

APPROVAL SHEET

Title of Thesis: User Interaction Framework for TABEL, a domain
independent framework for Inferring Semantics of Tables.

Name of Candidate: Ratnadeep Gajanan Mangalvedhekar
 Master of Science, 2016

Thesis and Abstract Approved: _______________________________________
 Dr. Tim Finin

 Professor
Department of Computer Science and Electrical
Engineering

Date Approved: ___________________

ABSTRACT

Title of the document: User Interaction Framework for TABEL, a domain
independent framework for Inferring Semantics of Tables.

 Ratnadeep Gajanan Mangalvedhekar, M. S., 2016

Directed by: Professor Dr. Tim Finin

Department of Computer Science and Electrical Engineering

Data, structured in tabular form is omnipresent through all communication,

research and analysis. Tables appear in print media, handwritten notes, computer

software, white papers, architectural enhancement, and on the Web. Although the

Web offers millions of tables, their interpretation is rarely evident to machines from

the table itself. A novel way of automatically inferring the intended meaning of tables

and representing it as RDF (Resource Description Framework) linked data has been

implemented previously, but without user involvement through the process of

interpretation. In this work we describe a user feedback framework to enable user

involvement through the process of interpretation. We describe the design and

implementation of a User Interaction Model, which allows the user to interact with

the aforementioned system as a web service. The UI permits users to view and

modify the system-generated interpretations for column headers and cell values and

provide feedback if it is incorrect. We include a usability evaluation of the user

interaction model to illustrate the effectiveness of the proposed model and

subsequently discuss its role in improving the quality of the generated interpretations

and in eliminating occasional misinterpretations.

USER INTERACTION FRAMEWORK FOR TABEL, A DOMAIN
INDEPENDENT FRAMEWORK FOR INFERRING SEMANTICS OF TABLES

By
Ratnadeep Gajanan Mangalvedhekar

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of
Master of Science

2016

© Copyright by
Ratnadeep Gajanan Mangalvedhekar

2016

Table of Contents

Table of Contents ... i

List of Figures .. iii

List of Illustrations ... iv

Introduction ... 1
Tables on the Web ... 1
Inferring semantics of a Table ... 1
Motivation ... 3
Contributions ... 5

Related Work .. 7
Karma .. 7
Haystack .. 8
mSpace ... 9

System Architecture .. 10
Monolithic Architecture .. 10
Motivation for using REST ... 11
RESTful Architecture .. 12
Data Interchange format .. 13
Query and Rank resource .. 16
Joint Inference resource ... 17
Search on knowledge base ... 19
Query Openlink VIRTUOSO SPARQL endpoint ... 22

User Interaction Framework ... 25
Representation of Input ... 25
Representation of Output ... 26
User Interaction Scenarios ... 28
Preprocessing ... 30
Candidate selection for Column Header and Cell value 31
Candidate Definition .. 33
Search Knowledge Base .. 35
Participants .. 38
Usability Metrics ... 39
Tasks .. 40
Results ... 41

Conclusion .. 46

Future Work .. 48

 ii

References ... 50

 iii

List of Figures

Fig.1 - Monolithic TABEL architecture………………………………...……….......18

Fig. 2 - RESTful architecture for TABEL resources…………………...……………21

Fig. 3 - Sequence diagram for query-and-rank…………………………...………….25

Fig. 4 - Sequence diagram for joint-inference ………………………...………...…..26

Fig. 5 - Query knowledge base sequence diagram ...………………………………..28

Fig. 6 - Lucene query executes on the server to return a list of ‘n’ candidate….……28

Fig. 7 - Openlink VIRTUOSO endpoint query sequence diagram…………………..31

Fig. 8 - Representation of the Input table……………………………...………….....34

Fig. 9 - Representation of the Output Table...………………………………….........36

Fig. 10 - Individual Components of the User Interaction Model………………….....37

Fig. 11 - User interaction scenarios………………………...………………………..39

Fig. 19 - Outline of the usability evaluation process………………………………...59

Fig. 20 - User Interview Questionnaire……………………………………………....61

 iv

List of Illustrations

Fig. 12 - An illustration demonstrating the process of selecting a subset of the

table…………………………………………………………………………………..38

Fig. 13 - An illustration demonstrating omission of unwanted/inconsequential

columns…..39

Fig. 14 - An illustration demonstrating the process of selection of a candidate for

Column header from a list of annotation...…………………………………………..40

Fig. 15 - An illustration demonstrating the process of selection of a candidate from a

list of annotations for cell value………………….…………………………………..41

Fig. 16 - An illustration showing a popover for Definition/Comment obtained from

VIRTUOSO SPARQL query endpoint …………………………...………………....42

Fig. 17 - An illustration demonstrating the process of querying VIRTUOSO for a

description for the entity (Alan Turing) in question…………………………………43

Fig. 18 - An illustration demonstration the process of search for a specific candidate

from the underlying knowledge base and adding it to list of candidates.……………45

 1

Introduction

Tables on the Web

Today, the World Wide Web has become the a primary source of knowledge and

information in the last two decades, replacing traditional encyclopedias and reference books.

Although, most pages are primary text is written in a narrative form such as news stories,

blogs, reports, etc., significant amounts of information is also encoded in structured forms

such as tables embedded in pages and documents. One estimate suggests that the Web

contains over 150 million high quality relational html tables (Cafarella et al. 2008). Tables

are prevalent throughout research activities, analysis of data and documentations. Context of

the data drives the nomenclature for defining tables. Further, they differ in type, form,

flexibility, annotation, depiction and use. Tables are also a key tool in outlining important

data and results in documents.

