
Contention of Communications in Switched Networks
with Applications to Parallel Sorting

REU Site: Interdisciplinary Program in High Performance Computing

Nil Mistry1, Jordan Ramsey2, Benjamin Wiley3, and Jackie Yanchuck4,
Graduate RA: Xuan Huang5, Faculty Mentor: Matthias K. Gobbert5,

Clients: Christopher Mineo6 and David Mountain6

1Department of Mathematics and Statistics, University of Connecticut
2Department of Computer Science and Electrical Engineering, UMBC
3Department of Mathematics and Statistics, University of New Mexico

4Department of Mathematics, Seton Hill University
5Department of Mathematics and Statistics, UMBC
6Advanced Computing Systems Research Program

Technical Report HPCF–2013–13, www.umbc.edu/hpcf > Publications

Abstract

Contention of communications across a switched network that connects multiple
compute nodes in a distributed-memory cluster may seriously degrade performance of
parallel code. The InfiniBand network is the most popular interconnect for compute
clusters. While one may correctly assume that increased resource contention leads
to decreased application performance, alternate methods such as virtual channels and
adaptive routing have obscured the point at which inter-job interference becomes a
major issue. This contention is maximized when communicating large blocks of data
among all parallel processes simultaneously. This communication pattern arises in
many important algorithms such as parallel sorting. We use the cluster tara in the
UMBC High Performance Computing Facility (HPCF) with a quad-data rate Infini-
Band network which provides an opportunity to test the case if the capacity of a
switched network is a limiting factor in algorithmic performance.

1 Introduction

Consider a standard InfiniBand network in which there are multiple parallel processes being
run on various computation nodes freely connected to one another. Information transferred
among nodes may stress communication across the network, both in relation to the size of
the data being sent and the number of nodes being considered. As communication increases,
contention along the system will stress the network due to the mass transfer of data among
compute nodes. At significantly high levels of contention, the network eventually will fail to
process inter-node communication. Studying network contention by varying the size of the
data being sent along the network, our group has effectively studied the use of All-to-All
communications in parallel jobs performance considering large blocks of data.

To accomplish sufficient inter-node stress within the network, our team implemented a
parallel integer sorting function which transfers a user-defined number of n integers across p

1



processes. Hence, each node receives subsections of an array of data, sorted locally per group
though unsorted globally, thereby allowing all delays in computation times to be the result of
communication stress and not computational sorting time. In an effort to increase network
contention, the array of integers were converted from data type int to double, which requires
more memory to send across nodes. Memory selection was also considered such that integer
arrays too large to store on nodes within the network would not be considered in our case
as this leads to memory leaks.

Using All-to-All commands, each individual node sent its received integer array data
across all other nodes in the network, maximizing inter-node communication stress. Our
results state that, for constant global memory, as the number of processes increase, speed
improves as the network contention decreases under All-to-All communication. Alternately,
for varying local memory, as the number of processes increase, speed deteriorates as the
network contention increases under All-to-All communication.

2 Background

2.1 Computational Environment and InfiniBand Interconnect

The studies were performed on the cluster tara in the UMBC High Performance Comput-
ing Facility (HPCF). All details of the cluster tara and in particular about its InfiniBand
interconnect are posted on the webpage www.umbc.edu/hpcf. Various performance studies
using tara are available as technical reports, for instance [2] that compares performance by
two implementations of MPI. Following [2], we use MVAPICH2.

The cluster tara has 86 nodes, comprising 82 compute nodes, 2 develop nodes, 1 user
node, and 1 management node. Each node has two quad-core Intel Nehalem X5550 processors
(2.66 GHz, 8192kB cache) and 24 GB of local memory. All components of tara are connected
by a quad-data rate InfiniBand interconnect.

InfiniBand is a serial connection that allows for high-speed data transfers from computers
to input/output devices [3]. It is a switched fabric communication link, meaning that it
connects the nodes to each other via switches. In computer networks, switches receive data
sent from one device and direct the data to only the device(s) which were meant to receive
the data [3]. This allows for more secure and potentially faster data transfers between
multiple devices. Using the InfiniBand communication network, there is very low latency
(1.2 microseconds to transfer a message between two nodes), and wide bandwidth up to
3.5 GB (28 Gb) per second.

