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ABSTRACT 
The 21–22 June 2019 eruption of Raikoke volcano, Russia, provided an opportunity to explore how spatial trends in volcanic 
lightning locations provide insights into pulsatory eruption dynamics. Using satellite-derived plume heights, we examine the 
development of lightning detected by Vaisala’s Global Lightning Dataset (GLD360) from eleven, closely spaced eruptive pulses. 
Results from one-dimensional plume modeling show that the eruptive pulses with maximum heights 9–16.5 km above sea level 
were capable of producing ice in the upper troposphere, which contributed variably to electrification and volcanic lightning. A 
key finding is that lightning locations not only followed the main dispersal direction of these ash plumes, but also tracked a 
lower-level cloud derived from pyroclastic density currents. We show a positive relationship between umbrella cloud expansion 
and the area over which lightning occurs (the ‘lightning footprint’). These observations suggest useful metrics to characterize 
ongoing eruptive activity in near real-time. 

PLAIN-LANGUAGE SUMMARY 
Raikoke volcano in Russia’s Kuril Islands erupted from 21–22 June 2019. We use observations from satellite, globally detected 
lightning, volcanic plume modeling, and infrasound to analyze this eruption. We show clear spatial and temporal relationships 
between the lightning and the development of both (1) the high-altitude volcanic plume that was blown east-southeast and (2) 
lower altitude ash clouds that traveled northwest. Additionally, we show that as the ash cloud increases in size, the area in which 
lightning occurs also increases in size. These findings may provide useful ways to use near real-time lightning data for volcano 
monitoring. 

 

 
1 INTRODUCTION 

KEYWORDS: Volcanic Lightning; Plume Modeling; GLD360; Plumeria. 
 

2019; Prata et al. 2020; Van Eaton et al. 2020; 2022]. Light- 

Volcanic lightning has been shown to be a promising tool 
for monitoring remote volcanoes because it can be detected 
by existing networks with global coverage and provides evi- 
dence of high-intensity or high-altitude volcanic plumes. Pre- 
vious work has revealed relationships between plume dynam- 
ics, microphysical properties, and the generation of volcanic 
lightning [Mather and Harrison 2006; James et al. 2008; Mc- 
Nutt and Williams 2010; Woodhouse and Behnke 2014; Carey 
et al. 2019; Nicoll et al. 2019; Méndez Harper et al. 2020; Prata 
et al. 2020; Van Eaton et al. 2020; 2022]. However, fundamen- 
tal questions remain about how to best interpret and apply 
lightning detection to characterize explosive eruptions [Mather 
and Harrison 2006; Behnke and McNutt 2014]. In particular, 
relationships between the spatial characteristics of volcanic 
lightning locations and the plume’s travel direction, spatial di- 
mensions, and vertical distribution are not well developed. 

Over the past decade, globally detected volcanic lightning 
has been studied in several large-scale eruptions, forging con- 
nections between lightning activity and ice generation at freez- 
ing levels of the atmosphere [Behnke et al. 2013; Hargie et al. 
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ning rates also show a positive correlation with mass eruption 
rate and plume height [Van Eaton et al. 2016; Prata et al. 2020; 
Smith et al. 2021; Van Eaton et al. 2022]. These studies parallel 
existing meteorological models that indicate the importance of 
ice and strong updrafts for lightning activity in regular thun- 
derstorms [Williams et al. 1989; Saunders et al. 2006; Deierling 
et al. 2008; Buiat et al. 2017; Schultz et al. 2017]. Several papers, 
including those examining the eruptions of Kelud, Indonesia 
[Hargie et al. 2019], Calbuco, Chile [Van Eaton et al. 2016], Re- 
doubt, USA [Behnke et al. 2013], and Bogoslof, USA [Smith et 
al. 2018; Van Eaton et al. 2020] volcanoes, have also examined 
general spatial trends of globally detected lightning locations. 
Overall, these spatial analyses showed that lightning occur- 
ring farther away from the volcanic vent was likely related 
to ice charging and followed the ice particulates’ travel direc- 
tion. Hoblitt [1994] and Van Eaton et al. [2016] also suggested 
the possibility of lightning being generated by, and spatially 
aligning with, ash elutriated from ground-hugging pyroclastic 
density currents (PDCs). 

