

In The 20th International FLAIRS Conference (FLAIRS), Key West, Florida, May 2007.

Autonomous Classification of Knowledge into an Ontology

Matthew E. Taylor, Cynthia Matuszek, Bryan Klimt, and Michael Witbrock

mtaylor@cs.utexas.edu
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188

{cynthia, bklimt, witbrock}@cyc.com
Cycorp, Inc.

3721 Executive Center Drive
Austin, TX 78731

Abstract
Ontologies are an increasingly important tool in knowledge
representation, as they allow large amounts of data to be
related in a logical fashion. Current research is concentrated
on automatically constructing ontologies, merging
ontologies with different structures, and optimal
mechanisms for ontology building; in this work we consider
the related, but distinct, problem of how to automatically
determine where to place new knowledge into an existing
ontology. Rather than relying on human knowledge
engineers to carefully classify knowledge, it is becoming
increasingly important for machine learning techniques to
automate such a task. Automation is particularly important
as the rate of ontology building via automatic knowledge
acquisition techniques increases. This paper compares three
well-established machine learning techniques and shows
that they can be applied successfully to this knowledge
placement task. Our methods are fully implemented and
tested in the Cyc knowledge base system.1

Introduction

Ontologies are an increasingly important tool in knowledge
representation, as they allow large amounts of data to be
related in a logical fashion. Current research has
concentrated on automatically constructing ontologies or
large bodies of formally represented knowledge (Fortuna et
al., 2005), merging ontologies with different structures
(Masters and Güngördü 2003), and optimal mechanisms
for ontology building (Witbrock et al., 2003). In this work
we consider the related, but distinct, problem of how to
automatically determine where to place new knowledge
into an existing ontology.
 As formally represented knowledge bases grow larger
and cover a greater range of domains, problems of internal
consistency and redundancy become significant (Lenat,
1998). As an example, the commonly heard statements
“Count Dracula was a vampire” and “vampires do not
exist” are contradictory, unless one is aware of the implicit
context shift. One statement is being made in a factual,
real-world sense, while the other occurs in a specific,
fictional context. These different contexts, which we refer

Copyright © 2007, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

to as reasoning contexts, have differing background
axioms that apply to assertions made in those contexts. An
ontology that has no mechanism for specifying the context
of the statements being made must either include
contextual information with each assertion, which rapidly
becomes unwieldy, or be forgiving of inconsistency.
 We demonstrate automatic placement of knowledge into
the Cyc system, an ontology-based system designed to
capture a significant fraction of human common sense—the
kind of background knowledge that human learning agents
can be assumed to have when presented with a task.2 The
Cyc knowledge base is a suitable target for two primary
reasons: it is large, both in number of assertions and in the
range of domains it contains; and it already contains a
concept of reasoning contexts, called microtheories,
suitable for classifying knowledge into.
 The Cyc knowledge base (KB) is made up of assertions,
formally represented facts of varying levels of complexity
(Matuszek et al., 2006), which are asserted into a hierarchy
of distinct reasoning contexts called microtheories (or
Mts). Microtheories serve several purposes. The primary
purpose is to allow each assertion to be correctly
contextualized along several dimensions, such as temporal
qualification or domain of discussion. From an engineering
perspective, making assertions in microtheories allows the
background assumptions that apply to a particular domain
to be stated only once, and makes it far easier to construct
a logically consistent knowledge base.
 Microtheories in Cyc are arranged hierarchically. Very
high-level microtheories capture information about broad
distinctions such as physical, temporal, and fictional
reasoning, and are then subdivided into progressively more
specific contexts. An assertion placed into a microtheory
must be true in the upward closure of that microtheory
(i.e., that microtheory and more general microtheories that
subsume it). Cyc currently contains about 4.6 million
assertions in 23,627 microtheories, which have an average
of approximately three microtheories directly below them
in the hierarchy.

2 Once common-sense knowledge is available in a format that can be
programmatically understood and reasoned over, learning tasks that rely
on that background knowledge, such as reading from a textbook, become
more feasible (Lenat, 1995).

Figure 1: The Cyc Knowledge Base Mt (Microtheory)
Hierarchy. A small number of very broad reasoning
contexts contain high-level, abstract knowlege, and
fan out into progressively more specific contexts.

