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We find the analytical expression for the threshold intensity necessary to launch ultraslow light pulses in a
metamaterial with simultaneous cubic electric and magnetic nonlinearity. The roles played by the permittivity,
the permeability, the electric cubic nonlinearity, the magnetic cubic nonlinearity and the pulse duration are
clearly identified and discussed. © 2008 Optical Society of America
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1. INTRODUCTION

Temporal solitons, i.e., guided light pulses that propagate
without dispersion due to the balancing between the
group-velocity dispersion (GVD) and the self-phase modu-
lation induced by a Kerr nonlinearity, play a fundamental
role in optical communications systems [1,2]. In the past
few years metamaterials, i.e., artificial composites as-
sembled in such a way that they show both an effective
electric and magnetic response although the constituent
materials are nonmagnetic, have been the subject of in-
tense theoretical and experimental investigations due to
their vast range of potential applications from superreso-
lution [3] to cloaking [4]. The study of optical solitons in
metamaterials is a new and exciting field of research that
has already produced some important theoretical results:
we cite, for example, the possibility to excite bright and
dark gap solitons in a metamaterial cavity [5]; a new non-
linear Schrodinger equation (NLSE) for metamaterials
with only cubic electric nonlinearity [6]; and a generalized
system of two coupled spatiotemporal NLSEs for metama-
terials with simultaneous cubic electric and magnetic
nonlinearity [7]. In [8,9] the spatiotemporal dynamics of
cavities containing a nonlinear metamaterial has also
been studied.

The aim of this paper is to arrive at an analytical ex-
pression for the threshold intensity needed to launch an
ultraslow optical soliton in a metamaterial and to clearly
put into evidence the roles played by the permittivity, the
permeability, the electric cubic nonlinearity, the magnetic
cubic nonlinearity, and the pulse duration. “Slow light”
has recently received a great deal of attention in telecom-
munications for its numerous applications—ranging from
all-optical storage to all-optical switching [10]. Before go-
ing into the mathematical analysis of the problem we
would like to discuss briefly the linear properties of a
metamaterial, which we describe by a Drude model [3] for
both permittivity and permeability: s(@)~1-1/&2, w(®)
~ 1= (@yp! w,p)*/ @2, where @=w/ w,, is the normalized fre-
quency; ., and w,,, are, respectively, the electric plasma
frequency and the magnetic plasma frequency of the
metamaterial; and w,,=2mc/\,,, where \,, is the electric
plasma wavelength. In Fig. 1(a) we show the refractive in-
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dex n==% \s"a and group velocity (GV) V, for w,,,/w,
=0.8. The negative determination of the square root must
be taken when ¢ and u are simultaneously negative [11].
The material is characterized by an opaque region (no
propagative modes allowed) between o,,,<w<w,, and
two transparent regions (propagative modes allowed), re-
spectively, for v <w,,, and o> w,,; note also that V, and n
reach values close to zero near the edges of the propaga-
tive regions. The two band edges are defined, respectively,
by the conditions w=w,, and w,,,. It is indeed near the
band edges of the propagative regions that ultraslow GV
temporal solitons make their appearance. In Fig. 1(b) we
show the so-called GVD parameter

e(ls))

The zones at the edges of the propagative region where
low GV is achieved are also characterized by a strong dis-
persion that, as we will see later, substantially increases
the threshold intensity necessary to launch the funda-
mental soliton. We also note that in the case of an imped-
ance matched metamaterial, i.e., w,,,=w,,, the opaque re-
gion disappears and, as a consequence, the GV remains
substantially close to ¢ over the entire spectrum.

The paper is organized as follows: in Section 2 we de-
rive the basic equations and arrive at a system of two
NLSEs that couple together the electric and magnetic
field; in Section 3 we discuss the analytical solutions and,
in particular, we focus on the ultraslow soliton solutions
near the band edges of the metamaterial; and in Section 4
we go to the conclusions.

