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Abstract

The study of clouds, i.e., where they occur and what are their characteristics,
plays a key role in the understanding of climate change. The aim of this project is
to use machine learning in conjunction with parallel computing techniques to classify
cloud types. Experiments with k-means clustering are conducted with two parallelism
techniques.

1 Introduction

The climate of Earth tends to maintain a balance between the energy reaching the Earth from
the Sun and the energy leaving the Earth to space. This is also known as Earth’s “radiation
budget.” The components of the Earth system contributing to the radiation budget include
Earth’s surface, atmosphere, and clouds [8, 13, 14]. The study of clouds, including their
frequency of occurrence, location and characteristics, plays a key role in the understanding
of climate change. Thick clouds in the lower atmosphere primarily reflect the incoming solar
radiation and consequently cool the surface of the Earth. On the other hand, thin clouds
in upper atmosphere easily transmit the incoming solar radiation and also trap some of the
outgoing infrared radiation emitted by the Earth’s surface and radiate it back downward,
consequently warming the atmosphere and surface of the Earth. Usually, the clouds in the
upper atmosphere have a colder cloud top that traps the energy in form of outgoing longwave
emission. As a result of the trapped energy, the temperature of the Earth’s atmosphere and
surface increases until the longwave emission to space is balanced by the incoming solar
shortwave radiation.

Two parameters that are directly related to the heating and cooling effects of clouds are
cloud optical thickness (COT) and cloud top height (CTH) (which is related to cloud top
pressure (CTP)). COT is a measure of the thickness of cloud which largely determines the
reflection of sunlight (shortwave), i.e., the cooling effects of clouds. The thicker the cloud the
stronger the reflection. The CTP also plays a role in the warming of clouds in the thermal
infrared region (greenhouse effect). For example a cloud with high CTP and low COT would
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result in warming affect but a cloud with a high CTP and high COT would result in a net
0 or “neutral” affect. For this reason, the satellite retrievals of the cloud COT and CTP are
often portrayed in a joint histogram of COT and CTP.

We can study these variables using NASA satellite data such as Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO). The clouds can be studied through atmospheric mod-
elling, where computer simulations are used in conjunction with field measurements and lab
studies to further our understanding of cloud physics. In this work we are using MODIS
data for one year (2005), and we employ K-Means clustering to identify the cloud types.

2 Background

2.1 Joint Histograms

A snapshot of cloud at one location and time is detected by the satellite, and COT and CTP
from these measurements maybe reported as the 2-D joint histogram. [9]. The International
Satellite Cloud Climatology Project (ISCCP) cloud type is employed in order to interpret
the histogram [12]. With this categorization, it is easy to link the joint histogram data to
real world clouds as shown in Figure 2.1 and Figure 2.2.

At the 1◦ × 1◦ grid cell, it is natural that multiple cloud types occur together. Conse-
quently individual joint histogram data (representing one time and one location) have great
variability. This is the reason why the concept of ’cloud regime’ was created. In short, the
cloud regime is the concept representing the domain mixtures of cloud types.

Figure 2.1: Cloud type definitions can be extrapolated using joint histograms where the joint-
histogram is broken up into regions which are blocked according to cloud-type. Additional
information on this technique can be seen in [12].
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Figure 2.2: Joint histogram of cloud top pressure and cloud top thickness suggesting high
frequency of stratocumulus clouds.

2.2 K-means

In order to cluster the cloud types based on their properties (COT, CTP) as shown in
Figure 2.3, we used K-means clustering algorithm.

The general idea behind k-means clustering is grouping data according to similarities
typically using distance as a similarity measure [7].

k-means is an unsupervised clustering algorithm. The procedure includes classifying a
given data set through a certain number of clusters (assume k clusters), where k is fixed a
priori. It starts with choosing k cluster centers (centroids) in the space representing the data
objects. Next, each data object is assigned to its closest cluster center, based on Euclidean
distance. After assigning all data to a a set of cluster centers, the new positions of the k
centroids are calculated. If the centroids are found to move, the previous steps of assigning
and calculating are repeated until the centroids move no more [10][11].

