
Parallelization of Matrix Factorization for Recommender Systems
Julia Baum1, Cynthia Cook2, Michael Curtis3, Joshua Edgerton4, and Scott Rabidoux5

Graduate assistant: Andrew M. Raim3 Faculty mentor: Nagaraj K. Neerchal3

Client: Robert M. Bell6

Worcester Polytechnic Institute1 Catawba College2 University of Maryland, Baltimore County3,
Cornell University4 Wake Forest University5 AT&T Labs - Research6

Abstract

Recommender systems are emerging as important tools for improving customer satisfaction by math-
ematically predicting user preferences. Several major corporations including Amazon.com and Pandora
use these types of systems to suggest additional options based on current or recent purchases. Netflix
uses a recommender system to provide its customers with suggestions for movies that they may like,
which are based on their previous ratings. In 2006, Netflix released a large data set to the public and
offered one million dollars for significant improvements on their system. In 2009, BellKor’s Pragmatic
Chaos, a team of seven, won the prize by combining individual methods. Dr. Robert Bell, with whom we
collaborated, was a member of the winning team and provided us with the data set used in this project,
consisting of a sparse matrix with rows of users and columns of movies. The entries of the matrix are
ratings given to movies by certain users. The objective is to obtain a model that predicts future ratings
a user might give for a specific movie. This model is known as a collaborative filtering model, which
encompasses the average movie rating (mu), the rating bias of the user (b), the overall popularity of a
movie (a), and the interaction between user preferences (p) and movie characteristics (q). Two methods,
Alternating Least Squares and Stochastic Gradient Descent, were used to estimate each parameter in
this non-linear regression model. Each method fits characteristic vectors for movies and users from the
existing data. The overall focus of this project is to explore the two methods, and to investigate the
suitability of parallel computing utilizing the cluster Tara in the UMBC High Performance Computing
Facility.

1 Introduction

Collaborative Filtering systems have had growing interest recently due to the Netflix million dollar challenge
to improve its existing algorithm for recommending movies. Through the contest, Netflix hoped to enhance
the method with which they recommend movies to their users. This method would be based on prior movies
the users have rated. The goal of the contest was to predict, as accurately as possible, what any particular
user would rate a movie. For instance, this could be interpreted as a standard regression problem; fitting
a model which relates the characteristics of movies with those preferred by users to develop an estimated
rating of the user. However, a closer look into the problem reveals that it is more challenging. The Netflix
data does not explicitly contain any information about movie or user characteristics, except for ratings that
users have given to movies. The ratings data are also sparse, i.e. some users have rated many movies,
others hardly any, and no user has rated all of the movies, let alone a significant fraction. Collaborative
filtering is a technique that makes use of the sparse data that we do have in order to give good estimates
for the parameters of a regression model. The actual Netflix competition data is to the order of billions of
entries and sparse, so modeling the problem is computationally expensive. Although the Netflix challenge
has already been conquered, we believe that some of the iterative methods for Collaborative Filtering can
be modified and parallelized to become significantly more efficient.

We present two popular Collaborative Filtering algorithms used to solve the Netflix problem: alternat-
ing least squares (ALS) and stochastic gradient descent (SGD). Our eventual goal is to parallelize these
algorithms so that they can take advantage of a high performance computing cluster, but first we take a
close look at the methods conceptually. In this report we focus on producing correct, efficient serial versions
of the algorithms, and finding opportunities to parallelize them in subsequent work. The two algorithms
themselves are also compared, in terms of their serial performance.

In section 2 we describe the Netflix data, and a smaller testing dataset which we used to develop our
implementation. We also describe the data structures we used to manipulate the data in code. We also

1

describe the computing cluster available at UMBC which we used to run our experiments. In section 3
we describe the regression model for users’ movie preferences. In section 4 we describe the algorithms we
developed and in section 5, we discuss our conclusions and opportunities for future work.

2 The Data Organization and Hardware

For the million-dollar competition, Netflix provided participants with two main datasets: a training data
set and a test data set. The training data set is used to fit the model’s parameters, while the test data set
is used to evaluate the quality of our estimates. The split between these two sets is used to help prevent
overfitting of our parameters. Dr. Bell provided our team with two original data sets to begin development
and testing of the models. Each data set contains a list of movie ratings, each grouped with a corresponding
user ID and movie ID. These data sets are similar to the data sets used in the actual competition but are
significantly smaller to allow for ease of testing. The training data set used in the competition contains
around 99 million entries, whereas our training set for testing consists of about 180,000 entries. Our test
data set is a subset of the training data and holds 20,000 entries. We have also used various sample sizes of
the real data as well as generated data. The smaller size allows us to more quickly run through iterations of
data, while also providing a backdrop to double test for overfitting of the parameters.