It is intuitive to hypothesize that as the number of processes on which a job is run
increases, the communication between processes will become slower and may bottleneck
because more processes need to communicate with each other than when the number of
processes is small. However, many times, commercial manufacturers attempt to avoid this
occurrence by using methods such as virtual channels and adaptive routing. Adaptive rout-
ing, as apposed to merely routing, allows nodes to reroute the path that data is sent based
on network fluctuations, such as congestion at one node. When a problem is encountered

2



N = 9 N = 18 N = 36

Figure 2.1: Network schematics for All-to-All communication between 9, 18, 36 nodes, re-
spectively

while transferring data, information is sent to the appropriate nodes, and new paths to send
data that avoid problem areas are created [3]. Virtual channels were created in order to alle-
viate the deadlock issue, and also decrease network latency and throughput. Though these
methods are commonly used in parallel computing technology to solve many communication
issues that arise, their effects on performance have not been rigorously studied. Therefore,
it is difficult to determine when inter-job communication will become a performance issue.
Our experiments attempted to study this issue using a variety of different network setups.
In order to study the effects of inter-job communication on job performance, our team im-
plemented an sort algorithm which requires communication between all nodes. As the set of
numbers to be sorted increases, more communications will be required.

2.2 All-to-All Communications

An All-to-All communication simultaneously sends and receives data between all parallel
processes in one call. Since is it eventually not possible to have physical cable connections
between all possible pairs of ports in the InfiniBand switch and its leaf modules, All-to-
All commands necessarily lead to contention between all required pairwise communications.
The network schematics in Figure 2.1 gives an impression of how many cables would be
needed to connect N = 9, 18, 36 nodes, respectively. An All-to-All communication command
sends the jth block of its input array from Process i to Process j and receives it into the ith

block of the output array on Process j. MPI has two All-to-All communication commands:
MPI_Alltoall and MPI_Alltoallv. The former command sends the same amount of data
between all processes, while the latter one can send variable (hence the letter “v” at the end
of the command name) amounts of data between all processes [1]. To test the InfiniBand
network, we will maximize the contention by communicating the largest block sizes possible.
Thus, also the variable version MPI_Alltoallv will be programmed to send the same amount
of data between all processes, since that maximizes contention between messages.

3



Figure 3.1: Leaf Module with Eighteen Nodes

3 Numerical Methods

3.1 Leaf modules

The cluster tara has 6 leaf modules, of which two currently have complete sets of 18 compute
nodes attached to them. Specifically, one leaf module connects the nodes n37 through n54,
while another leaf module connects nodes n55 through n72. We can control the choice
of leaf module by explicitly requesting nodes for our jobs by name. The remaining leaf
modules contain other nodes that are not part of the partition of compute nodes (such
as the develop nodes or components of the storage system) or have a failed node among
its connections. Therefore, in this study, our team focuses on how contention is effected
both within a leaf module and contention over two leaf modules. Considering this network
contention provides insight into whether parallel algorithms that send large blocks of data
via All-to-All communications result in contention first over two leaf modules or whether
there is contention using nodes located within just one leaf module. More importantly, our
conclusions answer the question regarding whether implementation of parallel code requiring
All-to-All communications of large data seriously degrades performance.

Nodes are distributed evenly between two rows on the leaf module; that is, nine nodes
are located in the first row and nine nodes are located in the second row. Each of the nine
nodes are separated in groups of three pairs of three nodes, as shown in the schematic picture
in Figure 3.1. Effectively studying contention on the InfiniBand system relies on analyzing
performance on one node for control purposes. Furthermore, our team runs several tests on
the InfiniBand network by requesting specific nodes, starting with three nodes, then testing
nine nodes or one row in the leaf module. Finally, this process is extended to the whole
leaf module or 18 nodes, and then across two leaf modules or 36 nodes. This setup allows
us to see if contention problems can be linked to communication within the leaf module or
communication between leaf modules of parallel code.

3.2 Sorting Function

In order to effectively stress inter-job communication, our team implemented a sorting func-
tion which transfers data of type struct across specified nodes within the InfiniBand network
utilizing MPI commands, mainly MPI_AlltoAll and MPI_AlltoAllv. Since each node on

4



the tara cluster contains 24 GB of memory, integers were created in the form of int and
double with the hypothesis that sending large amounts of double-precision floating point
numbers (i.e., doubles) will force MPI_AlltoAllv to test the contention of the InfiniBand
network. In this algorithm, doubles are stored within an array, of MPI data type struc-
ture, thereby causing increased contention along the network during communication. This
test case for contention of communication emulates data structures that is common is many
parallel programs. Mainly, a global array of n vectors, each comprising m double-precision
numbers, is split onto the p parallel processes. This results in local arrays of ln = n/p vectors,
each comprising m double-precision numbers. In an algorithmic context, the goal may be to
sort all m-vectors in the global array. More specifically, two vectors, sorted and unsorted,
are defined such that the design of the size of the integers are determined by

n = 2ν · (p ·N · lm1 · lm2)
2 (3.1)

where p is the number of processors on one node, ν controls the size of the integer, N is
the number of nodes, lm1 is leaf module 1, and lm2 is leaf module 2. By defining ν as a small
integer, in this case ν = 1, one obtains an integer size

n = 2 · (18 · 8 · 3 · 2)2 = 1, 492, 992.

