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Abstract. Active learning focuses on choosing a subset of unlabeled
data to be labeled. However, most such methods assume that a large
subset of the data can be annotated. We are interested in low-budget
active learning where only a small subset (e.g., 0.2% of ImageNet) can
be annotated. Instead of proposing a new query strategy to iteratively
sample batches of unlabeled data given an initial pool, we learn rich
features by an off-the-shelf self-supervised learning method only once,
and then study the effectiveness of different sampling strategies given
a low labeling budget on a variety of datasets including ImageNet. We
show that although the state-of-the-art active learning methods work well
given a large labeling budget, a simple K-means clustering algorithm can
outperform them on low budgets. We believe this method can be used as
a simple baseline for low-budget active learning on image classification.
Code is available at: https://github.com/UCDvision/low-budget-al

Keywords: Low-Budget Active Learning, Self-Supervised Learning.

1 Introduction

We are interested in active learning with very low budget. Given a large set
of unlabeled images and an oracle that can label a small set of images, we
want to train an accurate image classification model by choosing a small set of
images for the oracle to annotate. Active learning [14] has been studied for a long
time. However, most active learning methods start with a large initial seed pool
(usually randomly chosen images that are annotated) and also choose a large
set of images to be annotated actively. For instance, [49,16,5] use more than 3%
of ImageNet [44] as the initial pool, which contains more than 40, 000 images.
In some applications, e.g., medical image analysis, the labeling budget is much
smaller, so the current active learning algorithms may not be a viable solution
[32,55].

One may argue that our setting is similar to few-shot and semi-supervised
learning where we assume a few examples of each class are labeled. However, we
argue that those settings are not practical in many applications since sampling a
subset of images for labeling, that are “uniformly” distributed across categories,
itself needs a larger subset of data to be annotated first. In some real applications,
even finding one example of an object to annotate may be challenging. For

https://github.com/UCDvision/low-budget-al
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Fig. 1: Our simple baseline. The goal is to train an accurate image classifica-
tion model with a very small set of labeled images. a) A self-supervised learning
model learns from the unlabeled data and provides the feature embeddings. b)
K-means algorithm clusters the unlabeled data features and chooses data points
nearest to the center of each cluster. c) These selected points are then annotated
by an oracle. Finally, a linear classifier on the top of features learns from the
annotated data and performs the image classification task.

instance, in a self-driving car application, one may want to build a detector for
motorbikes with annotating a few motorbike examples only, but finding those
few examples in the large dataset of many hours of driving video footage is a
challenging task by itself.

As an example, Table 6a shows that some categories may not be even rep-
resented in a pool of 3, 000 randomly sampled ImageNet images. This makes
standard few-shot or semi-supervised learning methods impractical. Hence, we
believe active learning, when we want to have only a few annotations per cate-
gory in average, is an important practical problem.

We believe given the recent progress in self-supervised learning (SSL) [1,10,12],
active learning with very small budget (e.g., annotating only 3, 000 images of
ImageNet) should have become more tractable. Hence, we design a very simple
baseline and show that it outperforms state-of-the-art active learning methods
on small budgets. As shown in Figure 1, our baseline starts with training an
off-the-shelf SSL method on the unlabeled data, running K-means clustering on
the obtained features of unlabeled data, choosing examples closest to the center
of each cluster, annotating those samples using the oracle, and finally training
a linear classifier on the top of SSL features to perform the image classification
task. Figure 2 shows how using K-means selection on SSL pre-trained features
nicely covers categories of the unlabeled data.

Moreover, most active learning methods [46,20,49] annotate multiple batches
of data sequentially which constrains the annotation work-flow since the oracle
should wait for the model to be trained and select the next batch. We show that
a variation of our method works well using a single annotation batch rather than
multiple ones, reducing the cost of annotation work-flow.



3

Fig. 2: Visualization of category coverage of 10 samples on 10 randomly
selected ImageNet categories. We show t-SNE plots of two different feature
initializations (random and SSL) and selection methods (Random and K-means)
along with 10 selected images (black dots) for annotation. We have not done
any cherry-picking or manual inspection for this visualization. Note that random
selection uses the same seed, so Rows 1 and 3 have the same selected images. SSL
initialization along with K-means results in 100% coverage while some categories
are not represented in other settings. Table 6a shows that on full ImageNet, our
method covers 99.9% of all categories with 7 samples on average per class.

2 Related Work

There is a broad array of learning approaches to give deep learning-based meth-
ods an ability of learning new concepts without requiring large annotated datasets.
These approaches include few-shot learning, active learning, semi-supervised
learning, and self-supervised learning.

Few-shot learning. Few-shot learning aims to recognize a set of classes that
there are very few uniformly distributed training examples available for each of
them (e.g. 1 or 5 examples per class) [3,21,50]. Although the amount of few-shot
learning training data is much less than of large-scale deep learning methods,
preparing a training set with as few as 1% uniform annotation still needs more
than 1% of the unlabeled dataset to be annotated.

Active learning. Active learning has been widely studied to answer how to
choose a fixed number of samples to gain the highest accuracy. Our work lies
in pool-based approaches which can be categorized as uncertainty-based and
distribution-based methods. Uncertainty-based methods try to find the most
uncertain samples [53,52,7,2]. In Bayesian uncertainty-based approaches, Gaus-
sian processes estimate uncertainty [28,43,19]. However, it is shown in [46] that
these methods are not suitable for deep neural networks and large-scale datasets.

Distribution-based methods try to maximize the diversity of selected data
over the entire dataset. [39] clusters the dataset at first and then uses a hier-
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archical approach to avoid selecting repeated samples from the same cluster.
Core-set [46] increases diversity in the selected batch of data by minimizing
the Euclidean distance between instances of already labeled data and instances
in the unlabeled pool. Despite working well on datasets with small number of
classes, the performance of Core-set degrades when p-norms suffer from the curse
of dimensionality in high-dimensions [18].

