
 

 

This work was written as part of one of the author's official duties as an Employee of the United States 
Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 
105, no copyright protection is available for such works under U.S. Law. 
 
 
 
Public Domain Mark 1.0 
https://creativecommons.org/publicdomain/mark/1.0/ 
 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.  

 

Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and 
telling us what having access to this work means to you and why it’s important to you. Thank you.  

 

https://creativecommons.org/publicdomain/mark/1.0/
mailto:scholarworks-group@umbc.edu


1. Introduction
High Mountain Asia (HMA), a region that includes the Tibetan Plateau and the Himalayan, Karakoram, Pamir, 
Hindu Kush, and Tien Shan mountains, represents the headwaters of Asia's most prominent hydrologic basins, 
which feed billions of people (Immerzeel et al., 2010; Pritchard, 2019; Qiu, 2008). HMA is subject to warming at 
an alarming rate (Immerzeel et al., 2010), with the increases in temperature leading to a shift in the precipitation 
phase and more precipitation falling as rainfall instead of snowfall (Y. Li et al., 2020; Smith & Bookhagen, 2018). 
In addition, precipitation rates are increasing in many regions of HMA (Maina, Kumar, Albergel, & 
Mahanama, 2022; Maina, Kumar, Dollan, & Maggioni, 2022). These patterns could cause rain-on-snow (ROS) 
(McCabe et al., 2007; Ye et al., 2008). With ongoing global warming, ROS is becoming more frequent in moun-
tainous regions around the world with dramatic consequences on downstream hydrology (Freudiger et al., 2014; 
McCabe et al., 2007; Musselman et al., 2018). Moreover, the impacts of ROS are projected to become worse 
in the future (Beniston & Stoffel, 2016; Chegwidden et  al.,  2020; López-Moreno et  al.,  2021; Morán-Tejeda 
et al., 2016; Ohba & Kawase, 2020; Ye et al., 2008). Although the risks of ROS in other regions around the world 
have been documented (Cohen et al., 2015; Garvelmann et al., 2014; D. Li et al., 2019; Musselman et al., 2018; 
Singh et al., 1997), such studies investigating ROS in their impacts on runoff over HMA are lacking, to the best 
of our knowledge. As HMA hosts the largest reservoirs of freshwater outside the polar zone, quantifying changes 
in ROS is particularly important for water resources and hazard mitigation applications.

ROS has attracted the attention of hydrologists in the past decades because of its increasing occurrences and 
consequences in many parts of the world. Recent publications have qualified ROS as one of the 23 unsolved 
hydrological problems in the context of complex water management (Blöschl et  al.,  2019). Although not 
frequent, ROS has significant impacts on hydrology. It exacerbates the melting of snow, which warms the 
soil and accelerates the decrease of the snowpack. Hydrological processes are complex after ROS because 
the hydrodynamics of ROS depend on many factors (Cohen et al., 2015; Groisman et al., 2005; J. Putkonen 
& Roe, 2003). For instance, the effects of ROS depend on the characteristics of the snowpack itself. ROS on 
a snowpack that has not started to melt only penetrates its first centimeters, whereas on a melting snowpack, 
ROS quickly penetrates the entire snowpack and accelerates its melting (Groisman et al., 2005). ROS could 
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also change the timing of snow dynamics. For example, in the case of a small snowpack, ROS shifts the timing 
of the snowmelt and makes the snowpack last for a shorter duration. The early snowmelt and the resulting 
smaller snowpack will decrease soil moisture in summer, which could lead to drought (Cohen et al., 2015). In 
addition, the impacts of ROS depend on the season. In fall and winter, ROS impacts soil properties and snow 
properties prior to the snowmelt season, while in spring, ROS amplifies snowmelt, runoff, and flood risk. Also, 
ROS constrains surface soil temperatures close to 0°C in regions that would otherwise be well below freezing 
(Putkonen & Roe,  2003). ROS consequences are, therefore, complex and include floods, snow avalanches, 
soil erosion, and sediments transportation (Bieniek et  al.,  2018; Crawford et  al.,  2020; Marks et  al.,  1998; 
Singh et  al.,  1997; Stimberis & Rubin,  2011) which can lead to landslides and geomorphological changes 
(Harr,  1981). On a longer timescale, ROS could lead to drought and impact vegetation growth because it 
changes the soil temperature (Putkonen et al., 2009; Putkonen & Roe, 2003). By affecting the latent heat fluxes, 
ROS is also susceptible to changing the energy budget and therefore the interactions between the land and the 
atmosphere (Westermann et al., 2011) and subsequently the energy of snowmelt processes. Therefore, a better 
understanding of ROS is critical to assessing the impacts of a changing climate because ROS has the potential 
to exacerbate and/or accelerate the impacts of climate change and its effects should be accounted for in miti-
gation strategies.

As net shortwave and longwave radiation and the turbulent fluxes of sensible and latent heat, very important to 
snowmelt processes, are highly impacted by the topography and the vegetation (Garvelmann et al., 2014, 2015; 
Pohl et al., 2006; Wayand et al., 2015), ROS effects are region-dependent. Cohen et al. (2015) studied ROS in 
the northern hemisphere and concluded that ROS mainly occurs in western Eurasia, the higher elevations of 
western North America, the northeastern United States, and southeastern Canada. ROS has also been studied in 
Asia (Ohba & Kawase, 2020; Whitaker & Sugiyama, 2005; Yang et al., 2022), Europe (Garvelmann et al., 2015; 
Pall et  al.,  2019; Rössler et  al.,  2014; Ulbrich & Fink,  1995), Artic (Rennert et  al.,  2009), Canada (Loukas 
et al., 2000; Trubilowicz & Moore, 2017), and the United States where ROS events have generated some of the 
costliest natural disasters of the country (Bieniek et al., 2018; Jeong & Sushama, 2018; Leathers et al., 1998; 
McCabe et al., 2007; Musselman et al., 2018; Pradhanang et al., 2013). In central Europe, for example, studies 
have shown that 20%–80% of peak flows are associated with ROS (Merz & Blöschl, 2003; Nied et al., 2014; Sui 
& Koehler, 2001; Tarasova et al., 2020).