The June 2019 eruption of Raikoke volcano in the Kuril Is- 
lands, Russia, provided a superb opportunity to examine these 
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trends. Raikoke is a remote oceanic stratovolcano—its top rises 
550 m above sea level as an island that is visibly 2.7 × 2.6 km 
across [Levin et al. 2010; Smirnov et al. 2021]. Prior to 2019 
there had been two major historic eruptions (in 1778 and 
1924). During the 2019 eruption there were no monitoring 
instruments located directly on the island [Girina et al. 2019; 
Firstov et al. 2020]. Thus, remote observations from satellite, 
infrasound, and volcanic lightning were particularly valuable 
for detecting and characterizing this eruption [Horváth et al. 
2021; McKee et al. 2021]. The 2019 eruption began on 21 June, 
producing several short-lived eruptive pulses over a period of 
16 hours—each creating a distinct phase of lightning activ- 
ity [Firstov et al. 2020; McKee et al. 2021]. The resulting ash 
clouds covered an estimated 227,000 km2 of airspace and be- 
came a significant hazard to aviation [Degterev and Chibisova 
2020]. In this paper we examine the spatial distribution of 
Raikoke’s volcanic lightning, how it changed throughout the 
eruption, and how these features relate to the plume dynamics 
and microphysics revealed through satellite observations and 
one-dimensional (1-D) plume modeling. 

2 METHODS 
2.1 Eruption cloud analysis 

We used satellite observations from Himawari-8 (operated 
by the Japan Meteorological Agency) combined with atmo- 
spheric weather data and 1-D volcanic plume modeling to 
analyze eruption clouds from the 2019 eruption of Raikoke 
volcano. Note that we use the terms eruption cloud, column, 
and plume interchangeably in this study. Himawari-8 is a geo- 
stationary weather satellite that records multispectral images 
every 10 minutes, which provided good coverage of the erup- 
tive activity from 21–22 June 2019. Using band 13 thermal in- 
frared (10.4 µm) brightness temperatures, we manually picked 
the coldest pixel (2 km resolution) in each image within a box 
spanning 20 km W, 20 km S, 40 km N, and 40 km E of the 
volcano. This rectangular bounding area was used because 
strong winds advected the plumes east and north. Global at- 
mospheric data from the ERA-Interim reanalysis [Dee et al. 
2011], interpolated over the volcano, were used to match the 
minimum satellite brightness temperatures to a corresponding 
height from the atmospheric temperature profile (Supplemen- 
tary Material 1; Figure S1). We recognize that this method 
represents an oversimplification for clouds that reached the 
stratosphere (>11 km above sea level); however, in this case 
our results agree reasonably well with plume heights derived 
from more sophisticated approaches [Horváth et al. 2021]. 

ERA-Interim wind profiles were also used to correlate the 
movement of the eruption clouds with altitude. Eruption 
clouds seen in the satellite images are generally moving east, 
away from Raikoke volcano, which is consistent with moder- 
ate winds (~20 m s−1) at altitudes above ~2 km. Below 2 km, 
the winds blew to the northwest and west at up to 5 m s−1. 
Where feasible, we determined the radius of the growing um- 
brella cloud region for each eruptive pulse. Umbrella cloud ar- 
eas were determined from the −20 °C isotherm in Himawari-8 
band 13 images; areas were then converted to area-equivalent 
circular radius. Where the cloud was windblown and partly 

merged into remnants of a previous eruptive pulse, the bound- 
aries were visually estimated. 