Some methods take advantage of both uncertainty and diversity [34,29,4].
VAAL [49] and DFAL [15] use adversarial learning to learn the representation
of data points. It is shown in MAL [16] that although VAAL does not need the
annotations to sample data, it may result in selecting multiple instances of the
same class while there are already plenty of them in the labeled pool.

Many active learning methods require a large initial labeled pool and sam-
pling budget [46,49,16,47]. This condition is difficult to meet in medical image
analysis or other domains that the size of unlabeled training data is very large
and it costs experts a lot of effort to label a large subset of them [26]. An
approach to mitigate this problem is presented in [36]. However, it requires com-
puting large distance matrices to solve Wasserstein distances for large datasets
(e.g., with 1M images) that presents a scalability bottleneck.

In this paper, we train an off-the-shelf SSL method on the unlabeled data to
provide rich feature vectors only once and select a small proportion of them in
a non-iterative approach to achieve strong performance on a variety of datasets,
as well as large-scale datasets, without requiring an initial labeled pool.

Semi-supervised learning. Semi-supervised learning for image classification
aims in making best use of limited labeled data while leveraging the unlabeled
dataset [11,54,31]. Three most explored directions are consistency regularization
[45,33], entropy minimization [23], and pseudo-labeling [6,51]. Despite achieving
highly competitive performance to supervised methods, semi-supervised learn-
ing, similar to few-shot learning, assumes there are a few equal number of exam-
ples per category and needs more than the amount of training set to be annotated
from the unlabeled dataset to ensure a uniform distribution. Therefore, we can-
not compare active and semi-supervised methods directly. However, in Section
4.5, we will introduce two labeled set generation settings to show that active
strategies can benefit the performance of semi-supervised models.

Self-supervised learning. SSL provides a strategy to train a neural network on
the unlabeled data and creates rich features that can be fine-tuned for different
downstream tasks using limited labeled data. SSL methods coarsely learn to solve
a pretext task [22,42,41] or contrast between similar pairs of an image and its
negative pairs [8,10,25]. CompRess [1] is one of the recent state-of-the-art SSL
models that compresses a deep teacher network to a smaller student network
such that for any query, the student ranks anchors similar to the teacher.

Prior active learning methods that take advantage of unsupervised learning
tackle with time-consuming human-in-the-loop workflow of waiting for the new
model to train on previous batches to annotate a new selected batch [48,20,56,16],
or use large sampling budgets [9,38,17]. In contrast, we select a single batch of
a few examples using the initial SSL pre-trained model.
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3 Low-Budget Active Learning

3.1 Standard Active Learning

Assuming a fixed sampling budget N and a large pool of unlabeled data Du,
standard active learning algorithms train a model M using an initial labeled
pool D0

l . Then, at iteration t, they sample a subset Dt
l of images from Du to

be labeled manually. This subset expands the labeled data to Dl = ∪tD
t
l . The

number of iterations and size of each subset are chosen so that |Dl| matches the
available budget N . The final model M is trained on all labeled data.

3.2 Sampling with K-means Clustering Method

In this paper, we use two forms of K-means sampling including: i) single-batch
K-means and ii) multi-batch K-means.

Single-batch K-means. Since we are interested in the low-budget setting, we
eliminate the need for initial seed of labeled samples and in contrast to standard
iterative active learning methods, we perform only one iteration of sampling.
We simply apply K-means algorithm on feature outputs of an SSL pre-trained
model only once and choose samples closest to the cluster centers. The single-
batch method simplifies the annotation workflow as the annotators do not need
to wait for the new model to train before annotating a new batch. However, one
may need to know the whole number of samples that need annotation. We call
single-batch K-means simply as K-means in the rest of the paper.

Multi-batch K-means. In contrast to single-batch version, multi-batch K-
means is dependent on the previous sampling rounds. This method uses the
difference of two consecutive budget sizes as the number of clusters and picks
those nearest examples to centers that have not been labeled previously by the
oracle. We call this variant of K-means sampling as multi K-means. Although
we no longer waste previously labeled data and accumulate them to the new set
of labeled examples, this process is iterative and we should wait for all previous
rounds to finish. As a result, both scenarios (single-batch and multi-batch) have
their own advantages and disadvantages and one can choose the method that
fits the best to the application setting.

4 Experiments and Results

In this section, we evaluate different active learning baselines on image classifi-
cation task.

Datasets. We use CIFAR-10/100 [30], ILSVRC-2012 ImageNet [44], and Im-
ageNet-LT [35] to compare different sampling strategies. CIFAR-10/100 with
10/100 categories have 60, 000 images of size 32× 32, where 50, 000 are training
and 10, 000 are test images. ImageNet contains more than 1.2M images that are
almost uniformly distributed over 1, 000 categories. ImageNet-LT is truncated
from ImageNet and has the same 1, 000 categories, but the number of images
per class ranges from 1280 to 5. We resize ImageNet/LT images into 224× 224
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pixels. The validation set for ImageNet/LT experiments is the same and contains
50, 000 samples. All datasets are augmented by horizontally flipping the images.

Baselines. We compare K-means and multi K-means with the following base-
lines: i) Random in which samples are selected randomly (uniformly) from the
entire dataset; ii) Max-Entropy [53] which samples the points with the high-
est probability distribution entropy; iii) Core-set [46]; iv) VAAL [49]; and v)
Uniform that selects equal number of random samples per class. Note that
few-shot and semi-supervised learning methods use Uniform strategy to create
training sets that may require more than the size of sets to be annotated.

Implementation details. In all experiments, unless specified, we use feature
outputs of ResNet-18 that is pre-trained on unlabeled ImageNet using Com-
pRess SSL method [1] for 130 epochs, which uses MoCo-v2 [12] as its teacher
network. Note that this pre-trained feature extractor is used even for CIFAR ex-
periments which means that technically, CIFAR experiments use the unlabeled
data beyond CIFAR datasets. Max-Entropy sampling method [53] freezes the
pre-trained backbone and trains an extra linear layer as the classifier on the top
of that for 100 epochs. In all Max-Entropy experiments, we use Adam optimizer
and lr=0.001 which is multiplied by 0.1 at epochs 50 and 75. The budget for it-
erative sampling methods is the difference between two consecutive budget sizes.
For Random, Uniform, and K-means sampling, each budget size is equivalent to
the amount of unlabeled data selection.