Despite the socioeconomic impacts of ROS, little is known about how ROS varies in time, spatial extent, and 
intensity across HMA's mountainous areas. Because of its hydrological impacts, ROS is relevant for water 
resources management and flood forecasting (Freudiger et al., 2014; McCabe et al., 2007). However, the quan-
tification of ROS in mountainous and remote regions could be difficult due to the lack of ground observations 
and the uncertainties associated with the estimation of precipitation (Palazzi et al., 2013; Yoon et al., 2019; You 
et al., 2015). Changes in air temperature are also difficult to estimate in these areas because of their orographic 
patterns (Lalande et al., 2021).

In this study, we assess the changes of ROS in HMA over the two past decades from 2001 to 2018 based on 
land surface model simulations informed by high quality precipitation inputs and remote sensing informa-
tion on snow conditions. Specifically, the land surface model Noah-MultiParameterization (Noah-MP, Niu 
et  al.,  2011) is driven with an ensemble precipitation product (Maina, Kumar, Dollan, & Maggioni,  2022) 
generated using the best available gridded precipitation products that includes the Integrated Multi-satellitE 
Retrievals for Global Precipitation Measurement IMERG (Huffman et al., 2015), the Climate Hazards group 
Infrared Precipitation with Stations CHIRPS (Funk et al., 2015), and the ECMWF Reanalysis ERA5 (Hersbach 
et al., 2020). These precipitation products were found to better represent the precipitation averages and trends 
in HMA (Maina, Kumar, Dollan, & Maggioni, 2022). The land surface model Noah-MP allows for a physical 
representation of the key HMA's dynamics such as snow dynamics, vegetation dynamics, and hydrodynam-
ics by physically solving the water and energy budgets. Noah-MP has successfully been used to study water 
budgets in HMA (Ahmad et al., 2022; Xue et al., 2019, 2022; Yoon et al., 2019). To reduce the uncertainties 
in simulations of snow, a remote sensing-based reconstructed snow water equivalent (SWE) data developed by 
Kraaijenbrink et al. (2021) is assimilated within the land surface model integrations. The model simulations are 
then employed to:

•  Quantify ROS days and amounts in HMA and their trends
•  Quantify the contributions of ROS to the snowmelt and the water available for runoff in HMA
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2. Study Area and Methods
2.1. Study Area: High Mountain Asia (HMA)

HMA as defined in this study extends from approximately 20°N to 46°N, and 60°E to 111°E and includes the 
Tibetan plateau and other mountains such as the Himalayas, Hindu Kush, and Tien Shan (Figure  1). These 
mountains represent the headwaters of Asia's major rivers such as the Yangtze, the Ganges, the Brahmaputra, 
and the Indus (Viviroli et al., 2007) which flow through many countries (e.g., China, Myanmar, Bhutan, Nepal, 
Bangladesh, India, Pakistan, Afghanistan, and Kyrgyzstan). The economy of these countries largely depends 
on HMA water towers, a lifeline to more than a billion people living in its hydrologic basins (Yangtze, Si, Song 
Hong, Irrawaddy, Hwang Ho, Ganges-Brahmaputra-Brahmaputra, Indus, Tarim, Ili, Amu Darya, and Syr Darya, 
see Figure 1). HMA is characterized by sharp variations in topography with elevation varying from sea level to 
the world's highest point at Mount Everest (8,848 m). This complex orography along with strong heterogeneities 
in land cover and harsh climatology makes the high elevation areas of the HMA a hostile environment not easily 
accessible. As a result, ground measurements are rare, not reliable, and very sparse in both time and space making 
remote sensing data the only available data to study the hydrology of the region.

2.2. Methods

2.2.1. Model Set-Up

We use the Noah-MP land surface model version 4.0.1. to simulate land surface processes including snow accu-
mulation and melt (Niu et al., 2011). Noah-MP allows simulations with various options compared to the previous 
versions of the model Noah and includes the choice of multiple options for the snowpack, vegetation, infiltration, 
and runoff physics computations (Niu et al., 2011). The Noah-MP model simulations are driven with an ensem-
ble precipitation data set generated by Maina, Kumar, Dollan, and Maggioni  (2022) using a localized proba-
bility matched method (Clark, 2017) with three gridded precipitation products (IMERG, CHIRPS, and ERA5) 
while the other meteorological forcing (temperature, shortwave, and longwave radiation, wind speed, relative 
humidity, etc.) are generated by downscaling ERA5 following Xue et al.  (2019, 2022). HMA precipitation is 
highly uncertain due to the lack of reliable ground measurements. Consequently, gridded precipitation products 
are not consistent across the region. The ensemble precipitation product is specifically developed to overcome 
the inconsistencies between different precipitation data and to have the best product capturing the precipitation 
dynamics in the region. In addition, we used ERA5 for other meteorological forcings because the trends in ERA5 
variables (e.g., temperature) are consistent with observed warming in HMA (Immerzeel et al., 2010). The model 
simulations employ landcover data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS; 

Figure 1. Map of High Mountain Asia: elevation, major hydrological basins, and mountains.
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Friedl & Sulla-Menashe, 2019), soil types derived from the International Soil Reference and Information Center 
(ISRIC—World Soil Information, 2022) and topographic information from MERIT-DEM (Multi Error Removed 
Improved Terrain Digital Elevation Model; Yamazaki et al., 2017).

The Noah-MP model is run at a spatial resolution of 5 km and a temporal resolution of 15 min during a period 
of 2001–2018. Although this time frame could be considered relatively short for long term trends analysis, we 
selected this period based on the common availability of datasets we used (e.g., remote sensing such as MODIS and 
precipitation data such as IMERG). To generate the initial conditions for the model simulations, we however, opt to 
run the model twice for a longer period 1990 to 2018. To better assess the changes in ROS in HMA, reliable esti-
mates of SWE are necessary. However, because of the lack of ground measurements, accurate estimations of SWE 
are difficult to obtain, and the majority of the available SWE estimates relies on reanalyzes. In this study, we use 
the SWE reconstruction developed by Kraaijenbrink et al. (2021), which employs a temperature index melt model 
(Hock, 2003) along with ERA5 forcing, and MODIS snow cover (Hall et al., 2006) to develop multidecadal esti-
mates of SWE. More details about the model calibration and evaluation can be found in Kraaijenbrink et al. (2021). 
This SWE product is then assimilated to constrain the Noah-MP simulations. Note that only the SWE is assimilated 
to the model, the snow dynamics and melt estimation is performed by Noah-MP, which includes a multi-layer 
snowpack formulation that explicitly accounts for liquid water storage, melt, refreeze, and sublimation processes.