However, current available text processing systems do not work well for tables.

Tables lack the grammatical context from the adjoining text. Regular text processing systems

rely on this context to infer the meaning of set of words. The concise nature of table, which

enables easy absorption of information for humans, renders it difficult for the machine to

understand.

Inferring semantics of a Table

Preliminary research in the area of processing focused mainly on developing novel

ways of extraction of tables from documents and web pages (Hurst 2006; Embley, Lopresti,

 2

& Nagy 2006) with more recent research attempting to interpret their semantics. Existing

work in table interpretation either partially infer the semantics (Venetis et al. 2011; Wang et

al. 2012) based on what application is built on top or only focus on a particular domain such

as the Web (Limaye, Sarawagi, & Chakrabarti 2010). TABEL, is a domain independent and

extensible framework for inferring the semantics of tables and representing it as RDF Linked

Data (Mulvad, Finin & Joshi 2013).

The following phases play a vital role in inferring the semantics of tables -

1. Preprocessing Phase - Input table first goes through a preprocessing phase which

includes modules to handle a number of pragmatic issues such as acronym

recognizing and expanding acronyms, stylized literal values, recognizing commonly

encoded data such as addresses, telephone numbers, zip codes, etc.

2. Query and Rank Phase - The table is then processed by the Query and Rank module

which queries background Linked Data sources to generate an initial ranked lists of

candidate assignments for headers, data cells and relations between headers. The

system uses Linked Data sources or knowledge bases for generating candidates. The

knowledge bases can be adapted and changed based on the domain of the table.

3. Joint Inference - Once candidate assignments are generated, the joint inference

module simultaneously infers the semantics of headers, data cells and relations

between headers by representing a table as a probabilistic graphical model to capture

correlation between subparts of a table and performing inference over the model.

After the semantics are inferred, RDF Linked Data triples are generated.

 3

A set of possible human intervention scenarios, “human in the loop”, in each of the

above phases is described in TABEL and a brief account of the possible consequences of

such an intervention is also provided. This provides us with the foundational requirement to

design and develop a user interaction model, which is discussed in the subsequent sections of

this document.

Motivation

Today, many areas are in demand of sophisticated user interaction models and

visualization techniques, and applications based on Semantic Web are not an exception. As

size and complexity of Ontologies and Linked Data in the Semantic Web constantly grow, so

does the number of users from diverse backgrounds and application areas. Providing users

with an intuitive user experience can significantly aid the understanding of the domains and

knowledge represented by ontologies and Linked Data. There is no one-size-fits-all solution

and different use cases demand different interaction models and visualization techniques.

Ultimately, providing better user interaction models and visual representations will nurture

user engagement and eventually lead to higher quality results in different applications

employing ontologies and to the proliferation of Linked Data usage.

As ontologies grow in size and complexity, the demand for comprehensive

visualization and user interaction framework also rises. In particular, user interfaces are an

integral part of ontology engineering, to help bridge the gap between domain experts and

ontology engineers. Ontology visualization is not a new topic and a number of approaches

have become available in recent years, with some being already well-established, particularly

in the field of ontology modeling. In other areas of ontology engineering, such as ontology

alignment and debugging, although several tools have recently been developed, few provide a

 4

graphical user interface, not to mention navigational aids or comprehensive visualization

techniques.

Ontology engineers usually possess domain and knowledge representation expertise

necessary to deal with the complex abstract concepts of large-scale ontologies. This is not

necessarily the case with potential consumers of applications built around the core concept of

Linked Data. They usually can come from extremely diverse backgrounds and have varying

levels of expertise. Since “Semantic Web” is in early stages of adoption, currently, the main

Linked Data consumers are technology-experienced users, especially from the research

community. One of the main reasons for the lack of mainstream adoption is the absence of

sophisticated user interaction models and visualizations techniques that are needed to assist

various kinds of users, who pursue diverse goals and pose individual requirements. In the

presence of a huge network of interconnected resources, one of the challenges faced by the

Linked Data community is the visualization of the multidimensional datasets to provide for

efficient overview, exploration and querying tasks, to mention just a few. With the focus

shifting from a Web of Documents to a Web of Data, changes in the interaction paradigms

are in demand as well. Novel approaches also need to take into consideration the

technological challenges and opportunities given by new interaction contexts, ranging from

mobile and touch interaction to visualizations on large displays, and encompassing highly

responsive web applications.

It can be argued that, although the semantic web has been developed for an automated

environment (machine based), eventually humans are its final intended consumers. Therefore,

critical aspects of such a user interaction models are

1. They should be capable of making all the richness of the underlying data models

available to the end user at the interaction level, with minimum constraints.

 5

2. Such interfaces, built to drive user interaction, should be flexible enough to offer to

users different ways of interacting with their data and this flexibility should not be at

the cost of user’s cognitive burden.

In following chapters, we present one such user interaction model with allows the user to

interact with TABEL (A domain independent and Extensible Framework for inferring

semantics of Tables) as it disambiguates an input table by utilizing the underlying Linked

Data.

Contributions

In this thesis we present a generic, web based user interaction model developed with

the objective of enabling “Human in the loop” paradigm proposed in TABEL. To the best of

our knowledge, we are the first to propose such a user interaction model for TABEL.

