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Abstract: Knill, Laflamme, and Milburn [Nature 409, 46 (2001)] showed that linear optics 
techniques could be used to implement a nonlinear sign gate.  They also showed that two of their 
nonlinear sign gates could be combined to implement a controlled-phase gate, which has a number 
of practical applications.  Here we describe an alternative implementation of a controlled-phase gate 
that only requires the use of a single nonlinear sign gate.  This gives a much higher average 
probability of success when the required ancilla photons are generated using heralding techniques.  
This implementation of a controlled-phase gate destroys the control qubit, which is acceptable in a 
number of applications where the control qubit would have been destroyed in any event, such as in 
a postselection process. 
 
 

 
I. Introduction 
 

A controlled-phase gate produces a phase shift φ  
when the control and target qubits both have a logical value 
of 1.  This is a very useful operation since it is a universal 
gate for quantum computation when combined with single-
qubit operations [1]. It can also be used to create 
Schrodinger cat states [2], to perform nonlocal quantum 
interferometry with violations of Bell’s inequality [3,4], and 
to implement complete Bell state measurements in quantum 
teleportation [5,6], for example.   

Knill, Laflamme, and Milburn (KLM) [7] showed 
that linear optics techniques could be used to implement a 
nonlinear sign gate.  They also showed that two of their 
nonlinear sign gates could be combined to implement a 
controlled-phase gate.  In this paper, we propose an 
alternative implementation of a controlled-phase gate that 
only requires a single nonlinear sign gate.  Since each 
operation of a nonlinear sign gate requires an ancilla photon, 
our approach requires one less ancilla photon than earlier 
approaches [7,8]. This gives a higher average probability of 
success when the required ancilla photons are generated 
using down-conversion and heralding techniques.  The 
increased probability of success comes at the expense of 
destroying (erasing) the control qubit.   

Logic gates in which the control qubit is destroyed 
have been used in a number of previous applications.  For 
example, a destructive Controlled-NOT (CNOT) gate can be 
combined with a quantum encoder to implement a non-
destructive CNOT gate [9,10].  The same devices can be 
used to implement fusion gates that allow the construction 
of a cluster state [11].  As another example, Bell’s inequality 
can be violated in nonlocal interferometer experiments in 

which a controlled-phase shift is combined with homodyne 
measurements [4]. The control qubit is destroyed in a 
postselection process in experiments of that kind, which 
allows the use of the controlled-phase gate described here.   

The remainder of the paper is organized as follows. 
Section II describes two realizations of a nonlinear sign gate. 
The controlled-phase gate proposed by KLM is briefly 
reviewed in Section III.  Section IV proposes an alternative 
implementation of a controlled-phase gate that only requires 
a single nonlinear sign gate.  The performance of the 
destructive controlled-sign gate is compared with that of the 
KLM gate in Section V.  A technique that allows a 
controlled-phase gate to operate on inputs containing a large 
number of photons, such as a coherent state, will be 
described in Section VI.  A summary and conclusions are 
provided Section VII. 

 
II. Nonlinear sign gates 
 

The nonlinear sign gate shown in Fig. 1 is the basic 
building block of the KLM approach to linear optics 
quantum computing [1].  The input state inψ  is limited to 
at most two photons.  The operation of the nonlinear sign 
gate is then defined by 

 
    0 1 2 0 1 2 ,inψ α β γ α β γ= + + → + −   (1) 

where ,α  ,β  and γ  are complex constants.  The only 
effect of the nonlinear sign gate is to reverse the sign of the 
two-photon amplitude, which is similar to the effects of a 
nonlinear Kerr medium [12].   

The KLM nonlinear sign gate utilizes three beam 
splitters, one ancilla photon, and postselection based on the 
output of two single-photon detectors, as shown in Fig. 1.  
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The gate applies a nonlinear phase shift of π  as in Eq. (1) 
for an appropriate choice of beam splitters and linear phase 
shifters as shown in Fig. 1.  Other choices of the parameters 
can also be used to implement a nonlinear phase shift of 

/ 2,π  for example  [7].  There have been several proposals 
to enhance the success rate of this gate at the expense of 
adding more resources [13,14] or vice-versa [15].   
 