Evaluation metrics. Unless specified, all experiments are averaged over 3 runs
with 3 constant random seeds. We follow four evaluation metric protocols:

i) Linear classification. We train a linear classifier on the top of the frozen
backbone features (without back-propagation in the backbone weights) on the
pool of labeled data for 100 epochs and report its top-1 accuracy on the test
set. We apply the mean and standard deviation normalization at each dimen-
sion of backbone outputs to reduce the computational overhead of tuning the
hyper-parameters per experiment. We use Adam optimizer and lr=0.01 that is
multiplied by 0.1 at epochs 50 and 75. The batch size is 128 on ImageNet/LT.
For CIFAR-10/100 experiments, initial pools contain only 10/100 examples, so
we set batch size=4.

ii) Nearest neighbor classification. This uses cosine similarity as a distance
metric to search for the most semantically similar neighbors of test set data
from the pool of labeled images. When the pool of labeled data is small, this
metric is faster than linear evaluation since nearest neighbor classification needs
no hyper-parameter tuning. We use FAISS GPU library [27] for implementation.

iii)Evaluation on fine-grained tasks.We evaluate on Flowers-102 [40], DTD-
47 [13], and Aircraft [37] as examples of fine-grained datasets. For feature em-
beddings, we use the same frozen backbone that is pre-trained on unlabeled
ImageNet. In each dataset, we first choose a small subset of training data to
be annotated, then we use the subset to train a linear classifier on top of the
frozen backbone. This is similar to the transfer learning procedure in [10,24].
Full details on training sets are in the appendix Table 15.
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iv) Semi-supervised learning evaluation. Both active and semi-supervised
methods learn from limited labeled data. However, semi-supervised ones assume
an equal number of examples per class are labeled, which is not practical in
some applications. In contrast, active learning does not use any label information.
Therefore, we cannot compare these two learning methods directly. Since selected
samples byK-means cover a large proportion of all categories, one can train semi-
supervised learning methods on the small annotated set selected by K-means.
We follow the procedure of FixMatch [51], a state-of-the-art semi-supervised
method, to evaluate K-means, Random and Uniform on CIFAR-10, Flowers-102
[40], and DTD-47 [13].

4.1 Performance Analysis on CIFAR-10/100

Tables 1 through 4 show the performance and category coverage of two K-means
strategies compared to other active learning baselines on CIFAR-10/100. Max-
Entropy, Core-set, and VAAL start from randomly selected 0.02% of CIFAR-10
and 0.2% of CIFAR-100. Multi K-means starts from K-means selected 0.02% of
CIFAR-10 and 0.2% of CIFAR-100. We can observe in Table 1 that on CIFAR-10
both K-means and multi K-means outperform all sampling methods in nearest
neighbor classification. In linear classification, despite not having equal number
of examples per category, K-means performs better than Uniform at 0.02%,
0.04%, and 0.6%. Tables 3 and 4 compare different selection strategies on CIFAR-
100 and show that in both evaluation metrics, K-means strategies outperform
non-uniform methods and are on par with Uniform.

4.2 Performance Analysis on ImageNet

Tables 5 and 6a show the scalability of K-means sampling on the large-scale
ImageNet dataset. 0.08% randomly and K-means selected ImageNet are used
as the initial pools of iterative methods and multi K-means, respectively. In
Table 5, K-means outperforms other baselines and has competitive results with
Uniform sampling in both evaluation metrics.

Figure 6b illustrates the distribution of ImageNet categories over their num-
ber of occurrences in 0.2% of the unlabeled training data. They are 3, 000 total
samples that equals to 3 per category in average. We prefer the distribution to
have a peak at 3 and be zero otherwise which will happen with Uniform sam-
pling. We see that K-means is closer to this peaky distribution compared to
Random. Interestingly, Random sampling has almost 4 times more categories
that are not represented in the samples (i.e., zero samples).

4.3 Performance Analysis on ImageNet-LT

It is important to use a sampling method that does not fail in real-world ap-
plications, in which data is not balanced. In Tables 7 and 8, we use the same
frozen backbone that is pre-trained on unlabeled ImageNet as the feature ex-
tractor to compare different sampling strategies on ImageNet-LT. Initial pools
of iterative methods and multi K-means are 0.8% randomly and K-means se-
lected ImageNet-LT, respectively. Uniform sampling chooses equal number of
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examples per class as long as it does not surpass the class size. Table 7 shows
that K-means strategies are strong active learning methods in both evaluation
metrics with no annotation information. Also, in the appendix A.2, we report
top-1 linear and nearest neighbor classification results of different strategies on
ImageNet-LT using an ImageNet-LT pre-trained backbone, as a realistic fea-
ture extractor to show that K-means is insensitive to category distribution of
unlabeled training set.

Table 1: Top-1 linear (LIN) and nearest neighbor (NN) classification
results of different strategies on CIFAR-10. Both K-means strategies out-
perform all methods in nearest neighbor classification. In linear classification,
K-means outperforms Max-Entropy, Core-set, VAAL, and Random, and is on
par with Uniform. Although in contrast to Uniform, K-means does not have
equal number of examples per class, this strategy performs better than Uniform
in 0.02%, 0.04%, and 0.6% budgets. In both evaluation benchmarks, K-means
is consistently better than multi K-means.

