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Abstract to as reasoning contexts, have differing background

Ontologies are an increasingly important tool imkfedge axioms that apply to assertions made in those gtmtén
representation, as they allow large amounts of tathe ontology that has no mechanism for specifying thetext
related in a logical fashion. Current researcloiscentrated of the statements being made must either include
on automatically constructing ontologies, merging contextual information with each assertion, whieapidly
ontologies with different structures, and optimal becomes unwieldy, or be forgiving of inconsistency.
mechanisms for ontology building; in this work wensider We demonstrate automatic placement of knowledtge in

determinewhere to place new knowledge into an existing
ontology. Rather than relying on human knowledge
engineers to carefully classify knowledge, it iscdming
increasingly important for machine learning teclueis to

capture a significant fraction of humaommon sense—the
kind of background knowledge that human learningnis
can be assumed to have when presented with & sk

automate such a task. Automation is particularipantant Cyc knowledge base is a suitable target for twanary
as the rate of ontology building via automatic kiexige reasons: it is large, both in number of assertanmtsin the
acquisition techniques increases. This paper coesphree range of domains it contains; and it already corstea
well-established machine learning techniques analwsh concept of reasoning contexts, calladicrotheories,
that they can be applied successfully to this keogé suitable for classifying knowledge into.

placement task. Our methods are fully implemented a The Cycknowledge base (KB) is made up ofissertions,
tested in the Cyc knowledge base sysiem. formally represented facts of varying levels of goexity

(Matuszek et al., 2006), which are asserted irtiearchy
of distinct reasoning contexts called microtheor{es

Introduction Mts). Microtheories serve several purposes. The primary

Ontologies are an increasingly important tool ilmkiedge purpose Is to allow each assertion to be correctly
representation, as they allow large amounts of tiatae contextualized along several dimensions, such rapdesl
related in a logical fashion. Current research has dualification or domain of discussion. From an eegiing
concentrated on automatically constructing ont&sgor perspective, making assertions in microtheoriesvalthe
large bodies of formally represented knowledge t(Fux et background assumptions that apply to a particutenain
al., 2005), merging ontologies with different stures to be_ stated on!y once, and makes it far easiepmstruct
(Masters and Giingérdii 2003), and optimal mechanisms @ logically consistent knowledge base. _
for ontology building (Witbrock et al., 2003). Ihi$ work _Microtheories in Cyc are arranged hierarchicallery
we consider the related, but distinct, problem ofvhto high-level microtheories capture information abbubad
automatically determinevhere to place new knowledge  distinctions such as physical, temporal, and fraio
into an existing ontology. reasoning, and are then sub(_j|V|ded into _progrelysmere

As formally represented knowledge bases grow targe specific contexts. An assertion placed into a mﬁmory
and cover a greater range of domains, problemstefrial must be true in the upward closure of that microthe

consistency and redundancy become significant @.ena (i-., that microtheory and more general microthethat
1998). As an example, the commonly heard statements Subsume it). Cyc currently contains about 4.6 onilli
“Count Dracula was a vampire” and “vampires do not assertlons_ in 23,627 m|crptheor|es_, wh|_ch have\amage
exist” are contradictory, unless one is aware efithplicit of approximately three microtheories directly beltvem
context shift. One statement is being made in au&égc in the hierarchy.

real-world sense, while the other occurs in a dgeci
fictional context. These different contexts, whighk refer

2 Once common-sense knowledge is available in adbiimat can be
programmatically understood and reasoned ovemilegtasks that rely
Copyright © 2007, American Association for Artifadi Intelligence on that background knowledge, such as reading &dextbook, become
(www.aaai.org). All rights reserved. more feasible (Lenat, 1995).
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Figure 1. The Cyc Knowledge Base Mt (Microtheory)
Hierarchy. A small number of very broad reasoning
contexts contain high-level, abstract knowlege, and
fan out into progressively more specific contexts.

Description of Task

Historically, all assertions have been added to ®yc
ontologists, human knowledge engineers who are familiar
with the Mt structure and able to determine therappate
Mt placement (domain and level of generality) céttlan
assertion. This is not ideal for several reasons time-
consuming; choosing the right microtheory can gasike
several minutes for a trained ontologist who is ifi@am
with the Cyc ontology and experienced in how best t
organize knowledge for maximum utility. A technigaisle

to autonomously place knowledge into the KB thenefo
has the potential to save an amount of time progat to
the amount of knowledge being added.