 
 
FIG. 1. The KLM nonlinear sign gate.  An input state of the form 

0 1 2ψ α β γ= + +  gives an output state 0 1 2α β γ+ −  

for an appropriate choice of the transmission coefficients of the 
three beam splitters 1,B  2,B  and 3 ,B  along with a fixed phase 

shift 4 .φ   The results are heralded on the presence of a single 
photon in one of the two single-photon detectors.  
 
 Costanzo et al. [12] proposed an alternative 
implementation of a nonlinear sign gate that is shown in Fig. 
2.  As illustrated in the upper part of the figure, the device 
produces a coherent superposition of photon subtractions 
that occur either before or after a photon addition.  The 
operation of the gate can be intuitively understood from the 
commutation relation †ˆ ˆ[ , ] 1.a a =  This gate can be 
implemented using a down-conversion crystal with 
heralding to produce the photon addition, with photon 
subtraction occurring either at the first beam splitter 1B  or 

the second beam splitter 2.B  Heralding on the output of 

beam splitter 3B  ensures that there is a fixed phase 
relationship between the two ways in which the photon 
subtraction can occur.  The final state in this approach 
undergoes a noiseless amplification [12] in addition to the 
nonlinear sign shift. If necessary, this can be compensated 
using noiseless attenuation [16,17].    

Our destructive controlled-phase gate could be 
implemented using either the KLM nonlinear sign gate or 
the alternative implementation shown in Fig. 2.  Our goal is 
to implement a controlled phase shift using only linear 
optical elements, whereas the approach shown in Fig. 2 is 
based on the use of a nonlinear crystal.  As a result, we will 

assume that the KLM approach is used for the nonlinear sign 
gate throughout the rest of this paper.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 2. Alternative nonlinear sign gate suggested by Costanzo et 

al. [12].  A superposition of †ˆ ˆaa  and †ˆ ˆa a  operations is 
implemented using photon subtraction that occurs either at the first 
beam splitter 1B  or at the second beam splitter 2.B   These 
operations cannot be distinguished when a single photon is detected 
in one of the outputs of the third beam splitter 3.B  Photon addition 

is implemented in between 1B  and 2B  with the aid of a heralding 

signal from a down conversion process. A variety of nonlinear 
phase shifts can be achieved by adjusting the reflectivities of the 
three beam splitters along with an additional phase shift Φ.  

 
III. KLM controlled-phase gate 
 

The controlled-phase gate suggested by KLM is shown 
in Fig. 3.  Dual-rail encoding is used for both qubits, and the 
two paths corresponding to a logical value of 1 are fed into 
a 50/50 beam splitter.  Both outputs of the first beam splitter 
are passed through a nonlinear sign gate, after which they 
are recombined on a second beam splitter to form the output 
of the device. 

The operation of this device can be understood as being 
due to Hong-Ou-Mandel interference [18] at the first beam 
splitter.  If both qubits have a logical value of 0, then no 
photons pass through the nonlinear sign gates and the device 
has no effect.  If only one qubit has a logical value of 1, then 
a single photon passes through one of the nonlinear sign 
gates, which also has no effect.  But if both qubits have a 
value of 1, then both of them will emerge in the same path 
after the first beam splitter as in the Hong-Ou-Mandel 
interferometer.  In that case, one of the nonlinear sign gates 
will apply a phase shift of π  as desired.  The second beam 
splitter can be viewed as implementing the inverse of the 
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Hong-Ou-Mandel interferometer with a single photon 
emerging in each path. 

 

 
 

FIG. 3. Controlled phase gate proposed by KLM [7].  Dual-rail 
encoding is combined with Hong-Ou-Mandel interference at the 
first beam splitter to apply a phase shift of π  if both qubits have 
a logical value of 1.  Two nonlinear sign gates labelled NS are 
required.   

 
Other nonlinear phase shifts, such as / 2,φ π=  can be 

produced by adding fixed phase shifts and varying the 
reflectivities of the beam splitters in the nonlinear sign gate 
from Fig. 1.  E. Knill [8] has also described a somewhat a 
different implementation of a controlled-phase gate that also 
requires two ancilla photons as a resource. 
 