2. BASIC EQUATIONS

Before proceeding with our technical analysis we would
like to emphasize that our approach follows a path simi-
lar to the one that was first proposed in [6] by Scalora et
al. The main differences between our current work and
[6] are that (a) in [6] they arrive at a single NLSE with
only the effect of the electric nonlinearity taken into ac-
count, while here we derive a set of two coupled NLSEs in

© 2008 Optical Society of America
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Fig. 1. (a)n (dashed curve) and V, in units of ¢ (solid curve) ver-
sus w/w,, for a metamaterial described by a Drude model with
W/ 0,,=0.8 as outlined in the main text. (b) GVD parameter 8,
versus o/ w,,.

the electric and magnetic field and demonstrate that they
can be decoupled using a suitable field transformation;
and (b) in [6] they analyze the NLSE in a region away
from the band edges of the metamaterial, while here we
concentrate in a region close to the band edges of the
metamaterial where ultraslow solitons make their ap-
pearance.

Now, let us start our analysis with the Maxwell equa-
tions in the (1+1) dimension for linearly polarized fields
OE/dz=-(6B/dt), —(6H/dz)=dD/ ot where E, B, H, and D
are, respectively, the electric field, the magnetic induc-
tion, the magnetic field, and the electric displacement or
electric induction. In what follows we use nondimensional
units, i.e., gg=uo=c=1, where ¢; and u are, respectively,
the permittivity and permeability in vacuo and c is the
speed of light in vacuo. We write the electric and magnetic
field as the product of an envelope function multiplied by
a harmonic oscillation at frequency wy: E(z,t)=(1/2)
X[E(z,t)e @t +c.c.] and H(z,t)=(1/2)[H(z,t)e ! +c.c.].
In the hypothesis that the envelope of the fields is slowly
varying in time with respect to the oscillation associated
with the carrier frequency g, the time derivatives over B
and D, respectively, can be approximated as follows:

oD 1 B (a(sw)) oE

— = —¢ it _jwyeE +
ot

o 2 dw

i <&2(ew)> PE

5\ o T iweXP|EPE | +c.c.,
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B 1 ~
— = Ee_“"ot —lwouH +

ot Jw ot

a(;m)> oH

i [ P(pw) #H e
+ 5 ﬂwZ ? - Lwo,uxﬂ |H| H | + c.Cc.,

where E and H are the complex envelopes for the electric
and magnetic fields, respectively; ¢ and u are, respec-
tively, the relative permittivity and the permeability of
the material, permittivity and permeability that we sup-
pose real quantities; and }i3)=(3/ 4) Xf,;S) and }f)=(3/ 4) XS)
are, respectively, the cubic electric and magnetic nonlin-
earity that we suppose nondispersive for the sake of sim-
plicity. In the derivation of the approximated expressions
for dD/dt and dB/dt we have neglected (a) the third-order
time derivative over the field envelopes; (b) the first-order
time derivative over the nonlinear terms, i.e., the self-

steepening terms such as J(|E|2E)/ot and o(H|2H)/ o¢; and
(¢) the nonlinear terms whose temporal oscillations are
different from the oscillation at the carrier frequency (ro-
tating wave approximation), i.e., we retain only the self-
phase modulation terms. Now, if we put into evidence the
ikz

fundamental spatial oscillation by writing E =Eei** and

H=He** where k=nuw, is the fundamental wave vector,
and substitute the above expressions into Maxwell equa-
tions, we arrive at the following system of coupled equa-
tions:

k- e GH i PH
E +ikE =iwy(u+ Xu |H*)H - Bl,ﬂg - 532#?,
(1.1)
H g ok i PR
P ikH =iwg(e + Xy |E[)E - BLsE - EBZ,s?’
(1.2)

where

d"(we)
Bum.e do ) ;

—0

m,p

(d’”(wﬂ)