We used the empirical plume height scaling relationship 
developed by Sparks et al. [1997] and Mastin et al. [2009] in 
the form of Equation 2 provided in Mastin [2014] to calculate 
the mass eruption rate corresponding to each plume height. 
The 1-D volcanic plume model Plumeria [Mastin 2007; 2014] 
was used to further constrain eruption source parameters for 
each eruptive pulse. Plumeria is an integral plume model that 
calculates bulk properties of a steady-state plume as a func- 
tion of height, assuming conservation of mass, momentum, 
and energy [Mastin 2007]. The model also accounts for ef- 
fects of a crosswind [Mastin 2014], which was important for 
Raikoke’s wind-swept plumes. We used atmospheric sound- 
ing measurements from Severo-Kurilsk, Russia (~340 km NE 
of volcano) for the atmospheric inputs to Plumeria. These 
sounding data are consistent with the ERA-Interim reanalysis 
used for plume height determinations, as shown in Supple- 
mentary Material 1 (Figure S1). We varied the diameter of 
the vent throughout the eruption from 50–150 m and the exit 
velocity between 50–200 m s−1 to obtain the observed plume 
heights for each of the eruptive pulses. The source parame- 
ters used for modeling are shown in Supplementary Material 
1 (Table S1). 

2.2 Volcanic lightning analysis 

Lightning strokes were obtained from Vaisala’s Global Light- 
ning Dataset (GLD360) [Said and Murphy 2016] within a 
300 km radius around Raikoke volcano. To locate lightning, 
the GLD360 system uses very low frequency signals emitted 
from cloud-to-ground (CG) return strokes and in-cloud (IC) 
k-strokes, which represent the part of the lightning flash that 
transfers a large amount of charge from either the cloud to the 
ground or between clouds [Said and Murphy 2016]. The large 
300 km radius around Raikoke volcano was chosen to capture 
lightning in the eastward drifting eruption clouds. The light- 
ning catalog was compared to the Himawari-8 visible satellite 
data, and we identified 92 strokes that occurred more than 
80 km outside the visible plume boundaries to the north and 
west—these strokes were discarded from the volcanic light- 
ning dataset as they did not spatially align with the volcano or 
the eruption clouds. This analysis resulted in a count of 753 to- 
tal lightning strokes for the eruption. Each stroke has an asso- 
ciated time, two-dimensional location (latitude and longitude 
but not height) and estimated peak current and polarity (Fig- 
ures 1 and 2, Supplementary Material 2). Vaisala provided in- 
formation on location errors, and due to the distribution of sen- 
sors in this region of the GLD360 lightning network, strokes 
had elliptical location errors with minor and major axes of 
1.5 × 6.2 km rotated 41 degrees counterclockwise, resulting in 
error ellipses with a northwest–southeast trend (Figure 1). In- 
dividual lightning strokes may be grouped into ‘parent’ flashes 
by combining the strokes that occur within a set time and dis- 
tance. For simplicity in this analysis, we use strokes rather 
than flashes, but the flash rates are also included in Supple- 
mentary Material 3 (using 1 s and 20 km to group individual 
strokes into parent flashes [Said et al. 2010; Van Eaton et al. 
2022]). We classified strokes as CG or IC based on the study 
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Figure 1: [A] Map of Raikoke volcano (red triangle) and volcanic lightning locations from 21-22 June 2019 (black dots) with 
associated location uncertainties (blue ellipses). Images show eruptive pulse 7 captured from [B] the International Space Station 
at 22:46 UTC on 21 June (NASA photo ID ISS059-E-119250 – no scale provided), [C] true color Suomi NPP/VIIRS, and [D] Himawari- 
8 visible/band 3. Arrow 1 points to clouds associated with ground-hugging pyroclastic density currents that enveloped the island 
(Smirnov et al., 2021); arrows 2 and 3 point to a low-level ash cloud traveling to the northwest. 

 
of Biagi et al. [2007], who found that peak current magnitudes 
>15 kA were statistically more likely to represent CG lightning 
(their study showed that ~95 % of lightning >20 kA was CG). 
In the absence of more detailed waveform data, we classified 
strokes with peak currents greater than ±15 kA as CG. This 
simplifying assumption is consistent with previous work on 
lightning classification [Cummins and Murphy 2009; Rudlosky 
and Fuelberg 2010; Schultz et al. 2011]. Lightning stroke rates 
were calculated in 10-minute bins to match the temporal reso- 
lution of the Himawari-8 satellite images. For each 10-minute 
period with three or more lightning strokes, a concave hull 
(the smallest polygon enclosing all points) was manually out- 
lined in the program ImageJ [Rueden et al. 2017]. The area of 
this polygon was used to calculate the area-equivalent circu- 
lar radius of the lightning spatial footprint for each 10-minute 
period (Supplementary Material 3). 