One of the most significant challenges for the project was to organize the data in a efficient manner that
would provide quick setup, ease of access, and match users with movies and movies with users, without
repeating entries. We also needed to be able to associate particular parameters for each user and movie,
and be able to continuously update them. Initially we programmed in C, but we switched to R and C++
to have more memory management options. While C++ used object-oriented programming methods, our
R implementation used mostly matrices but was not set up to handle sparse matrices well. As a result,
main testing was done in C++. C++ used a User and Item class which included a vector of its ratings, its
attribute vector, its bias. Each item and user class also contained a map data structure of ID and item/user
pairs, as well as a vector of the IDs of the user that rated it or item that was rated by it. For example, say
User 1 has rated Movies 5, 8, and 11, and has given them ratings of 5, 2, and 1 respectively. In our code,
the data would be organized as follows:

Note that the values for b and p have been fabricated and only serve the purpose of explaining the data
structure.

Within the High Performance Computing Center at UMBC, we have available a system called Tara to
run our parallelized code. Completed and installed in 2009, Tara is a 86-node distributed-memory cluster
with two quad-core Intel Nehalem processors: one front end node, one management node, two development
nodes, and 82 compute nodes. We communicate directly with the front end node, which then sends our task
to available processors on the compute nodes. Each node has 24 GB of memory, an InfiniBand interconnect,
and 160 terabytes of central storage [2].

2

3 The Model

The model is a variation of a linear regression model using several parameters to predict each users rating
for any particular movie, r̂ui that is close to ru,i. rui comes from the R matrix of ratings, where user u gives
a rating to movie i for u in {1, . . . , U} and i in {1, . . . , I}. Each given entry of the matrix is a floating point
number. The aim of the model is to have the smallest mean squared error between r and r̂. The full model
comes from Bell and Koren’s 2009 paper [1] on their prize-winning methods for the Netflix Problem. The
original base model is a latent factor model breaking the large matrix of ratings into three smaller ones, one
of users, one of movies, and one of averages. The parameter ai is the difference between a movie’s rating
and the average movie rating, for i = 1, . . . , I. Similarly, bu is the difference between a user’s rating and the
average user’s rating for a particular movie for u = 1, . . . , U . The global average rating of all movies by all
users is µ. A more advanced model takes into account the characteristic vectors pu and qi each of length
d. Each element of pu gives a rating of user’s affinity for a certain characteristic, and the corresponding
element in qi quantifies the amount of this characteristic in the movie. Consider a simple case scenario
where a recommender system is to determine whether a given user u1 will like movie i1. The user has rated
several movies in the past generating a characteristic vector p1, where d = 3. Suppose the vector measures
comedy, action, and horror on a scale from -5 to 5. If u1 likes comedy, loves action, but hates horror, his
characteristic vector may be in the form p1 = (3.897, 4.875,−2.456). The characteristic vector for i1 is also
of size d = 3 and is measured on comedy, action, and horror; suppose it is q1 = (4.132, 3.978,−4.978). By
taking the dot product of the two characteristic vectors, the recommender system can measure if the movie
would be a good fit. In our example, p′1q1 = 47.61, which means that i1 may be a good movie to recommend
to u1. Note that it is up to the recommender system to determine the d characteristics through the data,
and that they may or may not have a simple interpretation as in this example. The full model cited in [1]
is as follows:

r̂ui = µ + ai + bu + p′uqi (3.1)

The model appears fairly straightforward, but fitting it requires the special algorithms discussed later. Our
first task is to find an expression to minimize, with respect to the unknown parameters, which will result in
reasonable parameter estimates. Let

κ = {(u, i) : there is a rating rui in the dataset} ,

for whichever dataset is being considered for training. To fit the parameters of the model (3.1) we define the
objective function as

∑
(u,i)∈κ

(rui − r̂ui)
2 + λ

(
U∑

u=1

‖pu‖2 +
I∑

i=1

‖qi‖2 +
U∑

u=1

b2
u +

I∑
i=1

a2
i

)
. (3.2)

The left side of the objective represents the sum-squared error between the true ratings and the fitted ones.
The second half of the objective with coefficient λ, penalizes parameters with large magnitude.