Budgets

Method LIN NN
10

0.02%
20

0.04%
50

0.1%
70

0.14%
100

0.2%
200

0.4%
300

0.6%

Uniform ✓ 20.4± .2 28.6± .0 39.9± .1 43.9± .1 44.9± .1 48.9± .0 51.9± .0
Random ✓ 21.6± .3 28.7± .1 32.8± .1 36.2± .3 43.8± .1 48.1± .0 50.6± .1
Max-Entropy ✓ 21.6± .3 26.4± .1 34.5± .2 38.6± .0 40.3± .1 44.6± .1 47.7± .0
Core-set ✓ 21.6± .3 27.6± .2 34.9± .3 35.1± .1 38.8± .0 43.2± .0 46.5± .0
VAAL ✓ 21.6± .3 26.4± .1 34.7± .0 38.8± .0 40.8± .1 44.6± .1 47.7± .0
Multi K-means ✓ 28.5± .2 28.6± .0 35.9± .1 39.2± .2 41.5± .0 48.1± .0 51.5± .1
K-means ✓ 28.5± .2 33.3± .2 37.6± .1 43.7± .1 44.1± .0 48.8± .2 52.1± .2

Uniform ✓ 19.8± .3 25.7± .1 32.2± .1 32.9± .2 34.2± .0 36.4± .0 38.3± .1
Random ✓ 23.7± .2 28.5± .1 29.4± .2 29.7± .1 32.5± .1 35.5± .0 37.5± .0
Max-Entropy ✓ 23.7± .2 24.5± .1 28.1± .0 29.1± .0 27.8± .1 28.6± .1 30.1± .0
Core-set ✓ 23.7± .2 25.3± .1 26.6± .1 27.7± .0 29.5± .0 30.4± .1 32.6± .0
VAAL ✓ 23.7± .2 25.1± .1 29.1± .1 29.8± .0 30.1± .1 34.5± .1 35.8± .1
Multi K-means ✓ 29.5± .1 29.7± .0 34.2± .1 35.1± .0 36.1± .2 39.4± .1 40.2± .1
K-means ✓ 29.5± .1 33.4± .2 34.7± .1 38.3± .0 38.9± .1 40.6± .1 42.4± .0

Table 2: CIFAR-10 category cov-
erage of selected examples. 0.02%
K-means selected instances cover 80%
of all CIFAR-10 categories.

Budgets
10

0.02%
20

0.04%
50

≥ 0.1%

Uniform 100± 0 100± 0 100± 0
Random 56.7± 4.7 86.7± 4.7 100± 0
Max-Entropy 56.7± 4.7 68.0± 2.0 100± 0
Core-set 56.7± 4.7 86.7± 4.7 100± 0
VAAL 56.7± 4.7 71.0± 1.0 100± 0
Multi K-means 80.0± 0.0 100± 0.0 100± 0
K-means 80.0± 0.0 90.0± 0.0 100± 0

Table 3: CIFAR-100 category cov-
erage of selected examples. Af-
ter Uniform sampling, both K-means
methods have a better category cov-
erage than iterative methods and are
on par with Random.

Budgets
100

0.2%
300

0.6%
500

1%
1000

≥ 2%

Uniform 100± 0 100± 0 100± 0 100± 0

Random 60.9± 3.2 96.7± .9 100± 0 100± 0
Max-Entropy 60.9± 3.2 87.7± .9 97.0± 1.4 100± 0
Core-set 60.9± 3.2 89.0± .0 97.3± 1.2 100± 0
VAAL 60.9± 3.2 86.3± .9 95.7± 0.9 100± 0
Multi K-means 68.0± 0.0 93.0± .0 98.0± 0.0 100± 0
K-means 68.0± 0.0 95.0± .0 100± 0 100± 0
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Table 4:Top-1 linear (LIN) and nearest neighbor (NN) classification re-
sults of different strategies on CIFAR-100. In both evaluation benchmarks,
K-means strategies outperform Max-Entropy, Core-set, VAAL, and Random and
are on par with Uniform sampling. Despite having equal number of examples per
category, Uniform outperforms K-means in linear classification only on budgets
larger than 4%. K-means and multi K-means are competitive on CIFAR-100.

Budgets

Method LIN NN
100

0.2%
300

0.6%
500

1%
1000

2%
2000

4%
2500

5%
4000

8%
5000

10%
7500

15%

Uniform ✓ 10.2± .2 18.7± .1 21.3± .1 27.2± .0 29.9± .1 30.9± .1 32.7± .0 32.9± .0 33.6± .0
Random ✓ 10.4± .3 16.5± .1 20.7± .1 24.6± .4 29.3± .1 29.5± .5 30.8± .1 31.7± .1 32.8± .1
Max-Entropy ✓ 10.4± .3 14.6± .1 17.2± .0 20.8± .1 21.9± .2 24.6± .1 26.1± .0 27.6± .0 28.8± .0
Core-set ✓ 10.4± .3 15.1± .0 17.4± .1 22.2± .1 25.9± .0 26.9± .0 27.8± .1 28.6± .0 29.3± .1
VAAL ✓ 10.4± .3 15.9± .1 19.1± .0 24.1± .0 28.4± .1 29.9± .1 30.9± .0 31.6± .1 33.1± .0
Multi K-means ✓ 13.4± .1 20.0± .1 22.2± .0 26.1± .0 29.5± .0 30.2± .0 31.5± .0 31.5± .0 32.8± .0
K-means ✓ 13.4± .1 18.8± .1 23.7± .1 27.1± .0 29.4± .0 31.1± .1 32.5± .0 32.8± .1 33.4± .0

Uniform ✓ 10.1± .3 13.8± .1 15.3± .1 17.8± .0 20.2± .0 21.9± .0 24.1± .1 25.8± .1 30.0± .1
Random ✓ 8.3± .1 12.8± .1 15.0± .2 16.9± .1 19.7± .1 20.8± .0 22.0± .1 23.2± .0 25.5± .0
Max-Entropy ✓ 8.3± .1 10.1± .0 10.9± .0 12.1± .1 12.5± .1 12.7± .1 12.9± .0 13.1± .0 13.6± .1
Core-set ✓ 8.3± .1 10.4± .1 10.9± .0 13.3± .0 16.4± .1 16.8± .0 18.2± .0 18.9± .0 20.7± .1
VAAL ✓ 8.3± .1 12.1± .0 13.7± .1 16.7± .0 19.2± .1 20.4± .0 22.1± .1 23.1± .0 24.9± .0
Multi K-means ✓ 13.7± .2 17.2± .0 18.0± .1 20.4± .1 22.9± .0 23.5± .0 24.2± .1 25.1± .0 27.2± .0
K-means ✓ 13.7± .2 17.1± .0 19.4± .1 21.1± .1 23.1± .0 23.6± .1 24.5± .0 24.9± .1 26.1± .1

Table 5: Top-1 linear (LIN) and nearest neighbor (NN) classification
results of different strategies on ImageNet. K-means outperforms all non-
uniform sampling methods. Linear classification results of Uniform sampling that
takes advantage of equal number of examples per class are better than K-means
only at 5% and 10% by a small margin.