=1,2,...).
do™ ) B (m )
ll)—ll)O

Equations (1) have an evident symmetry. In fact Eq. (1.2)
can be obtained from Eq. (1.1) and vice versa with the for-

mal substitutions e — u, u—e, E —>I:I, and H —E. We now
concentrate on the manipulation of only one of the two
equations. Let us concentrate on Eq. (1.1). By deriving
Eq. (1.1) with respect to z, using Eq. (1.2) and neglecting
the third-order spatiotemporal derivatives over the enve-
lopes and the first-order derivatives over the nonlinear
terms, we arrive at the following equation:
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Note that by neglecting the third-order spatiotemporal
derivatives we are implicitly assuming that the electro-
magnetic pulse is slowly varying both in time and space.
While in standard positive index materials (n>1, u=1)
the condition that the pulse is slowly varying in time gen-
erally implies that the pulse is also slowly varying in
space, in our case the situation is not so simple because of
the high dispersion present in the propagative regions
near the electric or the magnetic plasma frequency of the
metamaterial (see Fig. 1), i.e., where slow GV solitons are
present. In general the condition of the slowly varying en-
velope in space is broken anytime the pulse extension in
the material Az=V,T (T is the temporal pulse duration)
becomes comparable with the wavelength of the pulse A
=2mc/(nwg). In other words Eq. (2) retains its validity
when Ty>2mc/(Vgnwy). It is clear that this condition put
a lower limit on how short in time a low GV soliton can be.
In [12] Brabec and Krausz have demonstrated that the
slowly varying envelope can be applied even to single-
cycle pulses if the group velocity (V,) and the phase veloc-
ity V,=(c/n) satisfy the following inequality: [1-V,/V,]|
<1, i.e., the material dispersion is small. Here we are ex-
actly in the opposite regime, i.e., extremely high material
dispersion near the band edges of the structure where the
phase velocity tends to infinity and the GV tends to zero
and the following condition is valid: [1-V,/V,[>1. We
will come later to a quantitative analysis of the condition
To>2mc/(Vgnwp). For the time being, let us continue with
the manipulation of Eq. (2). By defining

d"(nw)
Bn =

do™

m=1,2...),

W=wg

by using the typical coordinate transformation é=z, 7=¢
- B4z and, finally, by neglecting the terms that are of the
same order as the third-order spatiotemporal derivatives
over the envelopes and the first-order derivatives over the
nonlinear terms, Eq. (2) can be put in the following form:

122 PN A
. ~(3)| 72 ~(3)| 1712 —
Tt L ISOE2E + HI’H|=0. (3.1
lag 9 92 2( XsH X,L|| ) (3.1)

In arriving at Eq. (3.1) we have also used the following
equalities:

Bl = (Sﬁl,p. + lu’ﬂl,a)/zn )

,32,30)0# ,32,,“(008
2 2 ’

1 1

Bo=- n_a)o vg = BB~
which can be demonstrated. We note that both 3; and B,
are invariant under the transformations e—u, u—e.
Physically this means that the electric and magnetic
fields obviously must have the same GV and GVD. Equa-
tion (3.1) is the first of the two equations we were looking
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for. It becomes the standard NLSE [1,2] for ;(jf>=0. Now,
using the same procedure outlined above, but starting by
deriving Eq. (1.2) with respect to z, we can arrive at the
second equation,

&
~ SO F12ET + 2O B2 | =
i— — + HP?H + YP|EPE | =0.
22 2(nxﬂ|| X: |E| )

(3.2)

Equations (3.1) and (3.2) form a system of two coupled
NLSEs that preserve the same symmetry of Egs. (1), in
fact we can formally obtain Eq. (3.2) from Eq. (3.1) and
vice versa with the formal substitutions ¢ —pu, u—e, E
—H , and H—E. Before going to analyze the analytical so-
lutions of Egs. (3.1) and (3.2) we make some cosmetic ma-
nipulations by introducing the following new variables
and parameters: Z=¢/Lp, Lp=T3/|Bs|, F=7/Ty, uy
=\Lpwy/2E, uy=\Lpwy/2H, and Z=u/e where T}, is the
pulse duration; Lp, is the so-called second-order dispersion
length [1,2]; and Z is the impedance of the medium, which
obviously is always positive. In the new variables Eqs.
(3.1) and (3.2) become