Description of Task
Historically, all assertions have been added to Cyc by
ontologists, human knowledge engineers who are familiar
with the Mt structure and able to determine the appropriate
Mt placement (domain and level of generality) of that an
assertion. This is not ideal for several reasons. It is time-
consuming; choosing the right microtheory can easily take
several minutes for a trained ontologist who is familiar
with the Cyc ontology and experienced in how best to
organize knowledge for maximum utility. A technique able
to autonomously place knowledge into the KB therefore
has the potential to save an amount of time proportional to
the amount of knowledge being added.
 More importantly, with more automated ontology-
building techniques such as automated fact gathering from
the World Wide Web (Etzioni et al., 2004; Matuszek et al.,
2005; Shah et al., 2006), an important goal is to add
knowledge into contextualized knowledge bases quickly
and with little or no human interaction. It will become
infeasible to rely on trained ontologists to label all asserted
knowledge once knowledge systems begin generating their
own knowledge. The goal of this research, therefore, is to
create a classifier that is capable of placing novel
knowledge into a hierarchical ontology with both high
precision and recall.
 Having this automatic classification tool will improve
efficient ontology building in multiple ways. When the tool
is performing well, it helps make knowledge engineering
feasible for less sophisticated users. Automatic
classification would also be beneficial for technologies that
gather facts automatically or generate novel knowledge by
analysis of existing knowledge, such as finding implication
rules via ILP (Cabral et al., 2005). In this paper we
describe three possible techniques for developing such a
tool. These solutions use common statistical machine
learning techniques: Naïve Bayes (with and without
shrinkage) and Support Vector Machines (SVMs).
Experiments empirically demonstrate that automatically
determining the placement of facts within a microtheory
hierarchy is feasible and able to achieve precision and
recall rates of 98%.

Related Work

While classification in knowledge representation is a long-
standing area of research, most work has concentrated on
the placement of concepts into a hierarchy or ontology
(Schmolze and Lipkis 1983), rather than the placement of
entire axioms into a knowledge base. In this way,
classification of knowledge into a hierarchical ontology is
more similar to the classification of text documents into a
hierarchy of classes. Using statistical rather than semantic
methods in classification of documents is an approach with
much significant previous work (Joachims, 1998; Koller
and Sahami, 1997; McCallum et al., 1998). Text
classification tasks that involve categories arranged into a
semantic hierarchy in particular are relevant to this task.
 In one previous approach (McCallum et al., 1998), a
generative Bayesian model was used to predict the
classification of text documents into a hierarchy. In this
model, shrinkage is used to improve the performance of
the model on smaller classes by utilizing the structure of
the classes. The probability of placing a document in a
given class is based not only on the statistics for that
particular node in the class tree, but also on other nodes
above it in the tree, thus “shrinking” the maximum
likelihood estimate of a node towards that of its ancestors.
 Another approach to hierarchical text categorization is
the so-called “Pachinko machine” (Koller and Sahami,
1997). In this type of algorithm, decisions are made
starting at the root of the hierarchy, working down to the
leaves. For example, when classifying a cat into a
biological taxonomy, a “Pachinko Machine” classifier
could first consider “Is ‘Cat’ a plant, an animal, or
neither?” Deciding it is an animal, it could then consider
“Is ‘Cat’ a vertebrate, an invertebrate, or neither?” It
continues in this fashion until it classifies ‘Cat’ into a class
with no sub-nodes in the hierarchy.

It has been shown that, when using a single feature set
for every node in the hierarchy, a Bayesian pachinko
classifier would never perform better (or worse) than a flat
classifier that considers each node as an independent
category (Mitchell 1998). However, this proof does not
address the situation in which different features are utilized
at each node; thus a Pachinko machine could potentially
outperform a flat classifier if features were effectively
selected at different nodes. Such feature selection is,
however, potentially difficult to do well. As an example, is
the presence of the term Mammal useful for classifying
terms into the microtheory BiologyMt? Given knowledge of
the domain, it clearly is. However, most of the facts
asserted in BiologyMt do not mention Mammal, so some
statistical feature selection techniques may exclude it.
Finding an efficient feature selection algorithm for this
context is the topic of current research.
 The problem of placing assertions within an ontology is
significantly different from text classification in two main
ways. First, Cyc’s Mt structure is as deep as 50 levels in
some domains. Typically, corpora used in text
classification experiments are substantially shallower.
McCallum et al.’s implementation (1998) is only able to

Upper

Ontology

Core Theories

Domain-Specific Theories

Real World Factual Knowledge

handle class trees of depth two; even the largest hierarchies
used in text classification, such as the Yahoo! taxonomy
(Liu et al., 2005), are less than 10 levels deep.
 Second, and more important, the formula within any
individual assertion contains relatively little data. For
instance, an assertion using a binary predicate, such as (isa
Cat Mammal), contains only three terms, instead of having
an entire document’s worth of information. Relatively little
previous research has been done on classifying such sparse
data in hierarchical contexts.