Local integers on each process, ln = n
p
, are defined as the total size of the integers,

n, divided by the number of processes, p. Our team created two variables, sendcount and
senddisplacement, to keep track of how many integers are being sent to each processor. It is
important to note that the unsorted vector is assumed to contain integers in leaf module 1
defined as counting from 1 up to n; that is, for all processes p, the unsorted vector ~luint

is
defined such that

~luint
=


j0

j1

...

jp−1

 , ∀ji ∈ {1, . . . , ln}, (3.2)

where the set {1, . . . , ln} only contains data of type int, and ~luint
has dimensions ln × 1.

Our team developed an algorithm which defines

sendcount = sendcount

(
~luint

ln

)
+ 1, (3.3)

if the amount of integers unsorted on the process is less than the local number of the
unsorted integers.

Similarly, our team constructed an additional unsorted vector, ~ludouble
, per process such

that

5



~ludouble
=


v0

v1

...

vp−1

 , ∀vi ∈ {m, . . . , lnm}, (3.4)

where the set {m, . . . , lnm} only contains data of type double, and ~ludouble
has dimensions

lnm × 1. One should note that the double-precision floating point definition of ~ludouble
is

unique and separate from the integer characterization of (3.3).
To establish this definition, our team declared MPI_Datatype as MPI_DOUBLE which en-

ables communication between the network of nm doubles being sent from process pi, for
some i ∈ {1, . . . , p}, to all processes pj, ∀j ∈ {1, . . . , p}, as shown by lnnp = ln

p
= n

p2 .
As above, a similar algorithm

sendcount = sendcount

(
~ludouble

ln

)
+ 1, (3.5)

is defined if the amount of unsorted doubles on the process is less than the local number
of the unsorted doubles.

The MPI_Datatype call sends information from the sendcount and recvcount vectors to each
of the processes. The purpose of this command is to send the same amount of data, namely
the sendcount and recvcount, to each of the processes. Alternately, the MPI_AlltoAllv call
sends specific information regarding which process needs which integers of type int, since
this is a small size data, the run times will be hard to compare. Thus, MPI_AlltoAllv is
used again, this time to send the structure of doubles.

3.3 Experiment Design

In order to effectively study network contention, our team designed an experiment to maxi-
mize communication by having no local sorting before and after the double-precision floating
point numbers are distributed across processes. Implementing the following equation,

~luint
[i] = 1 + lnnp · id + ln ·

i

lnnp

+ i mod lnnp , (3.6)

creates an unsorted vector ~luint
that is size ln × 1, where ln = n

p
, lnnp = ln

p
= n

p2 , and i is an

index running from 0 through ln (See section 3.2 for details). Equation 3.7 generates integers
of size ln on each process p.

Constructing ~ludouble
,

~ludouble
[im + j] = ~luint

[i] + 0.0001j, (3.7)

the vector ~ludouble
stores ~luint

[i] at the current step i added by 0.0001j, for all i ∈ {0, 1, 2, . . . , ln}

6



and j ∈ {0, 1, 2, . . . , p}. Accordingly, each process p of size ln contains m double precision
floating point numbers.

The algorithmic scheme in (3.8) can be generalized as displayed in the following matrix,

Unsorted =


1 , 2 , 3 13, 14, 15 25, 26, 27 37, 38, 39
4 , 5 , 6 16, 17, 18 28, 29, 30 40, 41, 42
7 , 8 , 9 19, 20, 21 31, 32, 33 43, 44, 45
10, 11, 12 22, 23, 24 34, 35, 36 46, 47, 48

.

which removes any local sorting when N = 4, ln = 12, and n = 48. The rows in this
matrix represent those processes which contain the specific doubles, which are already locally
sorted from equations (3.7) and (3.8) above.

3.4 Memory Selection

In order to stress communication, the two vectors, sorted and unsorted (See section 3.6),
are sent between nodes on a network. Since each node on the tara cluster contains 24 GB
of memory, total memory must be less than 24 GB per node. The characterization of our
sorting algorithm requires proper intake so that memory may be distributed evenly on every
utilized node. Controlling the size of m allows the maximum amount of memory to be
transferred onto each node.

