

Graduate Program: Applied Mathematics

NOTE: *The Approval Sheet with the original signature must accompany the thesis or
dissertation. No terminal punctuation is to be used.

DISSERTATION APPROVAL SHEET

Name of Candidate:

Doctor of Philosophy,

Fully Distributed Algorithms for Densely Coupled Optimization
Problems in Sparse Optimization and Transportation Applications

2021

Eswar Kumar Hathibelagal Kammara

Title of Dissertation:

Jinglai Shen

Dissertation and Abstract Approved:

10/18/2021 | 11:34:15 AM EDT

Department of Math and Statistics

Professor

ABSTRACT

Title of dissertation: Fully Distributed Algorithms for
Densely Coupled Optimization Problems in
Sparse Optimization and Transportation Applications

Eswar Kumar Hathibelagal Kammara,
Doctor of Philosophy, 2021

Dissertation directed by: Professor Jinglai Shen
Department of Mathematics and Statistics

Distributed algorithms are gaining increasing attention with broad applications in

different areas such as multi-agent network systems, big data, machine learning, and dis-

tributed control systems, among others. Most of the distributed optimization algorithms

developed assume a separable structure for the underlying optimization problems, and

certain coupled optimization problems are often solved via partially distributed schemes.

In this thesis, we develop fully distributed algorithms for densely coupled optimization

problems in two topics, namely, column partition based sparse optimization problems and

transportation applications. Firstly, we develop two-stage, fully distributed algorithms

for coupled sparse optimization problems including LASSO, BPDN and their extensions.

The proposed algorithms are column partition based and rely on the solution properties,

exact regularization, and dual formulation of the problems. The overall convergence of

two-stage schemes is shown. Numerical tests demonstrate the effectiveness of the pro-

posed schemes. Secondly, we develop fully distributed algorithms for model predictive

control (MPC) based connected and autonomous vehicle (CAV) platooning control un-

der linear and nonlinear vehicle dynamics. In the context of linear vehicle dynamics, the

underlying optimization problem of the MPC is a densely coupled, convex quadratically

constrained quadratic program (QCQP). A decomposition technique is developed to for-

mulate the densely coupled QCQP as a locally coupled convex optimization problem. We

then develop operator splitting method based schemes to solve this problem in a fully

distributed manner. Particularly, to meet challenging real-time implementation require-

ments, a generalized Douglas-Rachford splitting method based distributed algorithm is

proposed, along with initial state warm up techniques. Under nonlinear vehicle dynamics,

the underlying problem is a densely coupled, nonconvex optimization problem. We de-

velop a sequential convex programming based fully distributed optimization algorithms.

Control and closed loop stability analysis are carried out for both linear and nonlinear

vehicle dynamics. Numerical tests performed for possibly heterogeneous CAV platoons

demonstrate the effectiveness of the proposed schemes.

Fully Distributed Algorithms for

Densely Coupled Optimization Problems in

Sparse Optimization and Transportation

Applications

by

Eswar Kumar Hathibelagal Kammara

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of Doctorate
of Philosophy in Applied Mathematics

2021

Advisory Committee:
Professor Jinglai Shen, Chair/Advisor
Associate Professor Lili Du
Professor Muddappa Seetharama Gowda
Professor Osman Guler
Professor Muruhan Rathinam

© Copyright by
Eswar Kumar Hathibelagal Kammara

2021

DEDICATION

To all the advisers like mine.

ii

ACKNOWLEDGEMENTS

I would first, and most importantly, like to thank my adviser, Dr. Jinglai Shen. He

has been an outstanding mentor, as well as a very kind and patient person. This thesis

wouldn’t have been possible if not for the patience he showed towards me. Secondly,

I would like to thank my committee members, Dr. Lili Du, Dr. Muddappa Seetharama

Gowda, Dr. Osman Guler, and Dr. Muruhan Rathinam, for their time spent reviewing my

thesis, their helpful comments, and an enjoyable defense. Also, I would like to thank Ben

Hyatt of University of Maryland Baltimore County for his contribution to the proof of the

closed loop stability when p = 3 under linear vehicle dynamics. I would like to thank Arun

Polala, and Abhishek Balakrishna for their invaluable help, and my jeediginjalu group (in

no particular order) including Lahir, Venkat, Chandana, Gokul, Varma, Sneha, Ketan,

Vikram, Nikhil and others. These people made my time here at UMBC, a great time.

Finally, I would like to thank my parents and my brother Naveen, who has been my

support system throughout my life.

The research in this thesis was partially supported by the NSF grant CMMI-1902006.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

I. Introduction . 1

1.1 Overview of Distributed Optimization Algorithms 2
1.2 Review of Distributed Algorithms for Coupled Optimization Problems . . . 5

1.2.1 Distributed Algorithms for Locally Coupled Convex Optimization . 6
1.2.2 Operator Splitting Methods based Distributed Schemes 7

1.3 Two Topics of Fully Distributed Algorithms for Densely Coupled Optimiza-
tion Problems . 10
1.3.1 Column Partition based Fully Distributed Algorithms for Coupled

Convex Sparse Optimization . 10
1.3.2 Fully Distributed Optimization based CAV Platooning Control in

Transportation Applications . 13
1.4 Summary of Research Contributions . 15
1.5 Organization . 17
1.6 Notation . 18

II. Column Partition based Fully Distributed Algorithms for Coupled
Convex Sparse Optimization Problems . 19

2.1 Motivation and Introduction . 19
2.2 Problem Formulation and Solution Properties 20
2.3 Overview of the Development of Column Partition based

Distributed Algorithms . 25

iv

2.3.1 Illustration of Main Ideas via the Standard LASSO 25
2.3.2 Overview of Key Steps for General Problems 27

2.4 Exact Regularization . 29
2.4.1 Exact Regularization of Convex Piecewise Affine Function based

Optimization . 30
2.4.2 Exact Regularization of Grouped BP Problem Arising From Group

LASSO . 38
2.5 Dual Problems: Formulations and Properties 41

2.5.1 Dual Problems: General Formulations 41
2.5.2 Applications to the `1-norm based Problems 52
2.5.3 Applications to Problems Associated with the Norm from

Group LASSO . 56
2.6 Development of Column Partition based Distributed Algorithms 58

2.6.1 Structure of Column Partition based Distributed Schemes 59
2.6.2 Column Partition based Distributed Schemes for the Standard LASSO-

like Problem . 62
2.6.3 Column Partition based Distributed Schemes for the Standard BDPN-

like Problem . 68
2.6.4 Column Partition based Distributed Schemes for the Fused LASSO-

like and Fused BDPN-like Problems 69
2.6.5 LASSO-like, BPDN-like, and Regularized BP-like Problems with

the Norm from the Group LASSO 72
2.7 Overall Convergence of the Two-stage Distributed Algorithms 74
2.8 Numerical Results . 86

2.8.1 Numerical Results for the LASSO-like Problems 88
2.8.2 Numerical Results for the BPDN-like Problems 92
2.8.3 Discussions and Comparison . 94

2.9 Summary . 96

III.Fully Distributed Optimization based CAV Platooning Control under
Linear Vehicle Dynamics . 97

3.1 Introduction . 97
3.2 Vehicle Dynamics, Constraints, and Communication Networks 100
3.3 Model Predictive Control for CAV Platooning Control 102

3.3.1 Constrained MPC Optimization Model 106
3.4 Operator Splitting Method based Fully Distributed Algorithms for Con-

strained Optimization in MPC . 111
3.4.1 Decomposition of a Strongly Convex Quadratic Objective Function . 111
3.4.2 Operator Splitting Method based Fully Distributed Algorithms . . . 121

3.5 Control Design and Stability Analysis of the Closed Loop Dynamics 126
3.6 Numerical Results . 135

3.6.1 Numerical Experiments and Weight Matrices Design 135
3.6.2 Performance of Fully Distributed Schemes and CAV Platooning

Control . 138
3.7 Summary . 148

v

IV. Nonconvex, Fully Distributed Optimization based CAV Platooning
Control under Nonlinear Vehicle Dynamics 150

4.1 Introduction . 150
4.2 Vehicle Dynamics, Constraints, and Communication Topology 153
4.3 Sequential Feasibility and Properties of Constraint Sets 154

4.3.1 Sequential Feasibility . 154
4.3.2 Nonempty Interior of the Constraint Sets 158

4.4 Model Predictive Control for CAV Platooning 161
4.4.1 Constrained Optimization Model under the Nonlinear Vehicle Dy-

namics . 162
4.5 Fully Distributed Algorithms for Coupled Nonconvex MPC Optimization

Problem . 167
4.5.1 Formulation of MPC Optimization Problem as Locally Coupled Op-

timization . 167
4.5.2 Sequential Convex Programming and Operator Splitting Method

based Fully Distributed Algorithms for the MPC Optimization Prob-
lem . 170

4.5.3 Approximation of the Objective Function and Constraint Functions 180
4.6 Control Design and Stability Analysis of Closed Loop Dynamics 185

4.6.1 Reformulation of the Closed Loop Dynamics as a Tracking System . 186
4.6.2 Local Input-to-state Stability of the Closed Loop System 197

4.7 Numerical Results . 199
4.7.1 Numerical Experiment Setup and Weight Matrix Design 199
4.7.2 Performance of the Proposed Fully Distributed Scheme 201
4.7.3 Performance of CAV Platooning Control 206

4.8 Summary . 210

V. Conclusions . 220

5.1 Column Partition based Distributed Algorithm for Coupled Convex Sparse
Optimization Problems . 220

5.2 Fully Distributed Optimization based CAV Platooning Control 221

vi

LIST OF TABLES

3.1 Parameters in Algorithm 9 for different MPC horizon p’s 138
3.2 Scenario 1: computation time and numerical accuracy 140
3.3 Scenario 2: computation time and numerical accuracy 140
3.4 Scenario 3: computation time and numerical accuracy 140
3.5 Scenario 3: computation time and numerical accuracy with initial guess

warm-up . 141

4.1 Physical parameters for homogeneous small-size and large-size CAV pla-
toons . 200

4.2 Physical parameters for a heterogeneous medium-size CAV platoon with
∆ = 60m . 200

4.3 Error tolerances for outer and inner loops at different MPC horizon p’s . . . 203
4.4 Scenario 1: computation time per CAV (sec) 204
4.5 Scenario 2: computation time per CAV (sec) 205
4.6 Scenario 3: computation time per CAV (sec) 205
4.7 Relative numerical error for p = 1 . 206
4.8 Maximum steady state error of spacing (m) 206

vii

LIST OF FIGURES

2.1 The topology of the random graph . 87
2.2 Convergence behaviors in stage one of standard LASSO. 89
2.3 Convergence behaviors in stage two of standard LASSO. 89

3.1 Scenario 1: the proposed CAV platooning control with p = 1 (left column)
and p = 5 (right column). 143

3.2 Scenario 2: the proposed CAV platooning control with p = 1 (left column)
and p = 5 (right column). 144

3.3 Scenario 3: the proposed CAV platooning control with p = 1 (left column)
and p = 5 (right column). 145

3.4 Scenario 3 under noises: the proposed CAV platooning control with p = 1
(left column) and p = 5 (right column). 146

4.1 Scenario 1 for the homogeneous small-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column). 211

4.2 Scenario 1 for the heterogeneous medium-size CAV platoon: platooning
control with p = 1 (left column) and p = 5 (right column). 212

4.3 Scenario 1 for the homogeneous large-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column). 213

4.4 Scenario 2 for the homogeneous small-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column). 214

4.5 Scenario 2 for the heterogeneous medium-size CAV platoon: platooning
control with p = 1 (left column) and p = 5 (right column). 215

4.6 Scenario 2 for the homogeneous large-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column). 216

4.7 Scenario 3 for the homogeneous small-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column). 217

4.8 Scenario 3 for the heterogeneous medium-size CAV platoon: platooning
control with p = 1 (left column) and p = 5 (right column). 218

4.9 Scenario 3 for the homogeneous large-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column). 219

viii

CHAPTER I

Introduction

The origin of distributed optimization algorithms dates back to the 80’s or earlier

[5], [79], [80]. They have garnered increasing attention in the last two decades due to their

widespread applications in multi-agent network systems [39], [95], large scale optimiza-

tion, big data [18], [89], machine learning [11], [56], [88], and distributed control systems

[21], [22], among others. A distributed algorithm is carried out by a multi-agent system

interconnected via a communication network. In most distributed algorithms, each agent

(e.g., a computing device) uses only partial information of a central problem; it performs

its own computation on a relatively small sub-problem in the parallel manner and ex-

changes its numerical results with neighboring agents at each step, in order to achieve a

solution of the central problem. Distributed algorithms are advantageous over centralized

schemes in many important applications. In particular, since agents require access to

only partial information, it facilitates the use of computing devices with lower memory

and storage. With the ability to perform parallel operations, these algorithms outperform

both in regards to the speed and the maximum problem size that can be addressed over

1

the centralized techniques [77]. Further, distributed algorithms respect data privacy of

agents and accommodate communication delays more effectively.

1.1 Overview of Distributed Optimization Algorithms

Various distributed algorithms have been developed to solve a wide range of opti-

mization problems in different settings. In what follows, we provide a brief overview of

these algorithms in terms of problem structure, numerical methodologies, parallel features,

and network topologies.

Separable vs. Coupled Problems: Most of the distributed algorithms deal with problems

with separable structure. A representative problem of separable structure is the consensus

optimization problem [15], [16], [54]. Specifically, consider a group of N agents, each with

a local objective function fi, for i = 1, . . . , N , with the objective of minimizing their

sum, i.e., minx∈RN
∑N

i=1 fi(x). To solve such problems, there is a class of distributed

optimization techniques that are developed based on consensus optimization where a local

variable xi ∈ RN is introduced at each of the agents, and an additional consensus constraint

is imposed such that the problem is formulated as follows:

min
x1,x2,...,xN∈RN

f1(x1) + f2(x2) + . . .+ fN (xN) subject to x1 = x2 = · · · = xN .

Define the consensus space A := {x = (x1, x2, . . . , xN) ∈ RN2 | x1 = x2 = · · · = xN}.

The above problem thus simplifies to finding a solution to minx f(x) + IA(x), where

f(x) =
∑N

i=1 fi(xi), and IA(·) denotes the indicator function on the set A. Operator

splitting method based schemes including forward-backward-forward splitting (FBFS) [78],

forward-backward splitting (FBS) [58], Douglas-Rachford splitting (DRS) [43] can be used

2

to solve such problems. We will discuss more on fully distributed implementation of DRS

in a latter section.

Further, the inclusion of a constraint set C brings more challenges to the algorithmic

development as the above problem now becomes: minx f(x) + IC(x) + IA(x), where C is

a constraint set. A three operator splitting scheme developed in [15] can be used to solve

this problem. Moreover, to implement this in a distributed manner, it is necessary that

the underlying constraint set C also has a separable structure, i.e., IC(x) =
∑N

i=1 ICi(xi).

