

extended to multiplex networks.  In a multiplex network, each layer is a weighted graph 

where the weights of the edges between nodes represent the strength of the relationship 

between the two nodes for a given measure. The individual layers have their own 

adjacency matrices, and this can be supplemented with additional matrices representing 

the relationships between nodes that belong to different layers. In a simplified case this 

could be the cost (or penalty) of traversing between layers on the same node (which 

exists in both layers). 
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A multiplex network with M layers is a “matrix of matrices” and can be modeled 

as: 

� =  !� ⋯ #��⋮ ⋱ ⋮#�� ⋯ !�
& 

Where '� is the adjacency matrix for layer m and ()* is the inter-layer correlation 

matrix between layer a and layer b. 

The adjacency matrix '� represents the relationships between nodes in the 

individual layer m.  Specifically, an individual element in one of these matrices +
�  ∈
 !- represents the value of the relationship (or relationship score) between node i and 

node j at that layer.  If we continue with our previous three-layer example in Figure 14 

with sample values added, +./ ∈  !-0  represents the relationship score between nodes 

A and D at layer �� and this value is 0.5. 

Filling out our adjacency matrix we calculate: 

!-0 =  
⎣⎢
⎢⎢
⎡+.. +.4 +.5 +./ +.6+4. +44 +45 +4/ +46+5. +54 +55 +5/ +56+/. +/4 +/5 +// +/6+6. +64 +65 +6/ +66 ⎦⎥

⎥⎥
⎤ =  

⎣⎢
⎢⎢
⎡ 0 0.3 0 0.5 0.20.3 0 0 0 00 0 0 0.9 00.5 0.9 0 0 00.2 0 0 0 0 ⎦⎥

⎥⎥
⎤
 

Note that we declare the relationship score between a node and itself to be +.. =
0. If there is no relationship between two nodes, for example between nodes A and C, 

then the relationship score is defined to be zero. For example, +.5 = 0. 

Remember that each layer has its own adjacency matrix, so in our example we 

would similarly construct !-@  and !-A . 
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Figure 14: Multiplex example with sample values. 

The inter-layer correlation matrix represents the strength of the relationship 

between individual layers.  There exists an inter-layer correlation matrix between every 

layer in the system. Remember that travel between layers is restricted to the same node, 

therefore this matrix is a scalar matrix where all values are along the diagonal. Given 

two layers i and j and a distinct and singular relationship score between those two layers 

B
,� the inter-layer correlation matrix can be defined as: 

#-C,-D =  EB
,� ⋯ 0⋮ B
,� ⋮0 ⋯ B
,�
F 

Each inter-layer correlation matrix consists of N diagonal values B
,� , G ∈ �which 

represent the relationship score between the same node i between the two layers. If the 

cost of traversing layers at a node is reflexive then B
,� =  B�,
 and #-C,-D =  #-D,-C 
[128].  All remaining values in C are zeroes since we have established a rule that travel 
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between layers can only happen at the same node (or location).  If there is no 

relationship between layers i and j, then B
,� =  0 and all the values in #-C,-D are zeroes. 

The supra-adjacency matrix �  is still an adjacency matrix and structurally this 

implies that a multiplex network shares similar properties with individual networks 

[142].  The existence of a value in the matrix represents a relationship between nodes 

in any layer and in fact treats the same node in multiple layers as separate nodes. For 

example, if we had N = 5 nodes and M = 3 layers (each with its own 5 x 5 adjacency 

matrix) the supra-adjacency matrix would be a 15 x 15 matrix. In a sense, this multiplex 

network is similar in structure to having 15 nodes in one layer. 

Based on the example above, if we take the first row of the supra-adjacency matrix, 

representing travel between node A starting at the first layer, it will look like this: 

[1 0.3 0 0.5 0.2 BI 0 0 0 0 B� 0 0 0 0] 
This row has 15 (N x M = 5 x 3) columns. The first five columns are drawn from 

the adjacency matrix at the first layer. The second five columns represent travel to the 

second layer (with a BI representing the probability of moving from layer 1 to moving 

to layer 2) and the last five columns represent travel to the third layer (with a B� 

representing the probability of moving from layer 2 to layer 3).  The zeroes represent 

the restriction we have placed on the multiplex where we can only move to another 

layer at the same node.  This is why both ω values are in the first column of the group 

of five. 

The construction of the supra-adjacency matrix contrasts with the construction of 

the aggregate adjacency matrix which is constructed by using an aggregation function 

on the edge weights between nodes. 
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2.4.2 Multiplex Network Properties 

Newman et al. explored the relative connectivity of an individual node in the 

network since the connectivity of a node might hold a clue to the relative importance 

of that node [143]. When looking at a graph, how does one prioritize or value certain 

nodes, edges, or layers over others [144]? For example, examining a network focusing 

on an isolated node might not provide as much insight as a node with connections to 

many other nodes. In this section we examine different measures of the connectedness 

of individual nodes in a network. 

The communicability (or correlation) of a node represents the degree to which 

changing (or removing) that node in the graph can affect other nodes in the rest of the 

graph [145, 146]. 

Centrality is the term used in network theory to measure the relative importance 

of a node, edge, or a subset of the network relative to the entire network [128, 130].  

For example, a large capital project might be more relevant to other geographic objects 

and activities in the area than smaller capital projects. Centrality in this example reflects 

the relative impact of that capital project compared to others. 

One measure of centrality is degree. The degree of node � ∈ � is the number of 

nodes connected to that node, or: 

 JK =  L G ∈ � MℎOPO !
K > 0 

In a multiplex network one can calculate multiple degrees, one for each layer. The 

degree of node n at layer m is: 

JK- =  L G ∈ � MℎOPO �-,
K > 0 
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Note that there might be situations where a node’s degree at one layer could be 

different than its degree at another layer and sometimes the degree is zero at certain 

layers (it is an isolated node at that layer) [147].  In multiplex networks the connectivity 

of individual nodes is especially important since nodes might be connected in one layer 

but not another. A walk represents a path from one node to another in a network and 

all walks in a network represent every path from every node to another.  Specifically, 

a walk is a series of nodes and edges along the graph. With a standard network with 

adjacency matrix A, the walks of k length can be represented by the kth power of A, or 

!R. Degree centrality is equivalent to walks of length one (where k = 1). 

This can be translated to the multiplex by applying the same kth power to the supra-

adjacency matrix: �R. The set of all walks of all lengths from any node to any node in 

our supra-adjacency matrix can be represented as a vector of matrices: 

S = [�, �I, … , ��T�] 
The set of all walks on our supra-adjacency matrix is limited to MxN elements since 

our supra-adjacency graph essentially contains MxN nodes (M representations of N 

nodes, one for each layer). 

We additionally distinguish between intra-layer walks (those that only visit nodes 

and edges belonging to only one layer in the multiplex and inter-layer walks (walks 

that visit nodes and edges in more than one layer of the multiplex). 

The reachability of a node is the average distance from that node to every other 

node in the graph. The multiplex reachability of a node i is the average distance U
 
from i to any other node of the multiplex [147].  We can use this value as a benchmark 

to evaluate the connectivity of a node at each layer. 
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The shortest path between two nodes in a multiplex network is a minimum path 

that starts from the source node in any layer and reaches the destination node in any 

layer. The interdependence of a node i is 

V
 =  L W
�X
��∈��Y

 

Where W
� is the number of shortest paths between node i and node j which uses 

edges lying on more than one layer and X
� is the total number of shortest paths between 

i and j in the entire multiplex. Interdependence is a measure of the value gained by 

using a multiplex construction [148]. 

When comparing two layers we can look at the interlayer degree correlation 

between any two layers in a network. This measures the degree of a node at each layer 

and compares it to the degree of that node at every other layer. If nodes that have high 

degree in one layer correspond to the nodes that have high degree in another layer than 

we say that the new layers are highly correlated. On the other hand, if a node has high 

degree in one layer but has very few connections in a second layer than those two layers 

are not highly correlated [129].  In our travel example, we could say that the road layer 

and airport layer are correlated because airports that serve as air hubs typically serve as 

road hubs. On the other hand, an air network and a rail network might have low 

correlation since train stations and airports tend to not be near each other. 

2.4.3 Layer Aggregation and Multiplex Entropy 

The previous section discussed network properties such as interdependence that 

compare the paths made available by modeling values in a multiplex construction.  By 

default, our behavior when determining what layers we would want to use in our 
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multiplex network would be to take every attribute of our graph and make a layer out 

of them.  However, as shown in the methodology section, doing this would create a 

great deal of additional overhead and computational time to our analysis.  As shown in 

Table 2, every added layer would add 2N - 1 sub-matrices in our supra-adjacency 

matrix. 

Table 2: Each layer added to the multiplex in our example increases the number 

of sub-matrices by 2N-1 

# 
Layers 

# Adjacency 
Matrices 

# Inter-Layer Correlation 
Matrices 

Total 

2 2 2 4 

3 3 6 9 

4 4 12 16 

5 5 20 25 

 

Therefore, we need to know when it is appropriate to remove or aggregate layers 

and/or fields in those layers without removing a significant amount of information 

[135]. 

One measure of the information gained from adding additional layers (or 

information lost from aggregating some of those layers) is entropy.  Information 

Entropy is the amount of information about a natural system that a data model does 

not provide [137].  Naturally, it makes sense that if we model our system with a 

multilayer network with values from all layers, we will have lower entropy than if we 

aggregated those attributes into a single value, where the nuanced properties of 

individual locations could be lost. When balancing the size of a multilayer network 
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with performance considerations, entropy can be used to help identify layers for our 

multiplex in the methodology section. 

2.4.4 Modeling Multiplex Networks as Tensors 

Our primary model of multiplex networks involves creating a supra-adjacency 

matrix which represents the multiplex as one supra-adjacency matrix. An alternative 

method is to use a tensor to model a multiplex network [137]. 

Given a tensor-based multiplex network it is possible to “flatten” it into a supra-

adjacency matrix. We do this by slicing off each dimension (a layer adjacency matrix) 

and placing it in an appropriate position in the supra-adjacency matrix.  This results in 

a bijective mapping between the two layers in a process known as flattening, unfolding 

or matricization [1]. What is important is that both the tensor representation and the 

matrix representation store the same information, just in different formats. 

This dissertation uses the supra-adjacency matrix representation of a multiplex 

network rather than the tensor representation for a couple of reasons:  First, given our 

interest in merging the multiplex theory with that of the semantic link network 

(discussed in Section 2.5) a matrix works better since the SLN involves matrix-based 

calculations [141, 149].  Second, representing the multiplex network as a matrix is a 

more intuitive model and matrices are the least removed from the database origins of 

the data we will be using in this research [150, 151]. Third, this type of representation 

lends itself to software implementations of our algorithms [150]. 
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2.4.5 Challenges with Multiplex Networks 

The study of multiplex networks is relatively new and because of this there are no 

standard notations or mathematical structures and no consensus on how to 

mathematically model multiplex structures.  This dissertation makes decisions as to 

which mathematical notion and structure for multiplex networks we will use, most 

notably the decision to work with the supra-adjacency matrix model as opposed to the 

tensor model. 

Additionally, the literature on multiplex networks focuses on the mathematical 

foundations of the theory. While there have been attempts to apply multiplex network 

theory to practical applications such literature is limited. 

2.5 Semantic Link Networks 

This section defines semantics and uses that definition to describe the semantic link 

network as a data structure to help describe the relationships between objects. We have 

previously mentioned that part of the context of an object is the relationship between 

that object and other objects. 

2.5.1 Semantics 

Semantics is the meaning of objects (such as property boundaries or police 

stations) and the relationships between them. 

The idea of semantics as a computational concept has been used significantly within 

the context of the semantic web. The World Wide Web (WWW) can be described a 

series of distributed resources (web pages, multimedia) linked together via hyperlinks. 

This is what is colloquially known as Web 1.0.  From the World Wide Web came the 
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development of web services which took the hyperlinked nature of the Internet and 

applied it to data. The protocols and languages associated with web services (Web 2.0) 

include RDF, OWL and SPARQL. These languages are designed to be machine 

readable and to be interpreted by applications to provide meaning to the data contained 

inside.  OWL, for example, models the ontologies discussed in Section 2.2.4 [152]. 

2.5.2 Semantic Link Networks 

A Semantic Link Network (SLN) is defined as "a self-organized semantic data 

model for semantically organizing resources, which can be abstract concepts or specific 

entities such as texts, images, videos, and audios" [3].  This model is built around a 

matrix-based mathematical foundation, and this is the one reason we chose to use a 

supra-adjacency matrix to model a multiplex network rather than the tensor 

representation. 

An SLN has the following properties: 

• It reflects various semantic relations between classes and between entities. 

• It is a semantics-rich self-organized network. Any object can be related to any 

other object (although in many cases two objects might not be connected). 

• It can derive implied semantic links based on a set of reasoning rules. That is, 

given a series of existing links we can infer new links based on a pre-defined 

series of rules. 

• The semantics on the network keep evolving with various operations on the 

network. That is, when new information is added to our network the SLN should 

adapt and absorb the new information and modify linkages or create new 

linkages from this information. 
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A reasoning rule is a set of operations (usually mathematical) that can be applied 

to the links in an SLN to imply new linkages that might not have existed otherwise. 

There have been attempts to create a set of generic reasoning rules [153, 154].  A 

reasoning rule might say that if nodes A and B have a relationship and nodes B and C 

have a relationship then nodes A and C have an implied relationship even if that 

relationship wasn’t originally established.  If two connected semantic links exist a third 

semantic link could be derived from those two links with the proper reasoning rule. 

SLNs can be associated with ontologies. Given an ontology that describes a 

taxonomy of concepts or classes and given data that fits into those classes we can 

establish relationships between the individual instances of those classes [155]. 

SLNs have been used in network applications, knowledge management and to 

enhance search [156]. 

2.5.3 Mathematical Definition of SLN 

Mathematically, an SLN is a directed network consisting of semantic nodes and 

semantic links. A semantic node is a concept (like a road or a park). A semantic link 

reflects a kind of relational knowledge represented as a pointer with a tag describing 

semantic relations.  These semantic links usually reference prepositional logic. 

Examples of semantic links include “is inside of” and “is similar to.”  A semantic 

relation resembles the concepts in ontology and can include relationships such as 

similarity between the two semantic nodes [3, 157]. 

An SLN schema is a triple of <�Z[O\, �O�+�]G^ UG�J\, �_`O\ >, where 

• A node is an object type (address, park) denoted by �
 ∈ � and its features are 

represented using a vector a→KC = [c� … cK] where c
 is a feature of node �
. 
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• A link is a node-to-node relation `d,e ∈ �f�. For example, addresses are 

connected by a distance and zoning polygons are connected by an adjacency 

measure between those zones. These weights act as a probability that two nodes 

are related to each other. The set of links `d,e can be combined into an N x N 

matrix. This matrix is known as the Semantic Relationship Matrix (SRM). 

The SRM acts as a type of adjacency matrix where the values specifically reflect 

the values of the semantic links between two nodes. 

• A rule is a reasoning mechanism on semantic links. It is a mechanism by which 

we can define implicit relationships between nodes. Denoted by: 

�
 →g �� , �� →h �R ⟹ �
 →j �R where k, l and m are weights on semantic links 

and k ⋅ l = m . 

This rule is a mathematical formula to derive a new link from two existing links 

and to generate a weight on the new link by multiplying the weights of the two existing 

links. For example, in Figure 15, if k = 0.5 and l = 0.7 then we say that m = k ⋅ l = 0.5 

⋅ 0.7 = 0.35. Since these are probabilities, multiplying the two values will always 

produce a value lower than the two original probabilities (unless both probabilities are 

0 or 1). We define the transitive relationships between nodes that are not apparent from 

the original matrix by this mechanism. 
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Figure 15: An SLN reasoning action 

Mathematically and intuitively the strength of these implicit relationships 

(�
 →j �R) should be weaker than the direct relationships (�
 →g �� , �� →h �R) that define 

them. However, in some situations those implicit relationships are stronger than the 

direct relationship defined in the original matrix and should be the preferred path 

between two nodes. 

We will take the multiplex construction and apply the rules defined by the SLN 

schema to try to define implicit connections between nodes within a layer and across 

layers. 
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Chapter 3: Theoretical Approach 

Querying databases for relevant geographic objects has limitations that were 

outlined in the earlier chapters. This chapter summarizes the problems that lead to these 

limitations, mathematically defines a solution to these problems, and describes a 

framework that models their solution. 

3.1 Overview of the Problem 

Geographic objects are features that exist in the observable world. Sometimes these 

are physical objects (such as trees or buildings) or abstract concepts (such as political 

boundaries or districts). Historically, these geographic objects have been modeled as 

paper maps with symbols on the map representing these objects.  For example, on many 

maps, dots might represent important landmarks.  Digital maps extended this concept 

by representing the paper maps (and their underlying geographic objects) on a digital 

screen that can be manipulated (zoom in/out and panned) by a user. 

 

Figure 16: A map showing multiple geographic objects in a park. Blue 

represents a water body and the seven labeled objects (A through G) represent 

pavilions within the park. 
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This dissertation focuses on the digital representation and storage of the geographic 

objects within a domain of interest and the relationships between these objects with a 

goal to develop a mathematical model of geographic relevance between these objects. 

For example, calculating the parks and amenities that are relevant to a resident in a 

community, or the political boundaries relevant to a proposed major construction 

project. 

3.2 Mathematical Foundations 

This section mathematically describes the set of geographic objects in a domain of 

interest and the relationships between those objects. Specifically, we mathematically 

define geographic objects in a domain and the grouping of those objects into layers. 

We then define the potential topological relationships between these geographic objects 

as well as various distance measures for these objects. Finally, we define potential 

relationships between layers and derive potential semantic relationships between 

geographic objects. 

3.2.1 Geographic Objects 

We define D to be the domain of interest for a given endeavor, typically defined 

as a geographic boundary. For example, all objects in the domain of a major city include 

all geographic objects (physical and abstract) within that city’s borders. A domain 

could also be defined as an individual park’s boundary or defined as the whole Earth. 

Definition:  A domain consists of the data and information relevant to an area of 

study. Given the set of all geographic objects on planet Earth o (the largest domain 
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relevant to geographic inspection) and a domain of interest D, we define o/ to be a 

subset of those objects relevant to our domain. 

o/ = {q�, qI, … , qK | q
 ∈ o} 

We can define subdomains within o/ at will to define subsets of objects within 

our primary domain. This can include grouping objects by similar object types (such as 

a group of all park benches) or by different geographic envelopes (such as all 

geographic objects in one park or one district). 

 

Figure 17: In this park example, we define three envelopes of interest. Each 

envelope contains one or more geographic objects (pavilions). 

Definition: An envelope is a geographically defined area of interest. We define o6  as 

the subdomain of all objects within a specified envelope. 

 o6 = {q�, qI, … , qK | q
 ∈ o/} 
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Geographic information systems typically store similar types of objects (such as 

parks) into database tables or files known as layers. For example, one layer could 

represent all park pavilions in an area and another layer could contain all lakes. 

Definition:  A layer is a grouping of similar types of objects in a geographic area. 

For any given layer of interest L, we define ot as the subdomain of all geographic 

objects within that layer. 

ot = {q�, qI, … , qK  ∈ o/} 

In a domain, the grouping of geographic objects into layers is independent of 

grouping layers into an envelope. For example, the set of all amenities of all types 

located inside one park (the envelope) is independent of the set of all park benches in 

a domain (the park bench layer). That is, the set of potential envelopes in a domain and 

the set of potential layers in a domain are orthogonal. 

Proposition:  The combination of the objects in all layers results in the set of all 

objects in a domain. 

 L ot =  o/ 

An individual geographic object represents a physical object in the environment or 

an abstract object such as a political boundary. Geographic objects can be spatially 

represented as a series of component objects and the specific structure of a geographic 

object depends on the nature of that object.  For example, park boundaries can be 

represented as polygons and park benches within that park can be defined by point 

features. Database systems that support the storage of spatial objects such as points or 

polygons standardize the formats for distinct types of objects (points, lines, polygons) 

and expose functions on those objects. 
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Geographic objects can be represented as point objects if they can be represented 

as a set of coordinates. These coordinates can be represented in a spatial database as 

either a longitude/latitude or as a series of planar coordinates (x and y) that conform to 

a standardized projection in the European Petroleum Survey Group (EPSG) set of map 

projections and can generally be treated as Cartesian coordinates for calculations. 

Definition:  A point is a type of geographic object qu that can be defined 

mathematically as a series of coordinates x and y. These coordinates can represent 

planar coordinates or longitude/latitude: 

 qu =  (f, v) ∈  ℝI 

 

Figure 18: A line (curve) is a sequence of vectors (line segments) connecting 

points. 

Curves are typically found in a map. In general, such curves are called lines. A line 

in a spatial database is composed of a sequence of vectors (line segments). The vectors 

connect when the endpoint of one vector shares coordinates with the beginning of the 

next vector in the sequence. 
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Definition: A line is a type of geographic object qx that can be defined 

mathematically as a series of points q
, vectors (line segments) connecting those 

points in a defined sequence qyqyz�������������⃗ , and the summation of those vectors into a series. 

 qx = L qyqyz�������������⃗  ∈  ℝI 

A polygon is an enclosed series of line segments, where the end of the final line 

segment in the sequence shares coordinates with the beginning point of the first line 

segment. A polygon’s constituent line segments bifurcate the Earth into two partitions 

and the “inside” is intuitively defined to be the non-infinite partition created by the line 

segments. Spatial databases sometimes require line segments to be digitized in a pre-

defined direction (clockwise or counterclockwise) to better define the inside and 

outside region. Some databases automatically detect the inside of a polygon. 