Features -

1. The user interaction model provides a feedback framework enabling users to guide

the system (TABEL) as it attempts to infer the semantics. We also discuss the

changes/enhancements made to the existing TABEL architecture enabling it to

support the development of this user interaction model.

1. This feedback framework allows the users to interact with the system during the

following phases

a. During the preprocessing phase

b. Before the inference phase, during the query and rank phase

c. During the inference phase, after each iteration of the semantic message

passing

 6

d. after the inference phase

1. The user is provided with the ability to query underlying Linked Data Knowledge

Base used by TABEL during the inference in-order to replace/correct any erroneous

assignments.

2. The model also provides the users with the ability to view the definition entities by

executing SPARQL queries over HTTP against the dbpedia Virtuoso SPARQL query

endpoint.

Finally, we conclude by providing a detailed usability evaluation of the proposed system.

We carry out the evaluation by observing participants interact with the system and gathering

subjective input from the participants through interviews, surveys and feedback.

 7

Related Work

Underlying goal of any semantic web based application is to make the web more

usable for its users to facilitate their primary activities of information retrieval, information

management, and information presentation. User interfaces, through which users gain access

to semantic information, is a key in achieving this goal. In order to take advantage of the

added structure and semantics to the content, we need extended user interaction experience

through innovative user interfaces.

Several attempts have been made to implement a viable user interaction model on

semantic web applications. Various tools and applications have been developed to assist users

create, manipulate, retrieve, present, organize, and manage semantic information. These tools

are mainly designed to aid content creators create semantic information through different

design activities like designing or visualizing ontologies, creating RDF files for resources,

searching semantic data [Swoogle], and creating semantic metadata. On the other hand

applications, leveraging the power of semantic web, are focused towards helping users

perform activities such as information retrieval and management. Applications that fall into

this category are mainly, Karma, Haystack, mSpace, Gnowsis, Fenfire, etc.

Karma

Karma (Knoblock et al. 2012; Szekely et al. 2013; Knoblock et al. 2013) is an

information integration tool that enables users to quickly and easily integrate data from a

variety of data sources including databases, spreadsheets, delimited text files, XML, JSON,

KML and Web APIs. Users integrate information by modeling it according to an ontology of

 8

their choice using a graphical user interface that automates much of the process. Karma learns

to recognize the mapping of data to ontology classes and then uses the ontology to propose a

model that ties together these classes. Users then interact with the system to adjust the

automatically generated model. During this process, users can transform the data as needed to

normalize data expressed in different formats and to restructure it. Once the model is

complete, users can published the integrated data as RDF or store it in a database.

Haystack

Haystack seeks to apply semantic web technologies to personal information

management. It allows individuals to manage their information in the ways that makes the

most sense to them. Haystack exhibits three novel functionalities to facilitate users in their

information management tasks.

1. It incorporates and exposes all types of information in a single, coherent manner. It

provides a single, uniform interface for viewing and organizing of e-mail, instant

messages, contact information, web pages, documents, news, music, images, blog

feeds, etc.

2. In haystack every entity whether it is a simple text in an email message or an email

message itself is considered as information object. Any of these information objects

can be right clicked for its context menu, allowing immediate access to all the

operations that make sense for that object. The interface also lets users define their

own information objects to incorporate any non-standard types of information. Users

can readily define attributes of these new objects that help them categorize and

retrieve information, and add new relationships to objects. An information object or

 9

operation can also be downloaded from outside applications that will be immediately

available to use.

3. Haystack gives users flexibility to modify standard as well as user defined

information objects irrespective of its type and application it belongs to.

mSpace

mSpace is a semantic web application developed at School of Electronics and

Computer Science (ECS) at the University of Southampton to facilitate information access,

browsing, and organization given that the user has limited domain knowledge. This is

achieved through exploring various relationships in information through semantic web

technologies, and allowing users to manipulate information categorization to suit their

interests. Researchers have developed a beta version, called mSpace classical music browser,

to access and browse music information, but the framework can also be applied to any type of

information.

 10

System Architecture

Monolithic Architecture

In the baseline implementation of TABEL, the input table goes through a series of

modules sequentially, providing very little or no scope for user interaction as shown in the

figure below. This essentially limits our ability to develop a user interaction model to

implement the “human in the loop” paradigm proposed by in the TABEL literature.

Fig. 1 - Monolithic TABEL architecture

It supports user interactions at the following phases :

1. During the input phase, when the user inputs the table to be processed

2. After the entire process of disambiguation ends, when the user can inspect the results

generated by the system.

 11

To overcome these limitations, we design a REST based architecture, which allows

us to create the necessary resources to enable the user interaction throughout the course of

generating the semantics. Each of the TABEL algorithms, like query-and-rank, and joint-

inference are developed into REST based resources accessible over HTTP. In order to further

simplify the interaction between the user interaction model and the RESTful web-services,

we have designed and developed a JSON based custom data interchange object.

Motivation for using REST

One of the most important REST principles for Web applications is for interaction

between the client and server to be stateless. Each request from the client to the server must

contain all of the information necessary to understand the request. The client wouldn't notice

if the server were to be restarted at any point between the requests. Additionally, stateless

requests are free to be answered by any available server, which is appropriate for an

environment such as cloud computing. In addition to this, the client has the ability to cache

the data to improve performance.