More importantly, with more automated ontology-
building techniques such as automated fact gatpdrom
the World Wide Web (Etzioni et al., 2004; Matusztlal.,
2005; Shah et al., 2006), an important goal is dd a
knowledge into contextualized knowledge bases dyick
and with little or no human interaction. It will t@me
infeasible to rely on trained ontologists to labklasserted
knowledge once knowledge systems begin generdtigig t
own knowledge. The goal of this research, therefisréo
create a classifier that is capable of placing hove
knowledge into a hierarchical ontology with bothglhi
precision and recall.

Having this automatic classification tool will imgve
efficient ontology building in multiple ways. Wheine tool
is performing well, it helps make knowledge engiag
feasible for less sophisticated users. Automatic
classification would also be beneficial for tectogiés that
gather facts automatically or generate novel kndgéeby
analysis of existing knowledge, such as findingliogtion
rules via ILP (Cabral et al., 2005). In this papee
describe three possible techniques for developingh &
tool. These solutions use common statistical machin
learning techniques: Naive Bayes (with and without
shrinkage) and Support Vector Machines (SVMSs).
Experiments empirically demonstrate that autombyica
determining the placement of facts within a miceatty
hierarchy is feasible and able to achieve precisiod
recall rates of 98%.

Related Work

While classification in knowledge representatiom i®ng-
standing area of research, most work has concedtiat
the placement of concepts into a hierarchy or ogipl
(Schmolze and Lipkis 1983), rather than the placgenoé
entire axioms into a knowledge base. In this way,
classification of knowledge into a hierarchical @ogy is
more similar to the classification of text docungeirtto a
hierarchy of classes. Using statistical rather thamantic
methods in classification of documents is an apgragith
much significant previous work (Joachims, 1998; |&ol
and Sahami, 1997; McCallum et al, 1998). Text
classification tasks that involve categories areahipto a
semantic hierarchy in particular are relevant to this task.

In one previous approach (McCallum et al., 1998),
generative Bayesian model was used to predict the
classification of text documents into a hierarchy.this
model, shrinkage is used to improve the performance of
the model on smaller classes by utilizing the s$tmg of
the classes. The probability of placing a documiana
given class is based not only on the statistics tf@t
particular node in the class tree, but also onrotizeles
above it in the tree, thus “shrinking” the maximum
likelihood estimate of a node towards that of nsestors.

Another approach to hierarchical text categoriatis
the so-called “Pachinko machine” (Koller and Sahami
1997). In this type of algorithm, decisions are mad
starting at the root of the hierarchy, working dotenthe
leaves. For example, when classifying a cat into a
biological taxonomy, a “Pachinko Machine” clasgifie
could first consider “Is ‘Cat’ a plant, an animaby
neither?” Deciding it is an animal, it could theonsider
“Is ‘Cat’ a vertebrate, an invertebrate, or neifieit
continues in this fashion until it classifies ‘Catto a class
with no sub-nodes in the hierarchy.

It has been shown that, when using a single featete
for every node in the hierarchy, a Bayesian paahink
classifier would never perform better (or worserttaflat
classifier that considers each node as an indepénde
category (Mitchell 1998). However, this proof doest
address the situation in which different featunesdilized
at each node; thus a Pachinko machine could patignti
outperform a flat classifier if features were effegly
selected at different nodes. Such feature selecisn
however, potentially difficult to do well. As anample, is
the presence of the term Mammal useful for classify
terms into the microtheomiologyMt? Given knowledge of
the domain, it clearly is. However, most of the t$ac
asserted irBiologyMt do not mention Mammal, so some
statistical feature selection techniques may exxliid
Finding an efficient feature selection algorithnr fiis
context is the topic of current research.

The problem of placing assertions within an orgglds
significantly different from text classification itwvo main
ways. First, Cyc’'s Mt structure is as deep as »@lfein
some domains. Typically, corpora used in
classification experiments are substantially shatio
McCallum et al.’s implementation (1998) is only alib
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handle class trees of depth two; even the largestrchies
used in text classification, such as the Yahoobmaxny
(Liu et al., 2005), are less than 10 levels deep.

Second, and more important, the formula within any
individual assertion contains relatively little datFor
instance, an assertion using a binary predicatdy as(isa
Cat Mammal), contains only three terms, instead of having
an entire document’s worth of information. Relalyvigtle
previous research has been done on classifying spenise
data in hierarchical contexts.