To assimilate the SWE reconstruction data, we use the 1-dimensional Ensemble Kalman Filter algorithm (EnKF; 
Reichle et al., 2002). EnKF is an optimal sequential data assimilation method for nonlinear dynamics and has been 
widely used to assimilate remotely sensed variables into the land surface model Noah-MP (Kumar et al., 2014; 
Lahmers et al., 2022; Y. Liu et al., 2013; Reichle et al., 2010; Slater & Clark, 2006). EnKF allows a dynamic update 
of state variables based on the model and the observation errors. At each time step, the model states (i.e., SWE) 
are updated based on the covariance of the errors between the modeled and the observed variables, then the model 
is run with the updated values to ensure internal consistencies in mass and energy closures. The one-dimensional 
formulation of EnKF consists of assimilating the variables at each grid cell independently while neglecting the 
spatial correlations (Reichle & Koster, 2003). We follow the assimilation of snow variables as described by Kumar 
et al. (2014, 2019). To represent the model uncertainties and the observation errors, a model ensemble of size 20 
was created by perturbing the hourly meteorological forcing inputs (the ensemble precipitation, and the downscaled 
air temperature, and downward longwave and shortwave radiation), the modeled, and the observed hourly snow 
variables. Following Kumar et al. (2019), we use a multiplicative perturbation with a mean of 1 and a standard 
deviation of 0.5 for the precipitation field. A multiplicative perturbation is also used for the downward shortwave 
radiation, the mean is equal to 1 and the standard deviation 0.2. Air temperature and downward longwave radiation 
are perturbed using additive perturbation with a standard deviation equal to 0.5° and 30.0 W/m 2 respectively. The 
modeled SWE and snow depth are perturbed with a multiplicative noise of 0.01. A cross-correlation with a coef-
ficient of 0.9 is set for the modeled SWE and snow depth. The observed SWE is perturbed with a multiplicative 
noise of 0.05. All simulations are performed using the NASA Land Information System (LIS; Kumar et al., 2006).

HMA is a data scarce region, where reliable ground measurements are rare and sparse, making model valida-
tion against observations difficult. A limited model evaluation is presented here using remote sensing datasets 
and reanalyzes. The modeled snow cover estimates are compared using the MODIS snow data version 6 (Hall 
et al., 2006). Specifically, we compute the percentage of snow cover detected correctly and incorrectly, using 
a detection threshold of 0.1 snow cover fraction. We assume that snow cover is correctly detected at a single 
model cell if both the model and MODIS have a snow cover fraction greater than 0.1. False snow detection is 
identified if the model indicates that the cell is snow-covered (i.e., the snow cover fraction is greater than 0.1) 
whereas MODIS indicates no snow cover. In addition, the signs of the trends in the water available for runoff were 
compared to the signs of the trends in the runoff provided by Ghiggi et al. (2021). Because of the differences in 
the definitions of “runoff” between our study (which is the water available for runoff) and Ghiggi et al. (2021), 
we only compared the sign of the trends, not their magnitudes. Note that extensive evaluations of the precipitation 
data used in this study have been presented in Maina, Kumar, Dollan, and Maggioni (2022), which demonstrates 
that the ensemble precipitation allows for a better representation of the ground measured precipitation, particu-
larly in the yearly trends and averages.

2.2.2. Definition and Identification of ROS

There is no consensus on the definition of ROS in prior studies. Consequently, several methods have been reported 
in the literature for quantifying ROS. In addition, some studies focus on ROS event (Freudiger et  al.,  2014; 
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McCabe et al., 2007) whereas others use the term ROS day (Musselman et al., 2018). The quantifications of ROS 
events or days mainly require a minimum threshold for both rainfall and snowpack, whereas, the snowmelt result-
ing from a ROS is also used in some studies (Freudiger et al., 2014; McCabe et al., 2007; Musselman et al., 2018; 
Würzer et al., 2016). These thresholds depend on the characteristics of the studied region and its climate. Follow-
ing Musselman et al. (2018), we define ROS day as a day where at least 10 mm of rain (i.e., total rainfall during 
the day) falls on an at least 10 mm snowpack. In Noah-MP, precipitation is partitioned into rainfall and snowfall 
using Jordan's scheme (Jordan, 1991). In this study, we quantify the monthly values (then their corresponding 
annual averages) of:

•  ROS ratio is defined as the ratio of the total rainfall identified as ROS during the month and the total precip-
itation (P) of the month

ROS ratio =
ROS

𝑃𝑃
 (1)

•  ROS Snowmelt ratio is defined as the ratio of the total snowmelt occurring the day after a ROS day (i.e., ROS 
snowmelt) during the month and the total snowmelt of the month

ROSSnowmelt ratio =
ROSSnowmelt

Snowmelt
 (2)

•  Snowmelt contribution to the water available for runoff is defined as the ratio of the total snowmelt of the 
month and the sum of total rainfall and snowmelt of the month following Mazurkiewicz et al.  (2008) and 
Musselman et al. (2018)

Snowmelt contribution towater available for runoff =

∑

𝑘𝑘=1,𝑛𝑛day

Snowmelt

∑

𝑘𝑘=1,𝑛𝑛day
Rainfall + Snowmelt

 (3)

 where 𝐴𝐴 𝐴𝐴day is the total days of the month
•  ROS snowmelt contribution to the water available for runoff is defined as the ratio of the total snowmelt 

occurring the day after a ROS day (i.e., ROS snowmelt) during the month and the sum of total rainfall and 
snowmelt of the month

ROSSnowmelt contribution towater available for runoff =

∑

𝑘𝑘=1,𝑛𝑛day
ROSSnowmelt

∑

𝑘𝑘=1,𝑛𝑛day
Rainfall + Snowmelt

 (4)