 

Figure 19: A polygon is a series of line segments in sequence (orange arrows) 

connecting vertices (red dots). 
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Definition: A polygon is a type of geographic object qu consisting of a sequence of 

line segments where the final point in the sequence connects to the initial point in the 

sequence and is compact (all points lie within some fixed distance of each other). 

We have defined geographic objects and defined sets of geographic objects as 

layers or envelopes that are subsets of all geographic objects in an organization’s 

domain of interest. 

The geographic objects in a domain of interest do not exist independently. At a 

minimum, these objects exist in proximity to one another. For example, two parks that 

are close to each other might have a stronger relationship between those far apart. In 

other situations, objects can exist within other objects. For example, a park bench 

(represented as a point) whose coordinates are within the polygon boundary of its park 

implies a relationship between the park bench and the park itself. 

We assign a numerical value to describe the strength of relationship between two 

geographic objects. 

Definition: A relevance score is a probability that represents the strength of 

relationship between two geographic objects or how relevant one geographic object 

is to another. A relevance score of 0 represents no relevance between two objects and 

a relevance score of 1 represents total relevance between two objects. 

Relevance scores can be calculated by describing the topological relationships 

and/or distance relationships between geographic objects and the layers that contain 

these objects.  In this work, the relevance score (either between objects or between 

layers) is represented by a probability which is a Bayesian probability.  The higher the 

relevance score between two objects, the higher the probability that a user interested in 
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the first object will also be interested in the second object.  In later sections, the final 

model will represent a Markov chain representing these probabilities for all geographic 

objects in a context profile. 

In the following sections, we describe the mathematical techniques used to 

calculate the relevance score between any two geographic objects. 

3.2.2 Topological Relationships Between Geospatial Objects 

In spatial databases, the existence of a relationship between two geographic objects 

is also known as a topological relationship. Examples of topological relationships are 

shown in Table 3. These topological relationships can be used to define a formula that 

calculates the strength of a relationship or a similarity between two geographic objects. 

The formula is chosen  based on the types of objects that we need to relate with each 

other  [158]. 

Table 3: Different topological relationships and their similarity calculations 

Type of Relationship Similarity Definition 

Distance Linear or non-linear distance between two objects 

Intersection 
(Points/Lines) 

Existence of intersection or not 

Overlap Percent of overlap compared to total length or area 

Adjacency Existence of adjacency or not 

 

We expand on the definitions in Table 3 with more detail. We define the similarity 

between two geographic objects as a probability between 0 and 1, where 0 means no 

similarity and 1 means the two objects have the most similarity.  The calculations 
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detailed below take an intuitive definition of these concepts and applies a mathematical 

structure to them. 

Distance 

This is the default similarity calculation used in our framework and is our default 

calculation for any geographic objects. While distances between two geographic points 

depend on both the curvature of the Earth and the altitude of the two points of interest, 

we use the Euclidean distance between two objects. 

Definition: For any two geographic objects q
 and q� in our domain, each defined as 

a set of coordinates x and y, we define the distance between those two objects. 

 [	q
, q�� =  {(f
 −  f�)I + (v
 − v�)I 

Any geographic object’s distance to another can be calculated for any type (point, 

line, polygon). For example, a park can be represented by its boundary (a polygon) and 

the distance from that polygon to a point of interest can be calculated in multiple ways:  

Distance from the point to the polygon’s centroid or the distance from the point to the 

nearest edge on the polygon. Distance measures will be explored in more detail in the 

next section. 

Intersection (Points or Lines) 

The intersection of a line or a point with a polygon (for example, an address within 

a specified Congressional district) or the intersection of two lines (for example, two 

streets) is binary. For example, in Figure 20 we display the intersection of two streets 

in Ellicott City, Maryland, Court Avenue and Emory Street. 
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Figure 20: An intersection between Court Avenue (blue) and Emory Street 

(purple). 

Definition: For two geographic objects that intersect each other, we define the 

intersection-based relevance score k
K~ ∈ [0,1] between two geographic objects q
 
and q� as: 

k
K~(q
, q�) =  �1, q
  ∩ q�0, Z]ℎOPMG\O 

Overlap 

When a line overlaps with a polygon, or when two polygons overlap, the similarity 

between the two objects depends on their overlap. If the two objects have identical 

geometries (they are on top of each other) then the relevance score should be 1 and if 

they have no overlap the relevance score should be 0. 
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Definition: For two geographic objects that overlap, we define the overlap-based 

relevance score k��� ∈ [0,1] between two lines or polygons q
 and q� as the 

intersection of the two objects (calculated as length or area) divided by the length or 

area of the first object: 

k���	q
, q�� = q
  ∩ q�q
  

 

Figure 21: The B&O Museum Property (outlined in black) and the floodplain 

polygon (in blue). 

For example, in Figure 21 we highlight the property of the B&O Railroad Museum 

(in black) and we overlay the county floodplain (in blue). The total area of the 

highlighted property is 13,327 square feet and the area of the floodplain intersecting 

that polygon (the blue area inside the white polygon) is 7,538 square feet. Therefore, 

we calculate the overlap as: 

k���	q
, q�� =  q
  ∩ q�q
 =  753813327 = 0.56 
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Adjacency 

Two polygons are adjacent when a part of their boundaries intersect each other. 

When two objects are adjacent to each other, we treat it as a binary relationship.  Either 

two polygons are adjacent to each other, or they are not. 

Definition: For two geographic objects that are adjacent to each other, we define the 

adjacency-based relevance score kd��  ∈ [0,1] between the two polygons q
 and q� 

as: 

kd��(q
, q�) =  �1, O[qO\ Z�OP`+�0, Z]ℎOPMG\O  

The next section explores the calculation of similarity between objects based on 

distance. 

3.2.3 Distance Relationships between Geospatial Objects 

In most situations, the closer a geographic object is to another, the stronger the 

relationship between them and the higher the relevance score between the two objects. 

For example, given a series of parks, two parks closer to each other are considered more 

similar than parks farther apart. This distance is generally considered to be a measure 

representing the length of the shortest line segment that can be drawn between two 

points.  If we represent our domain as a two-dimensional Cartesian plane, then this 

distance is a straight line between the two points. 
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Figure 22: Calculating the distance between A and B: we are only interested in 

the shortest line segment connecting two objects (pink line) and not others (grey 

lines). 

Linear Distance Similarity 

We used a simplified linear distance between objects in the same layer to determine 

their relevancy to the user’s location of interest. However, any GIS layer might need a 

different metric based on distance (or some other measure such as adjacency) and we 

plan to explore other metrics. 

Definition: The linear distance similarity k�
�~ between two objects in a domain is 

the complement of the proportion of the distance between two objects q
 and q� 

compared to the maximum distance possible in the domain (a city or other 

geographic area of interest) [-dT. 

 

k�
�~	q
 , q�� =  1 − [(q
, q�)[-dT  

With this formula, if two objects are geographically in the same location the 

similarity value is one and if two objects are the maximum possible distance from each 
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other (within the domain of interest) then their distance value is zero. For example, if 

the maximum distance between any two points in Baltimore City is 15 miles, and the 

distance between two objects is 5 miles, then we calculate the similarity 

k	q
, q�� =  1 − 515 = 0.67 

Normalized Distance Similarity 

While this calculation fits into our framework it does not consider the contextual 

definitions of distances between layers  [104].  For example, if a user queries nearby 

addresses versus nearby parks, using the formula above could potentially provide 

thousands of nearby addresses for every park. 

In Figure 23 we have identified the nearest addresses and parks to the “Mall in 

Columbia,” a central landmark in Howard County.  In this example, the average 

distance to the nearest 18 addresses is approximately 1,000 feet whereas the average 

distance to the nearest 5 parks is about 8,000 feet. 

 

Figure 23: With “The Mall in Columbia” as the location of interest (red), the 

nearest addresses are shown in purple and the nearest parks in green. 



 

86 
 

An alternative way to limit the number of addresses that are returned in the situation 

above would be to replace the maximum possible distance with the typical distance 

between objects. By looking at the distribution of distances between any two objects in 

a GIS layer we can use the mean and standard deviation of that distribution to calculate 

distance. We assume that any distance more than three standard deviations past the 

mean distance for the population of objects in that layer is not similar enough to be 

returned in an information retrieval query. 

When we examine the population of geographic objects in a layer, this formula 

needs to be modified to include what a user might reasonably consider “nearby.”  This 

means that while [� and [� represent the distribution of distances for all points in the 

layer, we are only interested in objects within a threshold distance. For example, we 

are only interested in the closest addresses to other addresses when evaluating the 

distribution of distances based on the distribution of distances between all objects in 

the relevant layer or domain. Using a threshold for nearby objects results in [�∗ and 

[�∗ which are the values used in our similarity calculation. 

Definition:  If [(q
, q�) is the distance between any two objects in a layer, [�∗ is the 

mean distance between objects in that layer, and [�∗ is the standard deviation for 

object distances in that layer, we define the normalized distance similarity α as: 

 

k	q
, q�� = �1 − [	q
, q�� [�∗ + 3[�∗ , [(q
, q�) < 3[�∗ + [�∗0                            , [(q
, q�) ≥ 3[�∗ + [�∗
  

 
The next step is to mathematically define the relationship between two layers. 
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3.2.4 Relationships Between Geographic Layers 

We group geographic objects of the same type into layers. For example, we define 

all parks in a domain as a layer and all ponds in the domain as a separate layer. These 

layers can have relationships defined between them. In our earlier example, park 

benches that exist within a park are said to belong to that park. This relationship 

between objects in two different layers can already be defined as a topological 

relationship, as described in Section 3.2.2.  However, just because two layers can have 

a distance or topological relationship defined between the objects contained in those 

layers does not imply that those layers are relevant to each other. For example, when a 

user is at a park, they are likely more interested in nearby park benches than the nearby 

pond in the park since the park bench is an amenity used in the park, whereas the pond 

is a physical artifact that is a consequence of the park’s location. 

From Section 3.2.1, we defined a layer L as a grouping of objects of a similar type 

and is a subset of all objects in a domain. For example, one layer can contain all park 

benches and a different layer can contain all ponds in a domain of interest. 

U ⊆ � 

 ot is the set of geographic objects within that layer. 

ot = {q�, qI, … , qK  ∈ o/} 

Definition:  The layer relevance score (or layer similarity) V between two layers Uu 

and U� is a probability defining the strength of the relationship between those two 

layers. 

V	Uu, U�� ∈ [0,1] 
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A value of 0 implies no relationship between the two layers and a value of 1 implies 

the strongest possible relationship between two layers. 

The relevance between any two geographic objects can be defined as the product 

of the relevance score between the layers containing those objects and the distance or 

topology between the two individual geographic objects independent of the layers that 

they are contained in.  In the case when the two objects are in the same layer, the value 

of λ is equal to 1. 

Definition: If q
 is a geographic object belonging to Uu and q� is a geographic object 

belonging to U� then the adjusted relevance score k� between the two objects is the 

product of the layer relevance V and the original relevance score k: 

 k�	q
, q�� =  k	q
, q�� ∗  V	Uu, U�� 

Since V and k are both probability values, the product of both produces another 

probability value k�  ∈ [0,1]. Having defined the relationships between individual 

geographic objects and geographic layers, the next step is to use the principles behind 

multiplex networks to create a mathematical model of all geographic objects in a 

domain and the relationships between them. 

3.2.5 Context Profiles 

Since different users have diverse ideas as to which layers are relevant to others, 

we introduce the idea of a context profile, which is a grouping of layers that are relevant 

to a user’s context. 
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Definition: A context profile is a set of layers in the domain of interest and a set of 

mathematically defined layer relationships for those layers. 

� =  �U, V	Uu, U�� � ot  ∈  o, Uu, U�  ∈ U
 

The same layer can be involved in multiple context profiles. Context profiles will 

be used to focus the processing of the framework described in Chapter 4 and evaluated 

in Chapter 5. 

3.3 Creating a Multilayer Network 

A multilayer network contains relationships between layers (as described in Section 

2.4), and relationships among objects in the same layer. 

A Multilayer Semantic Link Network (mSLN) can be defined as a graph 

representation of the relationships between nodes among several different layers. 

Specifically, the mSLN models two types of relationships: relationships between layers 

and relationships between objects in the same layer. An mSLN is represented as a 

matrix of matrices with two types of components: Each individual layer of the mSLN 

is a graph represented as an adjacency matrix which contains the relationships between 

nodes in the same layer. Different layers are connected, and these connections are 

represented as inter-layer correlation matrices, which identify the relationships that 

exist in our ontology. In this section we detail the mathematical foundation and steps 

necessary to create a multilayer SLN. 
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Definition: A multiplex network with M layers is a supra-adjacency matrix where 

'� is the adjacency matrix for layer m and ()* is the inter-layer correlation matrix 

between layers a and b: 

 

� =  !� ⋯ #��⋮ ⋱ ⋮#�� ⋯ !�
& 

The following sections summarize the construction of both the adjacency matrices 

and the inter-layer correlation matrices. 

3.3.1 Modeling all Objects in One Layer (Adjacency Matrices) 

After defining the relationships between individual objects (Section 3.2.2 and 

Section 3.2.3) and the relationships between individual layers (Section 3.2.4), a 

mathematical structure based on the principles of multiplex networks can help define 

the relationships of objects in our domain. This formulation models the relationships 

between all objects in a layer and the relationships between all layers in a domain to 

create a model of the relationships between all objects in a domain. 

Mathematically, the goal is to combine two types of matrices, layer adjacency 

matrices (modeling the relationships between objects in a layer) and inter-layer 

correlation matrices (modeling the relationships between layers themselves) to create 

a combined matrix known as a supra-adjacency matrix. 

Starting with a layer L with n objects in it as defined in Section 3.2.1: 

ot = {q�, qI, … , qK  ∈ o/} 
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We can define each layer as a directed graph G with n nodes, with one node for 

each geographic object (or table row) in the original dataset. This graph can be 

represented as an adjacency matrix. 

Definition:  Given a layer ot with n objects, we define the layer adjacency matrix 

! ∈ ℝKTK to represent the relationships between every object in ot [131].  We use the 

similarity values α to define the values in this matrix. 

 

!t =   α�� ⋯ α�K⋮ ⋱ ⋮αK� ⋯ αKK& 

In this example, α
� = k	q
, q��, the individual relevance score value between 

geographic objects q
 and q�. Each matrix cell +
�  ∈  ! represents the strength of the 

relationship, or similarity, between the two nodes for a specified attribute.  The 

relevance score value is between 0 and 1 and represents the probability that j is 

reachable from i.  If the relevance score value is 1 then the nodes are identical for that 

attribute and if the relevance score value is 0 then there is no relationship between the 

nodes [159]. 

 

Figure 24: Three nodes and the similarity scores between them. 
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In Figure 24 we have three nodes: A, B and C and three sample relevance scores 

behind them. In the equation below we have these values translated into an adjacency 

matrix. 

! =   0 0.7 0.30.7 0 0.30.3 0.3 0 & 

The diagonal values +.. =  +44 =  +55 = 0 because we are not interested in the 

relationship between a node and itself. 

3.3.2 Modeling Layer Relevance (Inter-Layer Correlation Matrices) 

To model the relationships between layers, we define another type of adjacency 

matrix called the inter-layer correlation matrix, which represents the strength of 

relationship when moving between layers when traversing the graph. 

For this calculation, we include every geographic object in the network irrespective 

of the layer that contains that object since we can calculate the similarity k� between 

any two objects in any layer.  N represents the total number of objects in our domain. 

� =  count(g)| g ∈ o/ 

We also assume that we can only traverse the network between layers at the same 

node. This is equivalent of saying that the calculation of α and λ to produce α’ are 

independent calculations. the inter-layer correlation matrices can be defined as: 

#de =   ω 0 00 ⋯ 00 0 ω& 

 ωK | � ∈ � is the penalty of moving from layer a to layer b at node n.  As described 

in Chapter 2, we assign a penalty because objects in different layers describe distinct 

types of objects. For example, one park is similar to other parks since they have the 
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same type but a nearby police station is less relevant since police stations and parks are 

not commonly associated with each other. 

We define ω as the result of the relevance calculation for the two layers.  

B =  V	Uu, U�� 

3.3.3 Generating the Supra-Adjacency Matrix 

In this section, we define the supra-adjacency matrix for geographic objects based 

on the definitions from earlier sections. 

Definition: A multiplex network with M layers can be modeled in a matrix form 

called a supra-adjacency matrix � where Am is the adjacency matrix for layer m and 

Cab is the inter-layer correlation matrix between layers a and b: 

 

� =  A� ⋯ C�¡⋮ ⋱ ⋮C¡� ⋯ A¡
& 

The supra-adjacency matrix � acts as its own adjacency matrix and structurally 

this implies that a multiplex network shares similar properties to individual networks 

[142].  The existence of a value in the matrix represents a relationship between nodes 

in any layer and in fact treats the equivalent node in multiple layers as separate nodes. 

For example, assuming N = 5 nodes and M = 3 layers (each with its own 5 x 5 adjacency 

matrix) the supra-adjacency matrix would be a 15 x 15 matrix. In a sense, this multiplex 

network is similar in structure to having 15 nodes in one layer.  This intuitively makes 

sense because a network of networks (like a multilayer network) is just a larger 

network. 
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Since ω represents a penalty, given any starting layer (like streets), any objects in 

layers that have strong relationships with that starting layer (the two layers have a 

relationship with high ω) will show up in search results with higher probability than 

objects in layers with a weaker relationship with the starting layer. 

To complete the construction of the supra-adjacency matrix we must calculate the 

inter-layer correlation matrices Cab and then take the layer adjacency matrices and the 

inter-layer correlation matrices and combine them together. 

The supra-adjacency matrix combines probabilities representing relationships 

between objects in the same layer (+
� in A) and relationships between layers (ω in C).  

The next step is to model transitive relationships between objects. 

3.3.4 Multilayer SLN Schema 

Our goal is to use the supra-adjacency matrix � and generate an mSLN that defines 

the relationships between objects among differing layers. For example, we want to 

define the relationship between a given park and a given street. 

With our construction, we only allow movement from layer to layer at the same 

node, as shown in Figure 25. That is, if we want to move from node i in one layer to 

node k in a second layer where the corresponding inter-layer correlation matrix node is 

represented by ω  in our SLN schema we mean the following: 

  �
  g→  ���   ���  ¢→  �£I ,   �£I  h→  �R   ⟹    �
  j→ �R  
| k, l, ω, m are weights on semantic links and k ∙ B ∙ l =  m 

This generalized scheme employs a connector node j that exists in both layers and 

represents a link between the two nodes i and k and accounts for the different types of 
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objects represented in a GIS.  This link accommodates the possibility that the two layers 

have different topological relationships as defined in Section 3.3.2.  For example: 

• Distance - If the two objects are point objects and we are interested in the 

distance between the two objects to calculate similarity, then j is the median 

between the two points. In this situation we can simplify the schema to only 

include α to represent the distance relationship between the two points and ω to 

represent the strength of relationship between the two layers containing the 

points.  If both points being compared are in the same layer, then ω = 1 and α 

becomes the only determinant of the relationship between the two objects. 

• Polygon Distance - If the original object i is in a point layer and the second 

object k is in a polygon layer, we can project object i to the topology of object 

k, or vice-versa. For example, if we want to find the nearest park to an input 

house, we can convert the input house to a polygon representation and then 

calculate the distance. Conversely, we can take all parks in second layer, 

convert them to points to match the topology of the original house and then 

calculate distance. In this scenario, j can represent either the equivalent polygon 

representation of the point coordinate in the second layer or the polygon that 

includes the first point in the second layer. 

• Point in Polygon – Most GIS systems and spatial-enabled relational databases 

determine whether or not a point is inside a polygon (determining which school 

district contains a house) by using a ray casting algorithm.  In this scenario j 

represents the intermediate rays used in the “point in polygon” calculation. 
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In these examples, °� and °I represent the projection of the original node i (which 

exists in the first layer) to the topology of the second layer containing destination node 

j.  This schema shows the most generalized schema of the transition from node i to 

node k to conceptually determine the relationships between geospatial objects in 

different layers.  However, in many cases (including the examples above) the schema 

can be simplified. The practical application of this schema uses common database 

functions to perform most of these calculations. 

The probability γ represents the generalized probability of moving from one 

geospatial object to another when the two objects are in different layers.  γ is made up 

of these components:  α and β represent the distance between the two nodes 

geographically as derived from each layer’s adjacency matrices and ω represents the 

strength of the relationship between the two layers containing the two objects of 

interest. 

 

Figure 25: Multiplex SLN Schema illustrating the relationship between parks 

and zoning. 
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The mSLN schema defines the relationships between nodes in one direction. That 

is, we define an origin node and layer and a destination node and layer. There are many 

situations in which the relationship between two nodes in one direction can have a 

different meaning than the relationship in the opposite direction. For example, if we 

look at houses and school districts, there is only one school district for any given house, 

but there can be many houses contained in one school district. 

This schema describes the transition from one node to another node across layers. 

Since the supra-adjacency matrix describes the topological relevance between all nodes 

in our domain and the relevance between layers, we can apply matrix operations to the 

supra-adjacency matrix �’ to generate our mSLN. The steps are outlined in the next 

section. 