 
3 RESULTS 

Our analysis demonstrates that Raikoke volcano’s high- 
intensity explosive activity took place over ~16 hours as a 
series of 11 eruptive pulses. Each eruptive pulse formed dis- 
crete ash plumes and associated lightning activity, punctuated 
by short time breaks (Figure 3 and Supplementary Material 
1; Table S1). Plume heights ranged from 3.7–16.5 km above 
sea level, which is similar to the range of heights reported by 
Horváth et al. [2021] (4.8–16.7 km) and Kloss et al. [2021] (9– 
16 km). During the largest eruptive pulse (pulse 7) the coldest 
pixel in satellite imagery was −55.9 ◦C, which is a few degrees 
colder than the atmospheric profile, indicating that the plume 
top was undercooled. For these undercooled values, we sim- 
ply used the coldest temperature in the atmospheric profile 
from ERA-Interim reanalysis. Despite this simplification, our 

resulting stratospheric injection height is consistent with in- 
dependent estimates by Horváth et al. [2021] and Kloss et al. 
[2021]. 

The seventh, and largest, eruptive pulse was captured in 
several images shown in Figure 1. An astronaut photograph 
taken from the International Space Station (Figure 1B) reveals 
low altitude, white clouds rising from pyroclastic density cur- 
rents that flowed in all directions down the slopes of the vol- 
cano (documented by Smirnov et al. [2021]) as well as low- 
level brownish clouds to the west-northwest. A VIIRS image 
also shows a brownish cloud to the west-northwest (arrow in 
Figure 1C), which we interpret as ash lofted from the ground- 
hugging pyroclastic density currents and blown by low alti- 
tude winds. In Figure 1B there is no evidence of the column 
being advected at low levels; the edges of the column look 
sharply defined, supporting our interpretation of this cloud 
originating from the PDCs. During eruptive pulse 7, light- 
ning was detected both to the northwest and to the east of 
Raikoke volcano (Figures 1 and 4). The location of all light- 
ning strokes and corresponding error ellipses are shown in 
Figure 1A. However, even taking the location uncertainties 
into consideration, the strokes appear to follow two main dis- 
persal axes—one northwest of the volcano and another as a 
long (~60 km) streak extending to the east (Figures 1 and 2). 

This eruption produced 753 strokes recorded by Vaisala’s 
GLD360 network. Of these, 85 % were in-cloud (IC). The re- 
maining 15 % were cloud-to-ground (CG), with the positive 
CGs showing higher peak currents than the negative ones. 
The positive CG lightning dispersed in the same direction 
as the main eruption cloud (Figure 2B). Figure 2 shows all 
lightning strokes recorded for the eruption sequence. Most 
lightning types (positive, negative, IC, CG) were more abun- 
dant and generally higher-current close to the volcano, with 
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Figure 2: Lightning stroke locations and characteristics detected by the GLD360 network during the 21–22 June 2019 eruption of 
Raikoke volcano. [A] Lightning locations in decimal degrees; [B,C] estimated peak currents compared to latitude and longitude; 
[D] Lightning locations in decimal degrees with estimated peak currents shown. Yellow star represents location of Raikoke 
volcano; colors delineate lightning type (IC = in-cloud, CG = cloud-to-ground) and positive or negative polarity. In legend ‘n’ refers 
to the number of detected strokes for the given category. 

 
a rapid decrease with distance. An exception is that positive 
CG strokes declined more gradually along the main easterly 
dispersal direction. Stroke counts and percentages for each 
category are included in Supplementary Material 3. 