4 Methods of Fitting the Model

The basis of developing a robust and accurate model involves a matrix factorization breaking apart our large
sparse matrix of the user ratings, the rui, into two or three smaller more manageable matrices while having
the least error and keeping the number of parameters used reasonable to avoid the problem of over fitting
the data.

We can see that (3.1) and (3.2) lead to something a little bit beyond linear regression problem. On one
hand, the model in (3.1) is not a linear function of unknown parameters. Also, the objective function is not a
simple sum of squared errors, but also includes a penalty component. A further complication is that we have
a minute fraction of the possible user/movie combinations available in the dataset, perhaps on the order of
one percent. Hence we now describe two techniques for matrix factorization, along with modifications.

3

Alternating Least Squares

The Alternating Least Squares Method (ALS) is a learning algorithm that finds a line to best fit given data
by estimating unknown parameters for a collaborative filtering model of the form

y = Xβ + ε. (4.1)

In particular, the ALS method is used with non-linear regression models when solving for two dependent
variables. The method fixes one of the dependent parameters, while solving for the other, creating a linear
least squares problem. The method alternates solving for one parameter than the other. The least squares
method is to obtain the best linear unbiased β̂ such that:

β̂ = arg min
β

||y − Xβ||2 (4.2)

where the solution minimizes the sum of squared residuals [4]. The formulas for linear least squares fitting
were independently derived by Gauss and Legendre [7]. In order to solve for an unknown parameter, the
Gauss-Markov Theorem (GMT) states that to obtain the best linear unbiased estimate of β such that
equation (4.1) holds true, we can solve for the estimate using the equation [6]:

β̂ = (X ′X + λI)−1X ′y.

Our collaborative filtering model is in the form

rui = µ + ai + bu + puqi,

where y is the rating; β is the parameter we are solving for; X is the fixed parameter; and ε = µ + ai + bu

[5]. The equation estimates the rating rui that user u will give movie i. Note that the model is linear in
µ, ai, bu, and pu for a fixed qi. Thus, for a fixed qi the best linear unbiased estimate of µ, ai, bu, and pu

can be determined by the GMT. Similarly, the model is linear in µ, ai, bu, and qi for a fixed pu. Thus, for
a fixed pu the best linear unbiased estimate of µ, ai, bu, and qi can be determined by the GMT. The ALS
method is an iterative algorithm that alternates between solving for pu and qi and updates the parameters
until MSE converges within a given tolerance or the iteration count reaches the maximum iterations. We
introduce some notation needed for the ALS algorithm:

• U = total number of users

• I= total number of movies

• K = total number of ratings

• Nu = number of ratings given by user u

• Mi = number of ratings given by item i

We begin the ALS algorithm by filling the characteristic vectors qi with randomly generated real numbers
ranging from -10 to 10. The parameters µ, ai, bu, and yui are initialized by the following equations using
the ratings given in the test data set

µ̂ =
1
K

∑
U

∑
I

rui

âi =
1

Mi

∑
u∈Mi

rui − µ̂

b̂u =
1

Nu

∑
i∈Nu

rui − µ̂ − ai

yui = rui − µ̂ − âi − b̂u.

4

As stated above, the variable yui is created by subtracting a, b, and µ from the ratings. This is done as an
attempt to adjust these parameters out of the data in order to simplify our set of regression equations. We
then iterate between fixing qi’s and solving for pu’s, and fixing pu’s and solving for qi’s. In regression model
(4.1), the X variable is the known parameter. For the ALS method, the known parameters depend on which
alteration the algorithm is on.

First suppose we are solving for the pu vectors. Then the qi vectors are treated as known and fixed using
the current estimates. The regression equation (4.1) becomes

yui = Xqβp + ε

where

Xqβp =



q′1 0 0 · · · 0
q′2 0 0 · · · 0
...

...
...

. . . 0
q′I 0 0 0 0
0 q′1 0 · · · 0
0 q′2 0 · · · 0
...

...
...

. . . 0
0 q′I 0 0 0
0 0 0 · · · q′1
0 0 0 · · · q′2
...

...
...

. . .
...

0 0 0 0 q′I



p1

...
pU

 =



q′1p1

...
q′Ip1

...
q′1pU

...
q′IpU


,

where Xq is a UI × U matrix of 1 × d vectors, and βp is a U × 1 vector of d × 1 vectors.
Similarly, now suppose we are solving for the qi vectors. Then the pu vectors are treated as known and

fixed using the current estimates, and the regression equation (4.1) becomes

yui = Xpβq + ε

where

Xpβq =



p′1 0 0 · · · 0
p′2 0 0 · · · 0
...