3.3.5 Generating mSLN 

There are two steps needed to convert the supra-adjacency matrix � to a reasoning-

closed mSLN. First, we need to generate an initial mSLN by normalizing the row 

probabilities of �.  Second, we need to apply reasoning rules to the initial mSLN to 

reach its reasoning-closure.  This section details those steps. 

Generating Initial mSLN ²’.  
Using the supra-adjacency matrix � we need to generate an mSLN. We follow the 

procedure outlined in [160, 161]. 

First, we need to convert the values in � into probabilities by normalizing them to 

produce a right stochastic matrix �′. If � is a p × p matrix (where p = N × M): 

�′
� = �
�∑ �
-u-µ�   
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�’ represents a Markov chain’s transition matrix describing the probability of 

navigating between any two nodes.  The initial SLN �′
� represents the probability of 

moving from node i to node j.   Therefore, for any node i the highest value of �′
� 

(where j is any other another node in the graph) implies the strongest and most likely 

node to traverse.  Additionally, the sum of all probabilities in a single row (representing 

the probability of moving from one node to any other node) sums to 1: 

L �′
� = 1�  

Applying Reasoning Rules 

We apply reasoning rules to the initial SLN to discover the implicit relationships 

between pairs of nodes.  After applying reasoning rules, we should have a modified 

SLN that better reflects the strength of relationship between two nodes. 

We use the reasoning rule defined earlier: 

�
  g→  �� , ��  ¢→  ��∗, ��∗  h→  �R∗   ⟹ �
  j→  �R∗  
| k, l, ω, m are weights on semantic links and k ∙ B ∙ l =  m 

γ represents the relevance score between the two objects i and k. This rule says 

that if we want to traverse between two different geographic objects across two 

different layers, we multiply the probabilities of traversing between the two points in 

each layer (α and β) with the probability of traversing between the two layers (ω) to get 

the actual probability of traversing between the two points (γ). Since we have 

constructed a normalized supra-adjacency matrix �’ we can use matrix multiplication 

to define the indirect links between all geographic objects [162]. 
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Theorem 1: If �’ represents the initial distribution of transition probabilities for a 

stochastic process then the probability distribution at time t is (�’)~. 

Proof: Let q(0) represent the initial distribution of probabilities from an initial node 

and q(t) represent the distribution of probabilities from that node at time t.  This also 

represents a single row in �’ corresponding to that initial node.  We will prove this 

proposition by induction. 

Base Step: For t = 0, the supra-adjacency matrix to the 0th power is the identity 

matrix: 

(�’)¶ = · 

Induction Step: Next, we assume 

¸(] − 1) = ¸(0) ∙  (�’)~¹� 

If we multiply by �’ then 

¸(] − 1)  ∙  �’ = ¸(0) ∙ (�’)~ 

We then need to prove that ¸(]) = ¸(] − 1) ∙ �’. We look at the individual rows 

of row q. º~ represents the state of a traveler along the nodes in our Markov chain at 

time t. 

(¸(] − 1)  ∙  �’)
 =  L ¸(] − 1)� ∙ ��

K

�µ�  

(¸(] − 1)  ∙  �’)
 =  L »(º~¹� = °) ∙ »(º~ = G|º~¹� = °)K
�µ�  

(¸(] − 1)  ∙  �’)
 =  L »(º~ = G|º~¹� = °)K
�µ�  

(¸(] − 1)  ∙  �’)
 = ¸(])
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Therefore, the distribution of probabilities after t steps can be determined by taking 

the initial distribution and multiplying it by (�’)~.  This means that (�’)~
� represents 

the probability of being at node j after t steps given that the starting node is i. ■ 

Theorem 2: Multiplying right-stochastic matrix �’ by itself produces another right-

stochastic matrix which continues to represent a Markov chain representing the 

probability of navigating from node to node. 

Proof: From the definition of the initial mSLN we have a right stochastic matrix 

�’, so all of the values in any individual row ° ∈ {1 … . �} sums to 1.  If we multiply 

�’ by itself: 

L(�’�’)
� = L ¼L �’�R�’R
R ½

  

= L ¼�’�R ¼L �’R

 ½½R  

= L(�’�R  ∙ 1) = 1R  

This means that every time we multiply the initial mSLN we get another right 

stochastic matrix.  Each multiplication represents an additional walk on the graph.  

Squaring the initial mSLN represents all two-walk patches between any two nodes (as 

represented by their cell position on the product matrix) and multiplying the initial 

mSLN three times represents all three-walk paths between any two nodes. 

Theorem 3: If �’ is a right-stochastic matrix then any power of �’ of the form (�’)¾ 

is also a right-stochastic matrix.  

Proof: This can be proved by induction. 
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Base Step:   �’ is a right-stochastic matrix and we have already shown that (�’)I 

is a right-stochastic matrix (see Theorem 2).  

Induction Step: If we assume that (�’)R¹� is a right-stochastic matrix and we 

multiply it by (�’)R then we get �’(�’)R¹� =  (�’)R therefore (�’)R is a right-

stochastic matrix. ■ 

Theorem 3 demonstrates that multiplying the initial SLN multiple times preserves 

its right-stochastic properties and continues to represent a Markov chain establishing 

the probabilities of moving between any node in the network. 

The goal is to calculate all potential walks between any two geographic objects in 

the domain to identify which walks between those objects produces the strongest edge 

weight (probability).  Algorithm 1 multiplies the initial mSLN n times (once for each 

of the total number of rows or objects in our domain) and we limit ourselves to n matrix 

multiplication operations because the longest potential walk between any two nodes in 

a graph is the total number of nodes in the graph. 

ALGORITHM 1: Applying Reasoning Rules on the mSLN [162] 

Input: supra-adjacency matrix �′ 
Output: supra-adjacency matrix with reasoning rules applied �∗ 

O ← supra-adjacency matrix �′ 
P ← supra-adjacency matrix �′ 
n  ← length of �′ 
for t = 2 to k - 1 do 
 O ← (�′)~ 

P ← (�′)~ 
 for each i in n do  
  for each j in n do 

        if ¿
� >  »
�  +�[ G ! = ° 
         »
� =  ¿
� 
  end 

             end  
end 

set �∗ = P 



 

102 
 

return  �∗ 
 

 

Corollary: Algorithm 1 converges the Markov chain between all geographic objects 

in the domain to a quiescent state representing the optimization and reasoning-

closure of �’. 
In Algorithm 1, we take the original supra-adjacency matrix �’ and multiply it by 

itself k - 1 times, where k is the length of �’. The length k of �’ also represents the 

total number of geographic objects across all layers.  During each multiplication, we 

compare the values of the new matrix with that of the previous iteration and if any of 

the matrix values are higher, we replace that value in the original matrix with the higher 

value.  Replacing a value in the matrix implies that we have established a stronger 

transitive link between two objects than the original direct link between the two objects. 

We multiply �’ by itself a maximum of k - 1 times to reach a state of quiescence 

and find the highest of the k – 1 values of (�’)k (Step 1). We choose k - 1 because 

multiplying �’ by itself k – 1 times creates the reasoning closure of the SLN and 

multiplying the reasoning-complete SLN by �’ would not provide any new semantic 

links [3]. If we have a matrix with k nodes, then the longest possible sequence of edges 

from any node has length k – 1 and any further iteration would create a reasoning rule 

that represents a cyclical path on the network. 

The result of Algorithm 1 is a reasoning-closed mSLN �∗ which represents all of 

the optimized links between all geographic objects in our domain and still accounts for 

all of the topological and layer relationships established during the initial creation of 
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the mSLN.  �∗ serves as a basis for the mathematical approach outlined in the next 

section. 

3.4 Formal Statement of the Problem 

The purpose of this dissertation is to create a system that can allow an end-user to 

query a GIS database and to have that database contribute answers that are relevant to 

that query by retrieving relevant geographic objects based on this query. GIS queries 

generally originate from a user’s context (such as their location or an initial address of 

interest). 

Definition: The initial search node qT is the node in the graph representing the 

user’s context when interfacing with the system. 

In the earlier sections we defined a set of geographic objects q
 within a domain of 

interest o/. We then defined the distinct types of relevance scores between these 

geographic objects α. We also defined groups of geographic objects of a common type 

called a layer L containing those objects and the relevance scores between those layers 

λ.  Combining these create a measure γ identifying the total relevance between two 

geographic objects. 

While identifying the most relevant single object in our domain to an initial object 

is helpful, the purpose of this research is a database query resulting in a set of results 

that reach a minimum relevance criterion. 

Definition: For any query, the search (query) threshold ϴ is the minimum relevance 

score necessary to provide useful results to a user.  The search threshold also refers 

to the minimum probability of walking to any geographic object in the graph 

representing the objects in our geographic domain. 
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The search threshold is a percentage that determines the minimum relevance score 

a geographic object must have with the initial search object to be returned to a user.  

This can be defined by the user to fine-tune the number of results returned or can default 

to a value specified by the system. 

Definition: Given an initial object of interest qT, a series of edge weights between 

geographic objects γ, a context profile ρ, and a search threshold ϴ, the result set ÁÂ 

is the set of all objects within the geospatial domain where the edge weights between 

that initial object and all objects in the domain is greater than that threshold. 

 ÁÂ ⊆ Á MℎOPO ∃ q� ∈ ÁÂ | m(q� , qT) ≥  Ä  
That is, given an initial geographic object of interest qT (a set of coordinates or 

another geographic object) we want to identify the set of most relevant geographic 

objects in the form of a result set ÁÂ where the relevance score m between objects within 

that set and the initial point of interest is greater than a fixed query threshold Ä. 

3.5 Solution to the Problem 

Given an initial starting location qT, identifying the most relevant objects involves 

querying this mSLN for the objects with the highest relevance score relative to the 

initial objects of interest.  Based on our mSLN schema, we want to maximize γ. 

Restating the Problem 

We constructed a supra-adjacency matrix �’ that models the relationships between 

objects in a geographic domain considering their geographic (distance and/or topology) 

relationships as well as the relationships between the layers containing those objects.   
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Since the mSLN is a matrix-based model of the optimized relationships between all 

geographic domains and Algorithm 1 is a modification of Warshall’s algorithm to find 

the shortest path between any two nodes in a directed graph, we can redefine the 

statement of the problem in terms of the mSLN: 

ÁÂ ⊆ Á MℎOPO ∃ q� ∈  �∗ where �∗
� ≥  Ä 

That is, given an initial geographic object of interest qT (a set of coordinates or 

another geographic object) we want to identify the set of most relevant geographic 

objects in the form of a result set ÁÂ where the relevance score m between objects within 

that set and the initial point of interest is greater than a fixed query threshold Ä. 

Identifying an Initial Search Node and Layer 

Querying the mSLN involves finding a starting geographic object qT. This could 

occur in one of the following example scenarios: 

A user with a mobile device uses the device’s GPS coordinates to serve as a starting 

location and then finds the nearest address to that starting location to serve as the 

starting node. If an address is not feasible given the user’s context (for example, the 

user is in the middle of a state or national park far enough away from a useable address) 

an alternative starting layer could be used.  In this situation the GPS coordinates of the 

user would be treated as an isolated layer with one node. If we create a virtual node 

qÅu� and identify an initial layer L we can identify the closest node as follows: 

qT =  q� | MℎOPO [	qÅu� , q�� = min Æ[	qÅu� , q
�Ç ∀ q
 ∈  ot 

A user enters in an address into a form (common in many GIS applications). The 

address layer is the starting layer, and the entered address is the starting node. 

qT =  qd���É��  ∈  od���É��É� 
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A GIS interactive map user selects any geographic object displayed on the map. 

Based on the layer and object selected relevant geographic objects can be selected. 

qT =  q�ÉxÉÊ~É�  ∈  o 

Given an input data row (to make a prediction on) we first generate an initial 

prediction, which is used to reveal additional predictions from the mSLN as described 

below. 

Definition: Starting with an incoming query Q = {qT, ��}, an initial prediction is the 

location of the point of interest as it is represented in an appropriate node qT ∈ � 

and an appropriate layer �� ∈ �. 

 
For example, if a user types in an address, then the initial node is the address 

entered, and the starting layer is the “address points” layer.  In most situations the initial 

node is implied.  For example, if the initial node is a searched address (one’s home, for 

example) then it is implied that the initial starting layer is the address points layer. 

Traversing the mSLN 

Once the initial node has been identified, we need to discover relevant matches by 

traversing the mSLN based on a fixed threshold θ.  We traverse nodes in the mSLN 

where the relationship value on the link is higher than this threshold. In other words, 

given an initial node qT ∈ � and a search threshold θ we identify all q
  ∈ o/ where 

�ÅË,ÅC∗ ≥ θ. 
Searching mSLN Within One Layer 

The simplest example of this algorithm involves searching for relevant geographic 

objects within the initial starting layer.  For example, given an input address, finding 

the closest addresses to that address. 
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ALGORITHM 2A: Searching mSLN Within One Layer �T ← initial search layer �T ← initial node on that layer 

ϴ  ← search probability threshold 

for �
 in �T do 
 if α(nÌ, nÍ) ≥ ϴ 
  R ← set of search results (relevant geographic objects) 

 end if 

end 

sort R by γ(nÌ, nÍ) descending 
return R 
 

 

In Algorithm 2A, the use of α (the adjacency values) and γ (the optimized mSLN 

values) are interchangeable since we are not interested in the inter-layer correlation 

values. 

Searching Multiple Layers Through a Single Point 

There are some scenarios where it is necessary, once an initial search location is 

identified, to identify the one relevant feature in other layers to that initial object.  In 

local government GIS, these types of applications are known as “My Neighborhood” 

applications 

ALGORITHM 2B: Using mSLN to Identify All Features at Same Location �T ← initial search layer �T ← initial node on that layer 

ϴ  ← search probability threshold �T ← all layers ontologically related to �T sorted by ω descending 

for �
 in �T do 
 for each �� in �T do 
  if ω(�T, ��) ≥ ϴ 
         for each k in �� do 

   if α(�T,k) * ω(�T, ��) ≥ ϴ 
          R ← R + k 
         end 

  end if 
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             end 
end 

sort R by γ(nÌ, nÍ) descending 
return R 
 

 

Searching for All Relevant Objects in All Layers 

To facilitate a more practical, time-efficient, and real-time search (where the 

relevance scores in a context profile are not pre-calculated), we propose a search 

algorithm (Algorithm 2C) that respects the spirit of the supra-adjacency matrix 

calculations while remaining “live” to facilitate the types of searches a user would 

expect. 

ALGORITHM 2C: Live “Cold-Start” Searching mSLN �T ← initial search layer �T ← initial node on that layer 

ϴ  ← search probability threshold �T ← all layers ontologically related to �T sorted by ω descending 

for �
 in �T do 
 if α(nÌ, nÍ) ≥ ϴ 
  R ← set of search results (relevant geographic objects) 

 end if 

 for each �� in �T do 
  if ω(�T, ��) ≥ ϴ 
         for each k in �� do 

   if α(�T,k) * ω(�T, ��) ≥ ϴ 
          R ← R + k 
         end 

  end if 

             end 
end 

sort R by γ(nÌ, nÍ) descending 
return R 
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Any search requires four parameters. First, the initial search layer from which to 

start with (for example, if a search involves a user selecting an address, the initial layer 

should be the address layer).  Second, an initial node on that layer.  Third, a probability 

threshold. Fourth, a context profile defining which layers are relevant to the user.  All 

features in all layers above the probability threshold in that context profile will be 

returned. 

In other words, to conduct a search, the algorithm looks for all objects within the 

probability threshold ϴ in the same layer. For example, when the user is looking at a 

park then the search will find all other parks within the threshold first. Then it will look 

at the other layers in the ontology �T and if the strength of relationship between the 

selected layer and the original layer is greater than the threshold, it will look at the 

features in the layer. Because of the transitive nature of the mSLN, we multiply the 

probability representing the relationship between the two layers with the probability 

representing the distance between the initial search node and the objects in the second 

layer.  This algorithm is represented in Figure 26 below. 

 

Figure 26: General Search Algorithm (simplified version of Algorithm 2C) 
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3.6 Algorithmic Complexity 

Table 4 shows the different calculation steps involved in the generation of the 

mSLN and the computational complexity involved in each. Note that when given a 

dataset with N nodes and M layers, N will almost always be the larger number and will 

dominate any complexity calculation. 

Table 4: Performance (Big-O) calculations for generating mSLN. 

Step Rough Calculation Complexity 

Create Layer Adjacency Matrices M x N x N O(n2) 

Create Inter-Layer Correlation 
Matrices  

M x N O(n) 

Generate Supra-Adjacency Matrix M x N O(n) 

Generate Initial SLN MxN x (N+M–1) O(n2) 

Generate Optimized SLN (Initial SLN)^N O(n4) 

 

Given that all operations in the algorithm can be broken down into chunks that can 

be independently computed, we feel that this algorithm would benefit from the 

processing capabilities of a big data node.  For example, matrix multiplication for a 10 

x 10 matrix can be broken down into 100 independent calculations, one each for the 

100 cells of the resultant matrix. 

Notes on Scalability 

While a typical local government (such as the Howard County example used in the 

evaluation) can have about 200,000 geographic objects stored in their GIS database, 

there are concerns about how the system would perform at a state/province or federal 

level.  For example, a dataset of addresses for the United States would include hundreds 
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of millions of records which could prove problematic considering the performance 

estimates provided in Table 4. 

However, the mathematical operations documented in this Chapter (such as matrix 

multiplication) are parallelizable and can be calculated using a distributed computing 

architecture. 

Additionally, the use of context profiles allows relevance to be calculated on a 

subset of objects which minimizes the number of necessary calculations. 

Notes on Sparsity 

While the construction of the supra-adjacency matrix for M layers and N nodes 

consists of a (M x N) x (M x N) matrix, most of these values are zero since not every 

feature exists in every layer. 

� =  'Î … (ÎÏ⋮ ⋱ ⋮(ÏÎ … 'Ï
& 

In the example above we can choose any individual row. Let us choose the first 

one. This row consists of N values in 'Î and then there are M – 1 inter-correlation 

values since each C in that row consists of only one ω and there are M – 1 (Î� matrices. 

Given N = 5000 and M = 5, the first row in this construction consists of 5004 actual 

values and 19996 zeroes. The more layers M the greater the sparsity of the matrix. 

While the mathematical foundations require a substantial number of matrix 

multiplications, the practical implementation of this model can be completed with some 

shortcuts, notably: 



 

112 
 

• When all records are stored in a database (as described in Chapter 4) we can 

focus on calculations for the rows that exist. This removes the problem of 

sparsity. 

• In a database environment we can utilize the spatial indexing functions of the 

DBMS.  For some functions, notably finding the “nearest” objects, this reduces 

the runtime from O(n) to O(log n). 

• We split the processing into a static component and a dynamic component.  The 

static component pre-generates the mSLN ahead of time and reduces the effort 

of using the mSLN to a simple database lookup. 

3.7 Summary 

Chapter 3 described a mathematical model of geographic objects, the potential 

relationships between these objects, and the creation of an mSLN that models the 

implicit semantic relationships between these geographic objects. The next chapter 

translates this mathematical model into a practical application system that can be 

implemented in an organization using existing database and GIS technologies. 
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Chapter 4: General System Architecture 

Chapter 3 tackled the mathematical problem of presenting relevant information to 

a user query in a geospatial environment. The purpose is to provide a user with 

additional and relevant information in an intelligent manner that enhances a GIS user’s 

experience and provides new and unexpected information based on an analysis of 

historical user interactions with the GIS and the current user’s stated intentions with 

the system. 

To make the system useful to organizations that have implemented existing 

geographical information systems with a database backend, it is necessary to outline 

the necessary steps to implement this mathematical model using existing database and 

machine learning technologies. Many of these components already exist in modern 

geospatial infrastructures and can be easily adapted to build this model. 

This chapter takes this mathematical framework and translates it into a practical 

framework that reflects those principles and can be practically implemented in an 

organization called SAM-GIS (Semantic Augmentation Model for GIS). This 

framework examines the properties of geospatial data from various sources (primarily 

relational databases), creates a model of geographic relevance, and sets up an interface 

to that model that facilitates user queries.  A diagram of this architecture is shown in 

Figure 27. 
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Figure 27: An outline of SAM-GIS representing the approach of this research. 

To integrate this framework into existing GIS workflows it must respect the 

mathematical model developed in Chapter 3 and the types of GIS technologies and 

workflows currently used in industry. 

Describing this framework requires understanding the types of GIS inputs that feed 

into the model (Section 4.1), a static model of the relationships between geographic 

objects (Section 4.2), and a dynamic query interface that provides relevant geospatial 

objects based on a user’s query (Section 4.3). 
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The complete model includes three components: 

• The model needs to be easily implementable by organizations. Section 4.1 

describes a series of inputs to the model that reflect the readily available GIS 

technologies available today. 

• A data structure needs to be developed that can reflect the mathematical model 

of relevance described in Chapter 3. Section 4.2 describes a static model of 

geographic relevance between geographic objects and outlines the processes 

needed to create this model. 

• Applications need to easily query the static model in a way that reflects user 

input and the user’s context. Section 4.3 outlines a dynamic query interface 

that queries the static model to provide users relevant geographic objects 

(outputs) based on their current situation. 

4.1 System Inputs 

Since the proposed system is an extension of the types of technologies used in 

modern GIS infrastructures, a complete description of this system should describe the 

type of inputs that will be used to create the static model and as inputs to the dynamic 

query interface. 