The K-means algorithm is sensitive to the initialization of randomly selected cluster
centers [7]. To reduce the randomness in the cluster results, it is better to initialize the
centroids as sparse as possible. To get stable clustering results, the algorithm can be made
to run multiple times, and the within-cluster-variance and Euclidean distance can be used
as clustering criteria to be optimized.
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Figure 2.3: The cloud regime (CR) centroids of daily ISCCP joint histograms. The cloud
fraction of each regime (=sum of 42 bin CF values) is also provided. When bin values are
larger than 10%, they are explicitly shown [9].

3 Implementation Details

All implementations discussed in this section can be found on GitHub [5].

3.1 Python and FORTRAN

The original source code that was provided to our team used two programming languages
to achieve maximum performance while also maintaining an acceptable level of readability.
The calculation-heavy sections of the code were written in FORTRAN90 to leverage the
computational performance of FORTRAN. The high level functions, such as reading data
from disk, writing to disk, correct algorithm ordering, and other smaller, computationally
cheap tasks, were written in Python to keep the remainder of the code readable and take
advantage of the large open-source libraries that are commonly available through GitHub
or PyPy. The original source code pulled on the popular numerical package NumPy for
the usage of arrays, allowing for compact memory management of large scale data. By
only using the arrays from NumPy the code is capable of using any modern version of
the NumPy distribution available from PyPy or GitHub. The FORTRAN aspects of the
code were compiled to a dynamically linked library using the f2py executable that comes
bundled with NumPy 1.14+, which allowed for the FORTRAN code to be directly callable in
Python. For the best performance the arrays were arranged in FORTRAN’s native column-
major ordering. Lastly OpenMP was integrated into FORTRAN hot loops using pragmas
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to allow the code to make use of all resources on the host machine.
The code takes in a binary data file that is an n× 42 multi-dimensional array where the

n dimension is the number of total histograms to be used for the k-means algorithm and
42 is the number of cloud fraction bins associated with each histogram. Concisely: each
row is one joint histogram. The binary data are produced using level 3 MODIS data that
are provided in an HDF format. The binary format is more compact on disk and is loaded
directly into an array using NumPy.

First the code sets the total number of threads that FORTRAN’s OpenMP can create
by using OpenMP pragmas. Then Python calculates the k initial centroids that will be used
to start K-means clustering. The algorithm for calculating the initial centroids is similar to
k-means++ in that it attempts to make the initial centroids sparse so that they can each
encompass the largest amount of data with minimal, if any, overlap. At this point the
program starts the iteration process for finding a new centroid. The first iteration uses the
initial centroids, and the data and the centroids are passed to the FORTRAN subroutine
assign_and_get_new_sum that attempts to find a new centroid and then computes the
Euclidean distance of each record from the post-iteration centroid. Python receives the the
post-iteration centroids and computed distances from FORTRAN, whereby it uses NumPy’s
array arithmetic to compute the mean distances for the new centroids. A quick check is
performed to determine if the post-iteration mean distances are superior to the pre-iteration
mean distances. If the post-iteration distances are superior, the new centroids are adopted
to be the current centroids, and the next iteration begins. This process continues until
either the maximum number of iterations is reached or the mean distance between the pre-
iteration centroid and the post-iteration centroid is smaller than the given threshold. After
the iterations have ceased, the final centroids are written to disk in a binary format so that
may be post-processed at a later time.

Lastly a Python script written by Dr. Jin reads in the binary version of the centroids,
which were output by the k-means code, to produce the several joint histograms seen in
Figure 2.3.