IV. Destructive controlled-phase gate 
 

An alternative implementation of a controlled-phase 
gate that only requires a single nonlinear sign gate is shown 
in Fig. 4.  In this case, we assume that a dual-rail encoding 
is used for the control qubit while a single-rail encoding is 
used for the target qubit.  The two paths for the control qubit 
are incident on beam splitters 1B  and 2 ,B  whose outputs are 
postselected on the absence of a photon to produce a photon 
addition at one of the two beam splitters.  The path 
representing a logical value of 1 for the control qubit is 
assumed to be on the left-hand side of the figure, where it 
passes through beam splitter 1.B  A nonlinear sign gate is 
placed between the two beam splitters, after which beam 
splitter 3B  is used to subtract a photon.   

The initial states Tψ  and Cψ  for the target and 

control qubits, respectively, will be denoted by 
 

                           
0 1

0 1 ,
T T T

C C C

ψ α β

ψ γ δ

= +

= +
  (2) 

where ,α  ,β  ,γ  and δ  are complex constants. Here 0T  

and 1T  represent the state of the target qubit containing 

zero or 1 photons, while 0C  and 1C  correspond to the 

dual-rail encoded states of the control qubit.  
The basic idea behind the operation of the gate is 

illustrated in the upper part of Fig. 4.   If the control qubit 
has a logical value of 1, the photon addition occurs first and 
the state 'Tψ  that passes through the nonlinear sign gate 

will contain two photons if the target qubit also has a logical 
value of 1.  In that case, the nonlinear sign gate would 
produce a phase shift of ,π  after which the photon 
subtraction at beam splitter 3B  would restore the target qubit 
to its original number of photons.  In all other cases, the state 

'Tψ  passing through the nonlinear sign gate would contain 

at most a single photon and no phase shift would be applied.   
 

 
 

FIG. 4. Implementation of a destructive controlled-phase gate that 
only requires a single nonlinear sign gate labelled NS.  If the 
control qubit has a logical value of 1, it produces a photon addition 
at beam splitter 1.B  If the target qubit also has a logical value of 1, 
two photons will then pass through the nonlinear sign gate and 
produce a phase shift of .π  In all other cases, at most a single 
photon passes through the nonlinear sign gate and there is no effect 
on the state of the system.  A photon subtraction at beam splitter 

3B  restores the original number of photons to the target qubit.  The 
events are heralded on the outputs shown in three single-photon 
detectors. The detector in one of the output ports of beam splitter 

3B  is assumed to be a photon-number resolving detector.  
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 The transmission coefficients for the three beam 
splitters will be denoted by 1,t  2 ,t  and 3 ,t  while the 

corresponding reflection coefficients will be denoted by 1,r  

2 ,r  and 3.r  If we apply the usual beam splitter 
transformation with a factor of i  on reflection, the 
unnormalized state of the system at the output can be shown 
to be given by 
 

               
( )
( )

2 3

3

1 2 3

1 2 1 2 3

0 2

1 .

1

0 2

T T

T T

rr t t t

r t tr t t

ψ γ α β

δ α β

′ = +

+

  
  −

  (3) 

 
This state can be put into the desired form by 

choosing the values of the transmission coefficients such 
that 1 2 32 1t t t =  and 2 1 2.r r t=  Eq. (3) then reduces to 
 

  ( ) ( )32 0 .1 0 1T T T Tr rψ γ α β δ α β′ = + − 
 +   (4) 

 
The probability of success is given by ,ψ ψ′ ′  which will 

depend on the value of the probability amplitudes in the 
initial state, as discussed in the next section.  
 Eq. (3) gives a controlled phase shift of φ π=  
using the parameters described above.  Other nonlinear 
phase shifts can be produced using different parameters in 
the nonlinear sign gate. 
 
V. Performance comparison 
 

The probability of success for the destructive 
controlled-phase gate proposed here will be compared to that 
of the original KLM controlled-phase gate in this section.  
The fidelity of both gates depends on the efficiency of the 
single-photon detectors used in the heralding process, and 
those efficiencies will also be compared.   