In this section we describe the various inputs to the system described in Chapter 4. 

First, we describe the nature of modern tiled interactive maps, how users use these types 

of maps, and how the logs of this usage can be used as an input to the static model. 

Second, we talk about a user’s current location as represented by GPS coordinates and 

how these coordinates can be used to infer a user’s context and intention. Finally, we 
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discuss the role of expert knowledge to fill-in relationships between layers that cannot 

be easily computed automatically. 

Section 4.2 will examine how these inputs will be used to create a static model 

describing the relationships between geographic objects in our domain. Section 4.3 will 

use these inputs to guide queries to the system. 

4.1.1 User Activity 

The usage of various GIS applications can inform a system of the user’s intentions. 

We examine two common user interactions with a GIS:  Online interactive map activity 

and the user’s GPS coordinates. By understanding the behavior of users of a GIS we 

can try to predict and suggest geographic layers and objects of interest to the user. 

Interactive Map Usage 

This section describes the nature of interactive maps and the logs that can be 

extracted from them and then outlines a workflow to pre-process these logs into an 

input suitable for the static model described in Section 4.2. 

Most modern interactive mapping system such as Google or Bing maps or 

OpenStreetMap are based on map tiles. These organizations divide the Earth into 

standardized tiles and load relevant data bounded by these tile extents into the user’s 

web browser. While the sources of these tiles can vary (generated from a database or 

loaded as preset images) these tiles conform to a consistent standard. This allows 

multiple layers to be presented and be overlaid perfectly on an interactive map without 

the need to worry about the source of the data. 
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Figure 28: An example of standard tile numbering schemes. From 

https://www.maptiler.com/google-maps-coordinates-tile-bounds-projection/ 

Several standards exist for tile requests [163].  These standards were created so that 

any request for map data from any server that conforms to the standard would 

consistently show the data in the same location. Generally, these tiling standards 

represent a tile as a triplet (X, Y, Z) where X and Y denote the tile map’s coordinate 

center and Z represents a preset zoom level on the map. 

An example of a tiled web map is Web Map Service (WMS), an international 

standard for generating and distributing map information on the Internet. A web server 

that supports the WMS standard takes an incoming web service request and generates 

an image tile that is returned to the user. Since WMS requests are web service calls, we 

can look at the nature of these requests by investigating the web server logs of an 

internet web server that processes WMS requests. 
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A WMS request is a web service request to a server that supports the WMS standard 

and generates a map image. A typical WMS request includes the layer of interest and 

a bounding box defining the area that data from that layer should be returned to the 

user. For example, the following WMS request asks for an image of all streets within a 

box defined by a given set of coordinates: 

https://data.howardcountymd.gov/geoserver/wms?SERVICE=WMS&VERSION

=1.1.1&REQUEST=GetMap&FORMAT=image%2Fpng&TRANSPARENT=true&L

AYERS=general:Zoning&WIDTH=256&HEIGHT=256&SRS=EPSG:3857&STYLE

S=&BBOX=-8548717.243414111,4757440.64046937,-

8547494.250961548,4758663.632921933  

The request above asks the server for the zoning GIS layer (the LAYERS query 

string in bold) within the given bounding box (the BBOX query string also in bold). 

The results of this request are shown in Figure 29. 

 

Figure 29: Example image tile of zoning generated from WMS request. 

Each bounding box defines a tile on the map conforming to one of the tile schemes 

used by modern GIS interactive maps. This type of “tiled” map displays interactive 
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map graphics as a series of tiles that are stitched together to provide a cohesive map 

experience for users. When a user pans the map, tiles associated with the newly 

revealed coordinates are loaded from the server on the fly. This type of tiled map was 

popularized by the Google Maps platform. 

An outline of the process of taking users’ interactive map usage activity and 

converting this activity into preprocessed data that can be used to create a static model 

in Section 4.2 is described in Figure 30 within the “Inputs” component of the system 

architecture. 

 

Figure 30: Preprocessing Interactive Map Usage 

Parse Server Logs. Raw web server log files need to be converted into a format 

suitable for the analysis outlined in later steps. Given a series of log entries from a web 

server, we identify which of these log files represent WMS entries.  We then parse the 

text of these entries to identify fields that will be relevant to our analysis. 
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Web servers that host OGC-client web services such as WMS can also include other 

types of web requests, including erroneous web requests.  These non-WMS web server 

log entries are not relevant to our analysis, so we first filter out any non-WMS related 

web requests and then we filter out any WMS requests that are not of the type “Get 

Map.”  These records are loaded into a database for further processing and filtering. 

Pre-Processing - This is the process that filters out WMS log entries at specific 

zoom levels because we are only interested in localized activity (a user zooms into a 

neighborhood of interest on an interactive map). 

The WMS log files are loaded into a database table where one row contains a log 

item.  That is, we take a web request string and convert into tabular data with the 

following columns:  

• Timestamp – Common to all server logs, this includes the date and time the user 

requested a specified map tile. The timestamp information helps us identify 

simultaneously accessed layers. 

• Layer – The map layer represented by the requested tile. In the WMS “Get 

Map” request, this is the text after the LAYERS query string identifier. Layers 

are identified by a workspace and layer name, so in our example the string is 

general:Street_Centerline.  The workspace is “general”, and the layer is 

“Street_Centerline.”  Workspaces in WMS layers are usually created as an 

organizational tool for security purposes and are not relevant to our analysis. 

We care about the layer name itself, in this case, the street centerline because 

one of the outputs of later steps is an ontology representing the relationships 

between these layers. 
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• The bounding box of a WMS request specifies a minimum and maximum set of 

coordinates that define a rectangular (usually square) geographic area [164].  

Based on the bounding box query string BBOX, we can derive zoom level and 

coordinates: 

• Zoom Level – The bounding box coordinates can infer the dimensions of the 

requested tile in real-world coordinates and since WMS requests adhere to 

discrete zoom levels globally, the zoom level can be inferred by calculating the 

X and Y dimensions and then comparing these values to a lookup table with the 

standard dimensions for each zoom level. In the example above, the bounding 

box coordinates are 

(-8548717.24, 4757440.64, -8547494.25, 4758663.63). This forms a bounding 

box that is 1123 feet by 1123 feet (8548717 – 8547494 = 1123, 4758663 – 

4757440 = 1123), which implies a zoom level of 15 when referenced against 

the standard zoom level tile dimensions as described in Table 5. 

• Coordinates – By taking the bounding box coordinates we can calculate the 

centroid of the tile. In the example above, we can derive a centroid of (-

8548105, 4758051). We will use these point coordinates to identify clusters of 

requests in localized areas. 
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Table 5: A list of zoom levels and their corresponding tile dimensions. 

Zoom Level Approximate Tile Dimensions 

11 19,568 ft. x 19,568 ft. 

12 9,784 ft. x 9,784 ft. 

13 4,892 ft. x 4,892 ft. 

14 2,446 ft. x 2,446 ft. 

15 1,223 ft. x 1,223 ft. 

16 611 ft. x 611 ft. 

17 305 ft. x 305 ft. 

18 153 ft. x 153 ft. 

19 76 ft. x 76 ft. 

 

The result of this parsing is a table for each web request with the attributes listed in  

Table 6. 

Table 6: Parsed WMS transaction logs in tabular format 

Timestamp Layer Zoom Coordinate X Coordinate Y 

2018-04-11 12:09:35 Zoning 15 -8548105 4758051 

2018-04-11 12:23:00 Parks 15 -8546271 4740318 

2018-04-11 04:28:00 Property 17 -8556590 4757669 

 

GPS Coordinates and User Selected Features 

A user’s GPS coordinates can provide context into a user’s situation and therefore 

can serve as an input into our framework. While the immediate coordinates of a user 



 

123 
 

when they are interacting with a GIS are not as important in the creation of the static 

model, they are important during a user’s query. 

 

Figure 31:  A User's GPS Coordinates and Selected Features are potential inputs 

to a Dynamic Query Interface. 

Similarly, when a user selects a feature that user has indicated that this feature is an 

object of interest to that user and might be interested in relevant features to the selected 

feature.  The extraction of relevant features to a user’s selection will be described in 

detail in Section 4.3. 

4.1.2 Expert Knowledge 

The goal of processing user activity is to set up mathematical relationships between 

geographic objects:  Both for the creation of a static model of those relationships and 

between a user’s interactions with a GIS and the relevant features the static model 

attempts to reveal to the user based on those interactions. 

While the relationships described above and in Section 4.1.1 are automated 

processes that, there are some aspects of the static model that cannot easily be 
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calculated automatically. For example, one of our goals in Section 4.2 is to calculate 

the strength of the relationships between objects and layers as a probability, a computer 

algorithm cannot figure out the nature of those relationships with 100% certainty. For 

example, there is no uniformly programmatic way to figure out how a police station 

and school are related. Therefore, we take the layer relationships derived from the 

WMS logs and manually assign the nature of the relationships using expert knowledge. 

Objects in GIS layers can take many forms and based on these forms relationships 

between layers can be identified. Examples of GIS layer relationships include: 

• Object near object – Objects in Layer A are close in distance to objects in 

Layer B. For example, when comparing police stations (represented as points) 

and addresses (also represented as points), we can define a relationship between 

addresses and police stations where police stations close to a given address are 

more relevant than those that are farther away. 

• Point inside polygon – Point objects in Layer A are contained within polygon 

objects in Layer B. For example, we can define a relationship between address 

points and election precincts where addresses can be contained within election 

precincts (represented as polygons). We can use this relationship to define a 

user’s election precinct based on the user’s address. 

Non-spatial relationships – GIS layers can be associated with each other and with 

tables that do not contain geographic information by database foreign key relationships.  

For example, a table that contains spatially relevant keywords (like town names or 

addresses) can be linked to geographic objects even if this table does not specifically 

contain geographic objects. 
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Other types of relationships for use in geospatial ontologies have been explored 

such as adjacency (between two polygons) and connectedness (between two linear 

objects), however, in this research we focus on the “proximity” and “contains” 

relationships [67]. Once we have a listing of relationships between GIS layers, we have 

created a geospatial layer ontology in the form of relationships between layers. 

A further examination of the topological relationships between objects in different 

layers but expanded to include relationships between objects in the same layer was 

outlined in Section 3.2. 

4.2 Static Model 

A user of the framework (SAM-GIS) described in this chapter wants to enhance 

their usage of a GIS by taking inputs such as their GPS coordinates or a selected GIS 

object to find relevant objects within that GIS. Storing a series of geographic objects 

and measures of relevancy between those objects can make it easier for a user to 

identify relevant objects based on the user’s query to the GIS. 

This section describes a database-based static model of the relationships between 

geographic objects using the inputs described in Section 4.1 and a GIS containing a 

series of geographic objects represented in layers.  This static model is created by taking 

some of the inputs described in Section 4.1, notably pre-processed interactive map logs 

and expert knowledge and producing a data structure that reflects these relationships 

and makes it easy to query this model. 

Sections 3.2 and 3.3 described the potential mathematical relationships between 

models and this section will describe calculation of those relationships using existing 

database structures and data mining techniques. 
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This static model contains three components as shown in Figure 32: 

 

Figure 32: The Static Model in SAM-GIS 

Relationships Between Layers (Ontology). Geographic objects in a GIS are 

typically organized into layers and the relationships between objects in those layers can 

be defined by the layers containing those objects.  For example, when comparing 

“parks” to “streets” we can define an adjacency relationship between them (parks are 

adjacent to streets since they typically need vehicle access).  When comparing any 

given park to any given street, knowing the layers containing those two objects can 

define the relationship (adjacency) between the two objects.  Therefore, the first step 

in creating a static model of relevance between two objects is to identify the type and 

strength of relationship between the layers containing those objects. 

Determining the types of relationships between layers requires the creation of a 

geospatial ontology that represents the relationships between different layers, such as 
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the relationship between addresses and school districts.  This includes identifying 

layers that are commonly accessed in a GIS, identifying topological relationship 

between the objects in those layers as well as identifying the strength of the relationship 

between those layers. This is an implementation of the mathematical structure defined 

in Section 3.2.4 and is discussed in detail in Section 4.2.1. 

Relationships Between Objects. Storing the relationships between individual 

geographic objects in a GIS will allow those relationships to be easily queried by a user 

of the GIS. After establishing the relationships between layers, relationships between 

geospatial objects needs to be mathematically defined, calculated and stored.  We 

calculate the strength of relationships (similarity) between objects in the same layer. 

This also requires identifying the topological structure of the geospatial objects in that 

layer and using the topology to define the relevance between two objects in different 

layers and/or different geographic structures.  For example, addresses are more relevant 

if their distance is smaller, but school districts are more relevant if they are adjacent to 

each other.  This is an implementation of the mathematical structures defined in 

Sections 3.2.2 and 3.2.3 and is discussed in Section 4.2.2. 

4.2.1 Relationships Between Layers 

The primary objective of this research is to create a computational framework that 

can provide a user with relevant geographic objects when presented with a query.  The 

layers that contain the geographic objects being compared to determine their relevance 

can identify the nature of the relationship between the two objects as well as the 

strength of the relationship between the two objects.  For example, “parks and 

“schools” might be relevant to each other but “parks” and “fire stations” might not be. 
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Therefore, we want to identify the types of objects that are relevant to a user 

querying the GIS. For example, we need to discover that a user is interested in parks or 

schools before attempting to identify relevant objects that satisfy the query.  This 

mimics the typical GIS workflow where relevant layers are loaded before querying 

objects in those layers or the typical problem-solving workflow where relevant datasets 

are identified and loaded before performing any data-driven analysis. 

This section describes a process for identifying layers that are common to a user’s 

interactive map usage by performing various data mining techniques on the pre-

processed web server logs generated from those interactions from Section 4.1.1.  Once 

we have established that a relationship exists between two commonly accessed 

interactive map layers, we use expert knowledge to define those topological 

relationships (a distance relationship, a point inside polygon relationship, etc.). 

We identify which layers are relevant to our multilayer construction by creating an 

ontology, which we use to provide augmented and relevant answers to all user queries.  

An ontology represents the type of relationship between spatial layers.  We first create 

a basis for our ontology by identifying common layer interactions during interactive 

map usage.  We then use those layer interactions to define ontological relationships 

between any two layers. For example, if users commonly view schools and parks on an 

interactive map at the same time, we can infer that a future search for geographic 

information should include those two layers. The set of such relationships between 

different layers generates an ontology, as described in Figure 33. 
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Figure 33: An example of a geospatial ontology describing the relationships 

between spatial layers. 

Performing a series of mathematical operations on the pre-processed interactive 

map logs from Section 4.1.1 and the expert knowledge discussed in Section 4.1.2 will 

help produce a geospatial ontology. 

Investigate Common Tiled Map Interactions 

There are three methods that we use to investigate interactive map usage from 

WMS logs, as depicted in Figure 34. First, we use association rule mining on interactive 

map requests to identify layers commonly used as map overlays.  The purpose is to 

reveal which layers are simultaneously relevant to the user, therefore building the user’s 

context. We use the standard WMS web service schema to identify the nature of these 

requests.   

Second, we look at WMS usage to find GIS layers that are commonly relevant 

based on a user’s interactive map zoom and coordinates. Third, we identify common 

contexts of interactive map usage. 
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Figure 34: Techniques to derive a GIS Layer Ontology from interactive map 

usage 

Since WMS requests are standard web server GET requests and since most web 

servers log web service requests by IP address, we use the source IP addresses to 

identify a session and the layers associated with that session.  We do this under the 

assumption that when users access an interactive map they are doing so for a specific 

purpose. If we can identify the layers commonly accessed in a typical user’s interactive 

map session, we can create a profile of relevant datasets for users accessing that 

interactive map in the future.  This can also inform our model of the types of layers 

commonly accessed together and therefore are relevant to each other. 

Figure 35 outlines the steps necessary to extract GIS layer associations from WMS 

logs: 
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Figure 35: Data Flow Process to Extract Layer relationships from Interactive 

Map Usage Log Files 

Identify Common Users (Clustering) – Given anonymized WMS interactive map 

usage logs, we need to attempt to identify individual user sessions since we have no 

identifiable information in the logs themselves. 

Specifically, given a set of timestamps and coordinates, we want to identify user 

sessions as a set of layers accessed in a localized area on the map during a similar time 

period.  For example, a user of an interactive map accesses the parks layer and the 

property layer between 9:00 and 9:15 and zoomed into the location of one park of 

interest. However, looking at the logs alone can make it difficult for several reasons: 

• If an interactive map application and its corresponding OGC web server are 

behind a proxy, the web logs might not reveal the actual IP address of the user 

accessing the interactive map. This makes it difficult to identify sessions. 
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• If it is desirable to perform analysis on WMS usage while preserving privacy, 

deriving sessions from web logs without knowing the user’s IP address can be 

helpful. 

• If a user with the same IP address used an interactive map in one local area 

(town A) and then switched to a different local area (town B) we would like to 

treat these as two separate user contexts. This might be difficult if we based 

session information from a user’s IP address. 

Therefore, we try to identify user sessions from the behavior inferred from the 

WMS logs themselves.  We do this by using spatiotemporal clustering techniques on 

the timestamp and the X and Y coordinates of the centroid of requested map tile. The 

goal is to identify clusters of activity in localized areas within a reasonable window of 

time.  This will assign a label to each log entry with the identified session. 

Spatio-temporal clustering identifies groups of objects based on their spatial and 

temporal similarity [165].  In our case, one cluster includes WMS log activity that 

occurs within the same timeframe (a user session) as well as a specific zoom and 

location the activity occurred in. The result of this clustering is a series of identified 

sessions with each session containing the list of layers the user accessed in that session. 

Identify Common Layers (Association) – Once a set of user sessions has been 

identified (represented as clusters from the previous section), we identify the layers 

associated with those clusters.  If the same set of layers is commonly associated 

together then we can establish relationships between those layers, as illustrated in 

Figure 36. 
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Figure 36: Using Association Rules to Identify Layer Relationships 

The result of this association mining are association rules defining the strength 

between two layers. This provides a listing of layer relationships and a probability value 

representing the strength of that relationship. 

Use Expert Knowledge to Identify Layer Relationship Types  

This process provides a series of probabilities representing the strength of 

relationships between two layers, but it does not tell us the types of relationships 

between objects in different layers.  Specifically, we do not know the topological 

relationship between two layers as reflected in Sections 3.2.2 and 3.2.3. 

While a computer could attempt to automatically determine these relationships 

based the types of objects in each layer (if one layer is polygons and a second layer is 

points, we could assume a point-within-polygon relationship between the objects in 

both layers) this would not be a realistic solution without the approval of expert GIS 
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professionals and domain professionals who may fine-tune the specific layer 

relationships based on their own knowledge. 

 

Figure 37: Identifying Layer Topology Using Expert Knowledge 

Given a set of layers and the relationships between those layers (the strength 

represented as a probability and the topological nature of those relationships) we 

establish a layer ontology. 

4.2.2 Relationships between Objects 

If a user wants to identify relevant geographic objects in a GIS system, creating a 

record of all geographic objects in a GIS, the types of relationship between them, and 

the strength of the relationship between them provides an easy-to-query database of 

these objects. 

This section outlines the process of creating a record of the geographic objects in a 

GIS and the strength and nature of the relationship between those objects. The result 
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will be a practical implementation of the mSLN mathematical concept outlined in 

Section 3.3. 

 

Figure 38: Calculating the similarity between geographic objects. 

As shown in Figure 38, there several processing steps necessary in the creation of 

an mSLN using common database queries, data mining techniques and common 

geospatial operations. First, we take the topological relationships from the ontology 

derived in Section 4.1 and translate them into OGC standard topological functions. We 

then identify calculations of distance between geographic objects in a GIS using those 

OGC functions. 

We combine both the topological relationships and the distance relationships 

between geographic objects to create a layer relevance function. The output will be a 

central function where, given two layers in a GIS as inputs, computes the relevance (or 

strength of relationship) between the two layers. 

Once this function is created, we create a lookup table of these relationships that 

can be easily queried by a user. This lookup table will be a database representation of 

the ontology representing the relationship between any two layers in the GIS. 
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Finally, an object similarity measure between any two geographic objects is created 

that reflects both the layer relevance between the layers containing those objects and 

the object relationships (distance or topology) between the two objects. 

The following sections are based on Microsoft SQL Server code (the testbed will 

be described in Chapter 5 and a full whitepaper is in the appendix) however the 

database types will conform to ANSI SQL when possible and will generalize database 

types otherwise. For example, most enterprise database systems support a geometry 

database type to store spatial information but the implementation of that functionality 

and syntax differs between these systems. 

Register Topological Relationships Between Layers 

The first step is to take the results of the analysis of Section 4.1 and represent them 

as a database table. We set up two tables: 

 

Figure 39: The Layer and Layer_Relation Tables 

• The Layers table represents every GIS layer in our system. 
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Figure 40: Detail of Layers Table 

• The Layer_Relation table represents potential relationships between GIS 

Layers in our system.  At a minimum, a record in this table requires two foreign 

keys identifying the two layers, a field describing the nature of the relationship, 

and a probability value (a floating-point number) representing the strength of 

the relationship (or similarity value) calculated in Section 4.1. 