3.2 MPI and Cython

The first step in implementing MPI was actually to convert the FORTRAN code into C
code to maintain the high performance and ease the MPI parallelization, since MPI is better
equipped to handle row-major ordering for arrays, which is C’s native ordering. However the
CPython API is rather terse and unwieldy so when trying to implement a simple interface
a great deal of boilerplate code has to be written. The use of Cython removes a large
amount of the API complexities because Cython will automatically generate the CPython
API compatible C code from the Cython code while, when properly optimized, maintaining
C-like performance. Fortunately the Cython handler is an executable that comes bundled
with a modern NumPy distribution at or beyond 1.14+. The Cython handler converts the
Cython code into C that uses the CPython API and then the generated C code is compiled
to a dynamically linked library which can be imported directly into Python. This process is
similar to how f2py works for the original FORTRAN implementation. One benefit is that
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Cython allows any C function to be used inside the Cython code. The major benefit is that
Cython also allows for C speed memory accesses via Memoryviews. Memoryviews provide
a closer interface to the heap than NumPy arrays and actually allow the block of memory
controlled by the NumPy array to be changed as if it were created using malloc. With all
these tools in place the FORTRAN code was converted line by line into Cython code and all
original NumPy arrays were converted into row-major format so that they are compatible
with the C-style arrays that MPI prefers. Importantly Cython allows for easy integration
of OpenMP into the cdef functions, which means that portions of the code needed to be
refactored into cdef and def portions. [6]

Lastly mpi4py is used to integrate MPI into the Python portion of the code since Cython
handles the computation efficiently, MPI will only be tasked with chopping the data into
smaller portions and sharing minor amounts of data. An MPI.allreduce is usedf for reducing
integers and simple datatypes. Whereas we used MPI.Allreduce for reducing NumPy arrays
efficiently.

The environment variable OMP_NUM_THREADS is set to control the number of threads that
OpenMP is allowed to use during pragma loops. Additionally the Intel OpenMP environment
variable KMP_AFFINITY is set to scatter so that threads are distributed as evenly as possible
among the cores. The number of threads used is tp = ctotal/pppn. Where tp is the threads
per node, ctotal is the total cores per node, and pppn is the processes per node. On HPCF–
2013 ctotal = 16. This balancing system allows for all node resources to be used, even if
pppn < ctotal.

Before any K-means calculations begin, each MPI process determines its own process
rank rank and the total number of processes pt running. The processes then take reclocal =
rectotal/pt, where reclocal is the number of records for which each process is responsible for
computing the Euclidean distance, and rectotal is the total number of records. In the event
that the total number of records cannot be evenly distributed, the remaining records will
be distributed such that no processes have more than one record compared to any other
process. Then each processes reads in its respective records from the same data binary data
as mentioned in Section 3.1. This means that all processes have no access to any records
beyond their own as no records are duplicated.

First the initial centroids are calculated in Python as mentioned in Section 3.1. The data
and the current centroids are passed to the Cython def function assign_and_get_new_sum

, which calls the cdef functions calculate_cl and calculate_outsum. Since k-means is
deterministic, the new cluster produced by calculate_cl is the same on every process.
The Euclidean distance, however, is calculated differently compared to the FORTRAN code.
Consider Figure 3.1 such that the image represents just one centroid of k many with pt = 2.
Process 0 computes the Euclidean distance from the centroid to all its respective records.
Likewise Process 1 computes the euclidean distance from the centroid to all of its respective
records. These distances and clusters are returned from Cython to Python. Since the
clusters were computed identically by all the processes, they are able to merge their own
local distances for their records with each cluster into mean distance for each cluster using
an MPI.allreduce. At this point all processes have the identical post-iteration centroid,
pre-iteration centroid, and mean distances to the centroids; therefore, all processes make the
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Figure 3.1: The general idea for parallelization over a large data set with the repeated
calculation. One record is represented as a black dot and the colored lines tell which process
would be handling that Euclidean distance from the current center of the cluster.

Figure 3.2: Spark Machine Learning Workfolow

same choice whether the post-iteration centroid should become the new centroid or not. After
the maximum number iterations has been reached or the within-cluster-variance threshold
is satisfied, Process 0 writes the final centroids to disk in a binary format to post-processed
later.

The post-processing is then done using Dr. Jin’s original Python script similar to Sec-
tion 3.1.

3.3 Python and Spark

We used Spark MLlib, which is Apache Spark’s scalable machine learning library, in our
program to apply the K-means algorithm to cluster cloud regime [1][2]. We utilized the
latest version of Spark, 2.3.0 with Python. The workflow is as Figure 3.2. There are four
steps in the workflow: load data, extract features, train model and evaluate. We will discuss
these steps in detail.