...
...

. . . 0
p′U 0 0 0 0
0 p′1 0 · · · 0
0 p′2 0 · · · 0
...

...
...

. . . 0
0 p′U 0 0 0
0 0 0 · · · p′1
0 0 0 · · · p′2
...

...
...

. . .
...

0 0 0 0 p′U



q1

...
qI

 =



p′1q1

...
p′Uq1

...
p′1qI

...
p′UqI


,

where Xp is a UI × I matrix of 1 × d vectors, and βq is a I × 1 vector of d × 1 vectors.
The organization of each matrix is not arbitrary. Grouping the users together in the Xp vector and the

movies in the Xq vector allows for easy parallelization. When using the GMT to solve for either pu or qi, we
are able to separate the columns of the matrices Xq and Xp into vectors of length I and U respectively and

5

disregard the 0’s. By doing this, we will have 2U × I collaborative filtering equations:
y11

y12

...
y1I

 =


q

′

1

q
′

2
...
q

′

I

 p1,


y21

y22

...
y2I

 =


q

′

1

q
′

2
...
q

′

I

 p2, · · · ,


yU1

yU2

...
yUI

 =


q

′

1

q
′

2
...
q

′

I

 pU .

When pu is fixed, the separated Collaborative Filtering equations are
y11

y21

...
yU1

 =


p

′

1

p
′

2
...

p
′

U

 q1,


y12

y22

...
yU2

 =


p

′

1

p
′

2
...

p
′

U

 q2, · · · ,


y1I

y2I

...
yUI

 =


p

′

1

p
′

2
...

p
′

U

 qI .

We solve for each pu and qi with the GMT. To solve for pu we use the equation

pu = (X ′
qu

Xqu + λI)−1X ′
qu

rui.

Similarly, to solve for qi, we use
qi = (X ′

pi
Xpi + λI)−1X ′

pi
rui.

After solving pu for all u, we can use the estimates to solve for qi and continue alternating. By rescaling
both the pu and qi vectors, we are able to increase the stability of our converging parameters, by not allowing
them to drift off to very large or very small numbers. For rui = p′uqi, we multiply all the pu’s by a constant
c and divide all the qi’s by the same c. By doing so, all the rui’s remain unchanged. Given current pu’s and
qi’s, it is best to solve for a value of c that minimizes ||P ||2 + ||Q||2, which turns out to be the c that makes
||P ||2 = ||Q||2. We find c for each dimension d to be:

c =
(
||q||
||p||

)1
4

We rescale the pu and qi vectors after every pair of alternating regressions, along with updating the param-
eters µ, ai, bu, and yui using the following equations:

µ =
1
K

I∑
i

U∑
u

rui − ai − bu − puqi

ai =
1

Mi

U∑
u

rui − µ − bu − puqi

bu =
1

Nu

I∑
i

rui − µ − ai − puqi

yui = rui − µ − ai − bu.

The MSE is also calculated after each iteration using the equation:

MSE =
∑

(rui − µ − ai − bu − puqi)2

K
.

Our algorithm continues to iterate solving for pu and qi on the training data set until each parameter
converges or the tolerance and/or iteration maximum is met. We then take the best λ’s and compute the
MSE for the test data set.

We analyze the MSE and watch how the parameters are converging with each iteration. We began by
testing the algorithm when d = 0 and λ = 0. With these input values, the problem reduces to its simplest
form since the pu’s and qi’s drop out, and the algorithm should converge in one step. We continued by
varying λ on the training data to minimizes the MSE on the test data.

6

Algorithm 1 : ALS
Set up vectors yUsers, yItems, xq, and xp
Initialize µ, ai, bu, yui

while MSE has not converged and current iteration ¡ max iteration limit
Create qi vectors
Solve for pu vectors

Create pu vectors
Solve for qi vectors

Rescale each pu and qi vector
Update µ, ai, bu, yui

Find MSE
End

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a variation of the standard batch gradient for unconstrained optimiza-
tion problems. In the standard batch gradient descent, the gradient is calculated over all observed rui with
respect to the unknown parameters, at some current point in the space. The gradient gives the direction to
adjust the parameters for the next step. For large-scale problems such as the Netflix problem, calculating
the gradient is computationally expensive. The stochastic gradient descent algorithm approximates the gra-
dient by taking the gradient at a single observation [3]. The idea is that although more iterations will be
performed since we are not moving exactly in the direction of the true gradient. However the time, number
of iterations, and all of the updates saved from not computing the full gradient over all of the observations
may be more efficient and the algorithm may converge faster. The algebra for the SGD is derived from our
objective function (note that we are using a simplified model here)