 

Figure 41: Detail of Layer_Relation Table 

We represent the same relationship between park and park pavilions twice.  If we 

are looking at a park, then we are interested in all park pavilions within that park, so 

we use the “contains” relationship. If we are looking at a park pavilion, then we want 

to identify the park that the pavilion is “within.”  The Layer_Relation assumes that one 

layer is the primary layer (containing the object we are referring to) and the second 

layer contains objects that are related to that primary object.  While computationally 

these are both the intersection of two objects, the semantic meaning of the relationship 

depends on which geographic object is the starting point (or subject of our search). 

We explore the different types of relationships between geographic objects in the 

next section. 
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Register Distance Relationships Between Layers 

Sections 3.2.2 and 3.2.3 described the different types of geometric relationships 

between geographic objects from a mathematical perspective. However, this can only 

produce a calculated value but does not include the semantic nature of these 

relationships. 

In the previous section we outlined that while a park pavilion and a park can have 

a relationship that is calculated by the intersection of those two objects, this calculation 

does not fully describe the nature of the relationship between the two objects. 

The Layer_Relation table contains a field describing the nature of the relationship 

between the two layers.  Table 7 below describes these relationships, the types of 

objects that utilize those relationship types, and the OGC standard functions 

(implemented by most enterprise databases) that would be used to compute these 

relationships. 

Table 7: Object Relationship Types 

Relationship_Type Object Type 1 Object Type 2 OGC Function 

Distance Any Any ST_Distance 

Intersection 
(Contains) 

Polygon Point or Line ST_Contains 

Intersection 
(Within) 

Point or Line Polygon ST_Within 

Intersection 
(Generic) 

Any Any ST_Intersects 

Overlap Line or Polygon Line or Polygon ST_Overlaps 

Adjacency Polygon Polygon ST_Touches 

Feature Any Any SQL Join 
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It is important to delineate the relationship types between different layers and the 

objects within them because a calculation alone would not describe the nature of the 

relationship between the two objects. 

Relationships Based on Features 

While the focus of this work is on relationships between objects based on their 

geographic properties, sometimes features in GIS layers are related based on the 

properties of those geographic objects. For example, two locations might be similar 

because they share the same zoning code, even if the two locations are not 

geographically close. Shopping centers are similar to each other despite being in 

different locations on a map. 

We add an additional relationship type to Table 7 to represent these relationships. 

Relationships to Non-Geographic Objects 

We want to account for relationships between the geographic objects represented 

in our network and objects that are not geographic. For example, if a document contains 

location information (like an address) in its text we should be able to link it to other 

documents based on that location information. 

Create Layer Relevance Function 

Once relationships are determined we can calculate similarity measures between 

those objects.  This involves taking two input layers and calculating the similarity 

between those two layers based on the calculations from Section 4.1. 

Given an input layer, the result of the layer similarity function would be a sorted 

list the most similar layers based on the similarity scores in those layers and how those 
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layers are related to the input layer. For example, if the input layer is “parks” then one 

result would be “park pavilions” and “contains” with a relevance score. 

Creating a Table of Ontological Relationships 

Given a series of layers, the types of relationships possible between those layers 

and the strength of the relationship between those layers produces an ontology in 

tabular format, Table_Relation. 

Create Similarity Measures 

Once the two tables reflecting the layers and relationships between those layers 

(both the relationship type and the strength of the relationship) we create two tables to 

represent individual geographic objects and the relationship between those objects.  

These calculations reflect the layers containing those relationships and the topological 

measures outlined in Sections 3.2.2 and 3.2.3. 

Two new tables are created to represent geographic objects (features) and the 

relationships between them. 

 

Figure 42: Feature and Feature Relation Tables 

• The Feature table includes the foreign key representing the layer (from the 

Layers table) containing the feature.  A feature can be represented multiple 
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times in this table, and the aspect represents which part of the feature we want 

to base the identity of the feature on.  A text identifier allows a keyword search 

of these features, and the geometry is extracted from the source data, stored and 

indexed so that the OGR functions for the distance and topological relationships 

can be run on them. 

• The Feature_Relation table includes foreign keys identifying the two features 

involved in the relationship and a similarity score between the two. 

The Feature table represents an index table similar to ones used in a simple star 

schema data warehouse.  In a production environment, both the Feature and 

Feature_Relation tables need to be periodically refreshed as records are added, updated 

and deleted from the source databases. 

4.2.3 Static Model of Geographic Relevance 

When a user initiates a query to identify relevant geographic objects the time to 

execute that query will be faster (close to real-time) if the relevance between those 

geographic objects has been calculated ahead of time as a static component. 

To complete the static model, we combine these mathematically defined 

relationships (both the ontology for relationships between layers and the similarity 

measurements for relationships within a layer) into a database structure that will form 

the foundation for user queries and analysis. 

When a user wants to identify relevant geographic objects, they will query a 

database containing information abouts layers, the geographic objects in those layers, 

and the relevance between those objects.  In the previous section four tables were 

created to store this information:  Layer, Layer_Relation, Feature, Feature_Relation. 
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This section describes the process of creating a database representation of the 

mSLN that will be queried by a user trying to find relevant geographic objects based 

on a query input. A more detailed white paper explaining the table structures and stored 

procedures involved in this process can be found in the appendix. 

First, using the tables defined in Section 4.2.2, a basic data warehouse is created. 

This data warehouse is a database representation of the supra-adjacency matrix 

described in Section 3.3.3.  Second, the reasoning rules outlined in Sections 3.3.4 and 

3.3.5 are translated into database statements and be used to create a new table in our 

database representing the relationships between geospatial objects in the GIS with the 

reasoning rules applied.  The result of these operations will be a static model in a 

database that corresponds to the mSLN outlined in Section 3.3. 

A Geospatial Data Warehouse 

The creation of a data warehouse typically involves copying critical tables from 

source databases for two purposes. First, by copying relevant data from operational 

databases to the warehouse, any queries to the data warehouse will not interrupt or slow 

down any transactions performed on the source databases. Second, we hope to organize 

the data warehouse such that the reasoning rules can be applied efficiently. 

Since this data warehouse is part of the static model it is assumed that any data 

copied from diverse sources will be copied on a periodic basis, for example, a nightly 

process to copy the source GIS tables to a central location and then to perform 

mathematical operations on those tables to create the mSLN. 
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The process outlined below can be adapted for a virtual warehouse with minor 

tweaks. However, we assume that the relevant source tables are copied on a periodic 

basis. 

 

Figure 43: Source data is copied into a data warehouse and then features are 

extracted into the tables described in Sections 4.2.1 and 4.2.3. 

The process of creating the data warehouse involves some preparation work in the 

source databases and the creation of various server jobs that will copy the data from 

those source databases. The steps are outlined below: 

• The source databases are investigated to identify relevant layers.  While some 

GIS databases create one table per layer and can be easily copied other 

databases have structures that are optimal for their transactional nature.  The 

relevant data from those databases need to be transformed into a format where 

one table represents one layer.  Typically, this is done by creating a view in the 

database to represent that one layer and then copying that. 
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Figure 44: Views are created in the source databases and then ETL operations 

copy these views to a holding table. 

• A job is run on a periodic basis (at least nightly) to copy these tables to a holding 

location. For our purposes, this holding table is a separate database in the same 

DB instance, but it can be included in the main table. This is shown in Figure 

44. 

Extract Features 

The next step is to populate our operational database with the tables stored in the 

holding location. This process is a series of database stored procedures that combines 

the data from the holding locations with the outputs from previous steps.  An outline 

of this process is shown in Figure 45. 
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Figure 45: Populating base tables from data in holding location. 

Two outputs from Section 4.2.1 are used as inputs. First, experts need to define the 

tables in the holding location so that the system knows which tables to extract features 

from. The Layers column is manually populated with these tables and any relevant 

metadata associated with those layers are entered. 

Second, layer relationship information (including the type of topological 

relationship and a similarity score defining the strength of relationship) are imported 

into the Layer_Relation table. This is a result of the classification and association 

operations outlined in Section 4.2.1 (using prior interactive map activity to determine 

layer relevance) as well as any manually defined relationships entered in by experts. 

Once the layers have been populated into a database, a stored procedure, 

Extract_Features queries the fields in the holding database and places them in the 

Features table. As a data warehouse, the feature table acts as a star schema’s fact table. 

This job also extracts relevant index information (both searchable fields and the 

geometries of the features in the tables) and copies them to the Feature table. Many 

database systems have specialized update functions that identify the records that have 
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changed between the data warehouse and the source tables so that only those records 

are updated or added to the data warehouse, minimizing the number of write and re-

index operations on those tables. 

The next step is to calculate the relevance between all these features and to use the 

results of those calculations to populate the Feature_Relation table. 

Generating Initial Supra-Adjacency Matrix 

After populating the Layer, Layer_Relation and Feature tables, the similarity 

calculations outlined in Section 4.2.2 need to be applied to the records in that table. The 

goal of these calculations is to produce the Feature_Relation table that reflects the 

relevance of each geospatial object to another. If this table is indexed, then user queries 

to find relevant geographic objects can run considerably faster for the user. 

This process is outlined in Figure 46 below. 

 

Figure 46: Generating supra-adjacency matrix. 

Calculating and representing the supra-adjacency matrix using the database sources 

outlined earlier requires the following steps: 

• The layer association probabilities calculated in Section 4.2.1 are used to 

populate the Layer_Relation table. This corresponds to the inter-layer 

correlation values C as described in Section 3.3.2. 
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• When new layers are added to the system or when new objects are added to the 

existing layers in the system (for example, if a new fire station is built) then the 

similarity calculations for those new features (comparing them to all existing 

features in the network). This similarity score is a product of the similarity 

calculations between features described in Section 4.2.2 and the layer similarity 

values described in Section 4.2.1. 

The result of these two steps is a listing of all features in the GIS with an initial 

similarity score calculated between them.  This table, Feature_Relation is a database 

representation of the supra-adjacency matrix. 

Implementing Reasoning Rules 

Once the Feature_Relation table has been created or updated, a final operation 

needs to be run to implement the reasoning rules described in Sections 3.3.4 and 3.3.5.  

Given an initial listing of all features in the GIS and their similarity based on both the 

layer similarity between them and the topology rules defined by the user we calculate 

the relevance between any two objects in the system.  An outline of this process is 

shown in Figure 47. 
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Figure 47: Applying Reasoning Rules 

All these calculations happen in the Feature_Relation table and all the procedures 

described are update operations on fields in that table. These steps reflect the 

calculations outlined in Section 3.3.5.  More details on the SQL implementation of 

these calculations can be found in the Appendix. 

First, an initial threshold is determined so that only features with a similarity score 

above this threshold are included in the calculations.  This threshold is a judgment made 

by experts. The purpose is to prevent the table from being populated with sparse records 

that reflect weak relationships between objects. Additionally, the calculations involved 

in applying the reasoning rules are computationally intense and the fewer records 

involved in those calculations, the better. 

Next, the similarity scores are normalized so that the sum of probabilities between 

one feature and all other features in the domain sum to 1. The result of these 

calculations is stored in the Feature_Relation table’s Similarity_Normalized column. 
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Finally, an algorithm to replicate the matrix calculations outlined in Algorithm 2C 

is run on the normalized records. The result of these calculations is stored in the 

Feature_Relation table’s Relevance_Score column. 

The result of this section is a database with four core tables populated with data:  

Layers representing every layer of interest in the system, Layer_Relation representing 

the type of topological relationship and similarity between any two layers of interest in 

the system, Feature representing all the geospatial objects in the domain, and 

Feature_Relation representing the relevance between any two objects in the domain. 

Querying this system primarily involves the Feature_Relation table and this will be 

described in the next section. 

4.3 Dynamic Query Interface 

 When a user wants to query the model, they will provide an input (such as their 

GPS location or a point of interest) and the system will provide layers and features 

relevant to that input.  This section describes how these queries are handled by the 

system. 

4.3.1 Identify Relevant Layers 

We currently examine spatial clusters to define a relationship between two layers, 

however we do not consider the context of the user’s location of interest. For example, 

a Floodplain layer might only be relevant to a user near a river (and not so relevant 

farther away from a river), so a future modification to our system should take into 

consideration the location in a user’s query. 
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The primary application would involve mobile devices (with GPS) accessing a GIS 

database. Given an input GPS location, any layers that are not relevant to the user’s 

location should automatically filtered out. Only layers that consist of specific 

boundaries should be considered for this treatment. A summary of the process is shown 

in Figure 48. 

 

Figure 48: Deriving contextual layer relevance 

This process involves the following components and steps from our model: 

• An incoming query involves either the user’s GPS coordinates or the 

coordinates of a point of interest specified by the user. 

• The layer boundaries are queried to filter out any layers that could not possibly 

be related to the point of interest.  For example, layers containing information 

about bodies of water would not be relevant if the user’s location is not close or 

in one of those bodies of water.  The result of this query is a list of relevant 

layers. 
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• The GIS layer ontology is queried to identify relevant layers to the layers 

remaining after this filter operation. 

• We synthesize the two results to identify the most relevant layers to the user’s 

position.  From there we identify the relevant objects within those layers. 

An outline of this workflow from the perspective of the database described in 

Section 4.2.3 is shown in Figure 49. 

 

Figure 49: Querying relevant layers from the database. 

Identifying layer boundaries helps filter out any unnecessary layers from future 

processing steps and can help to speed up the identification of relevant layers from both 

a computing time perspective and from the user’s perspective.  There are also situations 

in GIS where a user is interested in relevant layers only and do not directly need to 

query features and this workflow can accommodate that need. 

The next section outlines the process for facilitating user queries to the system. 
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4.3.2 Identify Relevant Features 

When a user queries the model to identify relevant features (for example, anything 

relevant to their current GPS location) the user provides some input (the GPS 

coordinates or a selected point or feature of interest) and then a series of SQL stored 

procedures are executed to generate a list of relevant geospatial features to the user.  

The process of querying relevant features is outlined in Figure 50. 

 

Figure 50: Querying Relevant Features 

The pre-processing steps outlined in Section 4.2 to build the model reduces the 

process of querying this model to a series of simple SQL queries to filter records from 

the Feature_Relation table. Every step is designed to progressively filter out geospatial 

objects that the model finds to not be relevant to the user. This architecture is designed 

to maximize performance. 



 

153 
 

First, the relevant layers identified in Section 4.3.1 are used to filter on the Features 

table so that only Features from those relevant layers shows up in the results.  Only 

these features will be included in the next step. 

Second, the Feature_Relation table is queried to identify all features relevant to the 

user’s input.  Any features filtered out in the previous step are not included in this 

query.  This produces a list of relevant features. 

At this point the resulting dataset can be sorted by relevance and only a subset of 

records can be returned to the user (the TOP 100 results, for example) if an application 

using this model needs it. For example, web-based applications prefer to minimize the 

amount of data transferred to the client to maximize browser performance. 

Summary 

Chapter 4 outlines a process to implement the mathematical model described in 

Chapter 3 using standard GIS and database technologies and standards. This includes 

creating a model of geospatial relevant, implementing it in a database system (SAM-

GIS), and creating methods (SQL stored procedures) to query this model. A more 

detailed explanation of the database structure that represents the model and the stored 

procedures used to query the model is provided in an appendix. 
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Chapter 5: Experimental Evaluation 

The aim of this research is to create a general model of geographic relevance to a 

given query that can extend typical results produced by existing GIS databases. This 

approach generates expanded search results relevant to a user and their context. 

This chapter outlines the experimental evaluation of the mathematical model 

presented in Chapter 3 with the system architecture and implementation (SAM-GIS) 

described in Chapter 4. First, the primary source data for the model is described. 

Second, intermediate results related to the construction of the model is discussed. Third, 

evaluations of the model are documented. Finally, case studies showing practical 

applications of this model will be outlined. 

5.1 Source Data 

To evaluate the practicality and the usefulness of these measures, we examine 

sample queries on a prototype system mimicking a typical local government GIS and 

database environment. SAM-GIS runs on Microsoft SQL Server and the geometries 

are stored in SQL Server’s native format. SAM-GIS uses the database’s built-in 

geometry calculations. The datasets used from Howard County, Maryland’s online GIS 

portal at https://data.howardcountymd.gov, their open data portal at 

https://opendata.howardcountymd.gov, and their County Council site at 

https://cc.howardcountymd.gov. 

Howard County provides approximately 150 geospatial datasets to the public 

through a data portal (https://data.howardcountymd.gov) in multiple formats, as shown 

in Figure 51.    Ultimately, 120 of these datasets were imported into a holding database 

in SQL Server using the GDAL/OGR (www.gdal.org) data translation library. 
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Figure 51: Howard County's open data portal 

(https://data.howardcountymd.gov) 

Once loaded into the holding table, the datasets appear as individual database 

tables, each representing one GIS layer, as shown in Figure 52. 

 

Figure 52: Datasets loaded into Holding Table with Row Counts 
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The 120 layers represent 667,625 geographic objects (table rows) imported into our 

system. 

A separate database, “Ontology,” contains the data structure necessary for our 

experiments.  A detailed discussion of the structure of this database and related 

functions and stored procedures is covered in the appendix. 

5.2 Model Construction 

This section uses the source data outlined in Section 5.1, describes a practical 

implementation of the architecture described in Chapter 4 and reports observations on 

the intermediate results from the steps involved in the construction of our model. 

5.2.1 Automated Ontology Construction from Interactive Map Usage 

There are two methods we can use to describe the relationships between GIS layers:  

Observing user activity and using expert knowledge. In this section we outline the 

process of using online activity logs to infer the strength of relationship between GIS 

layers.  

Identify WMS user Sessions (Clustering) 

The layers that users commonly access when using GIS resources such as online 

interactive maps can help define the ontological relationships between layers and the 

strength of those relationships. 

Section 4.2.1 described a process to take WMS logs and apply a clustering 

algorithm to identify user sessions.  These user sessions allow us to understand what 

layers were commonly accessed by an individual user during a web interactive map 
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session. When a user chooses to activate a series of layers during an interactive map 

session then they infer a meaningful relationship to those layers. 

 The data provided by Howard County anonymizes the origin (normally identified 

by IP address) therefore user sessions need to be estimated from the time of a user’s 

activity and the locations the user is searching for. 

WMS logs were provided for April 11th, 2018, and contain 181,734 log entries.  

After only including entries relevant to WMS map tile requests and dropping any tile 

requests for zoom levels higher than 16 (we do not wish to include “global” map tile 

requests), we reduce the number of log entries to 134,476. 

 

 

Figure 53: One day of WMS tile requests at various zoom levels 

Maps displaying the WMS activity for that day are displayed in Figure 53. As the 

user zooms in to an area of interest, the tiles requested become more localized. Zoom 

level 16 shows a single cluster in light blue, while zoom level 17 displays several 

clusters in green, and so on. Since we are looking for local clusters of activity that we 
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can identify as user sessions it makes more sense to focus on zoom levels 18 and 19 to 

find these sessions. 

We use the ST-DBSCAN [166] algorithm to identify clusters across time and space.  

We want to distinguish between distinct user sessions and if we ignore the time element 

in our analysis then a cluster could include two different users who zoomed into the 

same neighborhood at two separate times of the day. For example, a user could zoom 

into the “Sanctuary” neighborhood at 8:30 a.m. and load the “floodplain” and “hydric 

soils” layer and a different user could zoom into the same neighborhood at 4:30 p.m. 

and load the “historic district” and “historic sites” layers. These users loaded layers that 

do not have a lot in common and if we did not take time into account then our system 

would assume a relationship between “floodplain” and “historic sites” that is stronger 

than it should be. 

We use the Python implementation of this algorithm at (https://github.com/eubr-

bigsea/py-st-dbscan). This is an extension of the DBSCAN algorithm which takes two 

parameters. The first (Ð�) is a distance along the two-dimensional geographic plane. 

The second (ÐI) is an interval (temporal distance) along the temporal dimension. With 

these two parameters we can find clusters of WMS activity within a specific geographic 

area and distance (interval) of time. 
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Figure 54: Exploring different ST-DBSCAN Parameters and the resulting 

clusters. 

In Figure 54 we explore different values of Ð� and ÐI. These values are reasonable 

expectations of what would define a user session (the cluster we are looking for). In the 

figure, a spatial threshold of 1000 meters and a temporal threshold of 3600 seconds 

(one hour) tries to form clusters of WMS activity under the assumption that any 

localized interactive map activity within the same hour should represent a session.  For 

this example (April 11th) there were 52 clusters of WMS user activity generated. 

We will examine two of these clusters. The first, shown in Figure 55 represents a 

user session that focused on an area in Clarksville, Maryland.  The dots represent the 

centroids of the map tiles loaded in this user session.  Common layers on the map 

include the “property” layer in blue and the “street centerline” layer in purple. More 

distinctive layers (specific to this session) include “growth tiers” (designations by the 

government as to what kind of development can happen on designated plots of land) in 

red, “hydric soils” (soils that were created through a process of erosion) in brown, and 

the “floodplain” (areas prone to flooding) in green. While we do not know this user’s 
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exact intention in loading these layers, we know that the three special layers had a 

connection valuable to the user’s context. 

 

Figure 55: A sample cluster in Clarksville, MD representing a user session. 

The second cluster, as shown in Figure 56, represents a user session where they 

zoomed into Elkridge, Maryland.  This session includes soils in magenta, directional 

signs in green, addresses in blue, and designated places (like the growth tiers in the 

previous example) and the floodplain.  While some of the layers are similar to the first 

example, the user in this second example was interested in soils and designated places 

at the same time. 

Every session has a distinct “basket” of layers that were loaded by the user and in 

the next section we use association rule mining to identify those commonly associated 

layers. 
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Figure 56: A sample cluster in Elkridge, MD representing a user session. 