This decomposition into separable structure becomes increasingly challenging when C is

non-polyhedral or is defined by densely coupled nonlinear functions.

There is a different category of problems where the underlying objective function or

constraints are coupled but yet need distributed algorithms to handle them effectively and

efficiently. Examples include [8], [10], [57], where either the constraints or the objective

functions of the underlying problems are coupled. More precisely, the paper [57] proposes a

relaxation and successive distributed decomposition algorithm to solve constraint coupled

distributed optimization problems via a relaxation of the primal problem and duality

theory. In [10] the authors propose an alternating direction method of multipliers (ADMM)

based distributed scheme to solve the unconstrained distributed LASSO problem. The

paper [8] extends it to a polyhedral constrained distributed LASSO problem via proximal

dual based ADMM.

First Order vs. Second Order Techniques: The techniques to solve the above mentioned

optimization problems can be either first-order methods, including distributed gradient

decent scheme [92], distributed proximal gradient schemes [42], [70], subgradient based

methods [53], [54] and dual decomposition methods [76], or second-order methods like

Newton type methods [28], [49], [87]. In order to apply Newton type methods, it is required

3

that the underlying function is smooth or semismooth, whereas subgradient based first-

order schemes can be used if the function is not differentiable. Moreover, many distributed

algorithms developed in this area are first-order schemes because in the second-order

methods, one needs to compute a large size Hessian matrix which can be computationally

expensive. Despite this drawback, second-order methods are more effective in terms of

the computation time and typically have faster convergence rates than that of the first-

order schemes. This is because the Newton type methods have higher per iteration costs,

but have a significantly smaller number of iterations when compared to the first-order

schemes which results in faster computation. To the best of our knowledge, Newton

type distributed schemes are not developed to solve constrained optimization problems

yet, exceptions include consensus constrained problems, whereas there is rich literature of

first-order distributed schemes to solve constrained optimization problems.

Partially Distributed vs. Fully Distributed Algorithms: Regarding parallel features, dis-

tributed algorithms can be of two types, namely, partially distributed and fully distributed.

Partially distributed schemes are referred to as those schemes that either require all agents

to exchange information with a central component for centralized data processing or per-

form centralized computation in at least one step [37], whereas fully distributed schemes do

not require centralized data processing or carry out centralized computation through the

entire schemes [8], [10]. The former type includes [21], [22], [59]. In particular distributed

LASSO can be solved by a proximal based partial distributed scheme proposed in [59]. The

algorithms developed in [10] and [8] to solve standard LASSO and polyhedral constrained

LASSO respectively are fully distributed. In [37], the authors develop gradient-based dis-

tributed algorithms for an approximation of the multiuser problem where the underlying

objective function and constraints are coupled. The proposed algorithm is regularized

4

primal-dual based and requires the computation of the gradient of the Lagrangian in one

of its steps. This gradient cannot be computed in a fully distributed manner and hence

a centralized computation is performed which makes the proposed schemes partially dis-

tributed. Based on this development, a model predictive control (MPC) based connected

autonomous vehicles (CAV) platooning is developed in [22] and implemented by partially

distributed schemes. It is worth pointing out that for a coupled optimization problem,

the development of a fully distributed algorithm is much more challenging than that of a

partially distributed algorithm.

Communication Networks: Communication network topology is another important aspect

in the implementation of distributed algorithms. The network topology is generally char-

acterised by a graph, where nodes of the graph represent the N agents and edges represent

the communication between them. This graph could be bidirectional [63], [64], [66], or

unidirectional [41], [55], i.e., there is a one way communication between the neighboring

agents in case of a unidirectional graph and a two way communication with that of a bidi-

rectional graph. Other variants include time varying [55], [82] and static [22], [50] graph

which is characterized based on the dynamic or static nature of the edges with respect to

time.

1.2 Review of Distributed Algorithms for Coupled Optimization Prob-

lems

Since this thesis is focused on fully distributed algorithms for densely coupled opti-

mization problems, we review certain existing techniques for solving coupled optimization

problems using distributed algorithms, namely, distributed algorithms for locally coupled

5

convex optimization problems, and the operator splitting techniques often used for devel-

oping first-order distributed schemes.

1.2.1 Distributed Algorithms for Locally Coupled Convex Optimization

Distributed algorithms are proposed for solving locally coupled convex optimization

in [26]. Specifically, consider a multi-agent network of n agents whose communication is

characterized by a connected and undirect graph G(V, E), where V = {1, . . . , n} is the set

of agents, and E denotes the set of edges. For i ∈ V, let Ni be the set of neighbors of

agent i, i.e., Ni = {j | (i, j) ∈ E}. Let {I1, . . . , In} be a disjoint union of the index set

{1, . . . , N}. Hence, for any x ∈ RN , (xIi)
n
i=1 forms a partition of x. We call xIi a local

variable of each agent i. For each i, define x̂i :=
(
xIi , (xIj)j∈Ni

)
∈ Rni . Thus each x̂i

contains the local variable xIi and the variables from its neighboring agents (or locally

coupled variables). Consider the convex optimization problem

(P) : min
x∈RN

J(x), where J(x) :=

n∑
i=1

Ji(x̂i),

where Ji : Rni → R ∪ {+∞} is an extended-valued, proper, and lower semicontinuous

convex function for each i. Clearly, each Ji is locally coupled such that the problem

(P) bears the name “locally coupled convex optimization”. Although the problem (P)

is seemingly unconstrained, it does include constrained convex optimization since Ji may

contain the indicator function of a closed convex set. To impose the locally coupled convex

constraint explicitly, the problem (P) can be equivalently written as:

(P ′) : min
x∈RN

n∑
i=1

Ĵi(x̂i), subject to x̂i ∈ Ci, ∀ i = 1, . . . , n, (1.1)

6

where each Ĵi : Rni → R is a real-valued convex function, and Ci ⊆ Rni is a closed convex

set.

By introducing copies of the locally coupled variables for each agent and imposing

certain consensus constraints on these copies, the paper [26] formulates the problem (P ′)

(or equivalently (P)) as a separable consensus convex optimization problems. Under

suitable assumptions, Douglas-Rachford and other operator splitting based distributed

schemes are developed; details can be found in [26].

1.2.2 Operator Splitting Methods based Distributed Schemes

In this subsection, we review some well known and useful operator splitting schemes

from [15], [26]; also see [3], [12] for the original reference on this topic. A mapping

S : Rn → Rn is a nonexpansive operator if ‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ Rn, and a

mapping T : Rn → Rn is α-averaged if T = (1−α)I+αS for some nonexpansive operator

S, and α ∈ (0, 1). Provided that T has a fixed point, the iteration xk+1 = Txk converges

to a point of T . This property is exploited to design an algorithm which finds an optimal

solution to the following problem:

min
x
f(x) + g(x), (1.2)

where f, g : Rn → R ∪ {+∞} are closed convex proper (CCP) functions. The first

order optimality condition for the above problem (1.2) reduces to finding an x in the

zer(A + B) := {y | 0 ∈ Ay + By}, with Ax = ∂f(x) and Bx = ∂g(x), where ∂f

and ∂g are the subdifferentials of f and g respectively. Further, since f and g are

CCP functions, their subdifferentials ∂f and ∂g are maximal monotone operators, and

the resolvent of any maximal monotone operator ∂g is given by the proximal operator

7

proxρg(x) := arg minz

(
g(z) + 1

2ρ‖z − x‖
2

)
∀x ∈ Rn. Let JA := (I + ρA)−1 denote the

resolvent of A for some ρ > 0, it follows from the fact 2JA − I is nonexpansive that JA is

(1/2)-averaged operator. Hence a solution x ∈ zer(A+B) can be obtained as x = JB(z),

where z is a fixed point of the nonexpansive map (2JA − I)(2JB − I). Such a fixed point

z can be found by iterating using the α-averaged map (1−α)I +α(2JA− I)(2JB − I) for

α ∈ (0, 1), which results in the generalized Douglas-Rachford (DR) algorithm [16]:

xk+1 = JB(zk),

zk+1 = zk + 2α ·
[
JA(2xk+1 − zk)− xk+1

]
.

Starting from any z0, the sequence xk generated by the above algorithm will converge

to x∗ ∈ zer(A + B). The technique developed above can be classified as a two operator

splitting scheme.

The paper [15] extends the above results to three operator splitting schemes, where

the objective is to find a solution to the following problem:

min
x
f(x) + g(x) + h(x), (1.3)

where f, g, h : Rn → R ∪ {+∞} are CCP functions, and h is Lipschitz differentiable.

Similar to the earlier problem, the first order optimality condition for (1.3) reduces to

finding an x in the zer(A + B + C), with Ax = ∂f(x), Bx = ∂g(x) , and Cx = ∇h(x).

Note that C is β - cocoercive [15], because h is Lipschitz differentiable. Hence problem

(1.3) can be solved by iterating

zk+1 = (1− λk)zk + λkTz
k, (1.4)

8

where T is given by T = I − JγB + JγA ◦
(

2JγB − I − γC ◦ JγB
)

, z0 is an arbitrary point,

γ ∈ (0, 2β), and λk ∈ (0, (4β − γ)/2β), the iteration can be implemented as follows [15,

Algorithm 1]:

xkB = JγB(zk),

xkA = JγA(2xkB − zk − γCxkB),

zk+1 = zk + λk(x
k
A − xkB).

The convergence of the above algorithm is guaranteed by [15, Theorem 1.1]. The

convergence rates are summarized in [15, Section 1.2]. Precisely, when f is strongly convex,

the sequence xkB converges to x∗ with a rate o(1/ 4
√
k + 1).

Additionally, when g or h is strongly convex, by choosing appropriate scalars γk,

and λk, a change of variable zk = xk−1
A + γk−1u

k−1
B , the authors propose the following

accelerated variant of the above algorithm [15, Algorithm 2], where the convergence rate

can be improved to O(1/(k + 1)):

xkB = JγkB(xk−1
A + γk−1u

k−1
B),

ukB =
1

γk−1

(
xk−1
A + γk−1u

k−1
B − xkB

)
,

xkA = JγkA
(
xkB − γkukB − γkCxkB

)
.

It is worth mentioning that both the three operator splitting method based scheme

and its accelerated variant critically rely on certain parameters. A conservative choice

of these parameters often lead to slow convergence. Especially, even though the acceler-

9

ated variant has the fast theoretical convergence rate of O(1/(k + 1)), it may yield slow

convergence in practice due to the restriction on these parameters.

1.3 Two Topics of Fully Distributed Algorithms for Densely Coupled

Optimization Problems

In this section, we give an introduction to the two topics in fully distributed al-

gorithms treated in this thesis, namely, column partition based densely coupled sparse

optimization problems, and model predictive control arising from CAV platooning control

in transportation applications.

1.3.1 Column Partition based Fully Distributed Algorithms for Coupled Con-

vex Sparse Optimization

We first consider the development and analysis of fully distributed algorithms for

densely coupled convex sparse optimization problems.

1.3.1.1 Background and Motivation

Sparse modeling and approximation finds broad applications in numerous fields

of contemporary interest, including signal and image processing, compressed sensing,

machine learning, and high dimensional statistics and data analytics. Various efficient

schemes have been proposed for convex or nonconvex sparse signal recovery [19], [67]. To

motivate the work, consider the well-studied LASSO problem: minx∈RN
1
2‖Ax − b‖

2
2 +

λ ‖x‖1, where A ∈ Rm×N is the measurement (or sensing) matrix, b ∈ Rm is the mea-

surement (or sensing) vector, λ > 0 is the penalty parameter, and x ∈ RN is the decision

variable. In the setting of sparse recovery, N is much larger than m. Besides, the measure-

10

ment matrix A usually satisfies certain uniform recovery conditions for recovery efficiency,

e.g., the restricted isometry property [19]. As such, A is often a dense matrix, namely,

(almost) all of its elements are nonzero. We aim to develop distributed algorithms to solve

the LASSO and related problems, where each agent knows the vector b and a small subset

of the columns of A. Specifically, let {I1, . . . , Ip} be a disjoint union of {1, . . . , N} such

that {A•Ii}
p
i=1 forms a column partition of A. For each i, the ith agent has the knowledge

of b and A•Ii but does not know A•Ij with j 6= i. By running the proposed distributed

scheme, it is expected that each agent i attains the subvector of an optimal solution of

the LASSO corresponding to the index set Ii, i.e., x∗Ii , at the end of the scheme, where

x∗ denotes an optimal solution of the LASSO.

The distributed optimization task described above is inspired by the following two

scenarios arising from big data and network systems, respectively. In the context of big

data, a practitioner may deal with a ultra-large data set, e.g., N is extremely large, so that

it would be impossible to store a vector x ∈ RN in a single computing device, let alone

the measurement matrix A. When m is relatively small compared with N , the proposed

distributed schemes can be used where each device only needs to store the vector b and a

small number of the columns of A. The second scenario arises from multi-agent network

systems, where each agent is operated by a low cost computing device which has limited

memory and computing capacities. Hence, even when N is moderately large, it would

be impractical for the entire matrix A to be stored or computed on one of these devices.

Therefore, the proposed distributed schemes can be exploited in this scenario. Besides,

the proposed algorithms can be extended to other sub-matrix partitions (in both row and

column) of A, even if m is large in the above scenarios.

11

1.3.1.2 Literature Review

Distributed or decentralized algorithms for the LASSO and related problems, e.g.,

fused LASSO, basis pursuit (BP), and basis pursuit denoising (BPDN), have been exten-

sively studied, including ADMM schemes, (sub-)gradient methods, and operator splitting

schemes, e.g., [26], [44], [50], [59], [70], [92]. Particularly, the paper [50] develops row

and column partition based distributed ADMM (D-ADMM) schemes for the BP that are

convergent over a bipartite graph. The row partitioned LASSO and column partitioned

BPDN are formulated as separable convex optimization and solved via D-ADMM [51].

Consensus based distributed schemes are developed for the row partitioned LASSO-like

problems [47], e.g., the consensus ADMM (C-ADMM). An inexact C-ADMM (IC-ADMM)

is established for distributed computation of the row partitioned LASSO and column par-

titioned logistic regression [10]. A proximal dual consensus ADMM (PDC-ADMM) scheme

is used for solving column partition based LASSO under separable polyhedral constraints

[8]. A decentralized gradient decent scheme is proposed for the regularized BP using col-

umn partition [92]. Besides, distributed proximal gradient schemes, e.g., PG-EXTRA,

are exploited to solve the row partitioned LASSO [42], [70]. Other relevant distributed

schemes include [9], [24], [29], [59], just to name a few.

Most distributed schemes in the literature deal with row partition based LASSO

and BPDN. Further, column partition based distributed LASSO schemes often require

the knowledge of different column blocks of A, e.g., [59], and thus cannot be implemented

in a fully parallel manner. Exceptions include distributed BP [50], [92] and distributed

BPDN [51] using the dual approach, and dual consensus ADMM (DC-ADMM) [10] and

PDC-ADMM [8] for the LASSO with possible polyhedral constraints. However, exact

12

regularization of the BPDN used in [51] generally fails as shown in Section 2.4, and the

DC-ADMM does not guarantee the convergence of the primal variables [10, Theorem 2].