On the server side, the application state and functionality are divided into multiple

resources. A resource is usually item of interest, a conceptual identity that is exposed to the

clients. In our case, include application objects, database records, algorithms, and so on. All

resources share a uniform interface for the transfer of state between client and server, using

standard HTTP methods such as GET, PUT, POST, and DELETE. We primary use POST for

processing and GET for querying resources. Hypermedia is the engine of the application

state, and resource representations are interconnected by hyperlinks.

 12

Another important REST principle, guiding our design design, is the layered system,

which means a component cannot see beyond the immediate layer with which it is

interacting. By restricting knowledge of the system to a single layer, a boundary is placed on

the overall system complexity, promoting substrate independence.

We focus on the application of RESTful architectural constraints to our overall

design, enabling it to scale well to a large number of clients. It also reduces interaction

latency between clients and servers, which is essential to provide users with a desirable

experience. The uniform interface, as described in the next sections, simplifies the overall

system architecture and improves the visibility of the interactions between subsystems.

In the subsequent sections, we describe the creation of a layered system for TABEL,

where the core functionality is operationally split into multiple resources and is made

accessible over HTTP. We also describe a custom data interchange format developed to

support the interaction between client and server.

RESTful Architecture

In this section, we describe the RESTful architecture design for TABEL, enabling the

creation of a user interaction model. As shown the figure below, the core components of our

architecture are -

1. Query and Rank resource

2. Joint Inference resource

3. Knowledge Base search resource

4. Definition resource

5. Knowledge base

 13

6. Supporting Database

7. Openlink VIRTUOSO SPARQL query service

The query-and-rank resource, joint-inference resource, search-knowledge-base resource

and the definition resource are deployed independently as their respective, self-contained

resource units accessible over HTTP. These components provide the core functional elements

required by the system to infer the semantics of the table.

Fig. 2 - RESTful architecture for TABEL resources

Data Interchange format

We design a single, custom JSON based data interchange format to represent the

input and the output table. The table is made up of column-header-objects and cell-value-

objects as shown below:

 14

Table Object

{
"column-headers":
[{"column-header-object"},
{"column-header-object"},...,
{"column-header-object"}],

"cell-values":[
[{"cell-value-object"},
{"cell-value-object"},...,
{"cell-value-object"}],
[{"cell-value-object"},
{"cell-value-object"},...,
{"cell-value-object"}],
 .
 .
 .
[{"cell-value-object"},
{"cell-value-object"},...,
{"cell-value-object"}]]
}

Column Header Object

{
 "input":"",
 "current":"",
 "candidates":[],
 "dbpedia-top":"",
 "yago-top":"",
 "annotations-dbpedia":[],
 "annotations-yago":[]
}

Each column-header-object is made of the following data members -

1. input - This is the initial value of the column header from the input phase.

2. current - This is the current value assigned to the column header by a user operation.

3. candidates - This is the list of n candidates generated by the query-and-rank resource.

 15

4. dbpedia-top - This is the most relevant annotation for the current column header from

the dbpedia knowledge base as generated by each iteration of joint-inference

resource.

5. yago-top - This is the most relevant annotation for the current column header from

the yago knowledge base as generated by each iteration of joint-inference resource.

6. annotations-dbpedia - This is a list of other relevant annotations from dbpedia,

generated by the joint-inference resource and ordered according to their relevance.

7. annotations-yago - This is a list of other relevant annotations from yago, generated by

the joint-inference resource and ordered according to their relevance.

Cell Value Object

{
 "input":"",
 "current":"",
 "candidates":[],
 "annotation-top":"",
 "redirects":[],
 "annotations":[]
}

Each column-header-object is made of the following data members -

1. input - This is the initial value of the column header from the input phase.

2. current - This is the current value assigned to the column header by a user operation.

3. candidates - This is the list of n candidates generated by the query-and-rank resource.

 16

4. annotation-top - This is the most relevant annotation for the current cell value from

the knowledge base as generated by each iteration of joint-inference resource.

5. annotations - This is a list of other relevant annotations for the current cell value, as

generated by the joint-inference resource and ordered according to their relevance.

8. annotations-yago - This is a list of other relevant annotations from yago, generated by

the joint-inference resource and ordered according to their relevance.

Query and Rank resource

The Query and Rank module generates an initial set of candidate assignments

for column headers and data cells using appropriate underlying Knowledge Base (KB). The

KB used here depends on the domain of the table. In the current implementation we use

Wikitology, a hybrid KB as our underlying KB as it provides excellent coverage for general

purpose topics such as places, organizations, music, movies, politics, and sports. These can be

complemented or replaced with domain specific ones; for example SNOMED CT and UMLS

can be used as a compliment or replacement in the case of medical tables.

This web-service is designed to accept the table to be processed as the input and

return an initial ranked list of candidate assignments for headers, data cells and relations

between headers. The system generates this list by querying the background Linked Data

sources. This gives the user the ability to select a specific candidate.

 17

Fig. 3 - Sequence diagram for query-and-rank

Resource URL

http://tabel.localhost:8080/query-and-rank

Resource Information

Response Format : JSON

Parameters

table (required) : Input table in the custom JSON format described in the previous section in

this chapter.

Joint Inference resource

 18

This web-service is designed to accept the output of the previous query and rank

module, with or without user inputs. The joint inference module simultaneously infers the

semantics of headers, and data cells by representing a table as a probabilistic graphical model

to capture correlation between sub–parts of a table and performing inference over the model.