 

Identify Commonly Requested Layers (Association) 

Given clusters of localized WMS activity, each cluster containing a “basket” of 

layers, we perform an association rule analysis.  While the FP-Growth algorithm was 

ultimately chosen for future steps, it is important to explore some intermediate attempts 

at association with the Apriori algorithm to illustrate why this decision was made and 

to provide some insight into the nature of how users access the layers in a GIS 

interactive map. 

Some sample baskets from our dataset are shown in Table 8 including the two 

baskets representing the two clusters shown in the previous section. 
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Table 8: Sample "Baskets" of Layers for Each Session 

Session ID Basket of Layers 

2 Address Points, Historic Sites, Street Centerline 

11 (Figure 55) Property Lines, Streets, Growth Tiers, Hydric Soils, Floodplain 

23 (Figure 56) Soils, Directional Signs, Address Points, Designated Places 

 
We do not want the association rules generated to reflect layers that are accessed in 

most interactive map sessions therefore we prioritize lift in these calculations. Running 

the Apriori algorithm in Weka (https://www.cs.waikato.ac.nz/ml/weka/) with a 

minimum lift of 1.1 produces the results shown in Table 9.  While the algorithm was 

run to show the top 50 rules, only the top 10 are shown. 

Table 9: Running Apriori Algorithm on User Session Clusters 

Rule Lift Confidence 

Address Points => Scanned Drawings, Zoning 2.03 0.63 

Zoning => Address Points, Scanned Drawings 2.03 0.83 

Property, Scanned Drawings => Zoning 2.03 0.63 

Zoning => Property, Scanned Drawings 2.03 0.83 

Scanned Drawings => Zoning 1.99 0.61 

Zoning => Scanned Drawings 1.99 0.92 

Scanned Drawings => Address Points, Zoning 1.97 0.56 

Scanned Drawings => Property, Zoning 1.97 0.56 

Address Points, Zoning => Scanned Drawings 1.97 0.91 

Property, Zoning => Scanned Drawings 1.97 0.91 
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There are two issues illustrated in this example. First, even using the lift metric to 

rank the results produces results that are dominated by the same algorithms. In typical 

GIS interactive map usage, most users will choose to activate the property layer (to find 

their own property or to find information on the property owners in the area of interest) 

or the address points (a common method of identifying locations on a map).  Other than 

Zoning, the other layers shown in Table 9 are essentially “utility” layers common to 

most interactive map usage. Ranking by lift, the only other non-utility layer included 

in a rule is “Floodplain” which only shows up in the 47th ranked rule. 

The second issue is that we are primarily interested in one-to-one relationships 

between layers so that we can assign a single probability to those layers and in Weka, 

the Apriori algorithm does not provide that choice. 

To solve both issues a second attempt at finding associations between layers in the 

user session clusters was done using the FP-Growth algorithm. In Weka, FP-Growth 

provides an option to only return one-to-one relationships.  Additionally, FP-Growth is 

considered a more modern and performant algorithm over Apriori. In this run, popular 

layers such as address points and property lines are removed. This resulted in 34 rules, 

of which the top 10 are shown in Table 10. 
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Table 10: Result of FP-Growth algorithm on session clusters without "utility" 

layers 

Rule Lift Confidence 

Land Use => Designated Places 3.9 0.5 

Designated Places => Land Use 3.9 1.0 

Streams => Floodplain 3.25 0.83 

Floodplain => Streams 3.25 0.5 

Floodplain => Designated Places 3.12 0.4 

Designated Places => Floodplain 3.12 0.8 

DNR Open Space => Land Use 3.03 0.78 

Land Use => DNR Open Space 3.03 0.7 

Zoning => Streams 2.71 0.42 

Streams => Zoning 2.71 0.83 

 

The top ten results show mirrored relationships between layers. For example, the 

top two entries both show a relationship between land use and designated places. The 

distinction is that the confidence of the second rule is higher, mostly likely because 

land use is a more popular layer, and it is more likely that a user who has loaded 

designated places would want to also load land use rather than the other way around 

(since land use is a more general-purpose layer). 

Ultimately the result of both the clustering (to identify distinct user sessions) and 

association is to identify layers that are commonly associated with each other during 

the utilization of GIS systems (interactive map usage in this case). There is a question 

whether to use lift or confidence as the metric for the ω values between layers that is 
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used in our model. We choose to use confidence since it is already a probability value 

and since it reflects a bidirectional relationship between any two layers. 

Summary of Model Construction 

There are two intermediate results worth discussing as they relate to creating a 

mathematical model that reflects how GIS users work. These results were developed 

mathematically in Section 3.2. 

Most GIS activity is localized. A user zooms into a specific location, typically at 

a neighborhood level and then loads the relevant layers that they need. This was 

demonstrated when attempts to cluster the WMS logs did not produce distinct clusters 

at higher zoom levels.  This is not to say that there is no GIS activity at higher zoom 

levels (for example, someone wanting to view legislative districts might want to do so 

at a higher zoom level) but that most usage of these systems focuses on local activity. 

Some layers are more commonly viewed than others and this sometimes leads 

to a unidirectional path to these common layers. Our initial association rule mining 

results were initially dominated by utility layers such as address points and the property 

layer.  Even after removing those layers from the analysis, some association rules had 

a stronger confidence in one direction. For example, people who load designated places 

are more likely to load the land use layer than the other way around. 

5.2.2 Using Expert Knowledge to Identify Relationships 

Other than the automated generation of these relationships described in the previous 

section, a subject-matter expert (SME) can arbitrarily define relationship relationships 

between layers.  This is done by converting the needs of a GIS application into a series 
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of layers and associated probability values that are entered into the “context profiles” 

table described in the appendix. 

5.2.3 Evaluating Adjusted Distance Measures 

As explained in Section 3.2.3, what is considered a close geographic object depends 

on the distribution of the points on that layer. A nearby property or a nearby fire hydrant 

might be a couple hundred feet from a user’s location of interest but a nearby park can 

be 1-2 miles from that user. This needs to be reflected in our model and it is done by 

approximating the typical distance between objects in any given layer. 

As explained in the Appendix (Section A.2.1) this is conducted by taking several 

samples of features from a given layer, identifying the 100 closest features from that 

layer to those sample features and then calculating the average and standard deviation 

of those calculated distances.  Based on Section 3.2.3, we use this to calculate an 

adjusted distance with which to evaluate closeness. 

Table 11 shows a sampling of layers in Howard County and the adjusted mean and 

standard deviation for those layers. 

Table 11: Average distances for sample layers (in feet) 

 Mean Distance 

(µ) 

Standard 

Deviation (σ) 

Max distance 

(µ*3σ) 

Addresses 941 ft. 579 ft. 1,699 ft. 

Parks 5,079 ft. 3,499 ft. 15,576 ft. 

Cemeteries 9,441 ft. 4,453 ft. 22,800 ft. 
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Based on these distances we can limit how much we expand the search for any 

given query. We can also supply an intermediate result: 

Near things are more related to each other than far things, but what is 

considered “near” depends on the type of thing. Tobler’s law was defined before the 

advent of modern GIS systems that group geographic objects into layers. This updated 

definition attempts to contextualize it and verify it mathematically. 

5.3 Sample Queries 

This section shows the utility of SAM-GIS starting with some sample queries. Then 

it evaluates the effect specific parameters have on those queries.  

While most queries of local government GIS systems such as Howard County’s 

revolve around residential interests, most of these queries will originate from the 

Thomas Isaac Log Cabin (https://visitoldellicottcity.com/item/thomas-isaac-log-

cabin/)  at 8394 Main Street, Ellicott City, Maryland. 

5.3.1 Historic Sites Example 

We are interested in historic features that are near the Thomas Isaac Log Cabin. 

This can include historic sites as inventoried by Howard County, the two historic 

districts within the County, and cemeteries located within the County. 

In a typical GIS application a user would use a dedicated Historic Sites application 

(such as Howard County’s at 

https://data.howardcountymd.gov/InteractiveMap.html?Workspace=HistoricSitesVie

wer) to determine the closest historic site to their location.  We can find the Thomas 
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Isaac Log Cabin is in the “Historic Sites” layer and is represented in our model with 

Feature ID = 1635067. 

 

Figure 57: Finding the Feature ID of the Thomas Isaac Log Cabin 

We create a context profile for Historic Site listing all the layers that might be 

relevant to a historian with the type of relationship we’re interested in and the strength 

of those relationships. 

Table 12: Context Profile for Historical Items 

 Relationship Strength Type of Relationship 

Historical District 1.00 Within 

Cemeteries 0.90 Distance 

Properties 0.20 Distance 

 
A shown in Table 12, given a historic site of interest, we strongly care if the site is 

located within a historical district and, if it does, the name of that historic district 

(although sometimes historic sites are not located within a district).  People interested 

in history might be interested in nearby cemeteries although not as strongly as they are 

interested in other historical sites. Finally, since the user starts at the log cabin, they 

might be interested in nearby properties, but we set the relationship strength to 0.20 

because this is not critical information for the user. 

Results 

Running our algorithm (Algorithm 2C from Section 3.5) produces the following set 

of geographic objects with assigned relevance scores, as shown on map in Figure 58. 
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Figure 58: Map showing relevance scores for geographic objects near the 

Thomas Isaac Log Cabin (the blue star on the left). 

A count of these properties is displayed in Table 13. 

Table 13: Count of historically relevant geographic objects near the Thomas 

Isaac Log Cabin. 

Threshold ϴ Historical Sites Cemeteries Properties 

95 15  1 

90 45  1 

85 90 1 1 

80 119 5 1 

75 134 5 1 

 

There are a few observations about these results. First, the only geographic object 

related to a property is the property where the log cabin is located. This is because the 

relationship strength set in our context profile was set to 0.20, a small number. If we 
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had set the value higher than we would have received result for more properties. In fact, 

if the relationship strength had been set to 1, we would have received every property in 

the general area. Ultimately the relationship strength between layers is a parameter that 

can be adjusted depending on user needs. 

The second observation is about the penalty on the cemeteries. This context profile 

included cemeteries as being relevant but there was a slight penalty on this layer 

because they were not as relevant as the historical sites themselves.  There are a few 

cemeteries shown in the results in Figure 59 as black boxes. 

 

Figure 59: Several cemeteries (outlined in black) were returned in addition to 

the historic sites. 

Note that the relevance scores are significantly lower than those of the surrounding 

historic sites. This is the result of the layer significance, or penalty, specified in the 

context profile. 
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Evaluation 

To evaluate SAM-GIS, we need to identify the ground truth for this particular 

experiment and compare our results to this ground truth.  A user interested in Historic 

Ellicott City, especially those interested in a “haunted” perspective of history, might be 

interested in the 53 locations documented on the “Visit Ellicott City” website brochure 

(https://visitoldellicottcity.com/places/), which constitutes the ground truth.  We 

compare the results of SAM-GIS to the data from this ground truth.  For this evaluation, 

a “true positive” is a location from this brochure that was included in the result set in 

SAM-GIS. 

This analysis compares the results of a search for historic locations in a traditional 

GIS system, specifically the GIS system operated by the local government of Howard 

County, Maryland, over a single-layer with the results returned by SAM-GIS. 

Accuracy is the proportion of the correctly classified records:  Records that match 

what should have been found and not including records that should not have been 

found.  Since the search returns many records, the accuracy will be low in general and 

the more we lower the threshold ϴ the lower the accuracy. However, for the expanded 

search there is an improvement in accuracy since we are including cemeteries in our 

search that would not have been included otherwise. The accuracy of our model in this 

scenario is shown in Figure 60. 
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Figure 60: Comparing the accuracy of SAM-GIS versus traditional GIS searches 

for historic sites. 

Precision is the ratio of correctly found records divided by the total number of 

records returned. In this case it is the number of historically relevant geographic objects 

found divided by the total number of records found. As we expand our search the 

number of records returned increases and the probability of more “false positives” 

increases lowering this score. There is a noticeable improvement in precision when we 

expand the search. The precision of our model in this scenario is shown in Figure 61. 
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Figure 61: Comparing the precision of SAM-GIS versus traditional GIS searches 

for historic sites. 

Recall is the ratio of correctly identified records divided by the sum of correctly 

identified records and incorrectly classified negatives.  In our scenario, it is the 

proportion of correctly identified historic sites divided by the sum of those incorrectly 

identified historic sites and the sites that did not show up in the search but should have 

appeared in the search result.  Recall improves as the search expands (the threshold ϴ 

goes down). Recall is increased when we expand the search to multiple layers, as shown 

in Figure 62. 
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Figure 62: Comparing the recall of SAM-GIS versus traditional GIS searches 

for historic sites. 

The F-Measure (or F-Score) is an aggregate measure that balances the differing 

priorities of the precision and recall scores. 

 

Figure 63: Comparing the F-Measure of SAM-GIS versus traditional GIS 

searches for historic sites. 
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As shown in Figure 63 the F-Measure is improved with SAM-GIS compared to 

traditional GIS searches. 

Comparison to Publicly Available Map Searches 

It is quite common that many consumers use commercial web-based mapping 

services such as Google Maps (https://maps.google.com) to also perform these types 

of searches. 

A search for “Historic Locations near Thomas Isaac Log Cabin” in Google Maps 

only returns four results:  The Thomas Isaac Log Cabin itself, The Ellicott City Historic 

District, the Benson-Hammond House, and the Historic Ellicott City non-profit.  Only 

two of these objects are historic landmarks.  This search does not return the other 51 

historic locations in the ground truth. 

 

Figure 64: A search in Google Maps for "Historic Sites in Ellicott City" 

A search in Google Maps that provides a better result is “Historic Sites in Ellicott 

City.”  A screenshot of these results can be found in Figure 64.  Of the top 20 results 

returned on the first page in Google Maps, 8 were correctly identified historic sites 
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from the “Visit EC” brochure.  Three were incorrectly classified non-profit 

organizations that serve the historic district but are not actual historic landmarks.  These 

three results most likely reflect Google’s propensity to search locations using text labels 

(a search that includes the words “historic” and “Ellicott City”) in addition to their 

geospatial relevance.  This also might explain the 9 returned results that are not in the 

Historic Ellicott city district, such as “Dorsey Hall” which is a historic location several 

miles away but technically is located in the modern “Ellicott City” zip codes and would 

not be included in the brochure. 

 

Figure 65: Comparing the F-Measure from SAM-GIS versus a Google Maps 

Search for "Historic Sites in Ellicott City" 

As shown in Figure 65, the F-Measure for the results from SAM-GIS greatly 

improve upon the results from the search in Google Maps.  Recall is greatly improved 

with a minimal decrease in Precision. 
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The key difference between a system like SAM-GIS and the map search results 

produced by Google Maps is that Google searches tend to be unfocused and emphasize 

locations as keywords rather than the geographic properties of these objects and their 

semantics. 

Sparse Search Results 

One aspect of GIS applications is that they typically return to the user many more 

results than they need. In the historic sites example, a user might only be interested in 

a handful of historic sites, but a map (paper or interactive) will display more locations 

than they can realistically visit. This has always been a characteristic of mapping 

applications resulting in a typically low levels of accuracy and precision. This is an 

expected outcome in this type of GIS applications. 

To show this, we establish a smaller dataset of tourism-friendly historic sites as 

established on the “Visit Historic Ellicott City” site with only 13 locations. 
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Figure 66:  Results of a sparse search on common tourist locations in Historic 

Ellicott City. Note that the SAM-GIS results are consistently better than a 

traditional GIS search. 

A few observations on the results of a sparse search (shown in Figure 66). Since we 

are only interested in 13 potential tourist locations, when the GIS search returns a map 

with over 100 sites (many which are not in the brochure) this increases the “false 

positive” counts, and this is reflected in the levels of accuracy and precision, although 

it is noticeable that the recall score is quite representative of the expected query results. 

5.3.2 Flood Risk Example 

Someone interested in the Thomas Isaac Log Cabin for historical purposes would 

also be concerned about flooding in the area. The log cabin is in the Ellicott City 

historical district which has a history of frequent flooding. Is the log cabin in danger of 
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flooding? What relevant geographic objects can help educate someone about this 

danger? 

For this query we create another context profile that includes layers that can inform 

the user about the flood risk in their area based on the user’s address as the initial 

location. 

Table 14: Context Profile for Historical Items 

 Relationship Strength Type of Relationship 

Floodplain 1.00 Distance 

Frequently Flooded Roads 1.00 Distance 

Impervious 0.80 Distance 

 

We take three layers and identify nearby objects by their distance to the address of 

interest.  The floodplain is a layer that determines the likelihood of a property being 

flooded based on that property’s proximity to rivers and their flows.  Frequently 

Flooded Roads are also based on their proximity to bodies of water but tend to be in 

older and more rural areas where the roads were not built to modern standards. The key 

difference is that while a frequently flooded road can be rebuilt to no longer flood, a 

floodplain describes the likelihood of a property to flood independent of any 

engineering improvements made to the property.  Finally, a house is more likely to 

flood based on the amount of impervious surface immediately surrounding it, however, 

this relationship is not as strong as the other two layers since many properties have 

parking lots or driveways and are in no real danger of flooding. 
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Retrieving Relevant Information from this Context Profile 

Ten addresses were selected to evaluate the model. The ground truth for these ten 

addresses can be found at the Howard County website reflecting FEMA insurance rate 

data (https://data.howardcountymd.gov/GDFIRM/main_Web.aspx). Six were 

classified as normal properties but four are found within the FEMA “insurance 

adjustment” rate map. SAM-GIS was run on each of these addresses with a threshold 

value ϴ of 0.75. 

 

Figure 67: Flood Risk Search Results for 10 Properties (the y axis represents the 

count of the measure: flooded roads, impervious, floodplain) 

As shown in Figure 67, each one of these addresses has their own distribution of 

relevant geographic objects based on their location. For example, 10300 Little Patuxent 

Parkway, despite not being near many floodplain tiles, is near 4 frequently flooded 

roads. 
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Figure 68: Results of a flood risk search for 5681 Main Street, Elkridge, MD 

A search in SAM-GIS for flood risk for 5681 Main Street (Figure 68) returns 6 

floodplain blocks, 2 impervious service blocks and 6 frequently flooded roads (only 

four shown in the figure). 

Evaluation 

While the primary purpose of creating a system to return any “flood” related 

geographic objects will simply return and display those objects, we can attempt to 

evaluate how well this works, and use it as a classifier to predict properties subject to 

adjusted insurance rates due to flooding versus those that do not need additional flood 

insurance.   

To do this we score each of the ten properties based on the sum of all relevance 

scores for all objects returned for each property. In the case of 5681 Main Street, there 

were 14 objects returned and the total relevance score for those 14 objects is 12.02. 
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Figure 69: Calculating an aggregate flood risk score for the ten properties. 

As shown in Figure 69, the six properties not in a FEMA insurance adjustment zone 

(the six bars in blue) have distinctly lower flood risk scores than the four properties that 

are in the adjustment zone (the four properties in red). If we split the scores at a fixed 

value between the highest non-FEMA property which has a score of 8.46 and the lowest 

FEMA property which has a score of 10.99, we can create a simple classifier. 

Beyond creating a score to develop a classifier (a user enters in their address 

receives a score that corresponds to a FEMA classification), knowing what relevant 

flood objects that exist near a given property is helpful to the people who own that 

property. In a traditional GIS system, this would have been accomplished with a 

custom-built interactive map but with SAM-GIS, a non-technical user can enter a series 

of parameters (the context profile) to automatically get similar results. 

This was an example of a simple classifier where a user could define an arbitrary 

threshold to determine which locations were subject to adjusted insurance rates.  As 
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with any classifier, the choice of a threshold can also be computationally generated and 

in more complex scenarios the threshold might not be so clear-cut leading to “false 

positive” records during classification.  Nevertheless, by running several experiments 

with different splits, we can observe and choose the value that represents the optimal 

split for these types of experiments, that would clearly differentiate between the two 

outcomes of the classifier.  For this experiment we chose a split of 10 resulting in a 

perfect separation between properties subject to FEMA flood insurance rates and those 

that are not. 

Investigating the use of the mSLN model and adapting SAM-GIS for use in 

common data mining tasks (such as classification and clustering) is listed as future 

work in Chapter 6. 

5.3.3 Legislation Example 

This case study examines the application of our geospatial model to a government 

council investigating the relationship between two pieces of legislation that affects 

similar land properties. 

Background 

In this example, a local government council discusses pending legislation affecting 

a neighborhood. During this discussion one council member remembers that there was 

earlier legislation affecting this neighborhood from a few years ago but cannot 

remember the legislation number. In this scenario, a method to query related 

heterogeneous data (legislation, zoning, streets) would improve productivity in a way 

that most effectively provides that council member with relevant answers. 
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This search for relevant information is an example of geographic information 

retrieval. It highlights the desire to retrieve relevant legislation from the perspective of 

a user investigating a neighborhood and its history. Artifacts from other layers, such as 

nearby parks or zoning ordinances could also be relevant and desirable to be included 

in the query results. 

 

Figure 70: An example of how two pieces of legislation can be related through 

nearby relevant geographic artifacts. 

In addition to incorporating multiple metrics describing the relationships between 

any two objects, GIR research generally assumes that the user only wishes to find 

relevant geographic artifacts in one table when there could be data in multiple tables 

and databases relevant to the query. For example, in addition to searching for relevant 

legislation, the council might be interested in construction projects, zoning ordinances 

or permits issued in that neighborhood. 