In addition, it is hard for the PDC-ADMM to handle the fused LASSO with more coupling

and the BPDN-like problems with non-polyhedral constraints.

1.3.2 Fully Distributed Optimization based CAV Platooning Control in

Transportation Applications

We now consider the second topic of this work, i.e., fully distributed optimization

based CAV platooning control under linear and nonlinear vehicle dynamics.

Inspired by the next generation smart transportation systems, connected and au-

tonomous vehicle (CAV) technologies emerge and offer tremendous opportunities to reduce

traffic congestion and improve road safety and traffic efficiency in all aspects, through in-

novative traffic flow control and operations. Among a variety of CAV technologies, vehicle

platooning technology links a group of CAVs through cooperative acceleration or speed

control. Different from many other CAV technologies that mainly focus on neighborhood

traffic efficiency and individual vehicle’s safety, the vehicle platooning technology focuses

on system efficiency and safety. Specifically, by using the vehicle platooning technology,

adjacent group members of a CAV platoon can travel safely at a higher speed with smaller

spacing. This will increase lane capacity, improve traffic flow efficiency, and reduce con-

gestion, emission, and fuel consumption [4], [33].

There is extensive literature on CAV platooning control. The widely studied ap-

proaches include adaptive cruise control (ACC) [34], [40], [46], [83], [98], cooperative

adaptive cruise control (CACC) [71], [72], [81], [96], and platoon centered vehicle platoon-

ing control [21], [22], [84], [86]. The first two approaches intend to improve an individual

13

vehicle’s safety, mobility, and string stability rather than systematical performance of the

entire platoon, even though enhanced system performance is validated by simulations or

field experiments.

On the other hand, the recently developed platoon centered approach seeks to op-

timize the platoon’s transient traffic dynamics for a smooth traffic flow and to achieve

stability and other desired long-time dynamical behaviors. This approach can signifi-

cantly improve system performance and efficiency of the entire platoon [22], [84]. Despite

this advantage, the platoon centered CAV platooning approach often encounters large-

scale optimization or optimal control problems that require efficient numerical solvers for

real-time computation [84]. More precisely, in order to facilitate real-time implementation,

it is expected that the distributed schemes have a computation time which is less than one

second. It is important to note that the restriction of one second on computation time

is critical because otherwise the algorithms are not suitable for real time implementation.

Distributed optimization techniques provide a favorable solution for the high demanding

platoon centered approach. Supported by portable computing capability of each vehi-

cle and vehicle-to-vehicle (V2V) communication [85], distributed computation can handle

high computation load efficiently, is more flexible to communication network topologies,

and is more robust to communication delays or network malfunctions [48], [85].

In spite of these advantages, the development of efficient distributed algorithms to

solve platoon centered optimization or optimal control problems in real-time is nontrivial,

especially under complicated traffic conditions and constraints. It is worth pointing out

that a platoon centered car following control is a centralized control approach even though

its computation is distributed, i.e., each vehicle computes its own control input from the

central control scheme in a distributed manner. Hence, the platoon centered approach

14

is different from decentralized control widely studied in control engineering [2], [97], [99].

Besides, the platoon centered approach focuses on closed loop stability of the entire platoon

instead of stability of individual vehicles and their interactions, e.g., string stability [99].

1.4 Summary of Research Contributions

We summarize the major results and contributions made in the areas of distributed

algorithms for sparse optimization and transportation problems presented in this thesis

as follows:

1. We develop column partition based distributed algorithms for coupled convex sparse

optimization including LASSO, BPDN and their variants such as fused LASSO, fused

BPDN, group LASSO and generalized LASSO, and BPDN problems. These algo-

rithms are two-stage and are based on the favorable properties of the dual problems

and exact regularization techniques. Precisely, in the first stage we compute the

dual solution of the original problem, and using this dual solution we formulate an

equivalent regularized basis pursuit problem whose solution is indeed a solution to

the original problem guaranteed by exact regularization. The second stage consists

of solving a dual problem and recovering a primal solution.

2. The overall convergence of the two-stage schemes are established via sensitivity

analysis of the regularized basis pursuit (BP)-like problem. In particular we prove

that for a general norm in the LASSO like and BPDN like problem, the optimal

solution x∗ is continuous in the vector b, where b depends on the approximate solution

obtained in the first stage. Further, for the `1 norm it is shown that that solution x∗

is Lipschitz continuous in b. This leads to the overall convergence and convergence

rates of the two-stage distributed schemes.

15

3. In order to formulate the underlying coupled optimization problem as a locally

coupled convex optimization problem in CAV platooning control, a decomposition

method is developed for the strongly convex quadratic objective function. This

method decomposes the central quadratic objective function into the sum of locally

coupled (strongly) convex quadratic functions, where local coupling satisfies the

network topology constraint under a mild assumption on network topology. Fur-

ther, it is necessary to develop a distributed algorithm where the computation time

is within one second for real-time implementation of the proposed MPC scheme

under the linear vehicle dynamics. We develop Douglas Rachford splitting based

distributed schemes which adhere to this restriction on the computation time. We

also propose initial state warm up techniques which can be used to further reduce

the computation time. It should be noted that the restriction on computation time

is very crucial for real-time implementation of the proposed schemes.

4. When the nonlinear vehicle dynamics is considered in CAV platooning control, we

propose a sequential convex programming (SCP) [45] based distributed scheme to

solve the locally coupled nonconvex optimization problem. This SCP based scheme

solves a sequence of convex, quadratically constrained quadratic programs (QCQPs)

that approximate the original nonconvex program at each iteration; such a convex

QCQP can be efficiently solved using (generalized) Douglas-Rachford method or

other operator splitting methods [15] in the fully distributed manner. The SCP

based distributed scheme converges to a stationary point, which often coincides or is

close to an optimal solution, under mild assumptions. The proposed fully distributed

schemes have a computation time which is less than one second which is crucial for

16

real-time implementation. We develop an initial warm up technique to further reduce

the computation time.

5. Extensive numerical results are conducted for both the sparse optimization problems

and transportation applications. In the context of sparse optimization problems, we

test the proposed schemes on two types of graphs namely the cyclic graph and a

random graph; see Section 2.8 for details. We perform tests on standard LASSO and

BPDN, fused LASSO and BPDN, and non negative constrained LASSO and BPDN

and group LASSO problems. In CAV platooning control problems, we perform tests

on three scenarios under both the linear and nonlinear vehicle dynamics; see Section

3.6 for details of the scenarios. Further, in the nonlinear case, we test the proposed

distributed algorithms on possibly heterogeneous CAV platoons, e.g. a homogeneous

small-size platoon, a heterogeneous medium-size platoon, and a homogeneous large

size platoon; see Section 4.7 for details.

1.5 Organization

This thesis is organized as follows. In Chapter II, we study the fully distributed algo-

rithms corresponding to sparse optimization including LASSO-like and BPDN-like prob-

lems. In Chapters III and IV, we consider the fully distributed algorithms corresponding

to the transportation problems. Specifically, in Chapter III we consider the linear vehi-

cle dynamics which yields a densely coupled convex optimization problem. We develop

a decomposition method for the corresponding objective function and the constraints.

Further, we perform the stability analysis and present extensive numerical results. Chap-

ter IV is an extension of Chapter III, where we consider nonlinear vehicle dynamics due

to which the corresponding optimization problem becomes non-convex. Sequential convex

17

programming techniques coupled with matrix decomposition techniques from Chapter III

are used to develop fully distributed algorithms. Extensive numerical results are presented

for small and large size homogeneous platoons and a medium size inhomogeneous platoon.

Finally, conclusions and future research directions are discussed in Chapter V.

1.6 Notation

Let A ∈ Rm×N , and R(A) denote the range of A. For any index set S ⊆ {1, . . . , N},

let A•S be the matrix formed by the columns of A indexed by elements of S. Similarly,

Aα• is defined for an index set α ⊆ {1, . . . ,m}. Let {Ii}pi=1 form a disjoint union of

{1, . . . , N}, and {xIi}
p
i=1 form a partition of x ∈ RN . For a ∈ Rn, let a+ := max(a, 0) ≥ 0

and a− := max(−a, 0) ≥ 0. For a closed convex set C in Rn, ΠC denotes the Euclidean

projection operator onto C. For u, v ∈ Rn, u ⊥ v stands for the orthogonality of u and v,

i.e., uT v = 0. Further, ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ denote the `1-norm (or 1-norm), 2-norm,

and ∞-norm, respectively. Let proxf (·) denote the proximal operator for a proper, lower

semicontinuous convex function f : Rn → R ∪ {+∞}. For a given matrix W , λmin(W),

λmax(W) respectively denote the minimum and maximum eigenvalues of W . IC denotes

the indicator function on a given set C, where IC(x) = 0 if x ∈ C, and IC(x) = +∞ if

x 6∈ C. For a given extended value function F : RN → R ∪ {+∞}, δF denotes the sub

differential. NC(x) denotes the normal cone of a closed convex set C at x ∈ C. An operator

C defined on Rn is β-cocoercive, β > 0 if 〈Cx−Cy, x− y〉 ≥ β‖Cx−Cy‖2, ∀ x, y,∈ Rn.

18

CHAPTER II

Column Partition based Fully Distributed Algorithms for

Coupled Convex Sparse Optimization Problems

2.1 Motivation and Introduction

This chapter develops column partition based distributed algorithms for a wide

range of LASSO/BPDN-like problems by exploiting convex optimization techniques, e.g.,

dual problems, exact regularization, and distributed optimization. First, motivated by the

dual approach for distributed BP and BPDN [50], [51], [92], we consider the Lagrangian

dual problems of the LASSO/BPDN-like problems, which are separable or locally coupled

and can be solved via column partition based distributed schemes. By using the solution

properties of the LASSO/BPDN-like problems, we show that a primal solution is a solution

to a BP-like problem depending on a dual solution. Under exact regularization conditions,

a primal solution can be obtained from the dual of a regularized BP-like problem which

can be solved by another column partition based distributed scheme. This leads to two-

stage, column partition based distributed schemes, and many existing distributed schemes

can be used at each stage. The overall convergence of the two-stage schemes is established

19

via sensitivity analysis of the regularized BP-like problem. The proposed schemes are

applicable to a broad class of generalized BP, LASSO and BPDN under mild assumptions

on a network; we only assume that a network is static, connected and bidirectional. The

materials of this chapter are reported in our recent journal publication [66].

The chapter is organized as follows. Section 2.2 presents problem formulations and

solution properties with an overview of key ideas given in Section 2.3. Exact regularization

is addressed in Section 2.4. Section 2.5 formulates dual problems and establishes properties

in connection with the primal problems. Column partition based distributed schemes are

developed in Section 2.6, whose overall convergence is shown in Section 2.7. Numerical

results are given in Section 2.8 with summary in Section 2.9.

2.2 Problem Formulation and Solution Properties

We consider a class of convex sparse minimization problems and their generalizations

or extensions whose formulations are given as follows.

• Basis Pursuit (BP) and Extensions. This problem intends to recover a sparse

vector from noiseless measurement b given by the following linear equality constrained

optimization problem

BP : min
x∈RN

‖x‖1 subject to Ax = b, (2.1)

where we assume b ∈ R(A). Geometrically, this problem seeks to minimize the 1-norm

distance from the origin to the affine set defined by Ax = b. A generalization of the BP

(2.1) is minx∈RN ‖Ex‖1 subject to Ax = b, where E ∈ Rr×N is a matrix.

20

• Least Absolute Shrinkage and Selection Operator (LASSO) and Extensions.

The standard LASSO intends to minimize the loss function ‖Ax − b‖22 along with the

`1-norm penalty on x treated as a convex relaxation of the sparsity of x:

LASSO : min
x∈RN

1

2
‖Ax− b‖22 + λ ‖x‖1, (2.2)

where λ > 0 is the penalty parameter. A generalized LASSO is given by min
x∈RN

1
2‖Ax−b‖

2
2+

‖Ex‖1, where E ∈ Rr×N is a given matrix. It includes several extensions and variations

of the standard LASSO:

(i) Fused LASSO: minx∈RN
1
2‖Ax− b‖

2
2 +λ1 ‖x‖1 +λ2‖D1x‖1, where D1 ∈ R(N−1)×N

denotes the first order difference matrix. Letting E :=

λ1IN

λ2D1

, the fused LASSO

can be converted to the generalized LASSO.

(ii) Group LASSO which is widely used in statistics for model selection [93]: given

λi > 0 for i = 1, . . . , p,

min
x∈RN

1

2
‖Ax− b‖22 +

p∑
i=1

λi‖xIi‖2. (2.3)

Other generalizations include generalized total variation denoising and `1-trend filtering

[36]. A generalized total variation denoising is a generalized LASSO with E = λD1 for

λ > 0, whereas the generalized `1-trend filtering has E = λD2, where D2 is the second

order difference matrix.

21

• Basis Pursuit Denoising (BPDN) and Extensions. Consider the following con-

strained optimization problem which incorporates noisy signals:

BPDN : min
x∈RN

‖x‖1 subject to ‖Ax− b‖2 ≤ σ, (2.4)

where σ > 0 characterizes the bound of noise or errors. Note that when σ = 0, it reduces

to the basis pursuit. We assume that ‖b‖2 > σ since otherwise, x∗ = 0 is the trivial

solution. Similar to the LASSO, the BPDN has several generalizations and extensions.

For example, it can be extended to minx∈RN ‖Ex‖1 subject to ‖Ax − b‖2 ≤ σ, where

E ∈ Rr×N is a matrix.

We summarize some fundamental solution properties of the aforementioned prob-

lems to be used in the subsequent development. For the convenience of generalizations

and extensions, we treat the aforementioned problems in a more general setting. Let the

constant q > 1, E ∈ Rr×N be a matrix, ‖ · ‖? be a norm on the Euclidean space, and C be

a polyhedral set. Consider the following problems:

(P1) : minx∈RN ‖Ex‖? subject to Ax = b, and x ∈ C (2.5)

(P2) : minx∈RN
1
2‖Ax− b‖

q
q + ‖Ex‖? subject to x ∈ C (2.6)

(P3) : minx∈RN ‖Ex‖? subject to ‖Ax− b‖q ≤ σ and x ∈ C. (2.7)

We call (P1), (P2) and (P3) the BP-like, LASSO-like, and BPND-like problems, respec-

tively. All the BP, LASSO, and BPDN models introduced before can be formulated within

the above framework. For example, in the group LASSO, ‖x‖? :=
∑p

i=1 λi‖xIi‖2 is a norm.

Letting E := IN and q = 2, the group LASSO is a special case of (P2).

22

Proposition 2.2.1. Fix q > 1, and assume that the problems (P1)-(P3) are feasible. The

following hold:

(i) Each of the problems (P1)− (P3) attains a minimizer;

(ii) Let H2 be the solution set of (P2). Then Ax = Ax′ and ‖Ex‖? = ‖Ex′‖? for all

x, x′ ∈ H2;

(iii) Suppose in (P3) that ‖b‖q > σ, 0 ∈ C, and the optimal value of (P3) is positive.