Fig. 4 - Sequence diagram for joint-inference

Resource URL

http://tabel.localhost:8080/joint-inference

Resource Information

Response Format : JSON

Parameters

• table-with-candidates (required) : Table with candidates generated from the

query-and-rank phase with or without any user modification/reassignments

 19

In addition to the core web services, the system also supports to two additional web-services

1. Search on knowledge base

2. Query Openlink VIRTUOSO SPARQL endpoint

Search on knowledge base

This web-service is designed to accept a user entered search query and returns a list

of candidates matching the user input. This list of candidates is ordered based on their

relevance to the user input. Idea this resource should be capable of querying any underlying

knowledge base, but for the purpose of this thesis, it is designed to work over the Wikitology

index already available with the initial implementation of TABEL.

The user can access the search utility within the candidates dropdown for all the

column headers and cell values. A detailed illustration of this is provided in the next chapter.

As the user begins entering the query string, a HTTP GET call is initialed with each

keystroke, narrowing down the results with each subsequent entry. The other parameters of

this query are column header, and the values of other cells in the same row. On the server this

translates into a lucene query that is described in the figure below, and the sequence of events

are shown the following sequence diagram.

 20

Fig. 5 - query knowledge base sequence diagram

Input:
queryString: {Baltimore}
rowData: {MD, S.C.Rawlings-Blake, 640,000}
headerString: {City}

Query :

wikiTitle : {Baltimore} or
redirects : {Baltimore} or
firstSentence : {Baltimore}, {City} or
types : {City} or
categories : {City} or
contents: ({Baltimore}) ˆ 4.0, {MD, S.C.Rawlings-Blake, 640,000} or
linkedConcepts: ({Baltimore}) ˆ 4.0, {MD, S.C.Rawlings-Blake, 640,000} or

propertiesValues: {MD, S.C.Rawlings-Blake, 640,000}

Result :
Top "N" matching instances from Knowledge Base

Fig. 6 - Lucene query executes on the server to return a list of ‘n’ candidates

 21

Resource URL

http://tabel.localhost:8080/query-knowledge-base

Resource Information

Response Format : JSON

Parameters

● query (required):User inputted query string

● rowData (required):Other row values in the same row as the cell for which this query

is being performed

● Header (required) : Column header of the cell for which the query is being performed

Example Request

GET

http://tabel.localhost:8080/search-knowledge

base?query=sample&rowData=cell1,cell2,cell3&header=columnHeader

Example Response

{"candidates" :
["candidate", "candidate", "candidate",...,"candidate"]}

 22

Query Openlink VIRTUOSO SPARQL endpoint

The Virtuoso SPARQL query web service was initially developed with the goal of

implementing the SPARQL Protocol for RDF (W3C Recommendation, January, 15 2008). It

has been updated to support SPARQL 1.1, providing SPARQL query-processing for RDF

data available on the open Internet. The query service implementation extends the standard

protocol by providing multiple output-formats alongside the standard XML results

serialization.

Our query web-service is designed to create an access point to leverage the OpenLink

Virtuoso SPARQL query resource. The SPARQL query endpoint for the DBpedia data-set is

publically accessible at http://dbpedia.org/sparq. This web-service allows the user to query

the OpenLink Virtuoso SPARQL protocol endpoint with the candidate and obtain a

definition/description about the candidate, helping the user make a more informed choice.

When the user clicks on the definition link, the javascript running inside the web

browser initiates a HTTP GET request with the value currently selected as the mandatory

query param. This GET request is then received by the HTTP Client, running the User

interaction model, which inturn re-interprets it as a POST request which is then forwarded to

the OpenLink's VIRTUOSO endpoint at http://dbpedia.org/sparq. with the appropriate

headers and parameters. The VIRTUOSO endpoint, then, processes the requests and

responded with the required data. This response it then forwarded onto the user's web-

browser by the User Interaction Model (HTTP client). This sequence of events is shown in

the sequence diagram below.

 23

Fig. 7 - Openlink VIRTUOSO endpoint query sequence diagram

Resource URL

http://tabel.localhost:8080/query-virtuoso

Resource Information

Response Format : JSON

Parameters

● query (required) : Column header or cell value for which definition is sought.

Example Request

GET

 http://tabel.localhost:8080/query-virtuoso?query=Alan_Turning

 24

Example Response

{
"definition" : "Alan Mathison Turing OBE FRS (/ˈtjʊərɪŋ/; 23 June 1912 – 7 June
1954) was a pioneering English computer scientist, mathematician, logician,
cryptanalyst and theoretical biologist. He was highly influential in the development
of theoretical computer science, providing a formalisation of the concepts of
algorithm and computation with the Turing machine, which can be considered a
model of a general purpose computer. Turing is widely considered to be the father of
theoretical computer science and artificial intelligence."

}

In the next chapter we describe the design and implementation of user interaction

model built to leverage the RESTful APIs described in this section.

 25

User Interaction Framework

In this chapter we describe the User Interaction Model build to leverage the APIs

described in the previous chapter. Although TABEL, like other semantic web systems, has be

developed for a machine based automated environment, eventually human beings are the

intended consumers. Therefore one critical objective of developing the UIM is to make all the

richness of the underlying data model and to make it available at the interaction level, with

minimal constraints and a relatively short learning curve.

In the subsequent sections of this chapter, we describe the design and implementation

of the various features developed as a part of this user interaction model.

Representation of Input

A table allows a form of generalization of information from an unlimited number of

different social and scientific contexts. Its provides a familiar way to convey information that

otherwise might not be obvious or readily understood. Since TABEL was primarily

developed to process data encoded in tables, we have designed all the necessary interactive

components around the traditional, row and column based table structure.