This case study examines the potential of using our multilayer framework to 

identify relationships between text corpora based on the geographic relevance between 

objects identified in the text.  Our motivating example compares the text of government 
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legislation to find relationships between those legislation based on the geographic 

references found in the text of that legislation. 

We use publicly accessible data from Howard County, Maryland for the analysis 

of our results. Following our motivating example, we look at legislation passed by the 

county government to identify legislation that might be related based on the geographic 

locations they describe. 

Datasets 

We use the following datasets to construct our mSLN: A dataset with legislation 

related information, another one with zoning information and finally a third dataset 

containing street segments (see Table 15). 

Table 15: Description of Datasets used to construct mSLN 

Dataset Name Dataset Size 

Legislation  154 pieces of legislation 

Zoning 531 zone polygons 

Streets 12,139 local street segments 

 

Following our motivating example, the legislation is one of our test datasets. This 

includes legislation (government laws such as council bills and resolutions) from 

January 2006 to May 2017 that includes a reference to a street in its description. The 

two records in Table 16 show two pieces of legislation that reference streets in their 

short description. They both reference a street closing. Given the 154 pieces of 

legislation in our original dataset 38 of them were tagged as sharing a common theme.  

These themes included closing streets, agricultural preservation, and zoning issues. 
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Table 16: Sample rows from legislation dataset with GIS keywords. 

Legislation 

Number 

GIS Keyword Short Description 

CR35-2017 FOREST AVE A RESOLUTION to close a portion of 
Forest Avenue… 

CR1-2017 WINTER 
THICKET RD 

A RESOLUTION to close all of Winter 
Thicket Road… 

 

This data can be accessed at https://cc.howardcountymd.gov. The GIS datasets can 

be downloaded at https://data.howardcountymd.gov. 

Submitting Original Queries 

Query: Given the piece of legislation as an input “CR35-2017” find all 

geographically relevant legislation. 

For a Howard County resident or employee, the solution to this query requires the 

use of two independent tools that are not integrated (either through a user interface or 

through the underlying databases that support those applications):  The County’s 

Legislation Search Tool at https://apps.howardcountymd.gov/olis/ (as shown in Figure 

71) and the standard GIS tools described in Section 2.1. 

The legislation search tool itself provides bespoke search capabilities.  A user can 

search legislation by keyword and by various attributes of the legislation (the sponsors 

of the legislation, whether it passed, the budget year it was passed, etc.). However, this 

tool is not tied to the county’s GIS system, and there is no publicly accessible GIS 

representation of legislation (for example, a map showing that CR35-2017 affects 

Forest Avenue). 
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Figure 71: Howard County's Legislation Search Tool 

Query Results that are Geographically Relevant and Augmented  

We evaluated two scenarios:  One comparing legislation using a single layer 

(streets) and another using two layers, the first representing streets and the second layer 

representing zoning information (forming a multiplex construction with two layers).  

With 38 pieces of legislation tagged with streets as GIS keywords (see Table 16) there 

are 1,444 possible relationships formed.  Of those, 96 were manually tagged as having 

reasonably legitimate relationships. Those 96 relationships represent the ground truth 

of our scenarios. 

As a baseline, we tried to identify relevant legislation based on the streets identified 

in their text alone.  We varied the search radius and the threshold ϴ limiting the scope 

of the results that would return for any given legislation. 

We then submitted the same query using two layers, streets and zoning, to identify 

relevant legislation that would not be identifiable otherwise.  For example, two pieces 

of legislation might be related because they both refer to agricultural preservation and 

a comparison of street proximity alone might not reveal this relationship. However, 
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since agricultural preservation only applies to properties that are agriculturally zoned, 

we can infer this relationship. 

Legislation is tagged with streets and streets are related to zoning in that a street 

segment is contained inside a zone. We choose a search radius of 4000 ft. on the zoning 

layer since for zoning, unlike streets, we are not as interested in distance. 

As an example of the benefits of using two layers we focus on an individual piece 

of legislation. The legislation with number “CR15-2013” describes an effort by 

Howard County to purchase farmland for agricultural preservation.  Using streets alone, 

the only two matches the query returns with a threshold ϴ > 0.8 are “CR67-2015” 

which authorizes the county to sell property it owns and “CR64-2009” which describes 

issuing municipal bonds. Neither legislation reference agricultural preservation. When 

we use two layers (adding zoning) with the same threshold the query returns 5 

additional matches that also relate to agricultural preservation. 

The results of this experiment are shown in Figure 72. While precision is reduced 

with SAM-GIS (due to the expanded search results) recall is increased to a greater 

degree, resulting in higher F-measures for SAM-GIS for all three threshold values. 
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Figure 72: Comparing the F-Measure of SAM-GIS versus a traditional GIS 

search for our legislation example. 

Performance Advantages 

 One key difference between SAM-GIS and the traditional searches is in the number 

of calculations. Calculating similarity for thousands of street segments is more 

computationally intensive than calculating similarity for hundreds of zoning polygons. 

The reduced amount of computation provides a boost to the performance of the system 

while at the same time it does not sacrifice any relevant information from the results. 

For example, one of the first steps is to calculate the similarity between the 

geographic objects linked to the legislation. As shown in Table 17, if we compare 

streets, even at a radius of 4000 ft. with our dataset we must make about 2.3 million 

comparisons.  This increases to a maximum of about 147 million comparisons to 

compute the similarity between all 12,139 segments. Performing the comparison with 
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zoning with a radius of 4000 ft. only requires about 12,000 comparisons. Finding the 

zone associated with a street in a standard geospatial database is a trivial calculation 

assuming both tables have proper spatial indexes but calculating the similarity for both 

tables is a brute force calculation. 

Table 17: Effect of radius on similarity calculations required. 

Radius Street Comparisons Zoning Comparisons 

4000 ft. ~2.3 million 12,119 

16000 ft. ~24.6 million 61,545 

64000 ft. ~132 million 257,193 

128000 ft. ~147 million 281,693 

 

5.3.4 Summary of Findings from Sample Queries 

This section described three potential applications of the SAM-GIS model. The first 

explored a user who wished to find historically relevant locations. The second 

evaluated the flood risk associated with properties. The third identified relevant 

legislation based on the geographic locations written into the legislation text. 

The results from these examples provide the following observations: 

• Lowering the threshold reduces accuracy and precision. This is especially 

true when a user searches for few items among a large list. These types of 

searches are common among users of GIS applications. A lower threshold 

strongly affects accuracy and lowers precision to a lesser degree. 

• Lowering the threshold increases recall. One of the weaknesses identified 

in traditional GIS applications is their inability to search multiple related 
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classes (or layers) of GIS objects, therefore increasing the number features 

that can be retrieved increases the overall recall of the application. 

• SAM-GIS improves over traditional GIS searches in all evaluation 

measures of interest. The expanded search provides increases in accuracy, 

precision, recall and F-Measure. 

The next section will briefly outline some observations about the performance of 

SAM-GIS on the test hardware. 

5.4 Performance Evaluation 

 
This section evaluates the performance of SAM-GIS, notably in the time it requires 

to build the model and to conduct searches. There are two methods of querying objects 

in SAM-GIS.  

Cold Start Search. The first is a “cold start” search that directly queries a series of 

layers in a context profile as described in Algorithm 2C from section 3.3.5. The 

performance of this search will be documented in Section 5.4.2. 

Static Model Search. The second method searches for features in a pre-generated 

(static) model of relevance for the layers and objects for an associated context profile. 

For a given context profile, the static model only needs to be created once (static part) 

and any queries of the model can be done quickly since it is a simple database lookup 

(dynamic part). The creation of a static model was documented in Section 4.2 and the 

search is based on Algorithm 1 from Section 3.3.5.  The performance of generating the 

static model and queries off that model will be described in Section 5.4.3. 
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5.4.1 Performance of Pre-Requisites 

Whether we use the static version of SAM-GIS or the dynamic version, there are 

several variables and records that need to be calculated ahead of time. These utility 

values can be calculated ahead of time. 

A summary of the features in the test system and the computational time required 

to pre-generate summary information related to the imported features are outlined in 

Table 18. 

Table 18: Summary of objects used in sample queries 

Total Layers in Model 120 layers 

Total Features in Model 667,625 features 

Initial Import of Features from Holding DB 15 seconds 

Update Features from Holding DB 9 seconds 

Calculate Normalized Distances for all Layers 91 seconds 

Calculate Normalized Distance for one layer (average) 1-2 seconds 

 

5.4.2 Cold-start Queries 

This section outlines the performance of SAM-GIS utilizing a direct query of the 

system.  To evaluate the performance of the system at run-time, several context profiles 

were created with different numbers of layers and different numbers of features. A 

description of these context profile is described in Table 19. Small layers have 10-40 

features each, medium-sized layers have 10,000-30,000 features each, large layers have 

30,000-65,000 features each, and very large layers have over 100,000 features each.  

These are prototypical layer sizes for a medium-sized city or county. 



 

193 
 

Table 19: Twelve different context profiles to evaluate performance. The cells 

describe the total number of features in each profile. 

 
Small Medium Large Very Large 

2 Layers 33 15166 39076 210459 

3 Layers 75 19015 51811 305603 

4 Layers 82 22325 63936 389770 

 

Each context profile was run using the same starting point. The second layer was 

given a relationship strength of 0.9, the third was given a relationship strength of 0.8 

and the fourth was given a relationship strength of 0.7. 

Table 20 shows the number of time (in seconds) it takes for to query SAM-GIS 

from the same starting point for each context profile. 

Table 20: Time to process a query from the same origin point across all twelve 

context profiles (in seconds) 

 
Small Medium Large Very Large 

2 Layers 10 11 13 18 

3 Layers 10 11 13 22 

4 Layers 10 11 13 26 

 

The main conclusion is that the number of layers alone does not influence the 

processing time of a dynamic query to SAM-GIS, but the total number of features 

contained in those layers does. This relationship is linear, as shown in Figure 73. 
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Figure 73: There is a linear relationship between the number of features in a 

context profile and the time to perform a same query. 

The dynamic query algorithm (Algorithm 2C from Section 3.5) requires comparing 

the original feature to every feature in the context profile based on both the geographic 

properties of those features and that reflects in the linear relationship between the two. 

There is some overhead (about 10 seconds) that SQL Server needs to mechanically 

facilitate these queries but after that the linear relationship is reflected in the graph. 

Additionally, SAM-GIS takes advantage of spatial indexes available in database 

management systems. In this case it is utilizing the SQL Server spatial index with the 

default settings on the “Feature” table. 
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5.4.3 Static Model Generation and Query Performance 

A static model is created using Algorithm 1 (Section 3.3.5) based on the layers and 

features contained within a specific context profile. This process is also outlined in 

Section 4.2. 

Pre-generating the model requires creating an initial SLN based on the features 

contained within a context profile and then identifying multi-step relationships based 

on the topological relationships between the features and the strength of relationship 

(similarity) between the layers in the context profile. 

To evaluate this functionality, a simple context profile was created with two layers:  

Parks and Farms. Both layers combined have 170 features. 

Table 21: Time to Create Static Model 

Task Time (minutes: seconds) 

Initial SLN Creation Time 1:49 

Two-Hop SLN Creation Time 50:52 

Three-Hope SLN Creation Time 51:02 

 
As shown in Table 21, while the time to create the initial SLN showing one-hop 

relationships between geographic objects is quick, there is a consistently lengthy time 

to create two-hop and three-hope relationships.  This is because the initial SLN can be 

accomplished with simple database joins which takes advantage of indexes in the 

database.   

Creating a two-hop and three-hope SLN requires comparing every element in the 

context profile to all the others. This is the database equivalent of a matrix 

multiplication of the initial SLN by itself, as described in Section 3.3. 
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We look at the number of relationships that are improved (provide a higher strength 

of relationship) in the two-hop and three-hop scenarios.  One benefit of a semantic link 

network is that every time the SLN is multiplied by itself (using the reasoning rules) it 

reflects multi-hop relationships between nodes that are not apparent when we only look 

at single-hop relationships between nodes. 

Table 22: Percent of node relationships improved with multi-hop scenarios for 

the parks and farms context profile. 

Relationship strength 

between parks and 

farms 

% Records Improved 

with Two-Hop 

% Records Improved 

with Three-Hop 

1.0 21.2% 1% 

0.9 18.0% 0.9% 

0.8 16.6% 0.9% 

0.7 15.9% 0.8% 

 
Table 22 shows the number of relationships that are improved (show higher 

probabilities) when we include two-hop and three-hop connections between nodes. 

These percentages depend on the nature of the layers included in a context profile as 

well as the relationship strength (or penalty) between the layers. In the parks and farms 

context profile the strength of relationship was changed between test runs and the table 

shows the percentage of records that showed improved relationships when including 

two-hop relationships and three-hop relationships. 

There are diminishing returns to applying the reasoning rules in the mSLN. 

Including all two-hop relationships between geographic objects in the context profile 

improves between 15-21% of the relationships between nodes including relationship 
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scores that are above the search threshold. However, calculating all three-hop 

relationships only improves about 1% of the relationships between nodes. Since there 

is a considerable amount of time required in calculating each additional hop in the static 

model, there is little practical benefit to continuing to calculate additional hops. 

5.4.4 Comparing execution of cold-start and dynamic queries 

While pre-generating a static model takes a considerable amount of time (over 50 

minutes in the example from Section 5.4.3), one benefit is that when a user needs to 

query this model the result is nearly instantaneous since this only requires a simple 

database lookup.  Section 5.3.2 outlined the performance of the “cold start” model, and 

those queries took between 10 and 26 seconds depending on the size of the context 

profile. The static version of the model calculates the necessary edge weights ahead of 

time, eliminating this delay. 

Table 23: Time to query relevant features with "cold start" queries and queries 

of the static model. 

 
Cold-Start Model 
(Algorithm 2C) 

Static Model 
(Algorithm 1) 

Small Context Profile 10 seconds <1 second 

Medium Context Profile 11 seconds <1 second 

 

5.5 Summary of Experimental Evaluation 

Chapter 5 explored the evaluation of the SAM-GIS model described in this 

dissertation with real-world data derived from Howard County, Maryland’s various 

open data portals. Multiple intermediate results were developed during the creation of 
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the model and several more results were revealed when SAM-GIS was used to model 

geographic relevance in three sample queries:  Investigating historic sites, classifying 

flood risk, and finding relevant legislation based on their geographic impact. The 

performance of SAM-GIS using both dynamic “live” queries and static “pre-generated” 

queries was explored. 
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Chapter 6: Conclusion 

Users of geographic information systems have traditionally relied on desktop or 

web-based applications to access relevant geographic objects stored in their related 

databases. This requires a developer to create an application to facilitate the user’s 

needs.  These applications have not been adaptable to the user’s context and rely on 

traditional application development workflows. 

Additionally, most GIS implementations have not adapted to utilize modern 

algorithmic techniques to augment these systems with the capability of providing 

additional results that are more relevant to the user. 

This dissertation presented a mathematical model and a framework based on it that 

takes advantage of the multi-layered nature of GIS systems to create a consisted model 

of geographic relevance for objects. It also describes a practical system 

implementation, SAM-GIS that utilizes this framework and can be easily implemented 

by typical GIS organizations. 

6.1 Summary of Contributions 

This section details the contributions of this dissertation. 

A mathematical model of geographic relevance. This research work defined 

common GIS terms mathematically and conceived, designed, implemented a cohesive 

mathematical formulation to tie common GIS concepts together and proved their 

correctness through theorems (Sections 3.1 through 3.3). 

• Many GIS calculations revolve around topological rules and while these rules 

are encoded into many geographic information system and databases that utilize 
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spatial object types (through the OGR topological standards), this dissertation 

provided a mathematical formalization of these rules. 

• This dissertation described an extension of Tobler’s law:  While near things are 

more important to the user than far things, what is considered “near” depends 

on a user’s context. Additionally, we explored what geographic relevance 

means beyond the traditional GIS conception of distance by incorporating 

multiple layers. 

• This mathematical model is generalizable to other domains.  While this work 

was designed for GIS applications, the model itself describes a technique to 

identify relevance between objects in multi-layered graphs [167].  This work 

has already been adapted for use in cybersecurity applications.  For GIS 

applications, any topological rule can be adapted for use in this framework.  The 

next section outlines potential extensions to this model. 

Algorithmic Approach for enhanced GIS query automation. This dissertation 

outlined several algorithms that use the mathematical frameworks described earlier to 

provide enhanced results to those provided by traditional GIS applications.  This 

includes additional geographic objects that might be relevant to the users of these 

applications (Section 3.5). 

• Multiple algorithms were outlined that utilized the mathematical concepts of 

geographic relevance (Chapter 3).  These algorithms are adaptable to different 

use cases that might be relevant to GIS users. 

• This work provided an implementation of multi-layer and semantic link 

networks that utilized multiple algorithms to identify objects that are 
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geographically relevant.  The mathematical framework described in Chapter 3 

was translated into a system implementation described in Chapter 4 with usable 

code provided in the Appendix. 

Application of multi-layer and SLN graph theory. While research into 

multilayer networks and semantic link networks have increased in the past decade, the 

transformation of these theories into practical applications has been minimal. This 

dissertation provides a workable implementation of these concepts (Section 3.3). 

• Existing research into semantic link networks acknowledge that the application 

of reasoning rules to develop the SLN is a computationally intensive process. 

This work implemented an SLN designed to interoperate with traditional 

database systems and to perform queries within a reasonable time frame. 

• This work combined the concepts of semantic link networks and multi-layer 

networks into a combined concept:  The multi-layer semantic link network 

(mSLN).  The necessary mathematical foundations for this data structure were 

outlined (Section 3.4). 

Generation of a geospatial ontology. This work facilitates the creation of an 

ontology both manually by subject matter experts and automatically through the usage 

of WMS logs.  This ontology mathematically assigns values that reflect the relevance 

of the layers involved in the relationships (Section 4.1). 

Consolidation of GIS concepts. Traditionally, geographic information systems are 

designed either based on ad-hoc querying or by application developers who use a 

traditional process methodology. When viewed though a common mathematical 
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framework, most GIS applications represent similar types of queries.  This dissertation 

consolidates most GIS queries into a common framework (Sections 3.4 and 3.5). 

The implementation of a prototype system. The mathematical framework has 

been incorporated into a set of algorithms, which can be implemented by any enterprise 

organization that utilizes GIS.  It uses a star schema data warehouse as a basis and is 

designed to piggyback on existing GIS systems (Chapter 4 and Appendix). 

An evaluation of the model and framework. The framework has been evaluated 

using the prototype system. This includes: 

• Validating the mathematical model by proving theorems that derive from 

existing mathematical concepts and the definitions of concepts related to 

geographic objects (Chapter 3). 

• Evaluating the framework using multiple real-life case studies relevant to local 

communities in Howard County, MD, USA by comparing the results of SAM-

GIS with ground truth and examining the accuracy, precision and recall of the 

system (Chapter 5). 

• Examining performance and network complexity for the system based on a 

typical local government population (Section 3.6 and Section 5.4). 

6.2 Limitations and Future Work 

This dissertation describes the conception, design, and implementation of a model 

of geographic relevance and a basic implementation of that model. This section outlines 

some limitations of this work and describes potential expansion or improvements to the 

system. 
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Spatial Heterogeneity.  The mSLN-based model operates under the assumptions 

derived from Tobler’s law:  Certain topological relations between geographic objects 

are continuous and reflect a distance between those two objects.  However, this model 

does not account for spatial heterogeneity in the sense that there are small and random 

variations between the properties of geographic objects immediately adjacent to each 

other.  Future work could investigate how semantic heterogeneity manifests itself in 

the model. 

Dynamic Updates to the System.  While the performance of SAM-GIS is 

acceptable for medium-sized datasets at the local government (county) level, 

organizations are increasingly interested in the analysis of real-time or streaming data 

and this framework, as it is currently constructed, is not fully optimized for these types 

of updates.  Identifying methods to optimize the ability for the framework to adapt to 

new information would be an interesting avenue for future research. 

Parameter Tuning.  This work described the construction of a model of 

geographic relevance based on parameters (such as layer relevance scores) either 

devised by experts or based on usage of GIS interactive maps, as described in Sections 

4.2.1 and 5.2.1.  Future research could investigate other methods of establishing these 

parameters including those used for text mining (such as the “distributional hypothesis” 

[168]) that could be used to interpret the probability distributions of geographic objects 

in a domain.  For example, if two classes of geographic objects have a similar spatial 

distribution in the same domain, could both layers be reduced to one in a context 

profile? 
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Graph-based data mining. Since the product of the implementation of our model 

is a mathematical graph, an analyst could implement one of the available graph-based 

data mining identify patterns in the network of geographic objects. 

Scalability. The performance of the system was satisfactory and usable at the local 

government level using a single desktop computer.  However, GIS applications are 

prevalent at the state and federal level.  GIS datasets at the federal level can include 

hundreds of millions of geospatial objects which can be problematic for a single 

workstation. Future research could investigate the ability to use distributing computing 

technologies to make the model construction feasible at this scale.  The bulk of the 

work in the SAM-GIS framework is building the static model of geographic relevance 

and the most time-consuming portion of this involves matrix multiplication which has 

already been established as parallelizable task for distributed systems.  Therefore, 

moving our environment into a distributed and/or parallel system is expected to have 

vast improvements and deal with geographic objects at a Federal level. 