Then each minimizer x∗ of (P3) satisfies ‖Ax∗ − b‖q = σ and Ax is constant on the

solution set.

Proof. Statements (i) and (ii) follow from a similar proof of [52, Theorem 4.1] and [94,

Lemma 4.1], respectively. For Statement (iii), by a similar argument of [94, Lemma 4.2(3)],

we have that any minimizer x∗ of (P3) satisfies ‖Ax∗ − b‖q = σ. Since ‖ · ‖qq is strictly

convex for q > 1 [68, Appendix] and ‖Ax − b‖qq is constant (whose value is σq) on the

solution set, we deduce that Ax is constant on the solution set.

A sufficient condition for the optimal value of (P3) to be positive, along with the

conditions that ‖b‖q > σ and 0 ∈ C, is that E has full column rank. In fact, when ‖b‖q > σ

and 0 ∈ C, any minimizer x∗ must be nonzero. If E has full column rank, then Ex∗ 6= 0

so that ‖Ex∗‖? > 0.

To compute a solution of the LASSO in (2.12) using its dual solution, we need the

following result similar to [94, Theorem 2.1] or [52, Proposition 3.2]. To be self-contained,

we present its proof below.

Proposition 2.2.2. The following hold:

(i) Let x∗ be a minimizer of (P2) given by (2.6). Then z∗ is a minimizer of (P2) if

and only if z∗ is a minimizer of the BP-like problem given by (2.5), i.e., (P1) :

23

minz∈RN ‖Ez‖? subject to Az = Ax∗ and z ∈ C. Furthermore, the optimal value of

(P1) equals ‖Ex∗‖?.

(ii) Let x∗ be a minimizer of (P3) given by (2.7) which satisfies: ‖b‖q > σ, 0 ∈ C, and

the optimal value of (P3) is positive. Then z∗ is a minimizer of (P3) if and only if

z∗ is a minimizer of the BP-like problem (2.5) with b := Ax∗, and the optimal value

of this (P1) equals ‖Ex∗‖?.

Proof. (i) LetH2 be the solution set of (P2) given by (2.6). By Proposition 2.2.1, Ax = Ax∗

and ‖Ex‖? = ‖Ex∗‖? for any x ∈ H2. Let J(x) := 1
2‖Ax− y‖

q
q + ‖Ex‖? be the objective

function. For the “if” part, let z∗ be a minimizer of (P1). Then z∗ ∈ C, Az∗ = Ax∗ and

‖Ez∗‖? ≤ ‖Ex∗‖?. Hence, J(z∗) ≤ J(x∗). On the other hand, J(x∗) ≤ J(z∗) because x∗

is a minimizer of (P2). Therefore, J(x∗) = J(z∗) so that z∗ is a minimizer of (P2). It also

implies that ‖Ez∗‖? = ‖Ex∗‖? or equivalently the optimal value of (P1) equals ‖Ex∗‖?.

To show the “only if” part, let z∗ be a minimizer of (P2). Suppose z∗ is not a minimizer of

(P1). Then there exists u ∈ RN such that u ∈ C, Au = Ax∗ and ‖Eu‖? < ‖Ez∗‖?. Since z∗

is a minimizer of (P2), we have Az∗ = Ax∗ and ‖Ez∗‖? = ‖Ex∗‖?. Hence, J(u) < J(z∗),

yielding a contradiction.

(ii) Suppose (P3) satisfies the specified conditions, and let H3 denote its solution set.

By statement (iii) Proposition 2.2.1, we have H3 = {x ∈ C |Ax = Ax∗, ‖Ex‖? = ‖Ex∗‖?}

for a minimizer x∗ of (P3). “If”: suppose z∗ be a minimizer of (P1) with b := Ax∗. Then

z∗ ∈ C, Az∗ = Ax∗ and ‖Ez∗‖? ≤ ‖Ex∗‖?. This shows that z∗ is a feasible point of (P3)

and hence a minimizer in view of ‖Ez∗‖? = ‖Ex∗‖?. “Only if”: since any feasible point of

(P1) with b := Ax∗ is a feasible point of (P3) and since x∗ is a feasible point of this (P1),

we see that the optimal value of this (P1) equals ‖Ex∗‖?. Suppose z∗ is a minimizer of

24

(P3). Then z∗ ∈ H3 such that z∗ ∈ C, Az∗ = Ax∗, and ‖Ez∗‖? = ‖Ex∗‖?. Hence z∗ is a

feasible point of this (P1) and thus a minimizer of this (P1).

2.3 Overview of the Development of Column Partition based

Distributed Algorithms

One of the major contributions of this chapter is to develop two-stage, column

partition based distributed algorithms for the LASSO-like and BPDN-like problems (2.6)-

(2.7). To facilitate the presentation of this development, we outline its main ideas and

provide a road map of key steps in this section.

2.3.1 Illustration of Main Ideas via the Standard LASSO

For the simplicity of illustration, consider the standard LASSO (2.2) first. Although

the primal problem (2.2) of the LASSO is densely coupled, its dual problem

(D) : min
y

‖y‖22
2

+ bT y, subject to ‖AT y‖∞ ≤ λ

attains favorable properties for column partition based distributed computation since AT

is used in the constraint and the norm ‖·‖∞ is separable. Hence, (D) can be formulated as

a separable consensus optimization problem, for which column partition based distributed

schemes can be developed. Let y∗ be the unique dual solution. A critical question is

how to recover a primal solution from y∗. One possible way is to consider the regularized

LASSO:

r-LASSO : min
x∈RN

1

2
‖Ax− b‖22 + λ ‖x‖1 +

α

2
‖x‖22,

25

where α
2 ‖x‖

2
2 is the regularization term with the regularization parameter α > 0. The

dual of r-LASSO enjoys similar favorable properties for column partition based distributed

computation, and there is a one-to-one correspondence between a primal solution to r-

LASSO and its dual solution. However, a primal solution to r-LASSO is generally not

a desired solution to the original LASSO (2.2) even when α > 0 is sufficiently small (cf.

Example 2.4.1). In other words, exact regularization of the LASSO fails in general.

Despite this negative result, it follows from duality theory (cf. Lemma 2.5.2) that

any solution x∗ to the LASSO (2.2) satisfies Ax∗ = b + y∗, where y∗ is the unique dual

solution to (D) indicated above. Moreover, in view of Statement (i) of Proposition 2.2.2,

each solution to the following BP:

BP : min
z∈RN

‖z‖1 subject to Az = b+ y∗

is a solution to the LASSO. Since the above BP is exactly regularized [50], one can solve

the following regularized BP

r-BP : min
x∈RN

‖x‖1 +
α

2
‖x‖22 subject to Ax = b+ y∗

for a small α > 0 from its dual problem given below via a column partition based dis-

tributed scheme:

(Dr-BP) : min
y

(
(b+ y∗)

T y +
1

2α

p∑
i=1

‖S
(
− (AT y)Ii

)
‖22
)
,

where S(·) is the soft thresholding operator (cf. Section 2.5.2). Letting ŷ∗ be a dual solu-

tion to (Dr-BP), the primal solution to r-BP is recovered from ŷ∗ as x∗Ii = − 1
αS
(
(AT ŷ∗)Ii

)
,

26

∀ i = 1, . . . , p, which is a solution to the LASSO. This yields a two-stage column parti-

tioned based distributed scheme for the LASSO: its dual solution y∗ is solved in the first

stage, and a primal solution is obtained from the dual of a regularized BP in the second

stage using y∗ (cf. Algorithm 1 in Section 2.6.1).

2.3.2 Overview of Key Steps for General Problems

To apply the above ideas to a broader class of problems, e.g., the standard BPDN,

the fused LASSO, and other problems possibly subject to polyhedral constraints, we ad-

dress the following theoretical and numerical tasks which pave the way to developing

column partition based distributed schemes:

1) Exact Regularization. We show that when the `1-norm is used, the BP-like

problem (2.5) subject to a polyhedral constraint is exactly regularized, whereas the LASSO

and BPDN are not in general (cf. Section 2.4). These results lay a ground for using

regularized BP-like problems to recover a desired primal solution in the second stage and

justify why regularized LASSO-like and BPDN-like problems are not considered.

2) Dual Formulations. We derive dual problems of the above mentioned primal

problems, e.g., the regularized BP-like problem, LASSO-like problem, and BPDN-like

problem. These dual formulations are used in both stages of the LASSO-like and BPDN-

like problems: in the first stage, we use it to obtain a dual solution to the LASSO-like

(resp. BPDN-like) problem; in the second stage, we use the dual of a regularized BP-

like problem to recover a primal solution to the LASSO-like (resp. BPDN-like) problem.

Further, we study the relation between a primal solution and a dual solution via duality

theory (cf. Lemmas 2.5.2 and 2.5.3). Along with Proposition 2.2.2, this relation yields

a regularized BP-like problem in the second stage of the LASSO-like (resp. BPDN-like)

27

problem. Besides, we develop various reduced dual problems which facilitate developing

distributed schemes.

3) Distributed Scheme Development. We show that the obtained dual problems can

be formulated as separable or locally coupled convex consensus optimization problems.

For example, consider the fused LASSO and fused BPDN. Their dual problems and those

of the corresponding regularized BP’s are given by locally coupled consensus optimiza-

tion such that a wide range of existing methods, e.g., operator splitting methods [15]

and consensus ADMM [10], [47], can be used to develop columned partitioned based dis-

tributed schemes over undirected and connected networks. Numerical tests are conducted

to evaluate performance of these schemes.

4) Overall Convergence. Many distributed algorithms can be used in each stage and

are convergent under suitable conditions. However, the first-stage scheme generates an

approximate solution to a true dual solution, and this raises the question of whether using

an approximate dual solution leads to significant discrepancy when solving the regularized

BP-like problem in the second stage. Using sensitivity analysis tools for the regularized

BP-like problem, we establish continuous dependence of its solution on certain parameters

and prove the overall convergence of the two-stage distributed algorithms.

The `1-norm will be considered in the above-mentioned key steps for many repre-

sentative convex sparse optimization problems. Nevertheless, the dual formulations and

related duality results can be obtained for an arbitrary norm ‖ · ‖? in (P1), (P2) and (P3).

This allows us to handle the group LASSO (2.3) and its extensions defined by the norm

‖x‖? :=
∑p

i=1 λi‖xIi‖2. We will treat this general framework in Section 2.5.

28

2.4 Exact Regularization

A key step in the development of column partition based distributed algorithms is

using dual problems. To establish a relation between solutions of a primal problem and

its dual, we consider regularization of the primal problem, which is expected to give rise

to a solution of the original primal problem. This pertains to the exact regularization of

the original primal problem [20].

We briefly review the exact regularization of general convex programs given in [20].

Consider the convex minimization problem (P) and its regularized problem (Pε) for some

ε ≥ 0:

(P) : min
x∈P

f(x); (Pε) : min
x∈P

f(x) + εh(x),

where f, h : RN → R are real-valued convex functions, and P is a closed convex set. It is

assumed that (P) has a solution, and h is coercive such that (Pε) has a solution for each

ε > 0. A weaker assumption can be made for h; see [20, Section 1.2] for details. We call

the problem (P) exactly regularized if there exists ε > 0 such that for any ε ∈ (0, ε], any

solution of (Pε) is a solution of (P). To establish the exact regularization, consider the

following convex program: letting f∗ be the optimal value of (P),

(Ph) : min
x∈P, f(x)≤f∗

h(x).

Clearly, the constraint set of (Ph) is equivalent to {x |x ∈ P, f(x) = f∗}, which is the

solution set of (P). It is shown in [20, Theorem 2.1] or [20, Corollary 2.2] that (P) is

exactly regularized by the regularization function h if and only if (Ph) has a Lagrange

29

multiplier µ∗ ≥ 0, i.e., there exists a constant µ∗ ≥ 0 such that minx∈P, f(x)≤f∗ h(x) =

minx∈P h(x) + µ∗
(
f(x)− f∗

)
.

Corollary 2.4.1. The problem (Ph) has a Lagrange multiplier µ∗ ≥ 0 if and only if there

exists a constant µ ≥ 0 such that a minimizer x∗ of (Ph) is a minimizer of minx∈P h(x) +

µ(f(x)− f∗).

Proof. “If”: suppose a constant µ ≥ 0 exists such that a minimizer x∗ of (Ph) is that of

minx∈P h(x)+µ(f(x)−f∗). Since x∗ is a feasible point of (Ph), we have x∗ ∈ P and f(x∗) ≤

f∗ or equivalently f(x∗) = f∗. Hence, the optimal value of minx∈P h(x) + µ(f(x) − f∗)

is given by h(x∗), which equals minx∈P, f(x)≤f∗ h(x). Hence, µ∗ := µ ≥ 0 is a Lagrange

multiplier of (Ph).

“Only If”: Let µ∗ ≥ 0 be a Lagrange multiplier of (Ph), and x∗ be a minimizer of

(Ph). Again, we have x∗ ∈ P and f(x∗) = f∗. This shows that h(x∗) + µ∗(f(x∗)− f∗) =

h(x∗). Hence,

h(x∗) = min
x∈P, f(x)≤f∗

h(x) = min
x∈P

h(x) + µ∗
(
f(x)− f∗

)
≤ h(x∗).

We thus deduce that x∗ is a minimizer of minx∈P h(x) + µ(f(x)− f∗) with µ := µ∗.

2.4.1 Exact Regularization of Convex Piecewise Affine Function based Opti-

mization

We consider the exact regularization of convex piecewise affine functions based con-

vex minimization problems with its applications to `1-minimization given by the BP,

LASSO, and BPDN. A real-valued continuous function f : RN → R is piecewise affine

(PA) if there exists a finite family of real-valued affine functions {fi}`i=1 such that h(x) ∈

30

{fi(x)}`i=1 for each x ∈ RN . A convex PA function f : RN → R has the max-formulation

[60, Section 19], i.e., there exists a finite family of (pi, γi) ∈ RN × R, i = 1, . . . , ` such

that f(x) = maxi=1,...,`

(
pTi x+ γi

)
. Convex PA functions represent an important class of

nonsmooth convex functions in many applications, e.g., the `1-norm ‖ · ‖1, f(x) := ‖Ex‖1

for a matrix E, a polyhedral gauge, and the `∞-norm; see [52] for more discussions. We

first present a technical lemma whose proof is omitted.

Lemma 2.4.1. Let f : RN → R and h : RN → R be (not necessarily convex) functions

and P be a set such that minx∈P f(x) attains a minimizer and its optimal value is denoted

by f∗. Let the set W := {(x, t) |x ∈ P, f(x) ≤ t}. Consider the following problems:

(Pε) : min
x∈P

f(x) + εh(x); (P ′ε) : min
(x,t)∈W

t+ εh(x), ε ≥ 0;

(Ph) : min
x∈P, f(x)≤f∗

h(x); (P ′h) : min
(x,t)∈W, t≤f∗

h(x).