 One measure of the probability of success is to assume 
that the necessary ancilla photons are available with 100% 
probability and then calculate the intrinsic probability of 
success associated with the gate itself.  But in many 
applications, the relevant probability of success would 
combine the intrinsic probability of success with the 
probability of generating the required ancilla photons using 
down-conversion and heralding techniques.  Single photons 
can be generated using down-conversion with a very high 
fidelity, for example, which is essential in meeting the 
threshold for error correction.  

We will first consider the probability of success for a 
controlled-phase gate with .φ π=  As was noted in the 
previous section, Eqs. (3) and (4) will give the desired result 
if we choose  1 2 32 1t t t =   and 2 1 2 ,r r t=  but those two 
equations do not completely determine the value of all three 
transmission coefficients. Figure 5 shows the solutions for 

1t  and 2t  as a function of 3;t  the solutions only exist for  

3 0.5.t >  It can be shown that the maximum probability of 

success occurs for 1 2 3,t =  2 3 2,t =  and 3 1 2 .t =  

This gives the maximum value of the coefficient 2 3r r  that 
appears in Eq. (4), as can be seen in Fig. 6. 
 

 
FIG 5.  Transmission coefficients 1t (dashed red line) and 2t (solid 

blue line) that satisfy the necessary conditions 1 2 32 1t tt =  and 

2 1 2 ,r r t=  plotted as a function of 3 .t   These conditions are 

required for the successful operation of the destructive controlled-
phase gate. 

 
FIG 6.  A plot of the maximum value of the coefficient 2 3r r  as a 

function of the transmission coefficient 3.t   Here 1t and 2t  were 

chosen to satisfy the conditions the conditions 1 2 32 1t tt = and 

2 1 2r r t=  required for successful destructive controlled phase gate 
operation, as illustrated in Fig. 5.  The maximum occurs at 

3 1 2 ,t = which corresponds to using a 50-50 beam splitter in 
the photon subtraction. 
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From Eq. (4), the intrinsic probability DP  of 
success of the destructive controlled-phase gate is given by 

 

                  ( ) ( )2 2 22 *
2 3 1 2 Re .

D NSG

NSG

P P

P r r

ψ ψ

α β γ δ

′

 + − 

′



=

=
  (5) 

Here  NSGP  is the probability of success for the nonlinear 
sign gate shown in Fig. 4.  For the time being, we will 
assume that  NSGP  is calculated based on the assumption that 
the ancilla photons are produced with 100% efficiency.  

DP  depends on the values of the probability 
amplitudes ,α  ,β  ,γ  and δ  that describe the initial control 
and target qubits.  This is illustrated in Fig. 7, which is a plot 
of the intrinsic probability of success as a function of α  and 

,γ  where all of the probability amplitudes were assumed to 

be real with 21β α= − and 21 ,δ γ= − for example.   In 
comparison, the probability of success is plotted in Fig. 8 for 
the case where the coefficients β  and δ  were assumed to 
be imaginary instead.  It can be seen that there is a significant 
variation in the probability of success depending on the form 
of the incident qubits. 

 
FIG 7.  A plot of the intrinsic probability DP  of success of the 
destructive controlled-phase gate as a function of the probability 
amplitudes α  and γ  in the incident control and target qubits.  All 
four probability amplitudes in Eq. (3) were assumed to be real in 
this example. 
 

If the target qubit has a logical value of 1 ( 0)α =  and 
,γ δ=  then it can be seen from Eq. (4) that the output state  

will have zero amplitude and 0,DP =  as can be seen in Fig. 
7.  This is an inherent feature of a destructive controlled-
phase gate where the value of the control qubit is erased.  

This does not occur for other values of the controlled phase 
shift, such as / 2,π  and it is not an issue in nonlocal 
interferometer applications, for example [3]. 

In order to simplify the comparison of the KLM 
controlled-phase gate and the gate proposed here, we 
averaged the intrinsic probability of success DP  over all 
possible values of the coefficients ,α  ,β  ,γ  and .δ   This 

result is compared with the corresponding result KLMP  for 
the KLM controlled phase gate in Table 1. It can be seen that 
the intrinsic probability of success is comparable for the two 
gates for the case of ,φ π=  which corresponds to a 
Controlled-Z operation. 
 