2.2.3. Statistical Analyses: Computation of the Trends

To quantify the evolution of ROS in HMA over the past two decades, we computed the trends in ROS amounts 
and days using the Mann-Kendall test which determines whether a time series has a monotonic upward or down-
ward trend (Kendall, 1948; Mann, 1945; Yue et al., 2002). The Mann-Kendall trend test is computing using the 
following formula:

𝑆𝑆 =
∑𝑛𝑛−1

𝑖𝑖=1

∑𝑛𝑛

𝑗𝑗=𝑘𝑘+1
sign(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) (5)

where x is the time series variable. The subscript j and k are the observation time. 𝐴𝐴 sign(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) is equal to +1, 
0, or −1, which means increasing, no, and decreasing trends, respectively. In this study, we assumed that there is 
no significant trend in the data at 95% confidence level (or at a significant level of 5%). To better understand the 
trends in ROS, we also compute the trends in precipitation, snowfall, rainfall, ROS, temperature, seasonal snow 
cover, snow depth, snowmelt, and ROS snowmelt.

3. Results
3.1. Model Evaluation

Appendix A illustrates the comparisons between simulated and remotely sensed snow cover. We investigate the 
snow detection accuracy of our model (Figure A1). Our results indicate that the percentage of correctly detected 

 23284277, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F003009 by U
niversity O

f M
aryland, W

iley O
nline L

ibrary on [06/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth’s Future

MAINA AND KUMAR

10.1029/2022EF003009

6 of 22

snow cover is generally high, varying between 60% and 80% (Figure A1a). The highest ratio is from May to 
September, which corresponds to the period where snow cover is high in majority of HMA's basins. Figures A1b 
and A1c depict the spatial distribution of the probabilities of detection and false alarm. Overall, the probability 
of detection is greater than 60% in most areas, and the probability of false alarm remains low (<40%). The high 
values in probability of detection and low values of probability of false alarm are further highlighted when these 
evaluations are stratified by different seasons (Figure A1d). During the periods when snow cover is considerable 
(DJF and MAM), the probability of detection over the mountain terrain is high (>80%) while the probability of 
false alarm is low (<30%). Note that areas with high rates (in terms of annual averages) of false alarm in snow 
cover (i.e., the model shows a snow-covered area while MODIS indicates no snow) are mainly located in mid to 
low elevations where the snow cover is low and ephemeral (Figure A1e). This is also illustrated in Figure A1f, 
where the probability of detection of snow cover is stratified by month and by elevation bands. During peak 
winter months and over high elevation areas, the snow detection accuracy is high. Areas with high false alarm 
probability are also found in the Tibetan plateau where the ratio of the seasonal snow cover remains low that is, 
less than 20% on average (Figures A1b–A1d).

Appendix B (Figure B1) illustrates the trends in runoff computed with the data provided by Ghiggi et al., 2021 
and the results of our model (Noah-MP with assimilation). The sign of the trends in runoff over the 
Ganges-Brahmaputra basin are consistent with Ghiggi et al. (2021), The eastern part of the Ganges-Brahmaputra 
basin corresponding to the Brahmaputra basin is characterized by a decreasing trend whereas the western areas 
(i.e., the Ganges basin) have increasing trends. Also, the increasing trends in the simulated runoff over the Indus, 
the Yangtze, and the Hwang Ho basins agree with Ghiggi et al. (2021). However, while the northwestern basins 
are characterized by positive and statistically no significant trends in results of Ghiggi et al. (2021), our results 
indicate positive and negative trends. These differences between our study and that of Ghiggi et al. (2021) in the 
northwestern basins could be related to the impacts of irrigation occurring in these basins and water infrastruc-
tures (Jalilov et al., 2016; White et al., 2014).

The assimilation of SWE has also been shown to improve the representation of both snow variables and runoff 
(Figures C1–C3).

3.2. Spatial Patterns of ROS in HMA and Its Seasonality

Because of its complex orography, HMA has a complex precipitation pattern controlled by both westerlies and 
monsoons. The spatial distributions of precipitation are highly heterogeneous in the region with high precipitation 
mostly located in the Irrawaddy basin and the eastern Ganges-Brahmaputra (Figure 2a). The Himalayas are also 
characterized by high precipitation. Most of the precipitation falls as snow in the Tibetan plateau and its surround-
ing mountains, the Himalayas and Tien Shan corresponding to the areas where the elevation is above 4,000 m. 
Precipitation days in HMA exceed 300 days/year, especially in the east and the Tibetan Plateau (Figure 2a). ROS 
only occurs in the Himalayas, Karakoram, Pamir, and Tien Shan covering the Ganges-Brahmaputra, Indus, Amu 
Darya, Syr Darya, and Ili basins. On average, over the studied period, 10% of total amount of precipitation is 
ROS. ROS occurs around 30 days per year and mostly in the northwestern basins. Only a small fraction of the 
Ganges-Brahmaputra is subject to ROS.

To study the monthly variations of ROS in HMA, we illustrate in Figure 2b the average (over the studied period) 
monthly variations of the ratio of the amount of ROS and precipitation in 5 basins where ROS occurs. Figure 2b 
also illustrates the ROS snowmelt ratio defined in Section 2.2.2.

In the Indus basin, precipitation has two peaks, in April and in September (Appendix D, Figure D1). Most of the 
precipitation falling in April is snowfall; rainfall starts in February with a peak in August. Nonetheless, snowfall 
represents approximately 50% of the precipitation on average in the basin. ROS in the Indus is less than in the 
other basins. Throughout the year, less than 5% of the total amount of precipitation is ROS over the Indus on 
average, with the highest occurrence from June to August where more than 30% of the total precipitation is ROS. 
Snowmelt in the Indus occurs from February to September. The ROS snowmelt is non-negligible and its ratio 
reaches up to 30% in February and March. This ratio decreases as fewer ROS days happen from March to June. 
In July with the increase in both ROS days and amounts, the ROS snowmelt ratio exceeds 20%. Although most 
of the ROS occur from June to August in the Indus basin, ROS days from January to March have the highest 
contribution to the snowmelt because of the shallow depth of the snowpack and the low temperatures; As a result, 
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the snowmelt is only triggered by ROS. Nonetheless, ROS has also a noteworthy contribution to the snowmelt in 
summer because it happens after the snow has started to melt, and hence, ROS accelerates the melting.