 26

Fig. 8 - Representation of the Input table

Representation of Output

Each single valued cell and column header is replaced with a drop down (figure)

containing annotations and candidates generated by the system at the end of query and rank

phase and joint inference phase. They also include a link (figure) to Openlink Virtuoso

SPARQL endpoint, which enables the users to view the definitions of the candidate, which

in-turn empowers the users to make a better choice. These detailed are shown the subsequent

figures.

 27

Fig. 9 - Representation of the Output Table

Fig. 10 - Individual Components of the User Interaction Model

 28

User Interaction Scenarios

The scope for user interaction can be categories broadly into 3 main categories,

mainly, before processing, during processing, and after convergence. During the

preprocessing phase, the user has the ability to sample the input table before submission, by

dragging and selecting a smaller subsection of the table. This is particularly helpful in an

event where the user is dealing with larger data-tables.

During the processing phase, the user has the ability to interact with the process’s

query-and-rank module, by POSTing user feedback to the resource at /query-and-rank. The

user can rerun the query-and-rank algorithm until he is satisfied with the result. Next, the user

has the ability to submit the output of query-and-rank to joint-inference module, which is

accessible at /joint-inference. The joint-inference module, tries infer the semantics by using a

process called “semantic message passing.” The module runs the semantic message passing

process multiple times, and after each iteration, the inferred semantics are accessible to the

user for review and feedback. At this juncture, the user can either review the results and stop

to change the candidate assignments and re-run joint-inference in the quest to achieve better

convergence.

Once the process of inference comes to an end, the user can make changes to the final

result by querying the underlying knowledge base. The interaction scenarios described above

are shown in the Figure 11 below.

 29

Fig. 11 - User interaction scenarios

 30

Preprocessing

In the preprocessing phase, the user interaction model gives the user, the ability to

‘drag and select’ a relevant section of the input table for processing. This is illustrated in the

figure below where the user had selected only the first 3 rows for processing along with the

column headers. Also, note that the ‘Population’ column is automatically ignored since it was

not a part of user selection. This feature is important because it enable to process larger tables

in relatively short periods of time

Fig. 12 - An illustration demonstrating the process of selecting a subset of the table

Based to the input table, the user can omit inconsequential columns as illustrated in

the figure below, where the user has chosen to omit column ‘Sl. No.’ and column

‘Population’ since these constants don’t have any visible impact on the final result. This

 31

feature is important important because, it optimizes the processing by enabling the query-and-

rank and joint-inference resources to focus on important portion/relevance of the table.

Fig. 13 - An illustration demonstrating omission of unwanted/inconsequential columns

Candidate selection for Column Header and Cell value

The illustrations shown in this section demonstrate the selection of a candidate for a

given column header (figure) and a cell value (figure). The user can click on the ‘open arrow’

to expose the list of available candidates. Since, the system generates relevant classes from

dbpedia and yago, we have maintained separators in the list to enable to user to visually

identify the two different sets. Once the user has reviewed all the available options and made

a decision, he can then ‘click’ on the desired candidate to update the current assignment. The

user has the option of changing the assignments for any number of data cells and column

headers.

 32

 This interaction of selecting an assignment for a cell or a column header, that is

different from the initial assignment gives users the unique ability of guiding the system

through to better inferred semantics. These interactions are shown in the subsequent

illustrations.

Fig. 14 - An illustration demonstrating the process of selection of a candidate for Column

header from a list of annotations

 33

Fig. 15 - An illustration demonstrating the process of selection of a candidate from a list of

annotations for cell value.

Candidate Definition

This interaction was designed with the objective of user assistance and empowerment, by

providing them with the option of making an informed decision when they decide to change

the system generated assign. We provide a link to Openlink VIRTUOSO SPARQL query

end-points for all the candidates generated by the system.

When the user clicks on ‘link’ for any specific cell, a SPARQL query is run on the

VIRTUOSO endpoint via HTTP. This query return the ‘comment’ section of the dbpedia

 34

resource, which describes the candidate in question. At present, we query to obtain the

‘comment’, but this feature can be extended to enable a deeper integration between the two

systems, by giving users the ability to pick from a variety of opens for each candidate.

Fig. 16 - An illustration showing a popover for Definition/Comment obtained from

VIRTUOSO SPARQL query end-point

This interaction is illustrated in the Figure 17 below. The user clicks on the link to query

VIRTUOSO in-order to view the ‘comment.’ When the system receives the response, the

‘comment’ is displayed as a popover on the screen.

 35

Fig. 17 - An illustration demonstrating the process of querying VIRTUOSO for a description

for the entity (Alan Turing) in question

Search Knowledge Base

This specific interaction was designed with the goal of providing users the capability

of querying the underlying Knowledge Base for better assignments. This in-turn enables the

user to guide the system as it tries to infer semantics of the input table by providing feedback

 36

at each step of the way, after each iteration. This interaction is not limited in accessibility to

any specific core resources, like query-and-rank or joint-inference. This feature is

horizontally available throughout the entire process, i.e., from the output of query-and-rank,

through any number of iterations of joint-inference, to finally when the system converges but

the user wants to modify some assignments.