We first loaded data into Spark to create a Spark DataFrame, which is organized as a
distributed collection of data by named columns [4]. In the load data step, since the raw data
were in .dat file format, we first tried to extract the binary file to a csv format spreadsheet
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to allow Spark to load it. However, there were two problems with this approach: 1) file
size: The size of the csv file was larger than the binary file. It increased from 550 MB to
more than 770 MB. In the future, if we explorer larger data files, the increase in raw data
size could be unmanageable and should be avoided. 2) efficiency: It took time to transform
binary file to csv, and Spark took some time to load the csv file and create the DataFrame.
Thus, the csv approach was not an ideal solution. Instead, we extracted the data from the
binary file using Numpy in Python, and then used Pandas to save the raw data to a Pandas
DataFrame in Python.

After creating Spark DataFrame, we could see that our data contained 42 columns. Since
the 42 columns were the 42 bins of the joint histogram, we extracted the 42 features and
assembled them as a features vector. The features vector was preparation for clustering.

In the clustering process, we used K = 10, which was selected by Dr. Jin. Also, we
changed the variable value of max.iteration to 40, which in Spark default setting was 20,
to make sure that a sufficient number of iterations occurred before the algorithm stopped
[3]. We also tried to set larger iteration limits such as 2000, but the run time and clustering
result remained similar. So we conclude that 40 iterations are enough in our case.

To evaluate our clustering results, we generated the result plots and compared it to Dr.
Jins. We also executed the program many times and output the silhouette with squared
euclidean distance to make sure that our result was relatively stable [10].

4 Results

4.1 Code Validity

When parallelism is involved, we commonly assume that there has to be some numerical
drawback. For example, if parallelism is implemented incorrectly, values can become improp-
erly rounded, images can degrade in quality, and values that serial code correctly computed
are now no longer within an acceptable margin of error. Any code which produces incorrect
results in order to improve performance cannot be accepted as correct code. In order to
demonstrate how the accuracy of the serial was preserved, each of the implementations was
run using the same initial parameters and post-processed using the script provided by Dr.
Jin, to test that the images are comparable qualitatively and quantitatively.

First consider Table 4.1. The FORTRAN and Cython joint histograms are identical in
their order, shape, and colorings. Since the FORTRAN algorithms were recoded line by
line in Cython it makes sense that the results should be identical. The only fundamental
difference between the two coding schemas was the major ordering of the data and record
splitting via MPI, which still uses all records for computation in the end. More importantly,
the Cython and the FORTRAN both used the same Python functions to calculate the initial
centroids, thus there shouldn’t be any reason for deviation, aside from small rounding errors
which we accept will be within the margin of error, as they beyond the control of the
programmer in this case.

The difference between how the Spark implementation and the FORTRAN implementa-
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FORTRAN/Python MPI/Cython Spark/Python

Figure 4.1: Post-processed joint histogram results of the k-means final stable clusters for all
three implementations with initialization magic set to 40.

Table 4.1: FORTRAN/Python OpenMP wall clock results with total number of threads used
in HH:MM:SS format.

PPN 1 2 4 8 16
Time Elapsed 00:14:59 00:07:10 00:03:47 00:02:58 00:02:38

tion work is significant. The Spark code uses open-source libraries designed by a community,
rather than Dr. Jin. Also, Spark’s parallelism uses a completely different methodology than
the the typical operation of 1 compute node with OpenMP enabled code.

Despite these differences the Spark code also correctly computed the same clusters with
the same centroids and same ordering.

Therefore both of the alternative implementations can be regarded as accurate paral-
lelized representations of the original code, as they show no signs of result degradation.

4.2 Performance

4.3 FORTRAN/Python

Table 4.1 presents the recorded times for the varying number of OpenMP threads for the
original FORTRAN/Python code. Clearly, as we use more threads the time improves slightly,
but there seems to be a bottleneck somewhere, because even though we’re using 16 threads
(see the final row) the time is not 16× faster! We can use the best speed possible from
these results as a baseline to compare other results to. Additionally the fact that using more
threads shows a clear improvement in speed means that the OpenMP parallelism is having a
positive effect on the performance. However as the threads double, the timing is not halved,
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Table 4.2: MPI/Cython wall clock results with Nodes and Processes Per Node in HH:MM:SS
format.