Budgets

Method LIN NN
1K

0.08%
3K

0.2%
7K

0.5%
13K

1%
26K

2%
64K

5%
128K

10%
192K

15%

Uniform ✓ 19.2± .3 31.9± .3 41.0± .3 46.0± .1 49.9± .0 54.2± .1 56.7± .1 57.9± .1
Random ✓ 15.8± .0 28.0± .4 39.2± .3 45.1± .1 49.7± .1 54.0± .1 56.6± .1 57.9± .1
Max-Entropy ✓ 15.8± .0 19.4± .0 25.6± .0 33.7± .0 41.3± .0 48.9± .1 51.9± .1 54.3± .1
Core-set ✓ 15.8± .0 25.6± .1 33.3± .0 39.6± .0 45.7± .1 51.3± .0 54.9± .1 56.6± .1
VAAL ✓ 15.8± .0 27.7± .1 34.9± .2 42.8± .1 49.2± .2 53.6± .1 56.0± .1 57.4± .0
Multi K-means ✓ 24.6± .0 34.1± .1 41.1± .0 45.3± .0 49.5± .0 53.9± .0 56.3± .0 57.5± .1
K-means ✓ 24.6± .0 35.7± .0 42.6± .1 46.9± .1 50.7± .0 54.0± .1 56.6± .0 58.0± .1

Uniform ✓ 29.5± .1 35.7± .1 38.9± .2 41.1± .1 43.2± .0 45.6± .0 47.6± .2 48.6± .0
Random ✓ 22.8± .2 33.2± .7 38.4± .2 40.8± .0 42.2± .1 45.4± .1 47.3± .1 48.3± .1
Max-Entropy ✓ 22.8± .2 24.5± .1 27.2± .1 30.3± .0 33.3± .1 36.2± .1 37.6± .0 38.6± .0
Core-set ✓ 22.8± .2 30.7± .0 34.8± .1 37.5± .1 39.7± .1 42.0± .1 43.7± .2 44.6± .1
VAAL ✓ 22.8± .2 32.8± .1 36.2± .0 39.7± .1 42.6± .0 45.3± .0 46.7± .1 47.9± .0
Multi K-means ✓ 31.6± .1 38.2± .0 41.4± .0 43.3± .0 45.2± .0 47.2± .0 48.6± .0 49.4± .0
K-means ✓ 31.6± .1 39.9± .0 42.7± .0 44.0± .1 45.5± .0 46.8± .1 48.1± .1 48.8± .0
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Table 6: Category distribution of sampled ImageNet. (a) K-means covers
almost 98% of all classes with only 3, 000 examples while iterative methods
require at least 7, 000 examples to reach this coverage; (b) Compared to Random
selection, K-means has a sharper distribution around 3 which means selected
images are distributed more uniformly across the categories.

(a) ImageNet category coverage of
selected examples.

Budgets
1K

0.08%
3K

0.2%
7K

0.5%
13K

≥ 1%

Uniform 100± 0 100± 0 100± 0 100± 0

Random 62.9± .2 94.6± .4 100± 0 100± 0
Max-Entropy 62.9± .2 84.3± .5 94.8± .2 100± 0
Core-set 62.9± .2 87.9± .1 97.0± .5 100± 0
VAAL 62.9± .2 94.6± .1 98.1± .3 100± 0
Multi K-means 72.2± .1 97.0± .0 99.8± .0 100± 0
K-means 72.2± .1 97.8± .2 99.9± .0 100± 0

(b) Category distribution of 3,000
samples of ImageNet (0.2%).

Table 7: Top-1 linear (LIN) and nearest neighbor (NN) classification
results of different strategies on ImageNet-LT. We use the same frozen
backbone pre-trained on unlabeled ImageNet as the feature extractor. With no
labels information, K-means is a strong selection baseline in low budgets in both
linear and nearest neighbor classification compared to prior works.

Budgets

Method LIN NN
1K

0.8%
3K

3%
5K

4%
7K

6%
9K

8%
12K

10%

Uniform ✓ 19.4± .1 31.8± .1 37.2± .2 40.5± .0 42.7± .1 44.8± .0
Random ✓ 13.0± .2 21.6± .1 26.7± .1 29.8± .0 32.1± .0 34.3± .0
Max-Entropy ✓ 13.0± .2 16.3± .0 19.8± .1 22.9± .0 25.6± .1 28.6± .1
Core-set ✓ 13.0± .2 22.7± .0 26.9± .0 30.3± .1 32.1± .0 34.9± .0
VAAL ✓ 13.0± .2 21.8± .0 25.9± .0 28.7± .1 30.8± .0 33.4± .0
Multi K-means ✓ 18.1± .0 24.7± .0 27.4± .1 29.4± .0 30.8± .0 33.5± .0
K-means ✓ 18.1± .0 25.9± .1 29.4± .0 31.7± .2 33.6± .0 35.7± .1

Uniform ✓ 29.2± .0 35.9± .1 37.9± .1 38.8± .1 39.5± .0 40.4± .0
Random ✓ 19.3± .1 27.6± .0 31.3± .0 33.1± .0 34.4± .0 35.7± .0
Max-Entropy ✓ 19.3± .1 22.3± .1 24.2± .1 25.9± .0 27.0± .0 28.8± .0
Core-set ✓ 19.3± .1 29.3± .0 31.9± .0 33.7± .0 34.6± .0 35.9± .0
VAAL ✓ 19.3± .1 26.9± .0 30.4± .0 32.2± .0 33.4± .1 34.7± .0
Multi K-means ✓ 24.3± .0 29.6± .0 31.2± .0 32.2± .1 32.9± .1 34.9± .0
K-means ✓ 24.3± .0 31.5± .0 34.3± .1 35.3± .0 36.3± .0 36.9± .0

Table 8: ImageNet-LT category coverage of selected examples. Uniform
selects equal number of samples per class as long as that class contains examples.