Hence, the magnitude of m is easily controlled by differing either the number of nodes
N on the network, or changing the total number of integers n being communicated along
the network. Controlling the size of the integer n such that m is defined as an integer value
enables the two vectors, sorted and unsorted, to be passed through the 24 GB memory on
tara. Therefore, each of the vectors must be less than 10 GB to insure that memory leakage
does not occur. Also, since contention arises due to the simultaneous nature of the All-to-
All pairwise communications, we maximize contention by designing the test case to have
all blocks to be communicated to be of the same maximum size which is ln

p
. In Table 3.1,

we generalize our memory calculations to use the maximum possible number of 8 parallel
processes on each compute node, which maximizes contention on each node for the All-to-All
communications among its local processes and contention when all local processes access the
InfiniBand cable at the same time.

Table 3.1 provides equations for node computations regarding a global unsorted vector,
where the size of the integers n, contained in the vector, is constant at n = 2·(8 · 18 · 2 · 3)2 =

1, 492, 992. The global vector is then divided into p sub-vectors of length ~ln such that the
size of the integers contained within each locally sorted vector is constant per number of
processes p, equal to 1,492,992

p
. In addition, the total memory being received per process is

equal to m · n
p
. Finally, communication between process pi, where i ∈ {0, . . . , p}, to all

processes pj, ∀j ∈ {0, . . . , p}, is equal in magnitude to to the number of integers on that
particular process, scattered to all other processes; that is, ln

p
= n

p2 . Also, the amount of
memory being sent across the network per process is equal to m · n

p2 . One should note that
memory is allowed to vary as the number of processes p increases, where doubles are being

7



Table 3.1: Equations for memory predictions.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
Dimension m m m m m m

Length n of global array of m-vectors and their size in elements:
Length n n n n n n
Size m n m n m n m n m n

Length ln = n/p of local arrays of m-vectors and their size in elements:
Length ln

n
p

n
p

n
p

n
p

n
p

Size m n
p

m n
p

m n
p

m n
p

m n
p

Length ln/p of block size of m-vectors in All-to-All and their size in elements:
Length ln/p

n
p2

n
p2

n
p2

n
p2

n
p2

Size m n
p2 m n

p2 m n
p2 m n

p2 m n
p2

sent from process pi to all other processes pj decreases by a factor of p. This is because the
number of parallel MPI processes p = 8N in our tests are p = 8, 24, 72, 144, 288. The final
values were then converted to megabytes (MB) for easier interpretation.

4 Results

4.1 Design of Experiment with Constant Global Memory

To effectively test the contention of the InfiniBand network, our team conducted a perfor-
mance study with a constant global memory value to see how the InfiniBand handles the
All-to-All commands. This was done by having constant m = 512 and the size of the total
integer n = 1, 492, 992 being shuffled around the InfiniBand. Notably, the local memory of ln
decreases as the p increases and as N increases. This is amplified when we wish to transmit
memory from lnnp namely pi to pj and decreases by another factor of p. The following is a
memory distribution table where m is constant at m = 512.

To ensure memory leak is not an issue the total size of the global n is kept constant at
1, 492, 992 in the experiments, so that ln = n

p
and ln

p
= n

p2 are integers for all possible p under
consideration. Furthermore, the number of double-precision numbers communicated between
pairs of processes in our experiments is the block size in the All − to−All communications
given by m ln

p
. As p increases, each process holds n

p
n and thus the memory decreases locally

at 5832
p

. Finally, the n being sent from pi to pj decreases by n
p2 and the memory decreases

to 5832
p2 as this shows the communication between processes. The following results were

obtained,
As expected, run times decreased as N increased. Interestingly, All-to-Allv(int)}

increased as N increased and MPI_Alltoallv(double) decreased as N increased. From this
we can conclude that our MPI_Alltoallv(double) is efficiently handled over the InfiniBand

8



Table 4.1: Constant global memory for m = 512: predicted memory usage for one array.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 512 512 512 512 512

Length n of global array of m-vectors and their memory in GB:
Length n 1,492,992 1,492,992 1,492,992 1,492,992 1,492,992
Memory 6 GB 6 GB 6 GB 6 GB 6 GB

Length ln = n/p of local arrays of m-vectors and their memory in MB:
Length ln 186,624 62,208 20,736 10,368 5,184
Memory 729 MB 243 MB 81 MB 41 MB 20 MB

Length ln/p of block size of m-vectors in All-to-All and their memory in kB:
Length ln/p 23,328 2,592 288 72 18
Memory 93,312 kB 10,368 kB 1,152 kB 288 kB 72 kB

Table 4.2: Constant global memory for m = 512: wall clock time in seconds.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 1.14 0.57 0.25 0.15 0.11

interconnect. Also, we obtain no bottlenecks with a constant global memory.