Approach

In this section we detail the two machine learning methods
we use to learn appropriate placement for assertions in an
ontology, and describe the data set we use for both training
and testing.

Bayesian Model
The first formulation of a generative model to place
assertions into Cyc’s microtheory hierarchy is based on an
earlier Naïve Bayes implementation (McCallum et al.
1998), with two main differences. First, instead of allowing
placement only in leaves, we also allow assertions to be
placed in intermediate microtheories. Second, the Cyc
microtheory ontology is a directed graph, rather than a tree;
this requires that we break cycles in Cyc. To accomplish
this, our algorithm keeps track of which Mts have already
been processed and does not process the same microtheory
more than once.
 The sketch of our algorithm is as follows: Let there be N
assertions in the knowledge base. Each assertion is
composed of some number of atomic terms, and we denote
the kth term in assertion i as t(ai,k). Every Mt in the
ontology, where Mt j is denoted mj, is an eligible location
for every assertion. Our goal is to find the probability that
the ith assertion belongs in a particular Mt, j.
 To calculate such a probability, we assume that there is
some unknown model, θ, which accurately describes the
structure of the KB. Our goal is to calculate P(mj | ai ; θ)
for all assertions and all Mts. We initially assume that all
Mts have a prior probability equal to the number of
assertions in that Mt. We then use the number of times a
particular term occurs in each Mt to determine the
probability that t(aj,k) occurs in each Mt. After using

algebraic simplifications, we can show that the probability
of the ith assertion residing in the jth Mt is:

As an additional improvement, we also implement the
shrinkage procedure utilized by McCallum et al. To
accomplish this, the algorithm utilizes an iterated
expectation-maximization (EM) procedure. Full details are
presented in the original paper (McCallum et al. 1998).

Support Vector Machines
Support Vector Machines (SVMs) (Vapnik, 1995) are a
well-understood method of performing supervised,
discriminative machine learning, used for binary
classification tasks. An SVM implementation finds a
hyperplane in the feature space that will separate a pair of
classes by the widest margin. SVMs are known to perform
well in cases where the proportion of positive and negative
examples is highly unbalanced, such as with the leaves of
Cyc’s ontology. For a given Mt, the positive examples are
those assertions that are asserted in that microtheory. The
negative examples are all other assertions in the knowledge
base. SVMs also have a proven track record of dealing
with highly sparse data (Joachims 1999), a particularly
important feature when each assertion contains only a
handful of terms.

Using SVMs for multi-class classification has also been
studied (Crammer and Singer, 2001; Tsochantaridis et al.,
2004), although in less detail. One common approach is
building a “one-vs-rest” binary classifier for each node in
the hierarchy (Crammer and Singer, 2001). One
implementation of this is SVM-multiclass3, a freely
available multi-class SVM implementation based on
(Tsochantaridis et al., 2004) that handles sparse
classification. This approach uses a flat hierarchical
classification, discarding any information contained in the
hierarchical structure. Utilizing hierarchical information in
SVM classification is a current topic of research and
recently developed methods may improve performance by
utilizing the ontology inherent structure.

Data Set
In order to make our experiments tractable, we have
chosen one particular sub-area of the Cyc microtheory
hierarchy—specifically, the sub-tree rooted under the
CyclistsMt microtheory. The CyclistsMt microtheory
contains information about Cyc itself and the people who
work there, colloquially known as ‘Cyclists’. It is
reasonably well-populated with a good cross-section of
available terms and predicates, making it a good target for
our experiments. This microtheory contains 252 sub-
microtheories, containing a total of 145,706 assertions. The
average fan-out of the tree is 1.71 (in other words, the
average microtheory in this tree has 1.71 microtheories
directly under it in the tree). Microtheories which contain
only a very small number of assertions were excluded from
initial experiments, leaving approximately 30
microtheories into which over 32,000 assertions could be
classified.
 This work also excludes microtheories that contain a
time dimension, i.e. temporal microtheories. Temporal
microtheories are those that contain assertions that hold
true only within a certain time constraint. For example, the
assertion (isa RonaldReagan UnitedStatesPresident) is true
only in the intersection of PeopleDataMt (the microtheory