Figure 3A shows a positive correlation (visually) between 
the rate of lighting (strokes per 10 min) and plume heights 
over time. Over the first several hours, each plume rose pro- 
gressively higher, consistent with increasing mass eruption 
rates [Sparks et al. 1997; Mastin et al. 2009]. Although the 
earliest plumes varied in height from about 6–11 km above 
sea level (Figure 3A), their peak lightning rates stayed rela- 
tively constant at ≤10 strokes per 10 minutes. However, the 
most intense activity during eruptive pulse 7 (plume heights 
to ~16.5 km) produced a notable increase in the lightning rate, 

up to ~40 strokes per 10 minutes. The lightning rate then de- 
creased for the smaller, subsequent eruptive pulses. Figure 3B 
shows that low-current IC strokes dominated the lightning ac- 
tivity overall, with positive ICs occurring most often and fol- 
lowing the changes in plume height. CG strokes occurred less 
often than either positive or negative IC strokes, and negative 
CG strokes least of all, with some spans of time not having 
any recorded negative CGs. 

Figure 3D shows a positive linear correlation between the 
radius of the umbrella clouds and spatial footprint of the light- 
ning locations. This correlation has an R2 of 0.40 and is rep- 
resented by the equation: 

𝐸𝐸 = 4.864( 𝐿𝐿) + 0.4275 (1) 
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Figure 3: Timeline of Raikoke’s volcanic lightning and plume activity from 21–22 June 2019. [A] Lightning stroke rates per 10 
minutes (gray, left axis) and maximum plume heights (black dots, right axis); vertical lines delineate the individual eruptive pulses 
examined in this analysis; [B] lightning stroke rates detailing proportions of positive, negative, in-cloud (IC) and cloud-to-ground 
(CG) strokes; [C] mass eruption rates (in kg s−1) as calculated from plume heights using an empirical plume height scaling 
equation; [D] relationship between the size of the lightning footprint (‘lightning radius’ derived from the area where lightning 
occurred) and the size of the eruption cloud, shown as area-equivalent circular radius. Note: the x-axes of [A–C] give time 
(hh:mm) in UTC beginning on 21 June 2019. 

 
where 𝐸𝐸 is the eruption cloud area-equivalent circular radius 
and 𝐿𝐿 is the area-equivalent circular radius of the convex hull 
polygon encompassing the lightning locations. 

Figure 4 shows rose diagrams for the lightning locations in 
each eruptive pulse as a histogram binned by the eight main 
compass directions. This analysis demonstrates that a signif- 
icant fraction of the lightning occurred northwest of the vent. 
Only eruptive pulses 4 and 7 created a dominant (or equal) 
proportion of lightning east of the vent (noting that pulse 4 
only had three recorded lightning strokes). Eruptive pulse 7 
(the largest) shows lightning concentrated both to the north- 
west and to the east, following the main easterly dispersal 
direction of the eruption cloud visible in satellite and pho- 
tographs (Figure 1B–D). 

Previous research on large explosive eruptions that gener- 
ated globally detected lightning has shown the importance of 
ice generation for lightning development in the upper regions 
of the plume [Arason et al. 2011; Van Eaton et al. 2022, and 
references therein]. To examine if ice development may have 
influenced charge development in Raikoke volcano’s erup- 

tive plumes, we used the 1-D volcanic plume modeling code 
Plumeria [Mastin 2014], exploring the plume heights at which 
ice formation may have occurred. In Figure 5, panels 5 and 
6, we can see that the plumes from the first nine eruptive 
pulses would have cooled below heterogeneous freezing tem- 
peratures (approximately −20 °C) and created ice by the time 
they reached their maximum height. The height of ice initia- 
tion increases for the larger plumes because they are driven by 
stronger mass eruption rates, which allow them to transport 
their thermal energy to higher altitudes (i.e. they do not cool 
as quickly). For example, our model results suggest that the 
plume from eruptive pulse 7 may not have cooled to freezing 
temperatures until it reached ~11 km above sea level (Figure 5, 
panels 5–6, dark green line). 

We also examined the start time of each eruptive pulse 
based on lightning onset and infrasound origin times using 
the McKee et al. [2021] data recorded by remote infrasound 
stations ~620 km away (Supplementary Material 1; Table S1). 
The infrasound-derived estimates of the origin times are picks 
of the first arrival of a coherent waveform sequence [see Ma- 
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 Pulse 1  Pulse 2  Pulse 3 volcanic jetting (infrasound signal production) occurred before 

n = 34 n = 19 n = 29 
 

  

the onset of the first electrical activity at the source. 