4.2 Design of Experiment with Constant Local Memory

From our result in 4.1 we are only interested in MPI_Alltoallv(double) as this is handled
efficiently with InfiniBand. In order to keep the block size in the All-to-All communications
as large as possible, the vector length m is designed to increase with increasing p = 8N in
the tests reported below.

With varying m∗N , the amount of total memory increases by a factor of N . Thus, when
this is distributed to ln, the memory is held constant regardless of the N we choose to use.
The following table shows run time as we vary mn,

This increase is limited by the fact that 8 local arrays must fit in the local memory of
each node, since we use 8 processes per node. Specifically, the m = 512 N represents a choice
which comfortably fits in the local memory, as shown in Figure 4.1. With the local memory
held constant, the run times steadily increase as we increase mn with increasing N . Thus
the contention on the network is maximized using our parallel integer algorithm of doubles.

9



Table 4.3: Constant local memory for m = 512 N : predicted memory usage for one array.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 N 512 1,536 4,608 9,216 18,432

Length n of global array of m-vectors and their memory in GB:
Length n 1,492,992 1,492,992 1,492,992 1,492,992 1,492,992
Memory 6 GB 17 GB 51 GB 103 GB 205 GB

Length ln = n/p of local arrays of m-vectors and their memory in MB:
Length ln 186,624 62,208 20,736 10,368 5,184
Memory 729 MB 729 MB 729 MB 729 MB 729 MB

Length ln/p of block size of m-vectors in All-to-All and their memory in kB:
Length ln/p 23,328 2,592 288 72 18
Memory 93,312 kB 31,104 kB 10,368 kB 5,184 kB 2,592 kB

Table 4.4: Remark 1: performance close to local memory limit for All-to-All communication
of m (n/p2) numbers. Wall clock time in seconds. The notation ERR indicates a memory
error.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 N 0.60 1.64 2.09 2.28 2.30
m = 800 N 1.79 3.05 3.73 5.01 6.73
m = 810 N 1.80 2.83 3.30 5.54 ERR
m = 1024 N 85.00 170.62 ERR ERR ERR

5 Conclusions

With local memory constant and contention on the network maximized, the run times grow
with the number of processes. We can conclude that this test case creates stress on the
InfiniBand network and that its performance will limit the scalability of parallel algorithms
that use All-to-All communications. Furthermore, for cases with larger memory requirement,
we encounter excessive run times and eventually memory errors as indicated by the notation

Table 4.5: Remark 2: relative performance of All-to-All commands for constant global mem-
ory with m = 512. Wall clock time in seconds.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
A. MPI_Alltoall(int) <0.01 <0.01 <0.01 <0.01 <0.01
B. MPI_Alltoallv(int) <0.01 0.01 0.10 0.32 0.59
C. MPI_Alltoallv(double) 1.14 0.57 0.25 0.15 0.11

10



ERR in Table 4.4

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High
Performance Computing (www.umbc.edu/hpcreu) in the Department of Mathematics and
Statistics at the University of Maryland, Baltimore County (UMBC) in Summer 2013.
This program is funded jointly by the National Science Foundation and the National Se-
curity Agency (NSF grant no. DMS–1156976), with additional support from UMBC, the
Department of Mathematics and Statistics, the Center for Interdisciplinary Research and
Consulting (CIRC), and the UMBC High Performance Computing Facility (HPCF). HPCF
(www.umbc.edu/hpcf) is supported by the National Science Foundation through the MRI
program (grant nos. CNS–0821258 and CNS–1228778) and the SCREMS program (grant no.
DMS–0821311), with additional substantial support from UMBC. Co-author Jordan Ramsey
was supported, in part, by the UMBC National Security Agency (NSA) Scholars Program
though a contract with the NSA. Graduate RA Xuan Huang was supported by UMBC as
HPCF RA.

References

[1] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[2] Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an el-
liptic test problem on the cluster tara. Technical Report HPCF–2010–2, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2010.

[3] Curt M. White. Data Communications and Computer Networks: A Business User’s
Approach. Course Technology, 2013.

11