Juy  sgn(By) Puy _ _
—5 + XN Puy + X uslPus) = 0,
ot

11— —

az 2
(4.1)
duy  sgn(By) Pugy 1 N
LT g ﬂt?+ ZXf)|u2|2u2+X(ES)|u1|2u1 =0,
(4.2)

where sgn(B,) stands for the sign of the GVD parameter.

3. ULTRASLOW SOLITONS

The fundamental soliton solutions of Eqgs. (4) can be easily
found by noting that this system of two coupled NLSEs
can be decoupled into a single NLSE by using the follow-
ing transformations: u;=Zu and ug=u. The transforma-
tions used to decouple the system of Egs. (4) have an ob-
vious physical meaning: the electric and the magnetic
field must be proportional to each other through the im-
pedance Z of the medium, as one may expect. The single
NLSE in the u variable takes the following form:

du  sgn(Bs) Pu
] ?+F|u|2u=0, (5)
at

11— —

zZ 2

where F=(Z3)~((€3)+(1/Z))~(f)). The fundamental soliton so-
lutions of Eq. (5) are well known [1,2]. Bright soliton:
u(Z,f)=(sec h(i‘)/\s“m)exp(:iiﬂ) for sgn(Bs)=-1 and I'>0
or sgn(By)=1 and I<0. Dark soliton: u(Z,?)
=(tanh(f)/yf'm)exp(ii§) for sgn(By)=1 and I'>0 or
sgn(By)=-1 and I'<0. The threshold intensity to launch
the fundamental solitons can be calculated from the maxi-
mum of the Poynting vector, Sy;,=(1/2)Re[EH" |y, which
in our case gives
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Equation (6) is the analytical expression for the thresh-
old intensity necessary to launch the fundamental soli-
tons in a generic metamaterial having both electric and
magnetic cubic nonlinearity. To analyze quantitatively
the situation for simplicity we assume that the electric
and magnetic nonlinearity are of the same order of mag-
nitude. By tuning the carrier frequency of the pulse near
the electric plasma frequency, i.e., wy=w,, and £~0, we
obtain from Eq. (6) the followmg expressmn Sinr

~|Bo|(e/ )/ (T2w0|X (3)|), which means that the ultraslow
GV soliton is of an “electrical” nature; namely, it is the
electric nonlinearity that plays the dominant role for its
formation while the magnetic nonlinearity is quenched.
Vice versa, near the magnetic plasma frequency, i.e., o
~wp,, and u~0, we obtain from Eq. (6) Sy,

~|Bo|(u/ &)/ (T2wo|X (3)|) That is, this time it is the mag-
netic nonlinearity that plays a dominant role in the for-
mation of the ultraslow GV soliton. It is worthwhile to re-
mark that in the above discussion we are operating in
regions near the band edges, but not exactly at the band
edges; in other words, the carrier frequency of the pulse is
always slightly detuned with respect to the electric or
magnetic plasma frequency of the metamaterial. This
means that the refractive index and the permittivity or
permeability are very small but not quite zero, therefore
avoiding any intrinsic singularity in Eq. (2) or in any
other equation that derives from Eq. (2). Finally in the
case of an impedance matched metamaterial, i.e., w,
=w,,, We obtain Sthr=|BZ|/(Tgw0|)~(£3)+X/f)|), which means
that the electric and magnetic nonlinearity play an
equally important role in the soliton formation, although
in this case no ultraslow GV soliton is excited. To have an
idea of how much intensity is necessary to launch these
ultraslow GV light pulses we draw a comparison with the
intensity necessary to launch a soliton in a standard fiber.
For simplicity we fix the electric plasma wavelength of
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f iberl -