Contrary to the Indus, the Ganges-Brahmaputra basin has one peak of precipitation occurring in July, a period 
during which the precipitation mostly falls as rain (Appendix D, Figure D1). Winter precipitation is mostly snow-
fall. ROS represents on average 11% of the total annual precipitation and mainly occurs from April to September 
with the highest ROS occurrence and amount in August a period during which ROS represents more than 40% of 
precipitation. Snow melts year-round in the basin, but the highest snowmelt is in July. Throughout the year, the 
ROS snowmelt ratio exceeds 10%, and in summer it is greater than 60%. Therefore, ROS considerably (>50%) 
contributes to the snowmelt in this region because of the timing of its occurrence as in the Indus basin.

ROS represents less than 10% of the annual precipitation on average of the northwestern basins (i.e., Amu 
Darya, Syr Darya, and Ili). In these basins, because the winter precipitation is higher than in the Indus and the 
Ganges-Brahmaputra, ROS mainly occurs in late winter and spring (from February to June). In the Amu Darya, 
ROS lasts until September but with low frequency and amount. At the peak of ROS in June, it represents around 
38% of precipitation. As precipitation stops early compared to the basins previously studied (i.e., summer precip-
itation is low compared to the Indus and the Ganges-Brahmaputra), the peak of snowmelt occurs in June. The 
contributions of ROS to snowmelt are high in May (the ROS snowmelt ratio is higher than 30% in the Amu Darya 
and 40% in the Syr Darya and Ili).

The five basins subject to ROS in HMA have different dynamics. ROS is more frequent and higher in the north-
west. In Amu Darya, Syr Darya, and Ili basins, ROS mainly occurs in late winter and spring, a period during 
which it contributes up to 40% to the snowmelt. In the Ganges-Brahmaputra, ROS considerably contributes (up 
to 60%) to the snowmelt. This is because ROS mainly occurs in summer when the snowpack has already started 
to melt, therefore ROS exacerbates this melt. ROS in the Ganges-Brahmaputra has similar temporal patterns as 
in  the Indus where it represents 5% of precipitation and contributes to more than 20% of snowmelt.

3.3. Yearly Trends in ROS Ratio and ROS Snowmelt Ratio Over the Past Decades in HMA

Figure  3 depicts the statistically significant trends in precipitation, the ratio of snowfall and precipitation, 
temperature, seasonal snow cover, the ratio of the total amount of ROS and precipitation, and the ROS snow-
melt ratio. Precipitation trends in HMA are bidirectional; the eastern region and the Indus see an increase (up to 

Figure 2. (a) Spatial distributions of annual average (i.e., mean of the 18 years) and total of number of days of precipitation (i.e., days with a nonzero precipitation), 
the ratio of the amount of snowfall over the amount of precipitation, and the ratio of the amount of rain-on-snow (ROS) over the amount of precipitation. Note that we 
showed the total number of days of snowfall and ROS. (b) Monthly variations of the ratio of the amount of ROS over the amount of precipitation (ROS/P) in percent and 
the ratio of the amount of snowmelt after ROS over the total monthly snowmelt (ROS/Snowmelt) in percent in basins where ROS events occur in High Mountain Asia.
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0.04 mm/d/yr), whereas the Ganges-Brahmaputra and the northwest have decreasing (up to 0.02 mm/d/yr in the 
Ganges and less then 0.01 mm/d/yr on average in the northwest) trends in precipitation (Figure 3a). As shown in 
Figure 3c, the temperature increases almost everywhere in HMA at a rate higher than 0.02°C/year. Snowfall also 
decreases in the Ganges-Brahmaputra (the snowfall ratio decreases by 0.002/yr on average) and in dispersed areas 
of the northwestern basins due to both decreases in precipitation and increases in temperature. In the Indus basin, 
the temperature has a slight increase at a rate lower than 0.01°C/year. This increase in temperature is, however, 
not sufficient enough to trigger a change in the precipitation phase. As a result, the increase in precipitation over 
the Indus results in an increase in snowfall equal to 0.0025 on average. The trends in the seasonal snow cover 
matches the trends in snowfall previously discussed. The trends in the ratio of ROS and precipitation are similar 
to the trends in the ratio of snowfall and precipitation. Both ROS amounts and days (note the trends in ROS days 
have not been shown here due to their similarity to the trends in the ratio of ROS and precipitation) have decreas-
ing trends in the Ganges-Brahmaputra (0.001/yr on average) and increasing trends (>0.002/yr) in the Indus 
basins. ROS trends in the northwestern basins are bidirectional, with ROS decreasing (inferior to 0.001/yr) in low 
elevation areas, and an increasing trend in high elevation areas (up to 0.0025/yr) close to the water towers. This 
is because snowpack decreases in low elevations areas as a result of warming and a decrease in precipitation (as 
illustrated in Figure 3a). As the snowpack is persistent despite the increasing trends in temperature in high eleva-
tion zones, hence the increase in precipitation and shift in precipitation phase (i.e., more precipitation is falling 

Figure 3. Spatial distributions of the yearly trends in (a) precipitation, (b) the ratio of snowfall over precipitation (Snowfall/Precipitation), (c) temperature, (d) seasonal 
snow cover, (e) the ratio of rain-on-snow (ROS) over precipitation (ROS/Precipitation), and (f) the ratio of snowmelt after ROS over the total monthly snowmelt in basins 
where ROS events occur (ROS/Snowmelt). Trends were computed using the Mann-Kendall test with a confidence level of 95%, non-significant trends were set to 0.
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in the form of rainfall) leads to more ROS amount. In addition to following the elevation patterns, the trends in 
ROS are also related to the trends in rainfall, with ROS increasing in areas characterized by increased rainfall. 
Trends in ROS snowmelt ratio follow the trends in ROS, with more snowmelt related to ROS in the Indus (the 
ROS snowmelt ratio increases by 0.0015/yr) and less in the Ganges-Brahmaputra (with a decreasing trend equal 
to 0.0021/yr on average). Similarly, in the northwest, the trends in snowmelt caused by ROS are bidirectional with 
dispersed negative (>0.0015/yr) and positive (∼0.002/yr) values as the trends in ROS.