Then the following hold:

(i) Fix an arbitrary ε ≥ 0. Then (a) if x∗ is an optimal solution of (Pε), then (x∗, f(x∗))

is an optimal solution of (P ′ε); (b) if (x∗, t∗) is an optimal solution of (P ′ε), then

t∗ = f(x∗) and x∗ is an optimal solution of (Pε).

(ii) (a) If x∗ is an optimal solution of (Ph), then (x∗, f∗) is an optimal solution of (P ′h);

(b) if (x∗, t∗) is an optimal solution of (P ′h), then t∗ = f∗ and x∗ is an optimal

solution of (Ph).

The following proposition shows exact regularization for convex PA objective func-

tions on a polyhedral set. This result has been mentioned in [91] without a formal proof;

we present a proof for completeness.

31

Proposition 2.4.1. Let P be a polyhedral set, and f : RN → R be a convex PA function

such that the problem (P) : minx∈P f(x) has the nonempty solution set, and let h : RN → R

be a convex regularization function which is coercive. Then there exists ε > 0 such that for

any ε ∈ (0, ε], any optimal solution of the regularized problem (Pε) is an optimal solution

of (P).

Proof. Let f∗ be the optimal value of the problem (P). In view of Lemma 2.4.1, (P)

is equivalent to (P ′0) and (Pε) is equivalent to (P ′ε) for any ε > 0 in the sense given

by Lemma 2.4.1. Hence, to show the exact regularization of (P) via (Pε), it suffices

to show the exact regularization of (P ′0) via (P ′ε). To show the latter, it follows from

[20, Theorem 2.1] or [20, Corollary 2.2] that we only need to show that (P ′h) attains

a Lagrange multiplier, namely, there exists a Lagrange multiplier µ∗ ≥ 0 such that

min(x,t)∈W, t≤f∗ h(x) = min(x,t)∈W h(x) +µ∗(t− f∗), where we recall that f∗ is the optimal

value of (P) andW := {(x, t) |x ∈ P, f(x) ≤ t}. Suppose the convex PA function f is given

by f(x) = maxi=1,...,`

(
pTi x+γi

)
. ThenW = {(x, t) |x ∈ P, pTi x+γi ≤ t, ∀ i = 1, . . . , `},

and W is thus a polyhedral set. Since W is polyhedral and t ≤ f∗ is a linear inequal-

ity constraint, it follows from [6, Proposition 5.2.1] that there exists µ∗ ≥ 0 such that

min(x,t)∈W, t≤f∗ h(x) = min(x,t)∈W h(x) + µ∗(t − f∗). By [20, Corollary 2.2], (P ′ε) is the

exact regularization of (P ′0) for all small ε > 0.

The above proposition yields the exact regularization for the BP-like problem with

the `1-norm.

Corollary 2.4.2. Let C be a polyhedral set. Then the following problem attains the exact

regularization of (P1) for all sufficiently small α > 0:

(P1,α) : minx∈RN ‖Ex‖1 + α
2 ‖x‖

2
2 subject to Ax = b, and x ∈ C.

32

Proof. Let f(x) := ‖Ex‖1 which is a convex PA function, h(x) := ‖x‖22, and P :=

{x |Ax = b, x ∈ C}. Then P is a polyhedral set. Applying Proposition 2.4.1, we conclude

that the exact regularization holds.

2.4.1.1 Failure of Exact Regularization of the LASSO and BPDN Problems

We investigate exact regularization of the LASSO and BPDN when the `1-norm

is used. For simplicity, we focus on the standard problems (i.e., C = RN) although the

results developed here can be extended. It follows from Proposition 2.2.1 that the solution

sets of the standard LASSO and BPDN are polyhedral. Hence, the constraint sets of

(Ph) associated with the LASSO and BPDN are polyhedral. However, unlike the BP-like

problem, we show by examples that exact regularization fails in general. This motivates

us to develop two-stage distributed algorithms in Section 2.6 rather than directly using

the regularized LASSO and BPDN. Our first example shows that in general, the standard

LASSO (2.2) is not exactly regularized by the regularization function h(x) = ‖x‖22.

Example 2.4.1. Let A = [I2 I2 · · · I2] ∈ R2×N with N = 2r for some r ∈ N, and

b ∈ R2
++. Hence, we can partition a vector x ∈ RN as x = (x1, . . . , xr) where each

xi ∈ R2. When 0 < λ < 1, it follows from the KKT condition: 0 ∈ AT (Ax∗− b)+λ∂‖x∗‖1

and a straightforward computation that a particular optimal solution x∗ is given by xi∗ =

1−λ
r b > 0 for all i = 1, . . . , r. Hence, the solution set H = {x = (x1, . . . , xr) |

∑r
i=1 x

i =

(1−λ)b, ‖x‖1 ≤ (1−λ)‖b‖1}. Consider the regularized LASSO for α > 0: minx∈RN
1
2‖Ax−

b‖22 +λ ‖x‖1 + α
2 ‖x‖

2
2. For each α > 0, it can be shown that its unique optimal solution x∗,α

is given by xi∗,α = 1−λ
r+αb for each i = 1, . . . , r. Hence, x∗,α /∈ H for any α > 0. �

33

In what follows, we show the failure of exact regularization of the standard BPDN

(2.4). Consider the convex minimization problem for a constant µ ≥ 0,

(Pµ) : min
‖Ax−b‖2≤σ

1

2
‖x‖22 + µ‖x‖1,

where A ∈ Rm×N , b ∈ Rm, and σ > 0 with ‖b‖2 > σ.

Further, consider the max-formulation of `1-norm, i.e., ‖x‖1 = maxi=1,...,2N p
T
i x, where

each pi ∈
{

(±1,±1, . . . ,±1)T
}
⊂ RN ; see [52, Section 4.2] for details.

Lemma 2.4.2. A feasible point x∗ ∈ RN of (Pµ) is a minimizer of (Pµ) if and only if

‖Ax∗ − b‖2 = σ and

[
Au = 0 or gTu < 0

]
⇒

(
xT∗ u+ µ max

i∈I(x∗)
pTi u

)
≥ 0, (2.8)

where g := AT (Ax∗ − b), and I(x∗) := {i | pTi x∗ = ‖x∗‖1}.

Proof. It follows from a similar argument of [94, Lemma 4.2(3)] that a minimizer x∗ of

(Pµ) satisfies ‖Ax∗ − b‖2 = σ. The rest of the proof resembles that of [52, Theorem 3.3];

we present its proof for completeness. Since (Pµ) is a convex program, it is easy to see

that x∗ is a minimizer of (Pµ) if and only if u∗ = 0 is a local minimizer of the following

problem:

(P̃µ) : min
u∈RN

(
xT∗ u+ µ max

i∈I(x∗)
pTi u

)
, subject to gTu+

1

2
‖Au‖22 ≤ 0.

In what follows, we show that the latter holds if and only if the implication (2.8) holds.

Let J(u) := xT∗ u + µmaxi∈I(x∗) p
T
i u. “If”: Let U be a neighborhood of u∗ = 0. For

any u ∈ U satisfying gTu + 1
2‖Au‖

2
2 ≤ 0, either Au = 0 or Au 6= 0. For the latter, we

34

have gTu < 0. Hence, in both cases, we deduce from (2.8) that J(u) ≥ 0 = J(u∗). This

shows that u∗ = 0 is a local minimizer of (P̃µ). “Only If”: suppose u∗ = 0 is a local

minimizer of (P̃µ). For any u with Au = 0, we have gTu = 0 such that v := βu satisfies

gT v+ 1
2‖Av‖

2
2 = 0 for any β > 0. Hence, βu is a locally feasible point of (P̃µ) for all small

β > 0 such that J(βu) ≥ J(u∗) = 0 for all small β > 0. Since J(βu) = βJ(u) for all β ≥ 0,

we have J(u) ≥ 0. Next consider a vector u with gTu < 0. Clearly, gT (βu)+ 1
2‖Aβu‖

2
2 < 0

for all small β > 0 so that βu is a locally feasible point of (P̃µ). By a similar argument,

we have J(u) ≥ 0.

Proposition 2.4.2. The problem (BPDNh) : min‖Ax−b‖2≤σ, ‖x‖1≤f∗ ‖x‖22 with ‖b‖2 > σ

has a Lagrange multiplier if and only if there exist a constant µ ≥ 0 and a minimizer x∗

of (BPDNh) such that

(i) There exist w ∈ R|I(x∗)|
+ with 1Tw = 1 and v ∈ Rm such that x∗ + µ

∑
i∈I(x∗)

wipi +

AT v = 0; and

(ii) There exist w′ ∈ R|I(x∗)|
+ with 1Tw′ = 1 and a constant γ > 0 such that (1Tw′)x∗ +

µ
∑

i∈I(x∗)
w′ipi + γg = 0,

where 1 denotes the vector of ones, g := AT (Ax∗ − b), and I(x∗) := {i | pTi x∗ = ‖x∗‖1}.

Furthermore, if A has full row rank, then (BPDNh) has a Lagrange multiplier if and only

if there exist a constant µ ≥ 0 and a minimizer x∗ of (BPDNh) such that

(ii’) There exist ŵ ∈ R|I(x∗)|
+ with 1T ŵ = 1 and a constant γ̂ > 0 such that x∗ +

µ
∑

i∈I(x∗)
ŵipi + γ̂g = 0.

Proof. It follows from Corollary 2.4.1 that (BPDNh) has a Lagrange multiplier if and

only if there exist a constant µ ≥ 0 and a minimizer x∗ of (BPDNh) such that x∗ is a

minimizer of (Pµ). Note that any minimizer x∗ of (BPDNh) satisfies ‖Ax∗− b‖2 = σ such

35

that x∗ 6= 0 in light of ‖b‖2 > σ. By Lemma 2.4.2, we also deduce that x∗ is a minimizer

of (Pµ) if and only if ‖Ax∗ − b‖2 = σ and the implication (2.8) holds. Notice that the

implication holds if and only if both the following linear inequalities have no solution:

(I) : Au = 0, max
i∈I(x∗)

(
x∗ + µpi

)T
u < 0; (II) : gTu < 0, max

i∈I(x∗)

(
x∗ + µpi

)T
u < 0.

By the Theorem of Alternative, we see that the inconsistency of the inequality (I) is equiv-

alent to the existence of (w̃, ṽ) with 0 6= w̃ ≥ 0 such that
∑

i∈I(x∗)
w̃i(x∗+µpi) +AT ṽ = 0.

Letting w := w̃/(1T w̃) and v := ṽ/(1T w̃), we obtain condition (i). Similarly, the inconsis-

tency of the inequality (II) is equivalent to the existence of (γ̃, w̃′) with 0 6= (γ̃, w̃′) ≥ 0 such

that
∑

i∈I(x∗)
w̃′i(x∗+µpi) + γ̃g = 0. Moreover, we deduce that γ̃ > 0, since otherwise, we

must have 0 6= w̃′ ≥ 0 such that 0 = xT∗
∑

i∈I(x∗)
w̃′i(x∗ + µpi) = (1T w̃′)(‖x∗‖22 + µ‖x∗‖1),

where we use pTi x∗ = ‖x∗‖1 for each i ∈ I(x∗), yielding a contradiction to x∗ 6= 0. Hence,

by suitably scaling, we conclude that the inconsistency of the inequality (II) is equivalent

to condition (ii). This completes the proof of the first part of the proposition.

Suppose A has full row rank. Then condition (i) holds trivially. Furthermore, since

Ax∗ − b 6= 0 for a minimizer x∗ of (BPDNh), g := AT (Ax∗ − b) is a nonzero vector.

Hence, w′ in condition (ii) must be nonzero as γg 6= 0. Setting ŵ := w′/(1Tw′) and

γ̂ := γ/(1Tw′), we obtain condition (ii’), which is equivalent to condition (ii).

By leveraging Proposition 2.4.2, we construct the following example which shows

that in general, the standard BPDN (2.4) with the `1-norm penalty is not exactly regu-

larized by h(x) = ‖x‖22.

Example 2.4.2. Let A = [D D · · · D] ∈ R2×N with N = 2r for some r ∈ N, where

D = diag(1, β) ∈ R2×2 for a positive constant β. As before, we partition a vector x ∈ RN

36

as x = (x1, . . . , xr) where each xi ∈ R2. Further, let b = (b1, b2)T ∈ R2 and σ = 1. We

assume that b ≥ 1, which is a necessary and sufficient condition for ‖v− b‖2 ≤ σ ⇒ v ≥ 0.

We first consider the convex minimization problem: minu∈R2 ‖u‖1 subject to ‖Du−

b‖2 ≤ 1, which has a unique minimizer u∗ as D is invertible for any β > 0. Further,

we must have ‖Du∗ − b‖2 = 1 and u∗ > 0. In light of this, the necessary and sufficient

optimality conditions for u∗ are: there exists λ ∈ R+ such that ∂‖u∗‖1+λDT (Du∗−b) = 0,

and ‖Du∗ − b‖22 = 1. Since u∗ > 0, we have λ > 0 and the first equation becomes

1 +λDT (Du∗− b) = 0, which further gives rise to Du∗ = b− 1
λD
−11. Substituting it into

the equation ‖Du∗−b‖2 = 1, we obtain λ =

√
1+β2

β . This yields u∗ = (b1− 1
λ ,

1
β (b2− 1

βλ))T .

Note that for all β > 0, 0 < 1
λ < 1 and 1

βλ = 1√
1+β2

so that 0 < 1
βλ < 1. Hence, u∗ > 0 in

view of b ≥ 1.

It can be shown that the solution set of the BPDN is given by

H = {x∗ = (x1
∗, . . . , x

r
∗) | ‖x∗‖1 = ‖u∗‖1, Ax∗ = Du∗}

= {(x1
∗, . . . , x

r
∗) |

r∑
i=1

‖xi∗‖1 = ‖u∗‖1,
r∑
i=1

xi∗ = u∗}

= {x∗ = (x1
∗, . . . , x

r
∗) |xi∗ = λiu∗,

r∑
i=1

λi = 1, λi ≥ 0, ∀ i}.

Therefore, it is easy to show that the regularized BPDN with h(x) = ‖x‖22 has the unique

minimizer x∗ = (xi∗) with x∗i = u∗
r for each i = 1, . . . , r. Since u∗ > 0, we have x∗ > 0

such that I(x∗) is singleton with the single vector p = 1. Since A has full row rank, it

follows from Proposition 2.4.2 that (BPDNh) has a Lagrange multiplier if and only if

there exist constants µ ≥ 0, γ > 0 such that x∗ + µp + γg = 0 for the unique minimizer

x∗, where p = 1 and g = AT (Ax∗ − b) = AT (Du∗ − b) = − 1
λ1, where λ =

√
1 + 1

β2 .