Budgets
1K

0.8%
3K

3%
5K

4%
7K

6%
9K

8%
12K

10%

Uniform 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0

Random 48.6± .3 76.1± 1.0 84.9± .5 89.6± .3 92.2± .4 94.8± .3
Max-Entropy 48.6± .3 69.6± .2 78.8± .1 84.2± .1 89.3± .0 92.0± .0
Core-set 48.6± .3 77.5± .4 86.7± .4 91.1± .8 93.5± .0 95.8± .3
VAAL 48.6± .3 73.9± .3 83.1± .1 87.6± .1 90.8± .1 93.6± .1
Multi K-means 51.8± .0 71.8± .0 79.7± .0 84.3± .0 88.3± .0 92.1± .0
K-means 51.8± .0 75.8± .0 86.8± .0 90.8± .0 92.2± .0 95.1± .0
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4.4 Evaluation on Fine-grained Tasks

In Table 9, we analyze K-means clustering on datasets that are finer-grained
compared to ImageNet. This table shows that the linear classification results of
K-means on fine-grained datasets are consistently better than Random and are
on par with Uniform.

Table 9: Evaluation on fine-grained tasks. The same frozen backbone that
is pre-trained on unlabeled ImageNet is used to extract feature embeddings. For
each dataset, a small subset of training data is annotated and is used to train
a linear classifier on top of the frozen backbone. With no label information,
K-means consistently outperforms Random and is on par with Uniform.

Flowers-102 DTD-47 Aircraft-100

Methods
1×102

10%
4×102

40%
1×47

2.5%
4×47

10%
1×100

2%
4×100

7.5%

Uniform 81.56 ±1.1 82.70 ±0.0 64.23 ±1.6 65.87 ±1.1 36.73 ±0.3 37.43 ±0.3

Random 80.56 ±1.6 82.06 ±1.3 53.86 ±0.6 61.06 ±0.7 36.10 ±1.7 37.36 ±0.1

K-means 82.20 ±1.0 82.76 ±1.2 64.30 ±0.0 65.96 ±0.7 37.20 ±0.0 38.67 ±0.2

4.5 Semi-Supervised Learning Evaluation

Table 10 shows semi-supervised evaluation results of FixMatch [51] when the la-
beled set is selected with label information, by Uniform and Uniform(K-means),
or without it, by Random and K-means. In this table, Uniform(K-means) uses
number of classes to cluster the dataset and selects equal number of examples per
cluster. As shown in Table 10, K-means outperforms Random over all datasets
with no label information. Taking the advantage of annotations, Uniform(K-
means) performs better than Uniform in low budgets.

Table 10: Semi-supervised evaluation with FixMatch [51]. The scores are
top-1 accuracies (in %) of the model on the test set. In contrast to Random and
K-means, Uniform and Uniform(K-means) take advantage of annotation infor-
mation to sample a labeled set. With no labels, K-means performs consistently
better than Random. Using labels, Uniform(K-means) outperforms Uniform in
low budgets. The results are from 1 repetition of the experiments.

CIFAR-10 Flowers-102 DTD-47

Methods
1×10

0.02%
4×10

0.08%
10×10

0.2%
1×102

10%
3×102

30%
4×102

40%
1×47

2.5%
3×47

7.5%
4×47

10%

With Labels

Uniform 54.79 88.76 91.20 15.22 34.33 42.54 8.88 18.40 23.19
Uniform(K-means) 57.53 89.11 89.40 18.08 37.79 41.60 16.49 22.29 22.39

Without Labels

Random 38.69 60.21 86.73 13.81 31.42 42.51 8.30 16.86 21.65
K-means 43.37 84.46 86.96 19.87 37.60 46.09 14.36 19.04 23.56



12

5 Ablation Study

In this section, we perform ablation study on the initial labeled pool and the
feature extraction backbone.

5.1 Effect of Initial Pool

Interestingly, Random sampling performs better than iterative active learning
baselines at both accuracy and category coverage in some experiments. This may
happen since a very small random initial labeled pool might not be representative
of all categories and cannot be a strong starting point for iterative methods. To
examine this hypothesis, we investigate how the strategy of sampling and size
of the initial pool affect the performance of iterative methods.

Table 11: Effect of a larger
(2%) initial labeled set on Im-
ageNet linear classification re-
sults. VAAL and Core-set perform
better than K-means and Random
sampling using 10% of the unlabeled
data. Results of Random and K-
means are repeated from Table 5.

Budget
26K

2%
64K

5%
128K

10%

Max-Entropy 49.7± .1 51.8± .0 56.6± .0
Core-set 49.7± .1 52.5± .1 56.7± .0
VAAL 49.7± .1 53.8± .1 56.8± .1

Random 49.7± .1 54.0± .1 56.6± .1
K-means 50.7± .0 54.0± .1 56.6± .0

Table 12: Effect of 0.08% K-
means selected initial set of
ImageNet on linear classifica-
tion results. Despite an improve-
ment in the performance of iterative
methods, K-means still outperforms
them in low budgets. Results of K-
means are repeated from Table 5.