When the user reviews the candidates/annotations generated by the system and

realizes that she might have a better assignment for that specific cell, the user can then click

on the ‘Search Knowledge Base’ option. This presents the user with a popover, and provides

her with the option of entering free form test by typing it in. As the user begins typing, a

query is made over HTTP with the ‘query string’ entered by the user, column header, and cell

values from that row. The response received is displayed under the text input field and user is

given an option of selecting the one he thinks is the most appropriate. This value is appended

to the top of the existing list of assignments.

The following illustration (Figure 18), describes the various steps involved in this

interaction.

 37

Fig. 18 - An illustration demonstration the process of search for a specific candidate from the

underlying knowledge base and adding it to list of candidates

 38

Evaluation

We begin by describing the aspects of the User Interaction Model to be evaluated

along with the Target Users. We also include the user metrics and include the various

evaluation methods. We also include experiments carried out with the help of target users.

Finally, we end the chapter by including the analysis and interpretation of Usability Data.

Participants

Usability Metrics

Evaluation Methods

Tasks

Feedback and Observation

Analysis and Interpretation of Feedback

Fig. 19 - Outline of the usability evaluation process

Participants

Since this thesis focuses on the intersection of Web Application, User Experience,

and Semantic Web, we recruited 8 users with varied experience in their understanding of the

topics mentioned previously. Each user was asked to rate their understanding in each of the

subjects from 1 to 5, 1 being no experience and 5 meaning highly proficient. The participants

were aged between 24 to 32.

We interviewed 15 participants and asked them the following questions (Figure 20)

 39

How would you rate your understanding of the following areas -

1. WWW and Web applications

2. Programming

3. Ideas and core concepts of Semantic Web

Fig. 20 - User Interview Questionnaire

We asked the users to rate themselves on a scale of 5, where 1 meant least or no

understanding of the topic(s) mentioned in the question and 5 meant high proficiency in the

mentioned topics. At the end of this exercise we picked users who rated themselves 3 or

above in (1) and (2) and me ensured that 50% of users had and no prior understanding of the

ideas and concepts of Semantic Web.

Usability Metrics

Usability metrics are a crucial component of the usability evaluation. The goal in

selecting these metrics is to choose a minimal number of metrics that reveal maximum

amount of usability detail for the UI under study. ISO Standard 9241 recommends using

effectiveness, efficiency, and satisfaction measures described below -

1. Effectiveness is the accuracy and completeness with which users achieve a specified

goals. Example metrics include: percentage of goals achieved, and functions learner.

 40

2. Efficiency assesses the resources expended in relation to the accuracy and

completeness with which users achieve goals.

3. Satisfaction reflects users' freedom from discomfort and positive attitudes towards

using an interface. Example metrics include: ratings for satisfactions

Tasks

In this section, we define the tasks which participants were asked to complete as a

part of this usability evaluation. We aligned these tasks to highlight specific features of the

user interaction model.

Task 1 : Input preprocessing task - In this task, 5 out of the 8 users were asked to “drag and

select” a subsection of the input table, while the remaining 3 users were asked to “drop/omit

columns” irrelevant to the process of inferring the semantics. At the end of the preprocessing

task the users were asked to submit their respective inputs for processing.

Task 2 : Assignments review and change task I - At the end of the “query-and-rank”

process, the 4 users were asked to review the assignments made by the system. They were

then asked to change/override the assignments made by the system, by selecting an

assignment they thought was more appropriate in the given context for the tabel cell and/or

column header.

Task 3 : Assignments review and change task II - In this task, the remaining 50% of the

users were asked to review the assignments made by the system. But, later, they were asked

to change/override the assignments made by the system, by querying the underlying

 41

Knowledge Base for the value they considered more relevant for the table cell and/or column

header.

Task 4 : Define entity task - Here the users were asked to define some entities from data

cells and column headers, by clicking on the “definition” link present in each table cell.

For each user we recorded the following metrics -

1. Total number of tasks completed

2. Task or Feature specific feedback, and satisfaction rating

3. Overall satisfaction rating

Results

 In this section we describe the results from the usability evalution. This is categorised

into 4 sections, starting with user feedback, followed by user satisfaction, and ending with

overall satisfaction.

User feedback

The user feedback is gathered and ordered by the level of frequency of the following

type of comments. We grouped the issues in four distinct categories, according to the features

under testing.

 42

Fig. 21 - Feature specific feedback

User Satisfaction

Finally, each user was asked to rate all the features on the scale of 1 to 5 for

satisfaction, where 1 was meant to indicate that the feature was not performing as the user

had expected, and 5 meant that the user was satisfied with feature, since it did exactly what

the user had expected it to do.

The questions and the captured satisfaction ratings are described in the subsequently.

 43

On the scale of 1 - 5, how satisfied are you with the preprocessing features available?

Fig. 22 – User satisfaction rating for preprocessing feature

On the scale of 1 - 5, how satisfied are you with the core inference feature?

Fig. 23 – User satisfaction rating for core inference feature

On the scale of 1 - 5, how satisfied are you with the feature that lets you query the

knowledge base?

 44

Fig. 24 – User satisfaction rating for knowledge base query feature

On the scale of 1 - 5, how satisfied are you with the feature that lets you view the intended

meaning of an entity?

Fig. 25 – User satisfaction rating for VIRTUOSO query feature, which enables the user to

view intended meaning of an entity

 45

Overall Rating

Overall, on the scale of 1 - 5, how satisfied are you with the entire experience?

Fig. 26 – Over all user satisfaction rating for the entire application

 46

Conclusion

There is a general consensus within the semantic web research community that the

challenges to semantic web interfaces are -

1. Although semantic web based technologies provide a wide array of innovative

functionalities, they require equally innovative and intuitive user interfaces to be

adopted and accepted.