Approach

In this section we detail the two machine learnimgthods
we use to learn appropriate placement for assariioran
ontology, and describe the data set we use for toaithing
and testing.

Bayesian Model

The first formulation of a generative model to @ac
assertions into Cyc’s microtheory hierarchy is ldase an
earlier Naive Bayes implementation (McCallum et al.
1998), with two main differences. First, insteacatidwing
placement only in leaves, we also allow assertionbe
placed in intermediate microtheories. Second, the C
microtheory ontology is a directed graph, rathanth tree;
this requires that we break cycles in Cyc. To aqusin
this, our algorithm keeps track of which Mts haueady
been processed and does not process the samehaamot
more than once.

The sketch of our algorithm is as follows: LetrthéeN
assertions in the knowledge base. Each assertion i
composed of some number of atomic terms, and wetden
the k" term in assertiori as t(a,k). Every Mt in the
ontology, where M{ is denotedn, is an eligible location
for every assertion. Our goal is to find the pralighthat
thei™ assertion belongs in a particular §it,

To calculate such a probability, we assume thattethis
some unknown modeB, which accurately describes the
structure of the KB. Our goal is to calculd@m | & ; 6)
for all assertions and all Mts. We initially assuthat all
Mts have a prior probability equal to the number of
assertions in that Mt. We then use the numbermoédi a
particular term occurs in each Mt to determine the
probability thatt(a;,k) occurs in each Mt. After using

P(m, [6)N%P(t(a, k)| m,;6)
S ™ Ip(m, [N ELP(t(a, k) [m,;6)

algebraic simplifications, we can show that thebaiaility
of thei™ assertion residing in tH& Mt is:

P(m, |&:6) =

As an additional improvement, we also implement the
shrinkage procedure utilized by McCallum et al. To
accomplish this, the algorithm utilizes an iterated
expectation-maximization (EM) procedure. Full detaire
presented in the original paper (McCallum et ab8)9

Support Vector Machines

Support Vector Machines (SVMs) (Vapnik, 1995) are a
well-understood method of performing supervised,
discriminative machine learning, used for binary
classification tasks. An SVM implementation finds a
hyperplane in the feature space that will sepaagtair of
classes by the widestargin. SVMs are known to perform
well in cases where the proportion of positive ardative
examples is highly unbalanced, such as with theele®f
Cyc’s ontology. For a given Mt, the positive exaagphre
those assertions that are asserted in that miaoth&he
negative examples aa#l other assertions in the knowledge
base. SVMs also have a proven track record of migali
with highly sparse data (Joachims 1999), a pa#ityl
important feature when each assertion contains enly
handful of terms.

Using SVMs for multi-class classification has alsen
studied (Crammer and Singer, 2001; Tsochantaridé. e
2004), although in less detail. One common apprdach
building a “one-vs-rest” binary classifier for easbde in
the hierarchy (Crammer and Singer, 2001). One
implementation of this is SVM-multiclals a freely
available multi-class SVM implementation based on
(Tsochantaridis et al., 2004) that handles sparse
classification. This approach uses a flat hieraahi
classification, discarding any information contairia the
hierarchical structure. Utilizing hierarchical imfoation in
SVM classification is a current topic of researchd a
recently developed methods may improve performdnyce
utilizing the ontology inherent structure.

s Data Set

In order to make our experiments tractable, we have
chosen one particular sub-area of the Cyc micratheo
hierarchy—specifically, the sub-tree rooted undee th
CyclistsMt microtheory. The CyclistsMt microtheory
contains information about Cyc itself and the peogho
work there, colloquially known as ‘Cyclists’. It is
reasonably well-populated with a good cross-sectibn
available terms and predicates, making it a goagktafor

our experiments. This microtheory contains 252 sub-
microtheories, containing a total of 145,706 agzest The
average fan-out of the tree is 1.71 (in other wotte
average microtheory in this tree has 1.71 micraikeo
directly under it in the tree). Microtheories whicontain
only a very small number of assertions were exaudem
initial  experiments, leaving  approximately
microtheories into which over 32,000 assertionslcde
classified.