( i X, fberl)/ ( thr T ’) Ve 2
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Fig. 2. (Sthr‘beeA /(SEEer| 7)) (left y axis) and V,, in units of ¢
(right y axis) versus dw/w,, where Sw=w,- is the detuning
from the high frequency band edge.
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the metamaterial at A\,,=1 um (1/ ., =0.55 f5). In a stan-
dard single-mode fiber the dispersion D=—(2mc/\2)By is
approximately D ~ 15 ps/(Km nm) at ~1.55 um [1,2]. The
GVD parameter of the standard fiber at 1.55 um ex-
pressed in units of (cw,,)” 1 is approximately ,Bﬁber
-10"%(cw,,)™! and the threshold intensity is Sf}}’fr

X 1072/ (Thw?, c|)(£13b)er|) where we take ngpe,~1.4. In Fig. 2
we plot Sthr| Xﬁber|)/ (Siber| X(S)D and V, near the electric
plasma frequency of the metamaterial. In this case B, is
negative [see Fig. 1(b)] and bright solitons can be
launched when )723)>0. For vy=1.00002w,, (i.e., a detun-
ing from the high frequency band edge dw=wj—w,,
=2*10‘5wep) the GV will be ~¢/100 and
(Sunelxi) )/ (Shber|7¥)) ~ 10, Of course, the actual value
of the intensity necessary to launch the soliton will de-
pend on the value of the cubic nonlinearity in the
metamaterial. It has been noted [13] that microscopic
fields can be dramatically enhanced in a composite struc-
ture such as a metamaterial therefore giving an enhance-
ment of nonlinear phenomena. If we suppose ¥
~(103-10%H%) . the intensity necessary to launch a
¢/100 GV soliton will be comparable with the intensity
necessary to launch a soliton in a standard fiber. The in-
tensity grows exponentially if slower pulses are to be
launched. As we have already mentioned there is a limi-
tation to how short a pulse can be. In the case of our ex-
ample we have the following values at w;=1.00002w,,: n
~4%107% and Vg~ 10~2¢, therefore the temporal duration
of the pulse must be T¢>2mc/(Vgnwy)~ 100 ps, which
means at least ~1 ns pulses. There is one last issue that
deserves to be discussed in some detail and that is the ef-
fect of higher-order dispersion terms. As we have already
remarked in this work we are operating near the band
edges of the structure, i.e., in regions of extremely high
dispersion, as is evident, for example, from Fig. 1(b)
where the GVD parameter 3, is represented. On the other
hand, in order to arrive at analytical solutions we have
neglected the third- and higher-order dispersion terms.
Now, in conventional fibers third- and higher-order dis-
persion terms are generally small and can be treated by
perturbation approaches for a pulse duration 7(>1 ps
[1,2]; in our case, given the remarkably high dispersion
present near the band edges we may expect that much
longer pulses than those of a conventional fiber are
needed in order to reduce the effects of the third- and
higher-order dispersion. We would like to remind the
reader that we have already set up a lower limit to the
pulse duration, i.e., To>2mc/(Vynw,), based on the re-
quirement that the pulse must be slowly varying in space;
in our case, for a soliton with a group velocity 10~2c, this
condition calls for pulses that are at least 1 ns in dura-
tion. Let us here concentrate on the third-order dispersion
in particular. To consider the third-order dispersion as a
small perturbation we need to impose the condition that
LY>Lp where L¥'=T3/|Bs| is the so-called third-order
dispersion length [1,2,14] and Lp=T?3/|,| is the second-
order dispersion length. This means that the pulse dura-
tion must satisfy the following condition: T>|Bs|/|Bs|. In
Fig. 3 we plot |B3]/|Bs| for the metamaterial described in
Fig. 1 when the carrier frequency of the pulse is tuned
near the high frequency band edge, i.e., vy~ w,,. In par-
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Fig. 3. [Bs]/|B.| (units of 1/w,,) versus dw/w,,.