Nodes 1 2 4 8
1 ppn 00:01:01 00:00:34 00:00:17 00:00:08
2 ppn 00:01:23 00:00:41 00:00:20 00:00:11
4 ppn 00:01:50 00:00:54 00:00:28 00:00:16
8 ppn 00:02:42 00:01:22 00:00:45 00:00:29

16 ppn 00:04:47 00:02:32 00:01:29 00:01:07

implying that the implementation has a bottleneck beyond the OpenMP components.
So the 1-node, 1-process-per-node, 16-thread timing in Table 4.1 shall be the number

that all other timings are compared too.

4.4 MPI/Cython

The MPI results in Table 4.2 demonstrate a counter intuitive concept. As the number of
processes per node increases the performance decreases. Looking at the 8 node column as the
number of processes per node increases the time gradually worsen at an increasing rate until
the slight doubling of the time from eight processes per node to sixteen processes per node.
This same behavior is consistent for all node columns. However for all rows as the number
of nodes used increases the performance also increase which is the expected outcome.

All but the bottom left three timings in Table 4.2 are better than the best timing in
Table 4.1. Consider the best timing from the FORTRAN code. This FORTRAN timing is
twice as fast as the slowest single node performance time for the MPI enabled code. However
this timing takes twice as long as the fastest single node performance time. The 1 node 1
process per node timings in Table 4.2 uses the same amount of resources as as the best
timing in Table 4.1 meaning that the benefits of Cython, rather than MPI, are to thank for
the initial jump in performance. Enabling MPI and using 8 nodes allows for a mere 8 second
run time which is 18× faster than the FORTRAN performance time and approximately 7.5×
faster than the single node MPI code.

An overall evaluation of the table implies that the best use of MPI, for the problem
size, is to enable the use of more OpenMP threads rather than distributing the records for
a smaller per-process problem size. The data set fits comfortably within the total memory
capacity available. With larger data sets approaching the node memory limit of ≈ 62GB
MPI should start to demonstrate a clear performance improvement as the communication
time becomes a small player in the overall timing results.

4.5 Spark/Python

Table 4.3 is a run time table of our Spark implementation. Before load the data into Spark
program, we first convert the original binary data to .csv format, then load the .csv data
into Spark as Spark DataFrame.
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Table 4.3: Spark wall clock results with total number of nodes used in HH:MM:SS format.
Nodes 1 2 4 8

Run Time 00:09:03 00:06:16 00:02:51 00:02:09

The Spark implementation program run time is faster compared to the original imple-
mentation in FORTRAN when running in one or two nodes. We also found that with node
number increasing, Spark performance didn’t change much, although there was a decreasing
trend. We conclude that performance didn’t improve much with increasing number of nodes
because the size the data set (550MB) is not big enough to make significant difference, and
there’s an overhead when loading the data into Spark as DataFrame.

5 Conclusions

Both parallel implementations managed to correctly compute the same clusters as the original
code. Only MPI/Cython implementation managed to outperform the original code with the
same amount of resources at their disposal.

Only MPI/Cython managed to outperform the original implementation when using more
resources than the original code was capable of using.

However, the demonstration of increased performance of both parallel implementations
was severely limited by the lack of data. Spark is designed to handle data on the TB scale,
yet we only used less than 1 GB. These results are not indicative of what would happen
given 20+ GB of data or larger.

So we cannot conclude that Spark is an inferior implementation, only that it is not right
for such a small scale test.

Likewise when MPI scaled to multiple nodes, performance started to decrease, indicating
that the data set is also too small for MPI to effectively slice it into distributed portions.
The saving grace of MPI was the fact that using one node, one process per node, with 16
threads per node is essentially just a language change from the original FORTRAN code
meaning that Cython out performed f2py.

In the future we would like to test these parallel implementations with much larger data
sets. We propose that both Spark and MPI will have significant increases in performance
beyond the original code once scaled up to 20+ GB.
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