Since x∗ = 1
r (u∗, . . . , u∗), constants µ ≥ 0 and γ > 0 exist if and only if (u∗)1 = (u∗)2 or

37

equivalently β(b1 − 1
λ) = b2 − 1

βλ . The latter is further equivalent to b2 = βb1 + 1−β2√
1+β2

.

Hence, for any β > 0, (BPDNh) has a Lagrange multiplier if and only if b satisfies

b2 = βb1 + 1−β2√
1+β2

and b ≥ 1. The set of such b’s has zero measure in R2. For instance,

when β = 1, (BPDNh) has a Lagrange multiplier if and only if b = θ · 1 for all θ ≥ 1.

Thus the BPDN is not exactly regularized by h(x) = ‖x‖22 in general. �

2.4.2 Exact Regularization of Grouped BP Problem Arising From Group

LASSO

Motivated by the group LASSO (2.3), we investigate exact regularization of the

following BP-like problem: min
∑p

i=1 ‖xIi‖2 subject to Ax = b, where {Ii}pi=1 forms a

disjoint union of {1, . . . , N}. We call this problem the grouped basis pursuit or grouped

BP. Here we set λi’s in the original group LASSO formulation (2.3) as one, without loss

of generality. It is shown below that its exact regularization may fail.

Example 2.4.3. Consider the grouped BP: minx,y∈R2 ‖x‖2 + ‖y‖2 subject to

x1

x2

 +

γy1

βy2

 = b, where b = (b1, b2)T ∈ R2 is nonzero. Let γ = 0 and β > 1. Hence, x∗1 = b1,

y∗1 = 0, and the grouped BP is reduced to minx2,y2
√
b21 + x2

2+|y2| subject to x2+βy2 = b2,

which is further equivalent to

(R1) : min
x2∈R

J(x2) :=
√
b21 + x2

2 +
|b2 − x2|

β
.

It is easy to show that if b2 >
b1√
β2−1

> 0, then the above reduced problem attains the

unique minimizer x∗2 = b1√
β2−1

which satisfies ∇J(x∗2) = 0. Hence, when b2 >
b1√
β2−1

> 0,

the unique solution of the grouped BP is given by x∗ = (b1,
b1√
β2−1

)T and y∗ = (0, (b2 −

38

b1√
β2−1

)/β)T . Now consider the regularized problem for α > 0: minx,y∈R2 ‖x‖2 + ‖y‖2 +

α
2

(
‖x‖22 + ‖y‖22

)
subject to

x1

x2

 +

 0

βy2

 = b. Similarly, we must have x∗1 = b1 and

y∗1 = 0 such that the reduced problem is given by

(R2) : min
x2∈R

√
b21 + x2

2 +
|b2 − x2|

β
+
α

2

(
b21 + x2

2 +
1

β2
(b2 − x2)2

)
.

We claim that if b2 >
b1√
β2−1

> 0 with b2 6= 1+β2√
β2−1

b1, then the exact regularization fails

for any α > 0. We show this claim by contradiction. Suppose the exact regularization

holds for some positive constant α. Hence, x∗2 = b1√
β2−1

is the solution to the reduced

problem (R2). Since ∇J(x∗2) = 0, we have α
(
x∗2 +

1

β2

(
x∗2 − b2

))
= 0. This leads to

x∗2 = b2
1+β2 , yielding a contradiction to b2 6= 1+β2√

β2−1
b1. Hence, the exact regularization

fails. �

In spite of the failure of exact regularization in Example 2.4.3, it can be shown

that the exact regularization holds for the following cases: (i) max(|γ|, |β|) < 1; (ii)

min(|γ|, |β|) > 1; (iii) γ = 0, β > 1, b1 = 0, and b2 6= 0; and (iv) γ = 0, β = 1, and

b1 6= 0. Especially, the first two cases hint that the spectra of A•Ii ’s may determine exact

regularization. Inspired by this example, we present certain sufficient conditions for which

the exact regularization holds.

Lemma 2.4.3. Consider a nonzero b ∈ Rm and a column partition {A•Ii}
p
i=1 of a matrix

A ∈ Rm×N , where {Ii}pi=1 form a disjoint union of {1, . . . , N}. Suppose A•I1 is invertible,

A−1
•I1A•Ii is an orthogonal matrix for each i = 1, . . . , s, and ‖(A•Ii)T (A•I1)−TA−1

•I1b‖2 <

‖A−1
•I1b‖2 for each i = s+ 1, . . . , p. Then the exact regularization holds.

39

Proof. Since A−1
•I1Ab = A−1

•I1b, we may assume, without loss of generality, that A•I1 is

the identity matrix. Hence, A•Ii is an orthogonal matrix for i = 2, . . . , s. We claim

that x∗ = (
(A•I1)T b

s , · · · , (A•Is)T b
s , 0, . . . , 0) is an optimal solution to the grouped BP-like

problem. Clearly, it satisfies the equality constraint. Besides, it follows from the KKT

conditions that there exists a Lagrange multiplier λ ∈ Rm such that

x∗Ii
‖x∗Ii‖2

+ (A•Ii)
Tλ = 0, ∀ i = 1, . . . , s; 0 ∈ B2(0, 1) + (A•Ij)

Tλ, ∀ j = s+ 1, . . . , p.

Note that (i) λ = −b/‖b‖2; and (ii) for each j = s + 1, . . . , p, ‖(A•Ij)Tλ‖2 < 1 in

view of ‖(A•Ij)T b‖2 < ‖b‖2. Hence, x∗ is indeed a minimizer. Now consider the reg-

ularized grouped BP-like problem with the parameter α > 0. We claim that x∗ =

(
(A•I1)T b

s , . . . ,
(A•Is)T b

s , 0, . . . , 0) is an optimal solution of the regularized problem for any

sufficiently small α > 0. To see this, the KKT condition is given by

x∗Ii
‖x∗Ii‖2

+ αx∗Ii + (A•Ii)
T λ̂ = 0, ∀ i = 1, . . . , s; 0 ∈ B2(0, 1) + (A•Ij)

T λ̂, ∀ j = s+ 1, . . . , p.

Hence, λ̂ = −
(

1
‖b‖2 + α

s

)
b such that ‖λ̂‖2 = 1 + α

s ‖b‖2. Since ‖(A•Ij)T b‖2 < ‖b‖2 for

each j = s+ 1, . . . , p, we have ‖(A•Ij)T λ̂‖2 =
(

1
‖b‖2 + α

s

)
‖(A•Ij)T b‖2 ≤ 1, ∀ j = s+ 1, . . . , p

for all sufficiently small α > 0. Hence, x∗ is a solution of the regularized problem for all

small α > 0, and exact regularization holds.

If the exact knowledge of b 6= 0 is unknown, the condition that ‖AT•IiA
−T
•I1A

−1
I1 b‖2 <

‖A−1
•I1b‖2 for each i = s+1, . . . , p can be replaced by the following condition: ‖AT•IiA

−T
•I1‖2 <

1 for each i = s+ 1, . . . , p.

40

2.5 Dual Problems: Formulations and Properties

We develop dual problems of the regularized BP as well as those of the LASSO and

BPDN in this section. These dual problems and their properties form a foundation for

the development of column partition based distributed algorithms. As before, {Ii}pi=1 is

a disjoint union of {1, . . . , N}.

Consider the problems (P1)-(P3) given by (2.5)-(2.7), where E ∈ Rr×N and ‖ · ‖? is

a general norm on Rr. Let ‖ · ‖� be the dual norm of ‖ · ‖?, i.e., ‖z‖� := sup
{
zT v | ‖v‖? ≤

1
}
, ∀ z ∈ Rr. As an example, the dual norm of the `1-norm is the `∞-norm. When ‖x‖? :=∑p
i=1 ‖xIi‖2 arising from the group LASSO, its dual norm is ‖z‖� = maxi=1,...,p ‖zIi‖2.

Since the dual of the dual norm is the original norm, we have ‖x‖? = sup
{
xT v | ‖v‖� ≤

1
}
, ∀x ∈ Rr. Further, let B�(0, 1) := {v | ‖v‖� ≤ 1} denote the closed unit ball centered at

the origin with respect to ‖ · ‖�. Clearly, the subdifferential of ‖ · ‖? at x = 0 is B�(0, 1).

2.5.1 Dual Problems: General Formulations

Strong duality will be exploited for the above mentioned problems and their corre-

sponding dual problems. For this purpose, the following minimax result is needed.

Lemma 2.5.1. Consider the convex program (P) : infz∈P,Az=b,Cz≤d J(z), where J(z) :=

‖Ez‖? + f(z), f : Rn → R is a convex function, P ⊆ Rn is a polyhedral set, A,C,E are

matrices, and b, d are vectors. Suppose that (P) is feasible and has a finite infimum. Then

inf
z∈P

(
sup

y, µ≥0, ‖v‖�≤1

[
(Ez)T v + f(z) + yT (Az − b) + µT (Cz − d)

])
= sup

y, µ≥0, ‖v‖�≤1

(
inf
z∈P

[
(Ez)T v + f(z) + yT (Az − b) + µT (Cz − d)

])
.

41

Proof. Let J∗ > −∞ be the finite infimum of (P). Since P is polyhedral, it follows from

[6, Proposition 5.2.1] that the strong duality holds, i.e., J∗ = infz∈P
[

supy,µ≥0 J(z) +

yT (Az − b) + µT (Cz − d)
]

= supy,µ≥0

[
infz∈P J(z) + yT (Az − b) + µT (Cz − d)

]
, and the

dual problem of (P) attains an optimal solution (y∗, µ∗) with µ∗ ≥ 0 such that J∗ =

infz∈P J(z) + yT∗ (Az − b) + µT∗ (Cz − d). Therefore,

J∗ = inf
z∈P
‖Ez‖? + f(z) + yT∗ (Az − b) + µT∗ (Cz − d)

= inf
z∈P

(
sup
‖v‖�≤1

[
(Ez)T v + f(z) + yT∗ (Az − b) + µT∗ (Cz − d)

])
= sup

‖v‖�≤1

(
inf
z∈P

[
(Ez)T v + f(z) + yT∗ (Az − b) + µT∗ (Cz − d)

])
≤ sup

y, µ≥0, ‖v‖�≤1

(
inf
z∈P

[
(Ez)T v + f(z) + yT (Az − b) + µT (Cz − d)

])
≤ inf

z∈P

(
sup

y, µ≥0, ‖v‖�≤1

[
(Ez)T v + f(z) + yT (Az − b) + µT (Cz − d)

])
= J∗,

where the third equation follows from Sion’s minimax theorem [73, Corollary 3.3] and the

fact that B�(0, 1) is a convex compact set, and the second inequality is due to the weak

duality.

In what follows, we consider a general polyhedral set of the following form unless

otherwise stated

C := {x ∈ RN |Cx ≤ d}, C ∈ R`×N , d ∈ R`. (2.9)

As before, {Ii}pi=1 is a disjoint union of {1, . . . , N}.

42

• Dual Problem of the Regularized BP-like Problem Consider the regularized

BP-like problem for a fixed regularization parameter α > 0:

min
Ax=b, x∈C

‖Ex‖? +
α

2
‖x‖22, (2.10)

where b ∈ R(A)∩AC with AC := {Ax |x ∈ C}. Let µ ∈ R`+ be the Lagrange multiplier for

the polyhedral constraint Cx ≤ d. It follows from Lemma 2.5.1 with z = x and P = RN

that

min
Ax=b, x∈C

‖Ex‖? +
α

2
‖x‖22

= inf
x

(
sup

y, µ≥0, ‖v‖�≤1

[
(Ex)T v +

α

2
‖x‖22 + yT (Ax− b) + µT (Cx− d)

])
= sup

y, µ≥0, ‖v‖�≤1

(
inf
x

[
(Ex)T v +

α

2
‖x‖22 + yT (Ax− b) + µT (Cx− d)

])
= sup

y, µ≥0, ‖v‖�≤1

(
− bT y − µTd+

p∑
i=1

inf
xIi

[α
2
‖xIi‖22 +

(
(AT y + ET v + CTµ)Ii

)T
xIi

])
= sup

y, µ≥0, ‖v‖�≤1

(
− bT y − µTd− 1

2α

p∑
i=1

∥∥(AT y + ET v + CTµ
)
Ii

∥∥2

2

)
,

This leads to the equivalent dual problem:

(D) : min
y, µ≥0, ‖v‖�≤1

(
bT y + dTµ+

1

2α

p∑
i=1

∥∥(AT y + ET v + CTµ)Ii
∥∥2

2

)
. (2.11)

Let (y∗, µ∗, v∗) ∈ Rm×R`+×B�(0, 1) be an optimal solution of the dual problem; its exis-

tence is shown in the proof of Lemma 2.5.1. Consider the Lagrangian L(x, y, µ, v) :=

(Ex)T v + α
2 ‖x‖

2
2 + yT (Ax − b) + µT (Cx − d). Then by the strong duality given in

Lemma 2.5.1, we see from ∇xL(x∗, y∗, µ∗, v∗) = 0 that the unique optimal solution

43

x∗ = (x∗Ii)
p
i=1 of (2.10) is given by

x∗Ii = − 1

α

(
AT y∗ + ET v∗ + CTµ∗

)
Ii
, ∀ i = 1, . . . , p.

• Dual Problem of the LASSO-like Problem Consider the LASSO-like problem for

A ∈ Rm×N , b ∈ Rm, and E ∈ Rr×N :

min
x∈C

1

2
‖Ax− b‖22 + ‖Ex‖?. (2.12)

It follows from Lemma 2.5.1 with z = (x, u) and P = RN × Rm that

min
x∈C

1

2
‖Ax− b‖22 + ‖Ex‖? = inf

x∈C, u=Ax−b

‖u‖22
2

+ ‖Ex‖?

= inf
x,u

(
sup

y, µ≥0, ‖v‖�≤1

{ ‖u‖22
2

+ (Ex)T v + yT (Ax− b− u) + µT (Cx− d)
})

= sup
y, µ≥0, ‖v‖�≤1

(
inf
x,u

‖u‖22
2

+ (Ex)T v + yT (Ax− b− u) + µT (Cx− d)
)

= sup
y, µ≥0, ‖v‖�≤1

(
− bT y − µTd+ inf

u

(‖u‖22
2
− yTu

)
+

p∑
i=1

inf
xIi

[
(AT y + ET v + CTµ)Ii

]T
xIi

)
,

= sup
y, µ≥0, ‖v‖�≤1

{
− bT y − ‖y‖

2
2

2
− µTd : (AT y + ET v + CTµ)Ii = 0, i = 1, . . . , p

}
.

This yields the equivalent dual problem

(D) : min
y, µ≥0, ‖v‖�≤1

{‖y‖22
2

+bT y+dTµ : (AT y+ET v+CTµ)Ii = 0, i = 1, . . . , p
}
. (2.13)

44

By Lemma 2.5.1, the dual problem attains an optimal solution (y∗, µ∗, v∗) ∈ Rm × R`+ ×

B�(0, 1). Since the objective function of (2.13) is strictly convex in y and convex in (µ, v),

y∗ is unique (but (µ∗, v∗) may not).