Budget
1K

0.08%
3K

0.2%
7K

0.5%

Max-Entropy 24.6± .0 26.2± .1 30.0± .0

Core-set 24.6± .0 28.2± .0 33.6± .0

VAAL 24.6± .0 28.9± .1 35.0± .0

K-means 24.6± .0 35.7± .0 42.6± .1

Effect of size. We repeat the experiments with the same setting as Section 4.2
for a larger randomly sampled initial set of 2%. By comparing linear classification
results of Tables 5 and 11, we find that all three iterative methods perform better
using a larger initial pool. As a result, iterative methods are suitable options
when large initial pools are available.

Effect of sampling strategy. We repeat the analyses in Section 4.2 with K-
means selected instead of randomly selected 0.08% of ImageNet as the initial
pool. The linear classification results on 0.2% and 0.5% of ImageNet are shown
in Table 12. Comparing Tables 5 and 12 demonstrates that although the per-
formance of iterative methods are improved with a richer initialization, there is
still a great gap with K-means in low budgets.

5.2 Ablating Feature Extraction Backbone

We perform ablation on i) sampling and ii) classification backbone initialization
and investigate their contributions to K-means performance on ImageNet in
Table 13.
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Table 13: Fine-tuning and linear classification results of ablation study
on sampling ImageNet using K-means. SSL refers to using SSL pre-trained
weights and Rand refers to using randomly initialized weights for backbones.
Initializing both selection and classification backbones with SSL pre-trained or
random features is an empirical higher and lower bound for our experiments,
respectively. In the fine-tuning process, forgetting happens and causes the gap
with the linear classification counterpart.
Selection
backbone

Classification
backbone

Fine-
tuning

Budgets

SSL Rand SSL Rand
1K

0.08%
3K

0.2%
7K

0.5%
13K

1%
26K

2%
64K

5%
128K

10%
256K

20%

✓ ✓ No 0.38± .0 0.75± .0 1.07± .0 1.41± .1 2.05± .0 3.46± .0 4.26± .1 5.08± .1
✓ ✓ No 15.1± .0 26.5± .0 36.6± .1 43.8± .0 49.1± .0 54.0± .0 56.6± .0 58.7± .0

✓ ✓ No 0.47± .0 0.87± .1 1.26± .1 1.79± .1 2.37± .1 3.35± .1 4.19± .1 5.01± .1
✓ ✓ No 24.6± .0 35.7± .0 42.6± .1 46.9± .1 50.7± .0 54.0± .1 56.6± .0 58.9± .0

✓ ✓ Yes 0.73± .0 1.50± .0 3.49± .1 8.43± .3 17.7± .3 35.3± .6 48.4± .2 58.3± .2
✓ ✓ Yes 12.2± .1 22.7± .2 32.2± .1 38.7± .1 44.9± .1 51.3± .0 55.4± .2 59.9± .1

✓ ✓ Yes 1.22± .0 2.43± .0 5.63± .2 11.4± .2 19.9± .3 36.2± .3 48.9± .0 58.4± .1
✓ ✓ Yes 19.5± .2 30.3± .2 37.3± .1 41.8± .2 46.5± .2 51.5± .2 55.6± .1 60.0± .1

Ablating the sampling backbone. In Table 13, we find that by changing the
selection backbone weights to random and keeping the evaluation setting the
same, K-means performance drops in low budgets.

Ablating the classification backbone. Table 13 also presents the key role of
SSL pre-trained classification backbone in achieving strong accuracy. When not
fine-tuning the randomly initialized backbone, we train a linear layer on the top
of frozen random features.

Effect of fine-tuning. In Table 13, we also report the fine-tuning results of
all ablation variants. For randomly initialized backbones, we train both feature
extractor and linear classifier using SGD optimizer for 100 epochs with the same
learning rate of 0.1, which is multiplied by 0.1 in epochs 30, 60, and 90. For SSL
pre-trained variants, we apply mean and standard deviation normalization at
features before feeding to the linear layer. The optimizer is Adam and a lower
learning rate is used for the backbone compared to the linear layer (10−4 vs.
10−2). It is shown in Table 13 that back-propagating on a pre-trained model
with a new objective causes the model to forget previously learned features and
a drop in the performance happens.

5.3 Effect of the Network Architecture and Self-Supervised
Pre-training Method

We change both selection and classification backbone architectures to ResNet-50
and pre-train them on ImageNet with MoCo-v2 [12] for 800 epochs. We report
the experiments in Section 4.2 with the new setting in Table 14. This table shows
that the superiority of K-means sampling to other active learning methods in
low budgets is not sensitive to the choice of architecture or SSL pre-training
method.
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Table 14: Effect of MoCo-v2 pre-trained R50 on top-1 linear (LIN) and
nearest neighbor (NN) classification results of ImageNet. The superi-
ority of K-means is insensitive to the choice of network architecture and SSL
pre-training method. The results are from 1 repetition of the experiments.

Budgets

Method LIN NN
1K

0.08%
3K

0.2%
7K

0.5%
13K

1%
26K

2%
64K

5%

Uniform ✓ 30.0 40.2 46.8 50.8 54.9 59.5
Random ✓ 23.4 35.4 45.2 49.9 54.5 59.5
Max-Entropy ✓ 23.4 26.5 34.8 40.7 45.6 51.8
Core-set ✓ 23.4 32.1 37.6 41.6 46.5 53.8
VAAL ✓ 23.4 35.9 41.8 48.0 54.0 59.4
K-means ✓ 33.3 42.5 47.9 51.8 55.7 60.2

Uniform ✓ 30.8 37.5 40.8 43.1 45.2 48.1
Random ✓ 23.7 33.9 40.2 42.9 45.2 48.0
Max-Entropy ✓ 23.7 25.1 29.5 31.6 32.5 33.4
Core-set ✓ 23.7 30.3 32.5 33.7 35.3 38.2
VAAL ✓ 23.7 34.3 38.2 41.9 44.8 47.8
K-means ✓ 33.6 41.2 44.2 46.0 47.7 49.8

6 Discussion

In general, we expect multi-batch active learning algorithms to perform better
than single-batch ones since having machine learning and human in the loop
reduces the redundancy in the annotated data. However, in our case, single-
batch performs better than multi-batch. We hypothesize this happens since our
single-batch method finds a large number of clusters that equals the total budget,
which causes to represent very small clusters as well. One may improve the multi-
batch method by encouraging diversity between iterations of the sampling.