3 http://svmlight.joachims.org/

);|),(()|(

);|),(()|(
);|(

||
1

||

1

||
1

θθ
θθ

θ
ri

a
k

Mts

r r

ji
a
kj

ij
mkatPmP

mkatPmP
amP

i

i

==

=

Π

Π
=
∑

||

||

predicted

predictedcorrect
p

∩=

||

||

correct

predictedcorrect
r

∩=

rp

rp
F

+
××= 2

1

Assertion Count per Microtheory (under CyclistsMt)

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Microtheory Index

A
ss

er
tio

n
C

ou
nt

Micro-Average Evaluations

0.8

0.85

0.9

0.95

1

Precision Recall F1

Naïve Bayes Naïve Bayes w/ Shrinkage SVM

containing data about famous people) and the temporal
microtheory:

(TimeIntervalInclusiveFn

 (HourFn 12 (DayFn 20 (MonthFn January

 (YearFn 1981))))

 (HourFn 11 (DayFn 20 (MonthFn January

 (YearFn 1989)))))

The time period from January 20, 1981 to January 20, 1989

Since temporal microtheories are very specific to
individual assertions, it would be difficult to assign them
using statistical learning algorithms; PeopleDataMt and the
temporal microtheory shown contain very similar
knowledge, and will likely require specialized knowledge
to place information appropriately. We believe this is an
appropriate initial simplification, as the majority of
knowledge we wish to place into an ontology can probably
be pre-filtered so that it contains only general, atemporal
knowledge.

Figure 2: A logarithmic histogram of the distributi on
of assertions in atemporal microtheories under the
CyclistsMt sub-tree used for this experiment.

The sub-tree rooted under CyclistsMt contains roughly 1%
of the total number of assertions in the knowledge base and
1.07% of the microtheories. This subset is small enough to
make our experiments feasible while still containing more
data than a human could readily process. Furthermore, the
distribution of assertions across these microtheories is
roughly exponential, as is the distribution of knowledge in
the KB as a whole.
 As input to our classifiers we index all terms so that
each assertion’s formula is a list of term indices. Each
unique atomic term, including strings and numbers, is
transformed into a fixed numerical index. This ignores any
structural information within an assertion (particularly
noticeable in the case of the “not” term) and takes what
amounts to a “bag of words” approach. Thus the formulae

(isa MattTaylor GraduateStudent)

(owns Dog MattTaylor 1)

will be represented as the vectors:

(25 570 400)

(40 823 570 429)

where all unmentioned terms are assumed to be absent
from the assertions.
 To evaluate our performance over the dataset, we
divided the assertions randomly into 10 groups. For each
group, the assertions in that group were used as a test set,
and the remaining 9 groups of assertions were used as a
training set. This standard statistical evaluation procedure,
known as 10-fold cross-validation, works well for these
experiments because the number of training data instances
heavily outweighs the number of testing instances, as is the
case in actual use of the microtheory placement suggestion
tool. In each fold, the training set’s assertions are labeled
with the Mt in which they appear in the KB (i.e., the
“correct” placement), and the test set’s assertions are not
labeled. The placement of the assertion by the SVM is then
compared to the actual Mt in which it appears in the KB.

Results

Figure 3 shows the results of our experiments on the
CyclistsMt sub-tree dataset. Precision (p), recall (r), and F1
are standard evaluation metrics for classification tasks:

Precision, recall, and
F1, defined in terms
of the classification
selected as compared
to the actual Mt
placement of an
assertion. In F1,
precision and recall
are weighted equally,
as both are relevant
in this domain.

Precision and recall are based on the number of assertions
for which an Mt was predicted and the number of
assertions that were predicted correctly. F1 is the harmonic
mean of recall and precision; in order to achieve a high F1
score the classifier must achieve both high precision and
high recall.

Figure 3: Precision, recall, and F1 using Naïve Bayes,
Naïve Bayes with shrinkage, and SVM classification.

F1 Micro-Average vs. Macro-Average Evaluations

0.4

0.5

0.6

0.7

0.8

0.9

1

Naïve Bayes Naïve Bayes w/
Shrinkage

SVM

Micro-ave F1 Macro-ave F1

The micro-average is not improved by using shrinkage,
possibly because shrinkage allows less likely Mts (those
with very few assertions) to have a relatively high weight.
 Using shrinkage to take advantage of the microtheory
hierarchy provides a significant benefit over using standard
Naïve Bayes for the macro-average (see Figure 4); this is
to be expected, given the extreme sparsity of the data. Each
assertion contains only a few features and being able to use
data from parent microtheories greatly improves the
classifier’s ability to generalize. This is of particular
benefit in very specific microtheories that contain few
assertions (i.e. positive training examples).