Continuous Improvement Based on User Interaction. The usage of GIS systems 

informs the structure and design of SAM-GIS. As users use GIS systems, increased 

interest in local areas can be fed back into the mSLN model to re-adjust weights 

automatically. In this sense, as the user interacts with the system, the system adapts to 

meet the user’s needs in real-time. This expansion of the system would require a 

workflow to capture the user’s approval of the recommendations made by SAM-GIS 

and a method to incorporate that feedback to improve the model. 

Resiliency. Research into emergency situations such as natural disasters or public 

health emergencies encompass a field known as resiliency. If an organization had a 
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network of infrastructure with multiple layers (electrical grid layer, flood layer, 

emergency shelter layer) it would be interesting to investigate how the elimination of a 

node from the mSLN would affect the operation of the network, especially for 

emergency situations. 

Equity in Geospatial Analysis.  Any model of geospatial relevance depends on 

the source data used to build that model.  Geospatial datasets are typically constructed 

by institutions such as government agencies and this can introduce biases (implicit and 

explicit) in the source data which can propagate to analyses based on this data.  Future 

work could look at how these biases are generated in the original data propagate 

through the mSLN or even how such analysis could help detect biases in the placement 

of services and infrastructure in a community. 

Implement the system in an organization. The system described in Chapter 4 and 

in the Appendix was designed to be implemented by organizations with an existing GIS 

infrastructure. A practical implementation of this system at such an organization would 

provide a baseline to help that organization solve problems related to geographic 

relevance. 
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Appendix: Implementation Whitepaper 

This appendix outlines the practical implementation of the system proposed in this 

dissertation in the form of a whitepaper. Any organization with skilled SQL 

practitioners should be able to take the specification outlined below and implement the 

database structure outlined. 

This appendix focuses on the database backend of the proposed system. It does not 

include user interface elements nor implementation in a desktop GIS system. 

The code outlined below was designed for Microsoft SQL Server systems and was 

designed on a SQL Server 2016 Express server. The SQL code should be easily 

adaptable to other database systems. 

The names assigned to entities are specific to the sample implementation used for 

this work. Any organization could change these names to suit their own purposes. 

A.1 Importing Data 

The basis for this work is a standard data warehouse and this requires importing 

data from sources. This work involved utilizing the WFS services provided by Howard 

County, Maryland imported into a SQL Server as a series of standalone tables in a 

“holding database” using the GDAL/OGR open-source ETL software. There are many 

methods to acquire datasets and many organizations will already have their data stored 

in established database servers.  For example, if the source systems are pre-existing 

SQL Server databases, then an SSIS package would be the preferred method of data 

transfer. What is important is the ability to copy relevant datasets (layers) to the holding 

table using whatever methods are available to that organization. This requires 
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organizational knowledge about the systems holding datasets (GIS systems and other 

systems holding geographic datasets). 

A.1.1 Ontology Holding Table 

 

Figure 74: Loading data from operational data sources into holding database. 

In our example data is imported into a holding table called OntologyHolding as 

shown in Figure 74. The tables located in this database (as shown in Figure 75) are 

unmodified from the table structure exposed by the organization in the original 

location.  For example, the fields in the “Address Points” table are the same as those 

presented by Howard County on their WFS server. 
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Figure 75: The Ontology Holding Table with Imported Tables 

In this example, 120 tables were imported from Howard County’s WFS server. 

A.2.1 Layers Table (tblLayer) 

In the main database we create a table tblLayer which contains a listing of all of 

the layers imported into the system.  This is how the system knows of the existence of 

a layer to be included. This table is manually populated by the system’s architect to 

ensure that only the relevant layers are included in the system. 

Algorithm A1: Create tblLayer 
CREATE TABLE [dbo].[tblLayer]( 

 [pkLayerID] [int] IDENTITY(1,1) NOT NULL, 

 [TableName] [varchar](50) NULL, 

 [PrimaryKeyColumn] [varchar](50) NULL, 

 [GeometryColumn] [varchar](50) NULL, 

 [DistanceAverage] [float] NULL, 

 [DistanceStDev] [float] NULL, 

 [IconURL] [varchar](200) NULL, 

 [TableTitle] [varchar](200) NULL, 

 [IsPublic] [bit] NULL, 

 [Description] [varchar](max) NULL, 

 CONSTRAINT [PK_tblTable] PRIMARY KEY CLUSTERED  

( 

 [pkLayerID] ASC 

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY 

= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY] 

GO 
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This table includes important relevant to the imported table in the holding table 

(TableName, PrimaryKeyColumn, GeometryColumn) and some additional 

information that will be useful when presenting this information to the user (IconURL, 

TableTitle, IsPublic, Description). 

 

Figure 76: Layers table populated with layer information in the 

OntologyHolding table. 

A.2 Extracting Indexes 

Once all tables are loaded into the database, the next step is to start the process of 

linking these tables. We start by creating a basic index on the imported records. We 

will create two indexes:  One for keywords and one for object geometries. 

A.2.1 Loading Features (tblFeature) 

The tblFeature table includes every feature in the model. The 120 layers included 

in the model contain a total of 562,211 records (each representing a geographic object). 

Algorithm A2: Create tblFeature 
CREATE TABLE [dbo].[tblFeature]( 

 [pkFeatureID] [int] IDENTITY(1,1) NOT NULL, 

 [fkLayerID] [int] NULL, 

 [UniqueID] [uniqueidentifier] NULL, 

 [PrimaryKey] [int] NULL, 

 [Descriptor] [varchar](50) NULL, 

 [geom] [geometry] NULL, 

 CONSTRAINT [PK_tblObject] PRIMARY KEY CLUSTERED  

( 

 [pkFeatureID] ASC 
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)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY 

= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY] 

 

 

If the basis of the model is a simple data warehouse with a star schema then 

tblFeature acts as the fact table in this warehouse. 

 
A stored procedure, sp_UpdateFeatures scans the rows in the holding table that 

should be imported (as designated in tblLayer) and uses SQL Server’s merge function 

to efficiently load only new or updated records. 

Algorithm A3: Updating Features (fact table) 
CREATE PROCEDURE [dbo].[sp_UpdateFeatures] 

AS 

BEGIN 

 SET NOCOUNT ON; 

 

 CREATE TABLE #TempTable (fkLayerID int,PrimaryKey int,geom 

geometry) 

 

 DECLARE @TempQuery varchar(max); 

 

 DECLARE @MyLayerID int; 

 DECLARE @MyPrimaryKeyColumn varchar(100); 

 DECLARE @MyGeometryColumn varchar(100); 

 DECLARE @MyTableName varchar(100); 

 

 DECLARE MyCursor CURSOR 

 FOR 

 SELECT pkLayerID, PrimaryKeyColumn, GeometryColumn,TableName 

 FROM tblLayer 
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 OPEN MyCursor 

 

 FETCH NEXT FROM MyCursor INTO @MyLayerID, @MyPrimaryKeyColumn, 

@MyGeometryColumn, @MyTableName 

 

 WHILE @@FETCH_STATUS = 0 

  BEGIN 

   SET @TempQuery = 'SELECT ' + STR(@MyLayerID) + ',' 

+ @MyPrimaryKeyColumn + ',' + @MyGeometryColumn + ' FROM 

OntologyHolding.dbo.' + @MyTableName; 

   PRINT @TempQuery; 

   INSERT INTO #TempTable (fkLayerID,PrimaryKey,geom) 

   EXECUTE(@TempQuery) 

 

   FETCH NEXT FROM MyCursor INTO @MyLayerID, 

@MyPrimaryKeyColumn, @MyGeometryColumn, @MyTableName; 

             

  END; 

 

 CLOSE MyCursor; 

 DEALLOCATE MyCursor; 

 

 MERGE tblFeature AS t  

 USING (SELECT fkLayerID, PrimaryKey, geom FROM #TempTable) AS 

s 

 ON t.fkLayerID = s.fkLayerID and t.PrimaryKey = s.PrimaryKey 

  --Update 

  WHEN MATCHED AND NOT t.geom.STEquals(s.geom) = 1 THEN 

   UPDATE SET t.geom = s.geom 

  --Insert 

  WHEN NOT MATCHED BY TARGET THEN  

   INSERT (fkLayerID,UniqueID,PrimaryKey,geom) VALUES 

(s.fkLayerID,NEWID(),s.PrimaryKey,s.geom) 

  --Delete 

  WHEN NOT MATCHED BY SOURCE THEN 

   DELETE; 

  

 DROP TABLE #TempTable 

 

 

The stored procedure re-scans all of the tables in the ontology table and checks to 

see if there are any updated or added records when compared to the rows in tblFeature 

and only inserts or updates those records as necessary.  If a record in tblFeature no 

longer has a counterpart in the source tables then it is removed from tblFeature. 
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The result is a table containing references to the features in the sources tables (in 

the holding database): 

 

Figure 77: Sample rows from the Features Table. 

Figure 77 shows records in tblFeature that reference the “Historic Sites” layer 

(fkLayerID = 49) and the Zoning layer (fkLayerID = 117). The pkFeatureID is specific 

to tblFeature and the PrimaryKey is the associated key from the source table. The 

geometry is carried over in the geom column. 

It is recommended that the indexes of tblFeature, particularly the spatial index be 

rebuilt/reorganized periodically, particularly after a major update. 

Updating Layer Distance Distributions 

Once the features have been loaded into the databases it is necessary to calculate 

the distribution of distances for any given layer since different layers have differing 

concepts of “near.”  For example, two nearby properties might be hundreds of feet away 

but nearby parks might be a mile or two away from each other.  This is generally a one-

time calculation since adding one additional feature to a layer (such a new park) should 

not dramatically change the average distance between features. 

This calculation is completed with sp_CalculateLayerDistances described below. 
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Algorithm A4: sp_CalculateLayerDistances 
CREATE PROCEDURE sp_CalculateLayerDistances 

 @MyLayerID int 

AS 

BEGIN 

 

 SET NOCOUNT ON; 

 

 DECLARE @MyAverage float; 

 DECLARE @MyStDev float; 

 

    select @MyAverage = Avg(x.geom.STDistance(y.geom)), @MyStDev = 

StDev(x.geom.STDistance(y.geom)) 

 from (select top 1 * from dbo.tblFeature where fkLayerID = 

@MyLayerID) x, (select top 100 * from dbo.tblFeature where fkLayerID 

= @MyLayerID) y 

 where x.pkFeatureID != y.pkFeatureID 

 

 UPDATE tblLayer 

 SET DistanceAverage = @MyAverage, DistanceStDev = @MyStDev 

 WHERE pkLayerID = @MyLayerID 

 

 

END 

 

The result is tblLayer populated with the average and standard deviation of 

distances between two typical features inside that layer. 

 

Figure 78: Layer Table populated with distance distribution information. 

A.2.2 Keyword Index (tblFeature_Keyword) 

The index for keywords serves as a method to quickly identify objects by name 

(since this is still an easy and common way to find objects).  A user should be able 
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search for the name “Patapsco” and quickly receive references to geographic objects 

with that name including “Patapsco Middle School” or “Patapsco River.” 

The table tblLayer_Keyword, which will contain the keywords in our system is 

defined below: 

Algorithm A5: Create tblLayer_Keyword 
CREATE TABLE [dbo].[tblLayer_Keyword]( 

 [pkLayerKeywordID] [int] IDENTITY(1,1) NOT NULL, 

 [fkLayerID] [int] NULL, 

 [fkFeatureID] [int] NULL, 

 [KeywordColumn] [varchar](50) NULL, 

 CONSTRAINT [PK_tblClassKeyword] PRIMARY KEY CLUSTERED  

( 

 [pkLayerKeywordID] ASC 

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY 

= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 

) ON [PRIMARY] 

GO 

 

This table includes a reference to the layer being indexed (fkLayerID as well as a 

reference the text field in the table that will be included in the index (KeywordColumn). 

It is manually created by subject matter experts who select the fields that are suitable 

for a keyword search. One layer can have multiple keyword columns indexed. In Figure 

79, the zip code layer (fkLayerID = 116) has two fields marked as a keyword search:  

ZIPCODE representing the five-digit numerical code and AREANAME representing 

the city associated with that zip code. 
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Figure 79: Sample records from tblLayer_Keyword. The zip code layer has two 

entries. 

Not every layer in the model has keywords associated with them. For example, a 

floodplain is geographically distinct but no names or labels are associated with 

floodplains.  In our example, only 49 out of the 114 total layers have keywords 

associated with them and one has two fields indexed as keywords.  This provides a total 

of 50 records in this example. 

Another table, tblFeature_Keyword contains the keywords extracted from the 

layers based on the keyword column specified in tblLayer_Keyword. 

Algorithm A6: Create tblFeature_Keyword 
CREATE TABLE [dbo].[tblFeature_Keyword]( 

 [pkFeatureKeywordID] [int] IDENTITY(1,1) NOT NULL, 

 [fkLayerKeywordID] [int] NULL, 

 [fkFeatureID] [int] NULL, 

 [KeywordName] [varchar](max) NULL, 

 CONSTRAINT [PK_tblObjectKeyword] PRIMARY KEY CLUSTERED  

( 

 [pkFeatureKeywordID] ASC 

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY 

= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY] 

GO 

 

This table includes a reference to tblLayer_Keyword (fkLayerKeywordID), a 

reference to the individual feature in tblFeature referenced by the keyword 

(fkFeatureID) and the actual text keyword that can be searched for (KeywordName). 
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Figure 80: Loading feature keywords with sp_UpdateFeatureKeywords. 

A stored procedure, sp_UpdateFeatureKeywords queries the source tables in the 

holding database for the keyword columns specified in tblLayer_Keyword and links 

them to the correct indexed feature in tblFeature. 

Algorithm A7: Stored Procedure sp_UpdateFeatureKeywords 
CREATE PROCEDURE [dbo].[sp_UpdateFeatureKeywords] 

AS 

BEGIN 

 SET NOCOUNT ON; 

 

 CREATE TABLE #TempTable (fkLayerKeywordID int,fkFeatureID 

int,keywordname varchar(MAX)) 

 

 DECLARE @TempQuery varchar(max); 

 

 DECLARE @MyLayerKeywordID int; 

 DECLARE @MyLayerID int; 

 DECLARE @MyKeywordColumn varchar(100); 

 DECLARE @MyPrimaryKeyColumn varchar(100); 

 DECLARE @MyTableName varchar(100); 

 

 DECLARE MyCursor CURSOR 

 FOR 

 SELECT pkLayerKeywordID, fkLayerID, 

KeywordColumn,TableName,PrimaryKeyColumn 

 FROM tblLayer_Keyword 

 LEFT OUTER JOIN tblLayer 

  ON tblLayer.pkLayerID = tblLayer_Keyword.fkLayerID 

 

 OPEN MyCursor 

 

 FETCH NEXT FROM MyCursor INTO @MyLayerKeywordID, @MyLayerID, 

@MyKeywordColumn, @MyTableName, @MyPrimaryKeyColumn 

 

 WHILE @@FETCH_STATUS = 0 
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  BEGIN 

 

   SET @TempQuery = 'SELECT ' + 

STR(@MyLayerKeywordID) + ',' + @MyKeywordColumn + ', + pkFeatureID  

FROM OntologyHolding.dbo.' + @MyTableName + 'x LEFT OUTER JOIN 

dbo.tblFeature f ON f.PrimaryKey = x. ' + @MyPrimaryKeyColumn + ' 

WHERE fkLayerID = ' + STR(@MyLayerID) + ' AND ' + @MyKeywordColumn + 

' IS NOT NULL' 

 

   PRINT @TempQuery; 

   INSERT INTO #TempTable 

(fklayerkeywordID,keywordname,fkFeatureID) 

   EXECUTE(@TempQuery) 

 

   FETCH NEXT FROM MyCursor INTO @MyLayerKeywordID, 

@MyLayerID, @MyKeywordColumn, @MyTableName, @MyPrimaryKeyColumn; 

             

  END; 

 

 CLOSE MyCursor; 

 DEALLOCATE MyCursor; 

 

 MERGE tblFeature_Keyword AS t  

 USING (SELECT fkLayerKeywordID, fkFeatureID, keywordname FROM 

#TempTable) AS s 

 ON t.fkLayerKeywordID = s.fkLayerKeywordID AND  t.fkFeatureID 

= s.fkFeatureID 

  --Update 

  WHEN MATCHED AND NOT t.KeywordName = s.keywordname THEN 

   UPDATE SET t.KeywordName =s.keywordname 

  --Insert 

  WHEN NOT MATCHED BY TARGET THEN  

   INSERT (fkLayerKeywordID,fkFeatureID,KeywordName) 

VALUES (s.fkLayerKeywordID,s.fkFeatureID,s.KeywordName) 

  --Delete 

  WHEN NOT MATCHED BY SOURCE THEN 

   DELETE; 

  

 DROP TABLE #TempTable 

 

 PRINT @@ROWCOUNT; 

 

END 

 

The result of this stored procedure is tblFeature_Keyword populated with a list of 

keywords associated with their IDs from tblFeature. 
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Figure 81: tblFeature_Keyword populated with keywords. 

Querying Features By Keyword 

In a GIS application, if a user searches for a geographic object by feature, they can 

use the stored procedure sp_QueryFeaturesByKeyword. 

Algorithm A8: sp_QueryFeaturesByKeyword 
CREATE PROCEDURE [dbo].[sp_QueryFeatureByKeyword] 

 @MySearchTerm varchar(50), 

 @NumResults int 

AS 

BEGIN 

 

 SET NOCOUNT ON; 

 

    SELECT TOP (@NumResults) k.KeywordName, k.fkFeatureID, 

l.TableName, l.TableTitle, f.geom as MyGeom 

 FROM dbo.tblFeature_Keyword k 

 LEFT OUTER JOIN dbo.tblFeature f 

  on f.pkFeatureID = k.fkFeatureID 

 LEFT OUTER JOIN dbo.tblLayer l 

  on l.pkLayerID = f.fkLayerID 

 WHERE KeywordName like '%' + @MySearchTerm + '%' 

 ORDER BY fkFeatureID 

 

END 

 

This stored procedure takes two inputs:  A search term designated by the user and 

the number of results they want returned to them.  A search for “Patapsco” generates 

the results as shown in Figure 82. 
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Figure 82: A keyword search for "Patapsco." 

A.3 Ontology Creation 

This section will outline the tables and procedures that describe the relationship 

between two layers. 

A.3.1 Relationship Type (tblLayer_Relation_Type) 

tblLayer_Relation_Type is a reference table describing the types of topological 

relationships between different layers as described in Section 4.2.1.  It can be expanded 

to include new types of relationships that might be useful to an organization in the 

future. At the moment it is populated with the relationships described in the dissertation 

(the standard OGR topological relationships). 

Algorithm A9: Create tblLayer_Relation_Type 
CREATE TABLE [dbo].[tblLayer_Relation_Type]( 

 [pkRelationshipTypeID] [int] IDENTITY(1,1) NOT NULL, 

 [RelationshipTypeName] [varchar](50) NULL, 

 CONSTRAINT [PK_tblRelationshipType] PRIMARY KEY CLUSTERED  

( 

 [pkRelationshipTypeID] ASC 

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY 

= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 

) ON [PRIMARY] 

GO 
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Figure 83: tblLayer_Relation_Type populated with the standard OGR 

topological relationships. 

A.3.2 Context Profiles (tblLayer_ContextProfile) 

Context profiles define the situation of a user (which informs the reason they’re 

using the system) and are stored in tblLayer_ContextProfile. 

Algorithm A10: Create tblLayer_ContextProfile 
CREATE TABLE [dbo].[tblLayer_ContextProfile]( 
 [pkContextProfileID] [int] IDENTITY(1,1) NOT NULL, 

 [ContextProfileName] [varchar](200) NULL, 

 CONSTRAINT [PK_tblLayer_ContextProfile] PRIMARY KEY CLUSTERED  

( 
 [pkContextProfileID] ASC 

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, 

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 
) ON [PRIMARY] 

GO 

 

Context profiles can be created computationally (for example, by analyzing WMS 

logs as mentioned in Section 4.2.1) or they can be created manually based on user 

needs. 

 

Figure 84: tblLayer_ContextProfile with some sample profiles 
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A.3.3 Layer Relationships (tblLayer_Relation) 

An ontology describes the relationships between classes of objects and this 

information is stored in tblLayer_Relation. These relationships are tagged to a context 

profile (tblLayer_ContextProfile) meaning that the same two layers can have two 

different types of relationships depending on the user’s context.  All of this is stored in 

tblLayer_Relation. 

Algorithm A11: Create tblLayer_Relation 
CREATE TABLE [dbo].[tblLayer_Relation]( 

 [pkRelationshipID] [int] IDENTITY(1,1) NOT NULL, 

 [fkContextProfileID] [int] NULL, 

 [fkLayerOneID] [int] NULL, 

 [fkLayerTwoID] [int] NULL, 

 [fkRelationshipTypeID] [int] NULL, 

 [RelationshipStrength] [float] NULL, 

 CONSTRAINT [PK_tblRelationship] PRIMARY KEY CLUSTERED  

( 

 [pkRelationshipID] ASC 

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY 

= OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 

) ON [PRIMARY] 

GO 

A record in tblLayer_Relation includes a reference to a context profile 

(fkContextProfileID), the two layers involved in the relationship (fkLayerOneID, 

fkLayerTwoID), the type of relationship defined in tblLayer_Relation_Type 

(fkRelationshipTypeID) and the strength of the relationship (RelationshipStrength) 

which is a number between 0 and 1 where a higher number signifies a stronger 

relationship between the layers. 
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