 
FIG 8.  A plot of the intrinsic probability DP  of success for the 

destructive controlled-phase gate as a function of α and ,γ  which 
were assumed to be real, while the remaining coefficients β  and 
δ  were assumed to be imaginary.  

 
Single photon ancilla can be generated using down-

conversion and heralding on one of the pair of photons, 
which we will assume to succeed roughly 1% of the time 
[19].  Table 1 also includes the effective probabilities of 
success 'DP  and 'KLMP  for the two controlled phase gates 
if we include the probability of generating the required 
ancilla photons using down-conversion.  It can be seen that  

' ' ,D KLMP P>>  since the KLM gate requires two ancilla 
photons while the destructive controlled-phase gate only 
requires a single longer ancilla photon. 
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DP  0.03125  

KLMP  0.0625  

'DP  43.125 10−×  
'KLMP  66.25 10−×  

        
Table 1.  Comparison of the average probability of success of a 
destructive controlled-phase gate with that of a KLM gate, where 

.φ π=  Here DP  and KLMP  are the intrinsic success probabilities, 
while 'DP  and 'KLMP  include the probability of generating the 
required ancilla photons using heralded down-conversion. 

 
As described in the previous section, a destructive 

controlled-phase shift of / 2φ π=  can also be produced 
using a different set of parameters.  The KLM gate can be 
modified to produce a phase shift of / 2φ π=  as well [7]. 
The probability of success for these two gates was calculated 
in the same way as before and the results are compared in 
Table 2.  It can be seen that the destructive controlled-phase 
gate has a much higher average probability of success in this 
case as well if we include the probability of generating the 
required ancilla photons using down-conversion and 
heralding.  

 
 

DP  0.0226  

KLMP  0.0327  

'DP  42.26 10−×  
'KLMP  63.27 10−×  
   

Table 2.  Comparison of the average probability of success of a 
destructive controlled-phase gate with that of a KLM gate for the 
case of a controlled phase shift of / 2.φ π=  

 
In principle, both types of gates can be operated with 

100% fidelity if the single-photon detectors are assumed to 
be perfect.  The dark counts in an avalanche-diode single-
photon detector are typically on the order of 100 
counts/second or less.  With a coincidence window of 1 ns, 
this corresponds to an erroneous output in approximately  

710−  of the events, which has a negligible effect on the 
fidelities.   

In contrast, heralding on those cases where the output 
of a single-photon detector indicated that no photons were 
present can have a significant impact on the gate fidelity if 

the efficiency η  of the detectors is limited.  Roughly 
speaking, this allows photons to escape unnoticed from the 
system, leaving an incorrect number of photons in the output 
state.  The average fidelity DF  of the destructive controlled-

phase gate of Fig. 4 and the average fidelity KLMF  for the 
KLM controlled-phase gate are plotted in Fig. 9 as a function 
of the detector efficiency .η   Both of these results 
correspond to a controlled phase shift of φ π=  and they 
assume that the ancilla photons have 100% fidelity.   

It can be seen that the fidelity of the destructive 
controlled-phase gate is somewhat less than that of the KLM 
gate. This can be understood from the fact that the 
destructive controlled-phase gate of Fig. 4 relies upon 3 
photon detectors indicating that no photons were detected, 
while the KLM gate of Fig. 3 only depends on 2 null 
detection events.  This includes the fact that each of the 
nonlinear sign gates of Fig. 1 relies on a single null detection 
event. 
 

 
FIG. 9.  Average fidelity KLMF  of the KLM controlled-phase gate 

(solid blue line) compared with the average fidelity DF  of a 
destructive controlled-phase gate (dashed red line). Both fidelities 
are plotted as a function of the single-photon detector efficiency .η   
 

The KLM gate preserves the control qubit whereas it is 
destroyed in the controlled-phase gate of Fig. 4.  As noted 
previously, a destructive controlled-phase gate can be used 
in a number of applications, such as nonlocal quantum 
interference experiments, the generation of entangled 
Schrodinger cat states [4], and in fusion operations for 
generating cluster states [11].  More generally, a quantum 
encoder [17] could be used in combination with a destructive 
controlled-phase gate to preserve the value of the control 
qubit, but that would require an additional ancilla photon.  In 
that case, there would no longer be any advantage in the 
overall probability of success as compared to using the KLM 
gate. 
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VI.  Controlled phase shift for large photon numbers 
 

Up to now, we have assumed that the target state that is 
input to the controlled-phase gate of Fig. 4 contains a 
maximum of one photon.  There are potential applications 
where it would be desirable to produce a controlled phase 
shift on a state containing a larger number of photons, such 
as a coherent state.  This can be useful in producing 
Schrodinger cat states [2] or in quantum interference 
experiments, for example [3,4]. 