SVMs performed even better in our experiments. This is
probably an indication of the same strengths that SVMs
usually show over Naïve Bayes in text categorization
experiments: SVMs can better deal with imbalance in
positive and negative training examples. Because of the
nature of the SVM algorithm, only the support vectors are
used in determining class membership. Any positive or
negative training examples that fall outside the margin
created by the vectors are ignored. Naïve Bayes, on the
other hand, includes prior probability in its calculations,
which means the more negative training examples there
are, the lower the score for the microtheory. Another
strength is that Support Vector Machines do not make
assumptions about feature independence within feature
vectors. For example, the terms (YearFn 2006) and
dateOfEvent are not statistically independent—when
(YearFn 2006) occurs in an assertion, dateOfEvent is more
likely to occur than it would otherwise be. Naïve Bayes
makes the incorrect assumption that they are independent
(which is precisely why it is called “naïve”).
 While SVMs greatly outperformed Naïve Bayes with
shrinkage, the results for the Bayesian techniques confirm
the hypothesis that data sparsity is a major difficulty in this
problem, which can to some degree be overcome by using
data found higher in the hierarchy. Therefore, it should be
possible to improve the SVM performance in future
experiments by finding ways to reduce data sparsity.

Figure 4: F1 micro-average and macro-average scores
for each of the three approaches taken. Comparative
quality of micro- and macro-averages are consistent
relative to one another across approaches.

Figure 4 shows the micro-average vs. macro-average F1
score for each approach. Micro-average F1 is computed by
averaging over each assertion in the dataset. Macro-
average F1 is computed by averaging over each
microtheory (category) in the dataset. Thus, micro-average
scores are biased toward the classifier’s performance on
larger microtheories, while macro-average scores are
relatively biased toward smaller microtheories. The
relative performance of the different approaches is the
same, regardless of the type of average being taken; while
not surprising, this means that performance cannot be
improved by simply using one algorithm for assigning
assertions into large microtheories and another algorithm
for small microtheories.
 Every classifier tested had better performance on large
microtheories than on small microtheories. This is to be
expected, since there are more positive training examples
for larger microtheories. It is also desirable, since new
assertions are more likely to go in the larger microtheories.

Future Work

The next step in this research is to evaluate these methods
on different datasets. By trying them on the whole Cyc
microtheory hierarchy (rather than just a sub-tree), it will
be possible to discover how well these approaches
generalize. If they generalize well, they can be applied to
any task that involves microtheory placement. It would
also be advantageous to test them on datasets similar to
those applications for which they will be most helpful. An
important application of this method will be to classify
facts gathered autonomously from the Internet or via ILP.
Another important direction is to test more sophisticated
classification techniques. The SVM formulation in these
experiments was a flat classifier, but there may be some
way to improve performance by using hierarchical
methods, such as using a Pachinko machine approach.
 We would also like to work to make the evaluation
function more informative. The results above evaluate an
assertion placement as either strictly correct or incorrect,
depending on whether the microtheory chosen was where
the test assertion was located in the KB. A more
appropriate metric might give partial credit for placing an
assertion just one level too high or too low in the
hierarchy; such a “tree metric” would give a better
indication of how far incorrectly labeled assertions were
from the correct placement. It is also possible that some
placements were acceptable, but were counted as incorrect
because they disagreed with the microtheories originally
assigned to them by the ontologists. Investigating this
would involve having an ontologist examine the output of
the classifiers by hand and deciding if the answers were
“good enough.” Another study would involve having
multiple ontologists label data and comparing their inter-
annotator agreement. Such a measure of the disagreement
between trained ontologists would help define an upper
bound on the performance of autonomous machine
learning techniques.

 Finally, in this work we assume that all assertions
currently in the KB are in the correct Mt, and use that
placement as training data. However, it is likely that some
of the 4.6 million assertions are misplaced in the KB, as
they were entered by many different people over a number
of years. The classification techniques introduced in the
paper, once sufficiently accurate, could be used to check
the placement of existing assertions by sequentially
excluding an assertion or group of assertions (i.e. “leave-
one-out testing”) and help produce a more consistent KB.