4 DISCUSSION 
The spatiotemporal development of globally detected volcanic 
lightning locations during the eruption of Raikoke volcano 
may help distinguish charging mechanisms and understand 

Pulse 4 Pulse 5 Pulse 6 how lightning data may be used for monitoring remote erup- 
n = 3 n = 10 n = 9 

 

 
 

tions. The lightning stroke rate and plume height timelines 
in Figure 3 demonstrate that the first six eruptive pulses were 
short-lived with brief time breaks in between. As shown in 
Supplementary Material 2, when ash emissions temporarily 
stopped, the lightning also stopped, even as the ash-rich cloud 
drifted away. This observation suggests there was insufficient 
charging in the distal clouds to continue producing lightning, Pulse 7 Pulse 8 Pulse 9 and that the majority of the charging originated close to the 

n = 519 n = 53 n = 68 

  
 

volcanic source during these eruptive pulses. In contrast, the 
longer duration (and more intense) eruptive pulse 7 continued 
to emit ash for several hours, sustaining a vertical flux into 
the plume as it expanded and advected away from the vent. 
This higher-intensity activity (mass eruption rate on the order 
of ~107 kg s−1, Figure 3C) sustained charging processes far- 

Pulse 10 Pulse 11 Entire Eruption ther from the vent and expanded the spatial area covered by 
n = 7 n = 2 n = 753 

 

   
 
 

Figure 4: Rose diagrams showing the spatial location of light- 
ning from each of the eruptive pulses examined, binned into 
eight compass directions (N, NE, E, SE, S, SW, W, NW) with 
the location of the vent as the center; n = number of lightning 
strokes detected by the GLD360 network. 

 
 

toza et al. 2011; 2018, for discussion], corrected back to the 
source using a propagation celerity (source-receiver distance 
along Earth’s surface divided by travel-time) of 0.33 km s−1, 
which is appropriate for tropospheric propagation, and the 
range of 620 km [McKee et al. 2021]. This represents one 
approach to determine eruption onset by the timing of the 
earliest reliable signal [Coombs et al. 2018]. For five of the 
eruptive pulses (1, 2, 3, 7, and 9) volcanic lightning gives an 
earlier onset than (assumed tropospheric) infrasound (by up 
to ~5 minutes, Supplementary Material 1; Table S1). For the 
range of 620 km, celerities ranging between 0.33 km s−1 (tro- 
pospheric), 0.3 km s−1 (stratospheric), and 0.28 km s−1 (ther- 
mospheric) [Brown et al. 2002], result in travel-time differences 
(uncertainty) on the order of ~5–6 minutes (Supplementary 
Material 1). Thus, differences in atmospheric path as well as 
infrasound signal-to-noise effects for emergent signals could 
potentially account for these timing discrepancies. However, 
for the other four eruptive pulses (4, 5, 6, and 8), lightning 
onset occurred after a (fastest possible tropospheric-assumed) 
infrasound signal origin, within ~3–12 minutes, indicating that 

lightning. The new relationship between umbrella cloud ex- 
pansion and the growing aerial footprint of lightning activity 
(Figure 3D and Equation 1) suggests a novel way to estimate 
the minimum size of an ash cloud in near real-time. This type 
of simple relationship may also be used to characterize ongo- 
ing eruptive activity, which may be particularly useful if other 
monitoring data are compromised, such as during periods of 
obscured satellite views. 