∑
(u,i)∈κ

(rui − µ − ai − bu)2 + λ

(
U∑
u

b2
u +

I∑
i

a2
i

)
. (4.3)

To minimize this equation, we use SGD described above rather than the standard gradient descent method.
Using an approximation of the gradient by taking the derivative of our parameters, each parameter will be
updated by the gradient of the formula inside of the summation. The derivative is taken with respect to any
particular parameter, either a specific bv from the vector bu or a al from the vector ai. Let Nu be the set of
ratings given by user u and Mi be the set of ratings for a given item i. This notation is helpful for bringing
(4.3) under one summation, to aid in the derivation of SGD,

U∑
u=1

∑
i∈Nu

(rui − µ − ai − bu)2 + λ

(
U∑

u=1

b2
u +

I∑
i=1

a2
i

)

=
U∑

u=1

∑
i∈Nu

(rui − µ − ai − bu)2 + λ

(
U∑

u=1

∑
i∈Nu

b2
u

|Nu|
+

U∑
u=1

∑
i∈Nu

a2
i

|Mi|

)

=
U∑

u=1

∑
i∈Nu

[
(rui − µ − ai − bu)2 +

λ

|Nu|
b2
u +

λ

|Mi|
a2

i

]
=

∑
(u,i)∈κ

[
(rui − µ − ai − bu)2 +

λ

|Nu|
b2
u +

λ

|Mi|
a2

i

]
.

We can proceed with the stochastic gradient approximation for the update equations by taking the derivative
of a single observation, call it rvl. We want to minimize the original equation with the two variables pertaining

7

to our particular rvl: al and bv, and hence solve the equation

0 =
∂

∂al

[
I∑

i=1

∑
u∈Ml

(rul − µ − al − bv)2 +
λ

|Nu|
b2
u +

λ

|Mi|
a2

l

]

Since we want to take the derivative with respect to a particular al, we can focus on only the observations
that have an al. Recall that d

dx‖x‖
2 = 2x.

=
∂

∂al

[∑
u∈Ml

(ru,l − µ − al − bu)2 +
λ

|Nu|
b2
u +

λ

|Mi|
a2

l

]

=
∑

u∈Ml

2 (ru,l − µ − al − bu) (−1) + 2
λ

|Ml|
al

=
∑

u∈Ml

−2 (ru,l − r̂u,l) + 2
λ

|Ml|
al

= 2
∑

u∈Ml

(
λ

|Mi|
al − eu,l

)
, where eu,l = ru,l − r̂u,l.

With stochastic gradient descent, we split up the summation above and consider each observation rvl at
a time. For the parameter al, this gives the iterative update formula

a∗l = al − γl

(
λ

|Ml|
al − ev,l

)
.

And following similar algebra, the updates of the bv parameter are given by

b∗v = bv − γv

(
λ

|Nv|
bv − ev,l

)
.

The γ parameters arise from incorporating the constant terms being multiplied to each expression. They
act as a step size, controlling how quickly the parameters can move. Larger γ values will allow larger steps
to be taken, while smaller values are more appropriate when the given parameter is close to converging.
We can fine tune the γ’s by setting them differently for different parameters, or allowing them to adapt as
the algorithm progresses. Currently however, we use a single γ for all parameters and leave it fixed for the
duration of the algorithm.

We began testing this base model on the training and test sets. We work within the gamma and lambda
parameter space to fit our parameters (a,b) and test the model on the test set to find a smallest MSE.
Although we subscript the gammas in our update equation to have a unique gamma for each parameter; for
our tests, we worked with a fixed gamma that we found through testing to be best suited. We explored many
different parameters through numerous tests, searching to find a good MSE. For the simple two parameter
model we found that the lambda parameter was by far the more important parameter and a lambda of
10 resulted in a low MSE. We tried a wide variety of values larger and smaller to explore any anomalies.
Although the lambda’s value was critical, a much more interesting question was adjusting gamma. Gamma
was critical in how quickly our algorithm converged. We had to find a good trade off between a low MSE
and the number iterations taken to find that MSE. For example, we also looked at a gamma value of .001.
However, the iterations taken to put the error within our specified tolerance with fixed lambda of 10 was 2397
compared to 683 with a gamma of .005. These both resulted of MSEs within one thousandth of each other.
Our gamma and lambda parameters are very sensitive! The window of ’good’ parameters is small, and a
too large of a gamma blows up the error. Besides looking at MSE, we would also consider different methods
to add a learning rate, simply a dynamic gamma variable adjusting itself each pass. Our experiments with
this provided interesting results, but were probably too specific to the individual data set to warrant serious
recognition.