This work also excludes microtheories that contain
time dimension, i.e. temporal microtheories. Temapor
microtheories are those that contain assertions tbhl
true only within a certain time constraint. For exde, the
assertion(isa RonaldReagan UnitedStatesPresident) is true
only in the intersection ofeopleDataMt (the microtheory
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containing data about famous people) and the teshpor
microtheory:

(TimelntervallnclusiveFn
(HourFn 12 (DayFn 20 (MonthFn January
(YearFn 1981))))
(HourFn 11 (DayFn 20 (MonthFn January
(YearFn 1989)))))

The time period from January 20, 1981 to January 20, 1989

Since temporal microtheories are very specific to
individual assertions, it would be difficult to &ps them
using statistical learning algorithmReopleDataMt and the
temporal microtheory shown contain very similar
knowledge, and will likely require specialized krledge

to place information appropriately. We believe thisan
appropriate initial simplification, as the majoritpf
knowledge we wish to place into an ontology carbpiay

be pre-filtered so that it contains only gener&ngoral
knowledge.

Assertion Count per Microtheory (under CyclistsMt)
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Figure 2: A logarithmic histogram of the distribution
of assertions in atemporal microtheories under the
CyclistsMt sub-tree used for this experiment.

The sub-tree rooted undéyclistsMt contains roughly 1%
of the total number of assertions in the knowlebase and
1.07% of the microtheories. This subset is smatiugh to

make our experiments feasible while still contagnmore

data than a human could readily process. Furtherntbe

distribution of assertions across these microtlesolis

roughly exponential, as is the distribution of kiedge in

the KB as a whole.

As input to our classifiers we index all terms that
each assertion’s formula is a list of term indicEsach
unique atomic term, including strings and numbaess,
transformed into a fixed numerical index. This igggany
structural information within an assertion (partaoly
noticeable in the case of the “not” term) and takdst
amounts to a “bag of words” approach. Thus the tdaen

(isa MattTaylor GraduateStudent)
(owns Dog MattTaylor 1)

will be represented as the vectors:

(25 570 400)
(40 823 570 429)

where all unmentioned terms are assumed to be tabsen
from the assertions.

To evaluate our performance over the dataset, we
divided the assertions randomly into 10 groups. éaxch
group, the assertions in that group were usedtastaset,
and the remaining 9 groups of assertions were ased
training set. This standard statistical evaluapoocedure,
known as 10-fold cross-validation, works well fdrese
experiments because the number of training datarines
heavily outweighs the number of testing instanasss the
case in actual use of the microtheory placemergestgpn
tool. In each fold, the training set’s assertions labeled
with the Mt in which they appear in the KB (i.ehet
“correct” placement), and the test set's assertianms not
labeled. The placement of the assertion by the $/tflen
compared to the actual Mt in which it appears eKiB.

Results

Figure 3 shows the results of our experiments an th
CyclistsMt sub-tree dataset. Precision (p), recall (r), and F
are standard evaluation metrics for classificatamks:
; Precision, recall, and

= |CorreCt n predICted l F,, defined in terms

| predicted | of the classification
selected as compared
to the actual Mt
placement of an

[ = |correct n predicted |

| correct | assertion. In F,
precision and recall
F = 2x pxr are weighted equally,
! p+r as both are relevant

in this domain.

Precision and recall are based on the number eftamss
for which an Mt was predicted and the number of
assertions that were predicted correctlyisthe harmonic
mean of recall and precision; in order to achievegh R
score the classifier must achieve both high precisind
high recall.

Micro-Average Evaluations
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Figure 3: Precision, recall, and Fk using Naive Bayes,
Naive Bayes with shrinkage, and SVM classification.



The micro-average is not improved by using shriekag
possibly because shrinkage allows less likely Mimdge
with very few assertions) to have a relatively higgight.

Using shrinkage to take advantage of the micratheo
hierarchy provides a significant benefit over usstandard
Naive Bayes for the macro-average (see Figurehid;is
to be expected, given the extreme sparsity of #ia.dEach
assertion contains only a few features and beifgtaluse
data from parent microtheories greatly improves the
classifier's ability to generalize. This is of padiar
benefit in very specific microtheories that contdew
assertions (i.e. positive training examples).