We believe strong performance of K-means, especially in low budgets, hap-
pens since selected examples by K-means represent the categories even better
than random examples in Uniform. As the budget size increases, all selection
methods converge to the same performance results. Thus, with no annotation
information, K-means clustering is a strong active learning baseline to achieve
an accurate image classifier in very low budgets.

7 Conclusion

Most active learning benchmarks assume they have access to a large budget and
large labeled seed pool. We believe there is practical need for active learning
with smaller budgets. However, the problem is challenging as some categories in
image classification may not be presented in the seed. We introduce a very sim-
ple baseline for this problem and show that it outperforms state-of-the-art active
learning methods in low budgets. Our method leverages the recent progress in
self-supervised learning along with simple K-means clustering for selecting the
images that need to be annotated.
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A Appendix

Here, we provide additional details about Sections 4.2 through 4.5. Table 15 shows
the details of fine-grained datasets used in semi-supervised learning and fine-grained
evaluation tasks described in Sec 4.4 and 4.5.

Table 15: Fine-grained datasets details. Training, val, and test split details
of the fine-grained datasets used in semi-supervised learning and fine-grained
evaluation tasks are listed. For DTD and Flowers, we use the provided val sets.
For Aircraft, we sample 20% of samples per class.

Dataset Classes Train size Val size Test size Accuracy measure

DTD [13] 47 1, 880 1, 880 1, 880 Top-1
Aircraft [37] 100 5, 367 1, 300 3, 333 Mean per-class
Flowers [40] 102 1, 020 1, 020 6, 149 Mean per-class

A.1 Category Distribution of Sampled ImageNet

In Figure 3, we add the category distribution results of Core-set, VAAL, and Max-
Entropy to Table 6b. This figure illustrates the distribution of ImageNet categories over
their number of occurrences in 3, 000 (0.2%) samples of the unlabeled training data.
While we prefer the category distribution of selected data points to have a peak at 3 and
be zero otherwise, which will happen with Uniform sampling, it is shown in Figure 3
that Core-set, VAAL, and Max-Entropy are far from this peaky distribution. We believe
this happens since these iterative sampling methods start from a random initial pool
that may not be representative of all categories. This incomplete category coverage also
propagates to model knowledge and selected batches in next sampling rounds. However,
K-means sampled examples have sharper category distribution around 3 which means
selected images are distributed more uniformly across the categories.

Fig. 3:Category distribution of 3,000 samples of ImageNet (0.2%). Non-
peaky category distribution of sampled examples at 3 for iterative active learning
methods that start from random initial pool happens since a random initial pool
may not cover all categories and does not provide a strong starting point.
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A.2 Performance Analysis on ImageNet-LT

In Section 4.3, we use the same frozen backbone pre-trained on unlabeled ImageNet
as the feature extractor and show that K-means strategies are strong baselines on
ImageNet-LT dataset in low budgets. To assure that K-means sampling performance
on ImageNet-LT is insensitive to category distribution of the unlabeled training set
used for pre-training the backbone, we repeat the experiment in Section 4.3 with a
ResNet-50 that is pre-trained on ImageNet-LT using BYOL [24] and report the results
in Table 16. As shown in this table, despite a drop in linear and nearest neighbor
classification results of all methods, K-means still performs better than non-uniform
sampling methods in low budgets in both evaluation metrics without taking advantage
of annotations.

We hypothesize that pre-training a self-supervised model on an imbalance training
set causes a drop in overall accuracies. Such problem is actively being studied in the
community and is out of the scope of this paper.

Table 16: Top-1 linear (LIN) and nearest neighbor (NN) classification
results of different sampling methods on ImageNet-LT.We use a ResNet-
50 that is pre-trained on ImageNet-LT using BYOL [24] to assure the insensitiv-
ity of K-means to category distribution of unlabeled training set. With no label
information, K-means performs better than non-uniform sampling methods in
both linear and nearest neighbor classification.

Budgets

Method LIN NN
1K

0.8%
3K

3%
5K

4%
7K

6%
9K

8%
12K

10%

Uniform ✓ 5.34± .1 10.6± .1 13.5± .2 15.6± .0 17.6± .1 19.5± .0
Random ✓ 5.04± .2 8.60± .1 11.4± .1 12.8± .0 14.1± .0 15.6± .0
Max-Entropy ✓ 5.04± .2 7.41± .0 9.29± .1 10.7± .0 11.9± .1 13.6± .1
Core-set ✓ 5.04± .2 7.77± .0 9.66± .0 10.8± .1 12.0± .0 13.7± .0
VAAL ✓ 5.04± .2 8.58± .0 10.6± .0 12.2± .1 13.4± .0 14.9± .0
Multi k-means ✓ 6.01± .0 9.69± .0 11.4± .1 12.7± .0 13.9± .0 15.4± .0
K-means ✓ 6.01± .0 9.60± .1 11.7± .0 13.1± .2 14.4± .0 15.9± .1

Uniform ✓ 4.81± .0 7.03± .1 8.21± .1 9.02± .1 9.95± .0 10.8± .0
Random ✓ 4.42± .1 6.40± .0 7.64± .0 8.22± .0 8.85± .0 9.55± .0
Max-Entropy ✓ 4.42± .1 4.45± .1 4.56± .1 4.76± .0 5.02± .0 5.36± .0
Core-set ✓ 4.42± .1 5.58± .0 6.34± .0 7.03± .0 7.65± .0 8.40± .0
VAAL ✓ 4.42± .1 6.33± .0 7.26± .0 7.95± .0 8.51± .1 9.12± .0
Multi k-means ✓ 5.48± .0 7.58± .0 8.50± .0 9.20± .1 9.74± .1 10.4± .0
K-means ✓ 5.48± .0 7.61± .0 8.64± .1 9.05± .0 9.74± .0 10.2± .0
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