3.4. Monthly Trends in ROS and ROS Snowmelt Over the Past Decades in HMA

To further examine the changes in ROS in HMA, the monthly trends in precipitation, rainfall, snowfall, snow 
depth, ROS, snowmelt, and ROS snowmelt in the Indus and Ganges-Brahmaputra are shown in Figure 4 (with 
the other basins shown in Appendix E, Figures E1a–E1f). Due to the differences in the scales and values of trends 
between the winter and the summer, we split the monthly variations in two from January to June and from July 
to December. In the Indus, though precipitation is generally increasing everywhere as mentioned previously, a 
slight decrease equal to 0.04 mm/d/yr is noted in December. This increase in precipitation (reaching 0.2 mm/d/
yr in July) triggers both increases in rainfall (∼0.21 mm/d/yr) and snowfall (∼0.18 mm/d/yr). Nonetheless, the 
increase in rainfall is higher than the increase in snowfall. Snow depth increases (<0.01 cm/yr) from February to 
July, then shows a decreasing trend (equal to 0.0025 cm/yr on average) in August and September. Moreover, snow 
depth tends to decrease in January and December. Despite the bidirectional trend in snow depth throughout the 
year, ROS is increasing every month (at a rate up to 0.03 mm/d/yr) due to the persistence of snow on the ground. 
Although snow depth decreases, there is still a remaining snowpack, which with more precipitation falling as 
rainfall, led to ROS. The decreasing trend in snow depth in August and September occurs despite increasing 
snowfall due to the occurrence of ROS. The latter enhances the snowmelt as shown by its increasing trends, 
especially in September. As ROS stops in September, increasing snowfall leads to an increase in snow depth. The 
consequences of the increasing trends in ROS stemming from an increasing rainfall are therefore a decrease in 

Figure 4. Monthly variations of the trends in rain-on-snow (ROS), snowmelt, snowmelt after ROS events, precipitation, snowfall, rainfall, and snow depth in the 
Indus (a) from January to June and (b) from July to December and in the Ganges-Brahmaputra (c) from January to June and (d) from July to December. Trends were 
computed using the Mann-Kendall test with a confidence level of 95%, cells with non-significant trends were set to 0 in the calculation of the basin average. Note that 
the actual values of trends have been rescaled to match the min and max values of the y axis.
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the snowpack in summer. This could potentially shorten the snowpack duration and lead to early snowmelt with 
considerable consequences for the water available for runoff.

In the Ganges-Brahmaputra, the precipitation is decreasing (0.15 mm/d/yr) in almost all the months except in July 
and August (0.39 mm/d/yr), when the rainfall increases. The consequence of the decreasing trends in precipita-
tion and snow depth (up to 0.15 cm/yr) is a decreasing trend in ROS (up to 0.12 mm/d/yr in April). Because the 
snowpack is shrinking, the decreasing rainfall does not fall on snow.

3.5. Implications for the Water Available for Runoff

In this section, we discuss the implications of ROS for the water available for runoff in HMA. Figure 5 illus-
trates (a) the annual average of the snowmelt's contribution to the water available for runoff (see definition in 
Section 2.2.2) and (b) the corresponding statistically significant trends and (a) the annual average of the ROS 
snowmelt contribution to the water available for runoff (see definition in Section 2.2.2) and (b) the corresponding 
statistically significant trends. Snowmelt significantly contributes to the water available for runoff in the HMA. 
In the Indus basin, around 10% of the total water available for runoff originates from snowmelt whereas this 
percent reaches 30% in the Ganges-Brahmaputra. Similarly, the snowmelt represents more than 30% of the total 
water available for runoff in the northwestern basins. The spatial distributions of the average of the snowmelt's 
contribution to the water available for runoff and the ROS snowmelt contribution to the water available for runoff 
are similar. As discussed in Section 3.2, the Ganges-Brahmaputra has the highest contribution of ROS snowmelt 
to the water available for runoff with more than 10% in many areas. In the Indus basin, the contribution of the 
ROS snowmelt to the total water available for runoff is less than 10% in many areas. The trends in the contribu-
tions of the total snowmelt and the total ROS snowmelt are akin and similar to the trends in ROS amounts and 
snowfall previously discussed. As such, the Ganges-Brahmaputra basin and the Indus basin have two distinct 
and opposite trends. Because both snowfall and ROS decrease in the Ganges-Brahmaputra the contributions of 

Figure 5. Spatial distributions of the (a, c) averages (i.e., mean of the 18 years) and (b, d) trends in the contributions of snowmelt and respectively the snowmelt 
occurring the day after a rain-on-snow day to the water available for runoff defined as the sum of the total rainfall and snowmelt. Trends were computed using the 
Mann-Kendall test with a confidence level of 95%, non-significant trends were set to 0.
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snowmelt decreases (>0.004/yr.), that is, the contribution of rainfall to the water available for runoff increases 
more than that of snowmelt, contrary to the Indus basin where ROS increases the contribution of snowmelt to 
the water available for runoff (>0.002/yr). The trends in these contributions are bidirectional in the northwestern 
basin following the trends in ROS.

These results strengthen the conclusions drawn previously. Although ROS enhances snowmelt which has a 
noteworthy contribution to the total water available for runoff in the Ganges-Brahmaputra, these contributions 
decrease contrary to the Indus basin characterized by a low contribution of snowmelt to the total water availa-
ble for runoff. Changes in ROS could shift the timing of runoff, however, in this study, we did not observe any 
considerable shift in the timing of hydrologic processes. This probably stems from the relatively short period of 
time we have investigated ∼18 years.

4. Discussion
4.1. Comparisons With Previous Studies and Model Uncertainties

The trends observed in this work agree with previous studies. First, the bidirectional trends in precipitation are 
consistent with Nguyen et al. (2018). Second, snowfall increases in the Indus basin have been documented in 
previous studies which employ datasets and models different from the ones used in this study (Maina, Kumar, 
Albergel, & Mahanama, 2022; Smith & Bookhagen, 2018). Also, the trends in seasonal snow cover are consistent 
with increasing trends in snow cover remotely sensed by MODIS (Hall et al., 2006; Kraaijenbrink et al., 2021; 
Maina, Kumar, Albergel, & Mahanama, 2022) and the trends in the water available for runoff are in agreement 
with the global runoff data developed by Ghiggi et al. (2021). Finally, the patterns of ROS in HMA we observed, 
such as the relationship between elevation and the trends in ROS, are in agreement with previous studies focusing 
on North America (Musselman et al., 2018; Surfleet & Tullos, 2013).