The controlled-phase gate can be modified as shown in 
Fig. 10 to allow a larger number n  of photons in the input.  
Here a series of beam splitters is used to divide the incident 
field into N  different paths.  For ,N n>>  each of these 
paths will contain at most a single photon with high 
probability, which allows a destructive controlled-phase 
gate to be applied in each of the paths.  The output of each 
of these controlled-phase gates can then be recombined 
using another series of beamsplitters.  This approach is 
similar to the technique used for noiseless amplifiers when 
the input state has more than one photon [20]. 

The main limitation in this approach is that all of the 
controlled-phase gates have to succeed simultaneously, and 
the probability of that occurring decreases exponentially 
with the value of .N  In addition, a single control qubit 
would need to control the phase shift in all N  paths.  This 
can be accomplished by using a series of quantum encoders 
[10], which would further decrease the overall success rate.  
Nevertheless, an approach of this kind may be feasible for 
relatively weak coherent states. 

 

 
 
 

 

FIG. 10. A controlled-phase operation performed on an input state 
containing more than one photon, such as a coherent state.  The 
incident field is divided into N  separate paths, each of which 
contains a destructive controlled-phase gate.  The case of 5N =  is 
shown here.  A set of beam splitters then recombines the individual 
beams to form a single output state.   

 

VII.  Summary 
 
We have proposed a destructive controlled-phase gate 

that produces a phase shift of φ  when the control and target 
qubits both have a logical value of 1.  The most commonly 
used values of φ  are π  or / 2,π  but other phase shifts can 
be produced as well.  The controlled-phase gate proposed 
here only requires a single nonlinear sign gate as a resource, 
whereas earlier implementations required two nonlinear sign 
gates [7].  As a result, the average probability of success for 
this controlled-sign gate is much larger than in earlier 
implementations if we include the need to generate ancilla 
photons using down-conversion and heralding.  No such 
advantage would exist if the ancilla photons are produced on 
demand using quantum dots, but that typically does not give 
fidelities as high as can be achieved using down-conversion 
due to charge fluctuations [21]. Nevertheless, the use of 
quantum dots to produce single photons is an active area of 
research with continual improvements [22-24]. 

The basic idea behind the proposed controlled-phase 
gate is the use of a dual-rail control qubit to add a photon 
either before or after the nonlinear sign gate.  If the photon 
is added before the nonlinear sign gate and the target qubit 
has a logical value of 1, then two photons will pass through 
the nonlinear sign gate and a phase shift of π  will be 
produced.  No such phase shift will be produced if the 
photon addition is done after the nonlinear sign gate.  A 
photon subtraction is performed at the output of the gate to 
restore the original number of photons in the target qubit.  

The increased probability of success comes at the cost 
of destroying the control qubit.  This is acceptable in a 
number of applications where the control qubit would have 
been destroyed in any event, such as in a postselection 
process.  Potential applications of this kind include the 
generation of Schrodinger cat states [2], nonlocal 
interference experiments that violate Bell’s inequality [4], 
and the construction of cluster states using fusion gates [11].  
The control qubit can always be preserved if necessary by 
using a quantum encoder circuit [10] before the controlled-
phase gate, but that would require two ancilla photons and 
there would be no benefit as compared to the original KLM 
controlled-phase gate.  The probability of success vanishes 
for certain input states for a controlled phase of ,π  but that 
is not the case for other values of the controlled phase that 
are required in many applications. 

In summary, the controlled-phase gate described here 
provides an interesting example of the use of photon 
addition and subtraction [12], and it may be of practical use 
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in certain applications such as the generation of Schrodinger 
cat states and violations of Bell’s inequality. 
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