The following lemma establishes a connection between a primal solution and a dual

solution, which is critical to distributed algorithm development.

Lemma 2.5.2. Let (y∗, µ∗, v∗) be an optimal solution to the dual problem (2.13). Then

for any optimal solution x∗ of the primal problem (2.12), Ax∗ − b = y∗. Further, if C is a

polyhedral cone (i.e., d = 0), then ‖Ex∗‖? = −(b+ y∗)
T y∗.

Proof. Consider the equivalent primal problem for (2.12): minx∈C,Ax−b=u
1
2‖u‖

2
2 + ‖Ex‖?,

and let (x∗, u∗) be its optimal solution. Consider the Lagrangian

L(x, u, y, µ, v) :=
‖u‖22

2
+ (Ex)T v + yT (Ax− b− u) + µT (Cx− d).

In view of the strong duality shown in Lemma 2.5.1, (x∗, u∗, y∗, µ∗, v∗) is a saddle point of

L. Hence,

L(x∗, u∗, y, µ, v) ≤ L(x∗, u∗, y∗, µ∗, v∗), ∀ y ∈ Rm, µ ∈ R`+, v ∈ B�(0, 1);

L(x∗, u∗, y∗, µ∗, v∗) ≤ L(x, u, y∗, µ∗, v∗), ∀ x ∈ RN , u ∈ Rm.

The former inequality implies that ∇yL(x∗, u∗, y∗, µ∗, v∗) = 0 such that Ax∗ − b− u∗ = 0;

the latter inequality shows that ∇uL(x∗, u∗, y∗, µ∗, v∗) = 0, which yields u∗ − y∗ = 0.

These results lead to Ax∗ − b = y∗. Lastly, when d = 0, it follows from the strong

duality that 1
2‖Ax∗ − b‖22 + ‖Ex∗‖? = −bT y∗ − 1

2‖y∗‖
2
2. Using Ax∗ − b = y∗, we have

‖Ex∗‖? = −bT y∗ − ‖y∗‖22 = −(b+ y∗)
T y∗.

45

• Dual Problem of the BPDN-like Problem Consider the BPDN-like problem with

σ > 0:

min
x∈C, ‖Ax−b‖2≤σ

‖Ex‖? = inf
x∈C, u=Ax−b, ‖u‖2≤σ

‖Ex‖?, (2.14)

where we assume that the problem is feasible and has a positive optimal value, ‖b‖2 > σ,

and the polyhedral set C satisfies 0 ∈ C. Note that 0 ∈ C holds if and only if d ≥ 0.

To establish the strong duality, we also assume that there is an x̃ in the rela-

tive interior of C (denoted by ri(C)) such that ‖Ax̃ − b‖2 < σ or equivalently, by [60,

Theorem 6.6], there exits ũ ∈ A(ri(C)) − b such that ‖ũ‖2 < σ. A sufficient condi-

tion for this assumption to hold is that b ∈ A(ri(C)). Under this assumption, it fol-

lows from [60, Theorem 28.2] that there exist y∗ ∈ Rm, µ∗ ≥ 0, and λ∗ ≥ 0 such that

infx∈C, u=Ax−b,‖u‖2≤σ ‖Ex‖? = infx∈C,u ‖Ex‖?+yT∗ (Ax−b−u)+λ∗(‖u‖22−σ2)+µT∗ (Cx−d).

By the similar argument for Lemma 2.5.1, we have

min
x∈C,‖Ax−b‖2≤σ

‖Ex‖? = inf
x∈C, u=Ax−b,‖u‖2≤σ

‖Ex‖?

= inf
x∈C,u

(
sup

y, µ≥0, ‖v‖�≤1, λ≥0

{
(Ex)T v + λ(‖u‖22 − σ2)

+yT (Ax− b− u) + µT (Cx− d)
})

= sup
y, µ≥0, ‖v‖�≤1,λ≥0

(
inf
x,u

(Ex)T v + λ(‖u‖22 − σ2) + yT (Ax− b− u) + µT (Cx− d)
)

, sup
y, µ≥0, ‖v‖�≤1,λ>0

(
inf
x,u

(Ex)T v + λ(‖u‖22 − σ2) + yT (Ax− b− u) + µT (Cx− d)
)

= sup
y,µ≥0,‖v‖�≤1,λ>0

(
− bT y − µTd− λσ2 + inf

u

(
λ‖u‖22 − yTu

)
+

p∑
i=1

inf
xIi

(
(AT y + ET v + CTµ)Ii

)T
xIi

])
$ sup

y,µ≥0,‖v‖�≤1,λ>0

{
− bT y − µTd− λσ2 − ‖y‖

2
2

4λ
:

(AT y + ET v + CTµ)Ii = 0, i = 1, . . . , p
}

46

Here the reason for letting λ > 0 in the 4th equation (marked with ,) is as follows:

suppose λ = 0, then

sup
y,µ≥0,‖v‖�≤1

{
inf
x

[
(Ex)T v + yT (Ax− b) + µT (Cx− d)

]
+ inf

u
yT (−u)

}
= sup

y=0, µ≥0, ‖v‖�≤1

{
inf
x

[
(Ex)T v + yT (Ax− b) + µT (Cx− d)

]
+ inf

u
yT (−u)

}
= sup

µ≥0, ‖v‖�≤1

(
inf
x

[
(Ex)T v + µT (Cx− d)

])
≤ inf

x

(
sup

µ≥0, ‖v‖�≤1

[
(Ex)T v + µT (Cx− d)

])
= inf

x∈C
‖Ex‖? ≤ 0,

where we use the fact that 0 ∈ C. This shows that the positive optimal value cannot be

achieved when λ = 0, and thus the constraint λ ≥ 0 in the 3rd equation can be replaced

by λ > 0 without loss of generality. Besides, in the second-to-last equation (marked with

$), the constraint y can be replaced with y 6= 0 because otherwise, i.e., y = 0, then we

have, in light of µ ≥ 0 and d ≥ 0,

sup
y=0,µ≥0,‖v‖�≤1,λ>0

{
− bT y − µTd− λσ2 − ‖y‖

2
2

4λ
:

(AT y + ET v + CTµ)Ii = 0, i = 1, . . . , p
}

= sup
µ≥0, ‖v‖�≤1,λ>0

{
− λσ2 − µTd : (ET v + CTµ)Ii = 0, i = 1, . . . , p

}
≤ 0,

which cannot achieve the positive optimal value. Hence, we only consider y 6= 0 whose

corresponding optimal λ∗ = ‖y‖2
2σ in the second-to-last equation is indeed positive and thus

47

satisfies the constraint λ > 0. This gives rise to the equivalent dual problem

(D) : miny, µ≥0, ‖v‖�≤1

{
bT y + σ‖y‖2 + dTµ : (AT y + ET v + CTµ)Ii = 0, i = 1, . . . , p

}
.

(2.15)

By the similar argument for Lemma 2.5.1, the dual problem attains an optimal

solution (y∗, µ∗, v∗) ∈ Rm × R`+ × B�(0, 1) along with λ∗ ≥ 0. The following lemma

establishes certain solution properties of the dual problem and a connection between a

primal solution and a dual solution, which is crucial to distributed algorithm development.

Particularly, it shows that the y-part of a dual solution is unique when C is a polyhedral

cone.

Lemma 2.5.3. Consider the BPDN (2.14), where ‖b‖2 > σ, 0 ∈ C, and its optimal value

is positive. Assume that the strong duality holds. The following hold:

(i) Let (y∗, µ∗, v∗) be a dual solution of (2.15). Then y∗ 6= 0, and for any solution x∗

of (2.14), Ax∗ − b = σy∗
‖y∗‖2 . Further, if C is a polyhedral cone (i.e., d = 0), then

‖Ex∗‖? = −bT y∗ − σ‖y∗‖2.

(ii) Suppose d = 0. Let (y∗, µ∗, v∗) and (y′∗, µ
′
∗, v
′
∗) be two arbitrary solutions of (2.15).

Then y∗ = y′∗.

Proof. (i) Consider the equivalent primal problem for (2.14): minx∈C, Ax=b=u, ‖u‖2≤σ ‖Ex‖?,

and let (x∗, u∗) be its optimal solution. For a dual solution (y∗, µ∗, v∗), we deduce that

y∗ 6= 0 since otherwise, we have −(bT y∗+σ‖y∗‖2+dTµ∗) ≤ 0, which contradicts its positive

optimal value by the strong duality.

Consider the Lagrangian

L(x, u, y, µ, v, λ) := (Ex)T v + yT (Ax− b− u) + λ(‖u‖22 − σ2) + µT (Cx− d).

48

By the strong duality, (x∗, u∗, y∗, µ∗, v∗, λ∗) is a saddle point of L such that

L(x∗, u∗, y, µ, v, λ) ≤ L(x∗, u∗, y∗, µ∗, v∗, λ∗),

∀ y ∈ Rm, µ ∈ R`+, v ∈ B�(0, 1), λ ∈ R+;

L(x∗, u∗, y∗, µ∗, v∗, λ∗) ≤ L(x, u, y∗, µ∗, v∗, λ∗), ∀ x ∈ RN , u ∈ Rm.

The former inequality implies that∇yL(x∗, u∗, y∗, µ∗, v∗, λ∗) = 0, yielding Ax∗−b−u∗ = 0,

and the latter shows that ∇uL(x∗, u∗, y∗, µ∗, v∗, λ∗) = 0, which gives rise to 2λ∗u∗ = y∗.

Since y∗ 6= 0, we have λ∗ > 0 which implies ‖u∗‖2 − σ = 0 by the complementarity

relation. It thus follows from 2λ∗u∗ = y∗ and ‖u∗‖2 = σ that λ∗ = ‖y∗‖2
2σ . This leads to

u∗ = y∗
2λ∗

= σy∗
‖y∗‖2 . Therefore, Ax∗ − b = u∗ = σy∗

‖y∗‖2 . Finally, when d = 0, we deduce via

the strong duality that ‖Ex∗‖? = −bT y∗ − σ‖y∗‖2.

(ii) Suppose d = 0. Let (y∗, µ∗, v∗) and (y′∗, µ
′
∗, v
′
∗) be two solutions of the dual

problem (2.15), where y∗ 6= 0 and y′∗ 6= 0. Then bT y∗ + σ‖y∗‖2 = bT y′∗ + σ‖y′∗‖2 =

−‖Ex∗‖? < 0. Therefore, ‖y∗‖2
(
bT y∗
‖y∗‖2 + σ

)
= ‖y′∗‖2

(
bT y′∗
‖y′∗‖2

+ σ
)
, and bT y∗

‖y∗‖2 + σ < 0.

It follows from Proposition 2.2.1 that for any solution x∗ of the primal problem (2.14),

Ax∗− b is constant. By the argument for Part (i), we have Ax∗− b = u∗ and Ax′∗− b = u′∗

such that u∗ = u′∗, and u∗ = σy∗
‖y∗‖2 and u′∗ = σy′∗

‖y′∗‖2
. Hence, y∗

‖y∗‖2 = y′∗
‖y′∗‖2

such that

bT y∗
‖y∗‖2 + σ = bT y′∗

‖y′∗‖2
+ σ < 0. In light of ‖y∗‖2

(
bT y∗
‖y∗‖2 + σ

)
= ‖y′∗‖2

(
bT y′∗
‖y′∗‖2

+ σ
)
, we

have ‖y∗‖2 = ‖y′∗‖2. Using y∗
‖y∗‖2 = y′∗

‖y′∗‖2
again, we obtain y∗ = y′∗.

Remark 2.5.1. The above dual problem formulations for a general polyhedral set C are

useful for distributed computation when ` � N , even if C ∈ R`×N is a dense matrix;

see Section 2.6. When both N and ` are large, e.g., C = RN+ , decoupling properties of C

are preferred. In particular, consider the following polyhedral set of certain decoupling

49

structure:

C := {x = (xIi)
p
i=1 ∈ RN |CIi xIi ≤ dIi , i = 1, . . . , p }, (2.16)

where CIi ∈ R`i×|Ii| and dIi ∈ R`i for each i = 1, . . . , p. Let ` :=
∑p

i=1 `i. Also, let

µ = (µIi)
p
i=1 with µIi ∈ R`i+ be the Lagrange multiplier for C. The dual problems in

(2.11), (2.13), and (2.15) can be easily extended to the above set C by replacing µTd with∑p
i=1 µ

T
IidIi and (AT y + ET v + CTµ)Ii with (AT y + ET v)Ii + CTIiµIi , respectively. For

example, the dual problem of the regularized problem (2.10) is:

(D) : min
y, µ≥0, ‖v‖�≤1

(
bT y +

p∑
i=1

µTIidIi +
1

2α

p∑
i=1

∥∥(AT y + ET v)Ii + CTIiµIi
∥∥2

2

)
.

Moreover, letting (y∗, µ∗, v∗) be a dual solution, the unique primal solution x∗ = (x∗Ii)
p
i=1

is given by x∗Ii = − 1
α

[(
AT y∗+E

T v∗
)
Ii

+CTIi(µ∗)Ii

]
,∀ i = 1, . . . , p. Further, Lemmas 2.5.2

and 2.5.3 also hold for a primal solution x∗ and a dual solution y∗.

• Reduced Dual Problems for Box Constraints Consider the box constraint set

C := [l1, u1]×· · ·× [lN , uN], where −∞ ≤ li < ui ≤ +∞ for each i = 1, . . . , N . We assume

0 ∈ C or equivalently li ≤ 0 ≤ ui for each i, which often holds for sparse signal recovery.

We may write C = {x ∈ RN | l ≤ x ≤ u}, where l := (l1, . . . , lN)T and u := (u1, . . . , uN)T .

The dual problems for such C can be reduced by removing the dual variable µ as shown

below.

For any given li ≤ 0 ≤ ui with li < ui for i = 1, . . . , N , define the function θi : R→ R

as

θi(t) := t2 − (t−Π[li,ui](t))
2 = t2 −

(
min(t− li, (ui − t)−)

)2
, ∀ t ∈ R. (2.17)

50

Hence, θi is C1 and convex [17, Theorem 1.5.5, Exercise 2.9.13], and θi is increasing on R+

and decreasing on R−, and its minimal value on R is zero. When C = RN , θi(s) = s2,∀ i;

when C = RN+ , θi(s) = (s+)2, ∀ i.