Conclusion

With precision and recall of 98%, we have shown that it is
possible to use existing machine learning techniques to
build a tool for automatically placing facts into reasoning
contexts in an ontology. Specifically, SVMs overcame
both the imbalance of positive and negative training
examples and the extreme sparsity of the data to provide
immediately usable results. We have argued why such a
technique is necessary for automated ontology building via
search and introspection. Finally, our experiments have
indicated that careful use of the microtheory hierarchy has
great potential to improve performance over that of a flat
classifier, providing a clear path toward potential future
improvements.

Acknowledgements

This research was supported by Cycorp, Inc.

References

Cabral, J., Kahlert, R.C., Matuszek, C., Witbrock, M.,
Summers, B. Converting Semantic Meta-Knowledge into
Inductive Bias. In Proceedings of the 15th International
Conference on Inductive Logic Programming, Bonn,
Germany. 2005.

Crammer, K. and Singer, Y. On the Algorithmic
Implementation of Multi-class SVMs, JMLR, 2001.

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A-
M., Shaked, T., Soderland, S., Weld, D.S., Yates, A. Web-
Scale Information Extraction in KnowItAll (Preliminary
Results). WWW 2004, pp. 100-110, 2004.

Fortuna, B., Mladenic, D., Grobelnik, M. Semi-automatic
construction of topic ontology. In Proceedings of the 16th
European Conference on Machine Learning, 2005.

Joachims, T. Text categorization with Support Vector
Machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on Machine
Learning, pp. 137-142, 1998.

Joachims, T. Making Large-Scale SVM Learning Practical.
Advances in Kernel Methods – Support Vector Learning, B.
Schölkopf, C. Burges, and A. Smola (ed.), MIT Press, 1999.

Koller, D. and Sahami, M. 1997. Hierarchically classifying
documents using very few words. In Proceedings of the 14th
International Conference on Machine Learning, 1997.

Lenat, D.B. The Dimensions of Context-Space. From
http://www.cyc.com/doc/context-space.pdf, 1998.

Lenat, D.B. Cyc: A Large-Scale Investment in Knowledge
Infrastructure, CACM 38, no. 11. 1995.

Liu, T., Yang, Y., Wan, H., Zhou, Q., Gao, B., Zeng, H.,
Chen, Z., Ma, W. 2005. An Experimental Study on Large-
Scale Web Categorization, WWW 2005.

Masters, J. and Güngördü, Z. Structured Knowledge Source
Integration: A Progress Report. In Integration of Knowledge
Intensive Multiagent Systems, Cambridge, MA, 2003.

Matuszek, C., Witbrock, M., Kahlert, R.C., Cabral, J.,
Schneider, D., Shah, P., Lenat, D.B. Searching for Common
Sense: Populating Cyc from the Web. In Proceedings of the
20th National Conference on Artificial Intelligence,
Pittsburgh, PA. 2005.

Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J. An
Introduction to the Syntax and Content of Cyc. In
Proceedings of the 2006 AAAI Spring Symposium on
Formalizing and Compiling Background Knowledge and Its
Applications to Knowledge Representation and Question
Answering, Stanford, CA, 2006.

McCallum, A., Rosenfeld, R., Mitchell, T., Ng, A.Y.
Improving Text Classification by Shrinkage in a Hierarchy of
Classes. In Proceedings of the 15th International Conference
on Machine Learning, pp. 359-367, 1998.

Mitchell, T. Conditions for the equivalence of hierarchical
and non-hierarchical Bayesian classifiers. Technical report,
CALD, CMU. 1998.

Schmolze, J., and Lipkis, T. Classification in the KL-ONE
Knowledge Representation. In Proceedings of the 8th
International Joint Conference on Artificial Intelligence, pp.
330-332, 1983.

Shah, P., Schneider, D., Matuszek, C., Kahlert, R.C., Aldag,
B., Baxter, D., Cabral, J., Witbrock, M., Curtis, J. Automated
Population of Cyc: Extracting Information about Named-
entities from the Web. In Proceedings of the 19th
International FLAIRS Conference, pp. 153-158, Melbourne
Beach, FL. 2006.

Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.
Support Vector Learning for Interdependent and Structured
Output Spaces, in Proceedings of the International
Conference on Machine Learning, 2004.

Vapnik, V.N. The Nature of Statistical Learning Theory.
Springer, 1995.

Witbrock, M., Baxter, D., Curtis, J., et al. An Interactive
Dialogue System for Knowledge Acquisition in Cyc. In
Proceedings of the 18th International Joint Conference on
Artificial Intelligence, Acapulco, Mexico. 2003.