Despite the consistency with prior results, we acknowledge that our model estimates also likely have irreducible 
uncertainties. The lack and/or the limited amount of available and reliable remote sensing products and ground 
measurements of hydrologic variables make the model evaluation and comparison difficult to perform in this 
region. The complex orographic patterns of HMA affect the performance of reanalyzes and remotely sensed 
variables and induce high biases. As a result, our model evaluation was limited to MODIS snow cover product. 
Though this evaluation is not comprehensive, it allows to assess the performance of our model in reproducing a 
critical variable associated with ROS, that is, snow. Note that the SWE reconstruction we have used in this study 
has been evaluated in previous studies (Kraaijenbrink et al., 2021). Another source of uncertainty in our results is 
the meteorological forcing that we used. Due to the complexities of the atmospheric and land surface processes 
in HMA, accurate estimation of precipitation and other meteorological forcing is difficult and different forcings 
lead to different results. This issue has also been widely discussed in the literature (Maina, Kumar, Dollan, & 
Maggioni, 2022; Yoon et al., 2019; You et al., 2015). The uncertainties from the forcing meteorology are reduced 
by using an ensemble generated with reasonable gridded precipitation datasets, described in detail in Maina, 
Kumar, Dollan, and Maggioni (2022). Because our study relied on remote sensing products that are only available 
for a short period of time (i.e., less than 20 years), we could not investigate the longer-term trends in ROS and 
their impacts on hydrology. As a result, some potential impacts of ROS such as the shift in the timing of surface 
runoff and/or seasonality of hydrologic states and fluxes were not quantified.

Dust and other dark particles such as black carbon have been shown to play an important role in the snow 
dynamics in HMA by darkening the snowpack and subsequently accelerating the snowmelt (Sarangi et al., 2020). 
These non-climate-related dynamics are difficult to model because of the lack of data notably the spatiotemporal 
changes of dust and black carbon. Although dust and black carbon could contribute to the decrease in snowpack 
in the Himalayas, particularly in the Indus basin as shown in previous studies (Sarangi et al., 2020), the observed 
decreasing trends in snowpack in summer in the Indus basin despite an increase in snowfall is due to ROS that 
accelerates the melting of the snow and hence it decreases.

4.2. Implications for Downstream Hydrology

ROS in HMA is more frequent (up to 50 days of ROS per year) than in the western US (less than 15 days, 
Musselman et  al.,  2018) yet ROS and its consequences are most of the time overlooked in the region. ROS 
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considerably contributes to snowmelt, especially in the Ganges-Brahmaputra where the ROS snowmelt ratio is 
higher than 60%. With the shift in the precipitation phase (with more precipitation falling as rain), careful consid-
eration should be given to ROS and its impacts over HMA. Because of its persistent snowpack and increases in 
precipitation, ROS is increasing in the Indus basin. ROS mainly occurs in summer and its occurrence decreases 
the snowpack and enhances the snowmelt. Because the increases in ROS in the Indus shorten the duration of 
the snowpack and increases snowmelt, it, therefore, has the potential to decrease the soil moisture in the basin 
as the snowpack decreases earlier. Though we do not observe this impact on soil moisture now, this could arise 
in the future as the snowpack shrinks and the temperature warms. ROS could decrease soil moisture and induce 
drought in the Indus basin subject to intense agricultural activities with high rates of applied irrigated water 
(Salmon et al., 2015). This could lead to more irrigation demand which can have dramatic consequences on the 
already pronounced groundwater depletion (Rodell et al., 2009) and changes in land surface structures such as 
greening and changes in surface radiation (Maina, Kumar, Albergel, & Mahanama, 2022). We further note that 
in many areas where ROS occurs, the ROS snowmelt ratio represents more than 5% of the total water available 
for runoff defined as the sum of rainfall and snowmelt and can reach up to 15%. As a result, ROS considerably 
contributes to the water available for runoff in the region and its increasing trends should be accounted for in 
water management strategies. ROS-related floods will likely become frequent and previous studies have demon-
strated the costly consequences of these floods in other regions (McCabe et al., 2007; Musselman et al., 2018; 
Sui & Koehler, 2001). Moreover, the increasing trends in ROS in the Indus basin have strong implications for 
landslides as the region is prone to these natural disasters (Kirschbaum et al., 2020; J. Liu et al., 2021). Landslides 
in HMA are usually caused by extreme precipitation and/or glacier melt in addition to earthquakes, freeze and 
thaw cycles, etc. With an increasing contribution of ROS to the total snowmelt, the impacts of ROS on landslides 
should be accounted for in landslides assessment studies. The contribution of ROS to the total water available 
for runoff is even higher in the Ganges-Brahmaputra compared to the Indus with more than 15% in many areas. 
On contrary to the Indus basin, ROS is decreasing in the Ganges-Brahmaputra due to the decreasing trends in 
snowpack and precipitation. However, ROS currently has serious implications for downstream hydrology as it 
considerably contributes to snowmelt and the water available for runoff in the basin. These high contributions of 
ROS to the total snowmelt and the water available for runoff may already be the causes of natural disasters such 
as floods and landslides in the basin, therefore, more studies analyzing the relations of these events to ROS are 
needed in the region. Like the Indus basin, the Ganges-Brahmaputra basin is also subject to agricultural activ-
ities and intense irrigation, the decreasing trends in ROS inducing decreasing trends in snowmelt will lead to a 
decrease in water availability. Unless the increasing trend in precipitation is sufficient enough to compensate for 
the decreases in snowmelt contributions, the decreases in recharge from the headwaters will increase the use of 
groundwater in the region, and exacerbate the observed dramatic consequences of an overuse of groundwater 
(Maina, Kumar, Albergel, & Mahanama, 2022; Rodell et al., 2009). Because of their bidirectional trends in ROS, 
both the Indus (characterized by increasing trends) and the Ganges-Brahmaputra (characterized by decreasing 
trends) ROS consequences could be locally observed in the northwestern basins.