SVMs performed even better in our experiments. This
probably an indication of the same strengths thavs
usually show over Naive Bayes in text categoriratio
experiments: SVMs can better deal with imbalance in
positive and negative training examples. Becaus¢hef
nature of the SVM algorithm, only treeipport vectors are
used in determining class membership. Any positive
negative training examples that fall outside thargin
created by the vectors are ignored. Naive Bayesthen
other hand, includeprior probability in its calculations,
which means the more negative training examplesethe
are, the lower the score for the microtheory. Aroth
strength is that Support Vector Machines do not enak
assumptions about feature independence within reatu
vectors. For example, the term@earFn 2006) and
dateOfEvent are not statistically independent—when
(YearFn 2006) occurs in an assertiodateOfEvent is more
likely to occur than it would otherwise be. Naivay®s
makes the incorrect assumption that they are inuispe
(which is precisely why it is called “naive”).

While SVMs greatly outperformed Naive Bayes with
shrinkage, the results for the Bayesian technigqaadirm
the hypothesis that data sparsity is a major diftficin this
problem, which can to some degree be overcome ing us
data found higher in the hierarchy. Thereforehitidd be
possible to improve the SVM performance in future
experiments by finding ways to reduce data sparsity

F1 Micro-Average vs. Macro-Average Evaluations
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Figure 4: F; micro-average and macro-average scores
for each of the three approaches taken. Comparative
quality of micro- and macro-averages are consistent
relative to one another across approaches.

Figure 4 shows the micro-average vs. macro-avefage
score for each approach. Micro-averagasFcomputed by
averaging over each assertion in the dataset. Macro
average F is computed by averaging over each
microtheory (category) in the dataset. Thus, maverage
scores are biased toward the classifier's perfoomamn
larger microtheories, while macro-average scores ar
relatively biased toward smaller microtheories. The
relative performance of the different approacheghis
same, regardless of the type of average being takeite

not surprising, this means that performance carbet
improved by simply using one algorithm for assignin
assertions into large microtheories and anotheorihgn

for small microtheories.

Every classifier tested had better performancdaoge
microtheories than on small microtheories. Thigdisbe
expected, since there are more positive trainiregrgtes
for larger microtheories. It is also desirable,csimew
assertions are more likely to go in the larger otloeories.

Future Work

The next step in this research is to evaluate thesthods
on different datasets. By trying them on the whGigc
microtheory hierarchy (rather than just a sub-tréevill
be possible to discover how well these approaches
generalize. If they generalize well, they can bpliad to
any task that involves microtheory placement. Ituldo
also be advantageous to test them on datasetssitail
those applications for which they will be most HelpAn
important application of this method will be to sd#y
facts gathered autonomously from the Internet arlkP.
Another important direction is to test more sopbéted
classification techniques. The SVM formulation tmese
experiments was a flat classifier, but there maysbme
way to improve performance by using hierarchical
methods, such as using a Pachinko machine approach.
We would also like to work to make the evaluation
function more informative. The results above eviaduan
assertion placement as either strictly correctnooiirect,
depending on whether the microtheory chosen wasevhe
the test assertion was located in the KB. A more
appropriate metric might give partial credit foagihg an
assertion just one level too high or too low in the
hierarchy; such a *“tree metric’ would give a better
indication of how far incorrectly labeled assertiowere
from the correct placement. It is also possible g@ne
placements were acceptable, but were counted aséat
because they disagreed with the microtheories railyi
assigned to them by the ontologists. Investigatihip
would involve having an ontologist examine the otitpf
the classifiers by hand and deciding if the answesse
“good enough.” Another study would involve having
multiple ontologists label data and comparing theier-
annotator agreement. Such a measure of the disagnte
between trained ontologists would help define apeup
bound on the performance of autonomous machine
learning techniques.



Finally, in this work we assume that all asserion
currently in the KB are in the correct Mt, and ubat
placement as training data. However, it is likdigittsome
of the 4.6 million assertions are misplaced in K& as
they were entered by many different people oveuraber
of years. The classification techniques introdugedhe
paper, once sufficiently accurate, could be usedhieck

the placement of existing assertions by sequentiall

excluding an assertion or group of assertions (ieave-
one-out testing”) and help produce a more condist8n

Conclusion

With precision and recall of 98%, we have showrt ihis
possible to use existing machine learning techrgioe
build a tool for automatically placing facts inteasoning
contexts in an ontology. Specifically, SVMs oveream
both the imbalance of positive and negative trgnin
examples and the extreme sparsity of the data deige
immediately usable results. We have argued why such
technique is necessary for automated ontology imgjldia
search and introspection. Finally, our experimemse
indicated that careful use of the microtheory highg has
great potential to improve performance over that dfat
classifier, providing a clear path toward potenfiature
improvements.
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