2. Interfaces need to be able to deal with different levels of granularity of data and

information.

3. Interfaces are required for data-sets for which the schemas are not fully known at

design time.

Developing a generic, web based user interaction model for semantic web

applications, such as TABEL, would enable a wide array of users to access the system. We

hope this, and many such attempts, would enable wider user adoption and would help

semantic web concepts gain wider acceptance.

By focusing on developing and deploying TABEL as a RESTful service over HTTP, we

ensure that the RESTful constraints are enforced. Some of the important advantages of this

approach are -

1. Client - Server share a common uniform interface through which they communicate.

The uniform interface constraint is fundamental to the design of any RESTful web

service. The uniform interface simplifies and decouples the architecture, which

enables each part to evolve independently.

 47

2. This separation of constraints for example, clients are not concerned with data

storage, which remains internal to each server, so that the portability of client code is

improved. Servers are not concerned with the user interface or user state, so that

servers can be simpler and more scalable. Servers and clients may also be replaced

and developed independently, as long as the interface between them is not altered.

3. We further ensure that the client - server communication is further constrained by no

client context being stored on the server between requests. Each request from any

client contains all the information necessary to service the request, and session state

is held in the client.

In conclusion, our work in this thesis is primary focused on the intersection of semantic

web, service oriented architecture, user interaction, and usability evaluation. We believe that

this interdisciplinary approach is required in order to advance and consolidate the

development of semantic web.

 48

Future Work

Our existing work on designing and implementing a generic, web based user interaction

model for TABEL. Some of the extensions that we propose are -

1. Enabling the user to import a table from a dataset accessible to or available with the

user. This is can be done by designing and implementing a javascript based data

import utility.

2. Design and develop a table creation module within the application user interface,

which would enable users to have the independence of creating and experimenting

with the system.

3. Implement a linked data publishing utility and create integration points for various

linked data resources in order to enable users to create new linked data and enrich the

existing.

4. Giving advanced users the ability to select a knowledge base specific to the domain

of their dataset.

Integration with Multiple Knowledge Bases

The present implementation integrates well with wikitology as a knowledge base,

which serves well for general purpose disambiguations as shown previously. But, we believe

our restful architecture can be extended to successfully incorporate multiple such general

 49

purpose knowledge bases as well as some special, domain specific ones. This is enable

disambiguation across multiple domains.

Focus on Availability, Reliability and Scalability

Although we were able to successfully create of a user interaction model by

converting a monolith into a suite of web-services, we truly believe this effort can be deploy

this model at scale and to make it easily accessible to researchers, developers and other

interested members of the semantic community.

 50

References

[1] Limaye, G.; Sarawagi, S.; and Chakrabarti, S. 2010. Annotating and searching web

tables using entities, types and relationships. In Proc. 36th VLDB.

[2] Mulwad, V. 2010. T2LD - An automatic framework for extracting, interpreting and

representing tables as Linked Data. Master’s thesis, University of Maryland, Baltimore

County.

[3] Mulwad, V. 2010. T2LD - An automatic framework for extracting, interpreting and

representing tables as Linked Data. Master’s thesis, University of Maryland, Baltimore

County

[4] Syed, Z., and Finin, T. 2011. Creating and Exploiting a Hybrid Knowledge Base for

Linked Data. In Agents and Artificial Intelligence.

[5] Syed, Z.; Finin, T.; Mulwad, V.; and Joshi, A. 2010. Exploiting a Web of Semantic Data

for Interpreting Tables. In Proceedings of the 2nd Web Science Conference

[6] Berners-Lee, T.; Hendler, J.; Lassila, O.; et al. 2001. The semantic web. Scientific

American.

[7] Berners-Lee, T. 2006. Linked data. http://www.w3.org/DesignIssues/LinkedData.html

[8] Cafarella, M. J.; Halevy, A. Y.; Wang, Z. D.; Wu, E.; and Zhang, Y. 2008. Webtables:

exploring the power of tables on the web.

 51

[9] Knoblock, C. A.; Szekely, P.; Ambite, J. L.; Gupta, S.; Goel, A.; Muslea, M.; Lerman, K.;

Taheriyan, M.; and Mallick, P. 2012. Semi-automatically mapping structured sources into the

semantic web. In Proceedings of the Extended Semantic Web Conference.

[10] Knoblock, C. A.; Szekely, P.; Gupta, S.; Manglik, A.; Verborgh, R.; Yang, F.; and de

Walle, R. V. 2013. Publishing data from the smithsonian american art museum as inked open

data. In Proceedings of the ISWC 2013 Posters & Demonstrations Track, 129–132.

[11] Langegger, A., and Wob, W. 2009. Xlwrap - querying and integrating arbitrary

spreadsheets with SPARQL. In Proc. 8th Int. Semantic Web Conf.

[12] Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions, and

reversals. Technical Report 8, Soviet Physics Doklady.

[13] Limaye, G.; Sarawagi, S.; and Chakrabarti, S. 2010. Annotating and searching web

tables using entities, types and relationships. In Proc. 36th VLDB.

[14] Szekely, P.; Knoblock, C. A.; Yang, F.; Zhu, X.; Fink, E.; Allen, R.; and Goodlander, G.

2013. Connecting the Smithsonian American Art Museum to the Linked Data Cloud. In

Proceedings of the 10th Extended Semantic Web Conference.