5. Summary and Conclusions
The change in the precipitation phase due to global warming causes ROS in snow-dominated and mountain-
ous regions such as HMA. ROS in HMA occur in five basins (Amu Darya, Syr Darya, Ili, Indus, and the 
Ganges-Brahmaputra). Because of the complexities of HMA, ROS dynamics are region-dependent:

•  The Indus: in this basin where most of the precipitation falls as snowfall, ROS represents locally more than 5% 
of the annual precipitation and contributes up to 20% to the total annual snowmelt. ROS locally reaches up to 
30% of precipitation in summer. ROS and its contributions to snowmelt are increasing in the region due to an 
increase in precipitation and a slight increase in temperature that is not enough to shift the precipitation phase. 
The increasing ROS in the Indus decreases the summer snowpack despite an increasing snowfall; therefore, 
ROS changes the snow dynamics of the region. Although ROS triggers early and high snowmelt in the Indus, 
it currently has little impact on the soil moisture of the region as it is subject to the monsoon that supplies 
more water in summer.

•  The Ganges-Brahmaputra: in this basin where the snowfall represents around 30% of the precipitation, 11% of 
the annual precipitation is ROS. ROS mostly occurs in summer, and it considerably contributes to snowmelt 
up to 60%. ROS is decreasing in the Ganges-Brahmaputra because of the decreasing trends in precipitation 
and a declining snowpack.
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•  The northwestern basins (Amu Darya, Syr Darya, and Ili): ROS constitutes 5%–10% of the annual precipita-
tion and mainly occurs in late winter and spring on contrary to the Indus and the Ganges-Brahmaputra where 
it occurs in summer. ROS locally contributes to up to 5% of the annual snowmelt with a high contribution 
in spring when more than 40% of the snowmelt is after a ROS. ROS and its contributions to snowmelt have 
bidirectional trends which depend on both trends in precipitation and elevation patterns.

This work sheds light on the dynamics of ROS in HMA, its trends, and its impacts on the snowpack and subse-
quently snowmelt. Future studies could investigate the impacts of ROS on floods and landslides as the region is 
prone to these natural disasters. Future studies could also evaluate the impacts of ROS on the vegetation dynamics 
in the region as the decreases in snowpack resulting from ROS could increase the growing season and leads to 
increasing soil moisture that will favor vegetation growth.

Appendix A: Comparisons Between Simulated and Remotely Sensed Snow Cover
We compare the simulated snow cover to the snow cover remotely sensed by MODIS. Figure A1 illustrates the 
high probability of detection and the low false alarm ratio of our model.
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Appendix B: Runoff Evaluation
The simulated runoff was evaluated by comparing it to the global runoff data provided by Ghiggi et al. (2021). 
Figure B1 shows that in general the trends in runoff of our model agree with the trends in the runoff by Ghiggi 
et al. (2021).

Figure A1. (a) Monthly variation of snow detection accuracy of the assimilation results compared to the snow cover provided by Moderate Resolution Imaging 
Spectroradiometer, and the spatial distribution of the probabilities of (b) detection (annual average), (c) false alarm (annual average), (d) the seasonal probabilities of 
detection and false alarm, (e) annual averages values of the probability of detection by elevation, and (f) the monthly values of the probability of detection by elevation.

 23284277, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F003009 by U
niversity O

f M
aryland, W

iley O
nline L

ibrary on [06/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth’s Future

MAINA AND KUMAR

10.1029/2022EF003009

15 of 22

Appendix C: Comparisons Between the Assimilation and the Open Loop
The results of the assimilation of SWE were compared to an open loop simulation (i.e., simulation without assim-
ilation). The assimilation of SWE improves the probability of the detection of snow and the trends in the runoff 
(Figures C1–C3).

Figure B1. Comparisons of the signs of the trends in runoff provided by Ghiggi et al., 2021, and our model.
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Figure C1. Comparisons of monthly values of snow water equivalent obtained with the open loop simulation, the assimilation and the observations (Kraaijenbrink 
et al., 2021).
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Appendix D: Monthly Variations of Precipitation, Snowfall, Rain-On-Snow (ROS), 
Snowmelt, Snowmelt After ROS
Figure D1 depicts the monthly variations of precipitation, snowfall, rain-on-snow, snowmelt, and snowmelt after 
rain-on-snow in the 5 HMA basins subject to rain-on-snow (Indus, Ganges-Bahmaputra, Amu Darya, Syr Darya, 
and Ili).

Figure C3. Comparisons of the signs of the trends in runoff computed by Ghiggi et al., 2021, the assimilation, and the open loop.

Figure C2. Comparisons of the probabilities of false alarm and detection associated the assimilation and the open loop.
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Appendix E: Monthly Variations of the Trends in Amy Darya, Syr Darya, and Ili
Figure E1 illustrates the monthly variations of the trends in rain-on-snow, snowmelt, snowmelt after rain-on-snow, 
precipitation, snowfall, rainfall, and snow depth in Amu Darya, Syr Darya, and Ili.

Figure D1. Monthly variations of the mean of precipitation, snowfall, rain-on-snow (ROS), snowmelt, and snowmelt after ROS.
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Data Availability Statement
The Nasa Land Information System (LIS) used in this study is an open-source software that can be found here: 
https://github.com/NASA-LIS/LISF.
Datasets used in this study can be found in the following websites:

•  ERA5 forcing: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
•  IMERG Precipitation: https://gpm.nasa.gov/taxonomy/term/1372
•  CHIRPS Precipitation: https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/
•  SWE reconstruction by Kraaijenbrink et al. (2021): https://zenodo.org/record/4715786#.YqDY0S-B1pI

Figure E1. Monthly variations of the trends in rain-on-snow (ROS), snowmelt, snowmelt after ROS events, precipitation, snowfall, rainfall, and snow depth in the 
Amu Darya, Syr Darya, and Ili. Trends were computed using the Mann-Kendall test with a confidence level of 95%, cells with non-significant trends were set to 0 in the 
calculation of the basin average. Note that the actual values of trends have been rescaled to match the min and max values of the y axis.
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