8

We start with the simplest model in C for testing, using just the ai and bu to fit the model. The general
outline of the model is simple. Starting with initialized values, we run through the data set and compute
the errors at each pass and update the parameters. We continue doing these until the stopping criterion is
met, where our MSE does not improve enough by a certain threshold.

The algorithm itself works well with few problems. In the simple two parameter model solely with
the a’s and b’s, the number of iterations the algorithm requires till convergence is immense. However, as
we progressed from testing with two parameters and gradually tried to incorporate the ps and qs into the
algorithm, the runtime and iteration count significantly decreased. We saw the iterations drop as low as 20
in some cases. We explored our gamma and lambda parameters in the search for the best combination, a
pair that resulted in a low MSE when cross tested on the test set but yet also provided a low number of
iterations in fitting all of the parameters (a’s, b’s p’s q’s).

After thorough testing of the base model, we move into the bigger model with the vectors pu and qi

and work within the gamma, lambda, and d parameter space where d = the length of p and q, for finding
optimal MSE over our data. With similar algebra as shown above for any al and bv, the vectors are updated
similarly in the model.

q∗l = ql − γl

(
ev,l pv −

λ

Ml
ql

)

p∗v = pv − γv

(
ev,l ql −

λ

Nv
pv

)

Algorithm 2 : SGD
Initialize Parameters
while MSE has not converged and current iteration ¡ max iteration limit

For a user u in the list of users
For a movie i corresponding to the particular user u
Compute the r̂ui

Compute the error of the specific observation
Update parameters ai, bu, pu, & qi

Update the sum squared errors;
End

End
Shuffle Data Set
End

5 Conclusions

Through close work with Dr. Bell, a member of the winning team and the guidance of our mentors, we
accomplished our objectives. Since we built our model from the basics, and did all our coding, we have
gained a firm understanding of the underlying framework. On the smaller data sets we worked with, the ALS
algorithm was superior in terms of our metrics, namely, accuracy with respect to time, number or iterations.
However, with very large data, the matrix algebra in ALS might become computationally expensive and
make SGD may become more appealing. With both models, we did fully explore adaptive learning rate and
parametric gamma and lambda values. Preliminary ideas, showed that even the simplest implementations
decreased the number of iterations significantly. Further testing would allow us a better means of comparing
the two methods, to more thoroughly evaluate the models strengths and weaknesses, and to have a backdrop
to compare our results not only to each other, but to actual results from past participants of the Netflix
Competition. For example, although both methods included a gamma parameter, the relationship between

9

the two gammas is unknown. For future work, we wish to explore several modifications of the ALS and SGD
algorithms such as parallel implementations, piecewise algorithms for huge data sets and parallel data input.
The actual parallelized serial algorithm for SGD is cumbersome and seems inefficient. However, with these
modifications it would be more appealing and, as a result, warrant serious consideration and testing.

References

[1] R. Bell and Y. Koren, ”Matrix Factorization Techniques for Recommender Systems,” IEEE Inter-
national Conference on Data Mining Workshops, 2009.

[2] www.umbc.edu/hpcf, 2010.

[3] www.en.wikipedia.org/wiki/Stochastic gradient descent, July 2010.

[4] Yehuda Koren, Robert Bell and Chris Volinsky, ”Matrix Factorization Techniques for Recom-
mender Systems,” IEEE Vol. 0018-9162, pp.42-49, 2009.

[5] Robert Bell, ”Matrix Factorization for Recommender Systems,” presentation at UMBC, 2010.

[6] Jia Li, ”Linear, Ridge Regression, and Principal Component Analysis,” www.stat.psu.edu/jiali.

[7] Eric W. Weisstein, ”Least Squares Fitting,” From MathWorld–A Wolfram Web Resource. www.
mathworld.wolfram.com/LeastSquaresFitting.html, 2010.

10

www.umbc.edu/hpcf
www.en.wikipedia.org/wiki/Stochastic_gradient_descent
www.stat.psu.edu/jiali
www.mathworld.wolfram.com/LeastSquaresFitting.html
www.mathworld.wolfram.com/LeastSquaresFitting.html

	Introduction
	The Data Organization and Hardware
	The Model
	Methods of Fitting the Model
	Conclusions