4.1 Downwind lightning 
Satellite images show that the main cloud dispersed east dur- 
ing eruptive pulse 7 (Figure 1B–D). The majority of the light- 
ning also moved eastward (Figure 4). This trend has been 
observed during previous eruptions like Bogoslof volcano in 
Alaska [Smith et al. 2018; Van Eaton et al. 2020] and Calbuco 
volcano in Chile [Van Eaton et al. 2016], suggesting that light- 
ning may commonly follow the main direction of cloud dis- 
persal along with charged particles (i.e. ash, ice, and other 
hydrometeors). The distribution of high-current CG strokes 
during this eruption (Figure 2) matches the pattern observed 
during the 2014 eruption of Kelud volcano in Indonesia [Hargie 
et al. 2019], wherein the highest-energy lightning was located 
directly above the vent and dissipated with distance along the 
main dispersal direction. The population of in-cloud (IC) light- 
ning appears to follow the ash dispersal over short distances 
to the northwest and over an extended distance to the east- 
southeast (Figure 2). However, the highest peak current posi- 
tive CG strokes are located over an extended distance down- 
wind to the east-southeast where the plume reached freez- 
ing temperatures. This distribution implies that positive CG 
strokes may be correlated with long-duration ice development 
and plume stratification during downwind dispersal of high- 
altitude plumes. The polarity of CG lightning has been related 
to storm development and intensification with MacGorman 
and Burgess [1994] showing that more mesocyclonic winds 
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Figure 5: Atmospheric profile and results of one-dimensional volcanic plume modeling using Plumeria for the first nine of 
Raikoke volcano’s eruptive pulses (color indicates the eruptive pulse). [1] Atmospheric sounding measurements from Severo- 
Kurilsk give wind speed in m s−1 (black line) and wind azimuth (blue dashed line) showing the direction the wind is coming 
from in degrees (north is zero). Plumeria model results show [2] the time required for each plume to rise to a given height; 
[3] the horizontal displacement of the plume centerline from the vent due to wind advection; [4] bulk plume density; [5] bulk 
plume temperature (grey dotted line shows −20 °C); and [6] concentration of ice in the plume. The grey boxes in [1] indicate 
the full range of modeled ice initiation (6–11 km, light grey) and maximum ice concentrations (8–13 km, dark grey) within the 
volcanic plumes. Black dashed line in panels [4] and [5] represent the background atmosphere. Eruptive pulses 10 and 11 were 
not modeled as they had much lower plume heights and the eruption clouds did not reach a temperature of −20 °C and are thus 
not intercomparable with the larger events. 

 
and high hail concentrations corresponded with more +CG 
being recorded in severe meteorological storms and that a shift 
from −CG to +CG can indicate storm intensification. Nega- 
tive CGs are the dominant polarity for CG in meteorological 
storms [Dwyer and Uman 2014]. In this eruption, positive po- 
larities dominated the volcanic lightning population (Figure 2). 
This finding suggests that tracking the evolution of lightning 
polarity may help distinguish volcanic events from meteoro- 
logical storms or identify changing processes in the eruption 
cloud. 

4.2 Lightning northwest of Raikoke volcano 

The images in Figure 1 also provide insight into the origin 
of lightning located northwest of the volcano. We infer that 
the whitish clouds ringing the island during eruptive pulse 7 
(Figure 1B) originated from ground-hugging pyroclastic den- 
sity currents [Smirnov et al. 2021]. These currents lofted ash 
to altitudes lower than the main plumes where it drifted to the 

northwest. It stands to reason that the charge generation for 
this northwest-trending lightning originated from the ground- 
hugging pyroclastic density currents and associated plumes. 
Were these lower-altitude charging processes dominated by 
silicate particle collisions (tribocharging) or ice charging? In 
this case, we can use wind shear to address the question. 
Figure 5, panel 1, shows that modeled ice initiated in the 
Raikoke plumes at ~6–11 km, with the maximum ice con- 
centrations occurring between 8–13 km. These altitudes cor- 
respond to winds blowing to the east, whereas lower altitude 
winds (<2 km) were blowing to the northwest. The obser- 
vations suggest (ice-free) elutriated ash from ground-hugging 
pyroclastic density currents made up these northwest clouds 
and they may have produced lightning mainly by fracto- and 
tribocharging of the ash particles rather than ice formation. 
However, one caveat is that the 1-D plume modeling in Fig- 
ure 5 used source parameters appropriate for hot, vent-derived 
plumes (initial temperature 1000 °C and plume diameters of 
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50–150 m). Using inputs better suited to cooler, lofted ash ris- 
ing from pyroclastic density currents over a wider area may 
have resulted in models showing ice nucleating lower in the 
plume. 