ticular we plot |Bs|/|Bs| as a function of the detuning dw
=wy—w,p. In the case of a detuning dw/ wep%2*10‘5 the
GV  of the soliton is ¢/100 and Ty>|Bs|/|Bo
~T.4x 104/wep~40 ps. If we now recall that for the same
tuning condition the pulse duration necessary to main-
tain the validity of the slowly varying envelope approxi-
mation is Ty> 2mc/(Vgnwy) ~ 100 ps it should appear evi-
dent that nanosecond pulses not only ensure the validity
of the slowly varying envelope approximation in space,
but also allow us to treat the third-order dispersion as a
small perturbation. The generalization of Eq. (5), which
includes the third-order dispersion, can be written as

du  sgn(Bs) Pu Fu
i— - — +T|ufu=i6—, (7
B 2 g2 o

where &3 is the third-order dispersion parameter &3
=B5/(6Ty|B)) and |53/ <1 in our case. Here we consider for
simplicity the case that the pulse is tuned near the high
frequency band edge and the electric nonlinearity is posi-
tive. It can be demonstrated by using a perturbation ap-
proach [2,15] that the fundamental bright soliton solution
modified by the third-order dispersion can be written in
the following form:

u(z,7) = (sech(f - 5,2)/\T)exp(iZ/2). (8)

In other words, what the third-order dispersion does is to
modify the actual GV in the following form:

1) Vg
Vs ©)
1+ gﬁ3

6T

where clearly V,=1/8; is the usual GV. In Fig. 4 we cal-
culate the correction brought to the usual GV by the
third-order dispersion for a 1 ns pulse tuned near the
high frequency band edge. The figure shows that the GV
is corrected for less than one part over 1000 and there-
fore, for all intents and purposes, this correction can be
considered negligible. Similar results to those exposed
above can be expected if wj is tuned near w,,,, except that
in this latter case bright solitons can be launched when
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Fig. 4. |V;,1)—Vg|/Vg versus 6w/ w,,.

}(f)<0. Here we have explicitly analyzed the case wy,
< g, In the opposite situation, w,,, > w,,, we would have
bright solitons at wy= w,,, for )N(f’)>0 and at wy= w,, for
79 <0.

Once again, we would like to caution the reader that
our approach is valid for sufficient long pulses because
they allow us to treat the higher-order dispersion terms
perturbatively. For shorter pulses the situation is much
more complicated, because in that case the strong disper-
sion present near the band edges may prevent its expan-
sion into the various terms (first order, second order, etc.),
but the entire dispersion of the material might have to be
considered all together; a task that can be undertaken
only numerically by an ab initio integration of Maxwell
equations. While, of course, the dynamics of short pulses
near the band edges of a metamaterial may represent a
fertile ground for future research, it is clearly outside the
scope of the present work where, on the contrary, we have
focused our attention on longer pulses, i.e., on cases in
which the expansion of the dispersion remains valid and
analytical solutions are available.

A final note regarding the absorption of the metamate-
rial. In this work we have neglected the absorption of the
metamaterial. In currently available metamaterials in
the near infrared [16] the absorption is still so high that it
is premature to think about any practical soliton applica-
tion. Nevertheless, in principle, there is nothing that pre-
vents the possible availability of low-loss metamaterials
in the near future.

4. CONCLUSIONS

In conclusion, we have performed an analytical study on
the possibility to excite ultraslow solitons near the band
edges of a metamaterial. We have investigated the roles
played by the permittivity, the permeability, the electric
cubic nonlinearity, the magnetic cubic nonlinearity, and
the pulse duration. We hope that our results may stimu-
late further research aiming at the study of this new class
of materials in applications that involve slow light, such
as all-optical buffering and switching, for example.
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