Our modeling results in Figure 5 suggest that all nine of 
the eruptive pulses modeled were capable of forming ice in 
the upper troposphere; collisional, non-inductive ice charging 
(similar to that seen in thunderstorms) requires liquid water 
as well as ice. A ‘mixed-phase region’ within the eruption 
cloud is the ideal scenario for non-inductive charging leading 
to lightning production, as shown during the eruptions of Bo- 
goslof volcano, Alaska, in 2016–2017 [Van Eaton et al. 2020], 
Anak Krakatau, Indonesia, in 2018 [Prata et al. 2020], and Taal, 
Philippines, in 2020 [Van Eaton et al. 2022]. However, those 
eruptions involved the addition of external water from crater 
lakes or seawater. Our Plumeria model runs for Raikoke vol- 
cano did not include external water and, as a result, show no 
mixed-phase (liquid water-rich) regions developing within the 
plumes (Figure 5, panel 6). Our initial analysis suggested that 
the Raikoke eruption was comparatively ‘dry’ (lacking exter- 
nal water involvement) due to the subaerial vent and domi- 
nance of brownish, ash-rich clouds in satellite (e.g. Figure 1C). 
Yet, the work of Smirnov et al. [2021] has suggested other- 
wise. Their study infers that the fine grain size of the ash de- 
posits and uniformly crystal-rich, bubble-poor pyroclasts re- 
quired magma-water interaction to trigger such explosive ac- 
tivity. Based on our observations from visible satellite images 
and photographs (e.g. Figure 1), we cannot rule out magma- 
water interaction during the Raikoke eruption. We suggest 
that, if present, the water proportions were modest compared 
to some of the more extreme recent examples. For exam- 
ple, the shallow submarine eruption of Anak Krakatau [Cutler 
et al. 2022], which reached similar maximum plume heights 
as Raikoke, produced much lighter-colored, water-rich clouds 
overall [Prata et al. 2020]. A detailed examination of the rel- 
ative roles of external water during these eruptions, and the 
effects on lightning production, would be a rich area for future 
investigation. 

5 CONCLUSIONS 
We examined the eruption cloud characteristics, volcanic 
lightning (as detected by the GLD360 lightning network), and 
source parameters of the eruption of Raikoke volcano in the 
Kuril Islands from 21–22 June 2019. Our overall goal was to 
determine how volcanic lightning may provide insights into 
the dynamics of a developing eruption cloud. Using spatial 
and temporal characteristics along with weather data and vol- 
canic plume modeling, we explored electrical charging mech- 
anisms (silicate vs. ice charging) in different regions of the 
eruption clouds. In this case, it was plausible that ice forma- 
tion played an important role in lightning generation for each 
of the nine main eruptive pulses. However, we speculate that 
the lower-altitude cloud rising from pyroclastic density cur- 
rents (and dispersing northwest) may have charged primarily 
by silicate particle interactions because it may not have risen 
high enough to have any water in it freeze. We found that 
lightning locations tracked dispersal patterns of this ash cloud 
lofted from ground-hugging pyroclastic density currents, in 

addition to the larger, vent-derived eruption plumes. We also 
demonstrated a positive relationship between the expanding 
umbrella clouds and the growing spatial footprint of lightning. 

We suggest that future work addressing the distribution 
of lightning peak currents may be valuable for developing 
monitoring alarms that aim to distinguish volcanic from non- 
volcanic clouds, as it stands to reason that a meteorological 
storm would not show the same spatial distribution (with the 
highest peak currents centered on the volcano, Figure 2). Fur- 
ther analysis of volcanic lightning polarity and type (in-cloud 
or cloud-to-ground) may also be beneficial for assessing light- 
ning hazards in highly populated regions, as a recent eruption 
of Taal volcano, Philippines, suggested that volcanoes may 
dramatically increase the local lightning exposure risk [Van 
Eaton et al. 2022]. It has been previously established that glob- 
ally detected volcanic lightning can help identify the onset of 
ash-rich explosive eruptions, but this work now demonstrates 
that spatial patterns in two-dimensional lightning locations 
may also be used to track the location and growth of erup- 
tion clouds and perhaps distinguish lower-level ash clouds, 
which pose distinct hazards. 
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