Define the index sets L∞ := {i | li = −∞, ui = +∞}, L+ := {i | li is finite, ui =

+∞}, L− := {i | li = −∞, ui is finite}, and Lb := {1, . . . , N} \ (L∞ ∪ L+ ∪ L−). Further,

define the polyhedral cone

K :=
{

(y, v) ∈ Rm×Rr | (AT y+ET v)L∞ = 0, (AT y+ET v)L+ ≥ 0, (AT y+ET v)L− ≤ 0
}
,

and the extended real valued convex PA function

g(y, v) :=
∑
i∈L+

(−li) ·
[
(AT y + ET v)i

]
+

+
∑
i∈L−

ui ·
[
(AT y + ET v)i

]
−

+
∑
i∈Lb

{
(−li) ·

[
(AT y + ET v)i

]
+

+ ui ·
[
(AT y + ET v)i

]
−

}
, ∀ (y, v) ∈ K,

and g(y, v) := +∞ for each (y, v) 6∈ K. Note that g(y, v) ≥ 0,∀ (y, v) ∈ K. When the box

constraint set C is a cone, then K = {(y, v) |AT y +ET v ∈ C∗} (where C∗ is the dual cone

of C), and the corresponding g(y, v) = 0 for all (y, v) ∈ K. Using these results, we obtain

the following reduced dual problems:

(i) The dual of the regularized BP-like problem (2.10):

min
y,‖v‖�≤1

bT y +
α

2

N∑
i=1

θi
(
− 1

α

(
AT y + ET v

)
i

)
.

(ii) The dual of the LASSO-like problem (2.12):

min
‖v‖�≤1, (y,v)∈K

(
bT y +

‖y‖22
2

+ g(y, v)
)
.

51

(iii) Under similar assumptions, the dual of the BPDN-like problem (2.14):

min
‖v‖�≤1, (y,v)∈K

(
bT y + σ‖y‖2 + g(y, v)

)
.

The dual problems developed in this subsection can be further reduced or simpli-

fied for specific norms or polyhedral constraints. This will be shown in the subsequent

subsections.

2.5.2 Applications to the `1-norm based Problems

Let ‖ · ‖? be the `1-norm; its dual norm is the `∞-norm. As before, C is a general

polyhedral set defined by Cx ≤ d unless otherwise stated.

•Reduced Dual Problem of the Regularized BP-like Problem Consider two cases

as follows:

Case (a): E = IN . The dual variable v in (2.11) can be removed using the soft

thresholding or shrinkage operator Sκ : R→ R with the parameter κ > 0 given by

Sκ(s) := arg min
t∈R

1

2
(t− s)2 + κ|t| =



s− κ, if s ≥ κ

0, if s ∈ [−κ, κ]

s+ κ, if s ≤ −κ

When κ = 1, we write Sκ(·) as S(·) for notational convenience. It is known that S2(·) is

convex and C1. Further, for a vector v = (v1, . . . , vk)
T ∈ Rk, we let

S(v) := (S(v1), . . . , S(vk))
T ∈ Rn. In view of min|t|≤1(t − s)2 = S2(s),∀ s ∈ R whose

52

optimal solution is given by t∗ = Π[−1,1](s), the dual problem (2.11) reduces to

(D) : min
y, µ≥0

(
bT y + µTd+

1

2α

p∑
i=1

‖S
(
− (AT y + CTµ)Ii

)
‖22
)
. (2.18)

Letting (y∗, µ∗) be an optimal solution of the above reduced dual problem, it can be

shown via the strong duality that for each Ii, (v∗)Ii = ψ
(
− (AT y∗ + CTµ∗)Ii

)
, where

ψ(v) := (Π[−1,1](v1), . . . ,Π[−1,1](vk)) for v ∈ Rk. Thus the unique primal solution x∗ is

given by: ∀ i = 1, . . . , p,

x∗Ii = − 1

α

[
(AT y∗+C

Tµ∗)Ii+ψ
(
−(AT y∗+C

Tµ∗)Ii
)]

= − 1

α
S
(

(AT y∗+C
Tµ∗)Ii

)
. (2.19)

When C is a box constraint set, the equivalent dual problem further reduces to

(D) : min
y∈Rm

[
bT y +

α

2

N∑
i=1

θi ◦
(
− 1

α
S
((
AT y

)
i

))]
. (2.20)

Letting y∗ be a dual solution, the unique primal solution x∗ is given by

x∗i = max

{
li, min

(
− 1

α
S
(
(AT y∗)i

)
, ui

)}
, ∀ i = 1, . . . , N.

Case (b): E =

IN
F

 for some matrix F ∈ Rk×N . Such an E appears in the `1

penalty of the fused LASSO. Let v = (v′, ṽ). Noting that ‖v‖∞ ≤ 1⇔ ‖v′‖∞ ≤ 1, ‖ṽ‖∞ ≤

1, and ET v = v′ + F T ṽ, we have

(D) : min
y, µ≥0, ‖ṽ‖∞≤1

(
bT y + µTd+

1

2α

p∑
i=1

∥∥S(− (AT y + F T ṽ + CTµ)Ii
)∥∥2

2

)
. (2.21)

53

Letting (y∗, µ∗, ṽ∗) be an optimal solution of the above reduced dual problem, it can be

shown via the similar argument for Case (a) that the unique primal solution x∗ is given

by

x∗Ii = − 1

α
S
(

(AT y∗ + F T ṽ∗ + CTµ∗)Ii

)
, ∀ i = 1, . . . , p. (2.22)

Similarly, when C is a box constraint set, the equivalent dual problem further reduces to

(D) : min
y∈Rm, ‖ṽ‖∞≤1

[
bT y +

α

2

N∑
i=1

θi ◦
(
− 1

α
S
((
AT y + F T ṽ

)
i

))]
,

and the primal solution x∗ is expressed in term of a dual solution (y∗, ṽ∗) as

x∗i = max

{
li, min

(
− 1

α
S
(
(AT y∗ + F T ṽ∗)i

)
, ui

)}
, ∀ i = 1, . . . , N.

•Reduced Dual Problem of the LASSO-like Problem Consider the following cases:

Case (a): E = λIN for a positive constant λ. The dual problem (2.13) reduces to

(D) : min
y, µ≥0

{‖y‖22
2

+ bT y + dTµ : ‖(AT y + CTµ)Ii‖∞ ≤ λ, i = 1, . . . , p
}
. (2.23)

Particularly, when C = RN , it further reduces to min‖AT y‖∞≤λ
‖y‖22

2 + bT y; when C = RN+ ,

in light of the fact that the inequality w + v ≥ 0 and ‖v‖∞ ≤ 1 is feasible for a given

vector w if and only if w ≥ −1, we see that the dual problem (2.13) further reduces to

minAT y≥−λ1
‖y‖22

2 + bT y.

54

Case (b): E =

λIN
F

 for some matrix F ∈ Rk×N and λ > 0. Such an E appears

in the `1 penalty of the fused LASSO. The dual problem (2.13) reduces to

(D) : miny, µ≥0, ‖ṽ‖∞≤1

{
‖y‖22

2 + bT y + dTµ : ‖(AT y + F T ṽ + CTµ)Ii‖∞ ≤ λ, i = 1, . . . , p
}
.

(2.24)

Particularly, when C = RN , it further reduces to min‖AT y+FT ṽ‖∞≤λ, ‖ṽ‖∞≤1
‖y‖22

2 + bT y.

• Reduced Dual Problem of the BPDN-like Problem Consider the following cases

under the similar assumptions given below (2.14) in Section 2.5.1:

Case (a): E = IN . The equivalent dual problem (2.15) becomes

(D) : min
y, µ≥0

{
bT y + σ‖y‖2 + dTµ : ‖(AT y + CTµ)Ii‖∞ ≤ 1, i = 1, . . . , p

}
. (2.25)

When C = RN , it further reduces to min‖AT y‖∞≤1 b
T y + σ‖y‖2; when C = RN+ , the dual

problem (2.13) further reduces to minAT y≥−1 b
T y + σ‖y‖2.

Case (b): E =

IN
F

 for some F ∈ Rk×N . The equivalent dual problem (2.15)

reduces to

(D) : miny, µ≥0, ‖ṽ‖∞≤1

{
bT y + σ‖y‖2 + dTµ : ‖(AT y + F T ṽ + CTµ)Ii‖∞ ≤ 1, i = 1, . . . , p

}
.

(2.26)

Particularly, when C = RN , it further reduces to min‖AT y+FT ṽ‖∞≤1, ‖ṽ‖∞≤1 b
T y + σ‖y‖2.

55

2.5.3 Applications to Problems Associated with the Norm from

Group LASSO

Consider the norm ‖x‖? :=
∑p

i=1 ‖xIi‖2 arising from the group LASSO, where its

dual norm ‖x‖� = maxi=1,...,p ‖xIi‖2.

• Reduced Dual Problem of the Regularized BP-like Problem We consider

E = IN as follows.

Case (a): C is a general polyhedral set defined by Cx ≤ d. Given a vector w, we

see that

min
‖v‖�≤1

p∑
i=1

∥∥(v − w)Ii
∥∥2

2
= min

(maxi=1,...,p ‖vIi‖2)≤1

p∑
i=1

∥∥(v − w)Ii
∥∥2

2
=

p∑
i=1

min
‖vIi‖2≤1

∥∥vIi − wIi∥∥2

2
.

Let S‖·‖2(z) :=
(
1 − 1

‖z‖2

)
+
z,∀z ∈ Rn denote the soft thresholding operator with respect

to the `2-norm, and let B2(0, 1) := {z | ‖z‖2 ≤ 1}. It is known that given w, z∗ :=

ΠB2(0,1)(w) = w−S‖·‖2(w) and ‖z∗−w‖22 = ‖S‖·‖2(w)‖22 = [(‖w‖2−1)+]2. Applying these

results to (2.11), we obtain the reduced dual problem

(D) : min
y, µ≥0

(
bT y + µTd+

1

2α

p∑
i=1

[(∥∥(AT y + CTµ)Ii
∥∥

2
− 1
)

+

]2)
. (2.27)

Letting (y∗, µ∗) be an optimal solution of the problem (D), the primal solution is given

by

x∗Ii = − 1

α
S‖·‖2

(
(AT y∗ + CTµ∗)Ii

)
, ∀ i = 1, . . . , p. (2.28)

The above results can be easily extended to the decoupled polyhedral constraint set given

by (2.16).

56

Case (b): C is a box constraint with 0 ∈ C. In this case, the dual variable µ can be

removed. In fact, it follows from the results at the end of Section 2.5.1 that the reduced

dual problem is

miny, (vIi)
p
i=1

∑p
i=1

[
bT y
p + α

2

∑
j∈Ii θj

(
− 1

α

(
(A•Ii)

T y + vIi
)
j

)]
, subject to ‖vIi‖2 ≤ 1, i = 1, . . . , p,

(2.29)

where the functions θj ’s are defined in (2.17). Given a dual solution (y∗, v∗), the pri-

mal solution x∗Ii = max
(
lIi ,min(− (A•Ii)

T y∗+(v∗)Ii
α ,uIi)

)
for i = 1, . . . , p. When the

box constraint set C is a cone, the above problem can be further reduced by removing

v. For example, when C = RN , the reduced dual problem becomes miny∈Rm
(
bT y +

1
2α

∑p
i=1

[(
‖(A•Ii)T y‖2 − 1

)
+

]2)
, and the primal solution x∗ is given in term of a dual

solution y∗ by x∗Ii = − 1
αS‖·‖2((A•Ii)

T y∗) for i = 1, . . . , p. When C = RN+ , the reduced

dual problem becomes: miny∈Rm
(
bT y+ 1

2α

∑p
i=1

[(
‖[(A•Ii)T y]−‖2− 1

)
+

]2)
. Given a dual

solution y∗, the unique primal solution x∗ is given by:

x∗Ii =
[
− 1

α
((A•Ii)

T y∗)+ +
1

α
S‖·‖2

(
((A•Ii)

T y∗)−
)]

+
, ∀ i = 1, . . . , p.

• Reduced Dual Problem of the LASSO-like Problem Let E = λIN for a positive

constant λ. For a general polyhedral constraint Cx ≤ d, the dual problem (2.13) reduces

to

(D) : min
y, µ≥0

{‖y‖22
2

+ bT y + dTµ : ‖(AT y + CTµ)Ii‖2 ≤ λ, i = 1, . . . , p
}
. (2.30)

When C = RN , the dual problem becomes miny
(
bT y +

‖y‖22
2

)
subject to ‖(A•Ii)T y‖2 ≤

λ, i = 1, . . . , p. When C = RN+ , the dual problem is miny
(
bT y +

‖y‖22
2

)
subject to ‖v‖� ≤

57

1, AT y + λv ≥ 0, which is equivalent to ‖vIi‖2 ≤ 1, (AT y)Ii + vIi ≥ 0 for all i = 1, . . . , p.

Note that for a given vector w ∈ Rk, the inequality system v +w ≥ 0, ‖v‖2 ≤ 1 is feasible

if and only if w ∈ B2(0, 1) + Rk+. Hence, when C = RN+ , the dual problem is given by

miny
(
bT y +

‖y‖22
2

)
subject to (AT y)Ii ∈ B2(0, λ) + R|Ii|+ for all i = 1, . . . , p.

• Reduced Dual Problem of the BPDN-like Problem Let E = IN . Suppose the

similar assumptions indicated in Section 2.5.1 hold. For a general polyhedral set C, the

dual problem (2.15) reduces to

(D) : min
y, µ≥0

{
bT y + σ‖y‖2 + dTµ : ‖(AT y + CTµ)Ii‖2 ≤ 1, i = 1, . . . , p

}
. (2.31)

When C = RN , the dual problem is miny
(
bT y + σ‖y‖2

)
subject to ‖(A•Ii)T y‖2 ≤ 1, i =

1, . . . , p. When C = RN+ , the dual problem is miny
(
bT y + σ‖y‖2

)
subject to (AT y)Ii ∈

B2(0, 1) + R|Ii|+ for all i = 1, . . . , p.

2.6 Development of Column Partition based Distributed Algorithms

In this section, we develop column partition based distributed schemes for the

LASSO-like problem (2.12) and the BPDN like problem (2.14), which include a board

class of convex sparse optimization problems as special cases. As a by-product, column

partition based distributed schemes are also developed for the regularized BP-like problem

(2.10).

Consider a network of p agents modeled by a graph G(V, E), where V = {1, . . . , p}

is the set of agents, and E denotes the set of edges, each of which connects two agents in

V. For each i ∈ V, Ni denotes the set of neighbors of agent i. The following assumptions

are made throughout this section:

58

A.1 The graph G(V, E) is undirected and connected;

A.2 The matrix A ∈ Rm×N attains a column partition {A•Ii}
p
i=1, where {I1, . . . , Ip}

is a disjoint union of {1, . . . , N}. Each agent i knows A•Ii , b, and possibly other

information but does not know A•Ij ’s with j 6= i.

The assumption A.2 is motivated by the fact that m � N and each agent has

limited memory in the large scale problems indicated in Section 2.1. We also consider a

general polyhedral set C given by (2.9) satisfying ` � N or having decoupling structure

given by (2.16), e.g., the box constraints.

2.6.1 Structure of Column Partition based Distributed Schemes

We first present a general structure of the proposed column partition based dis-

tributed schemes for the LASSO/BPDN-like problems. Recall that these problems are

densely coupled but not exactly regularized in general (cf. Section 2.4.1). However,

it follows from Proposition 2.2.2 that if Ax∗ is known, where x∗ is a minimizer of the

LASSO/BPDN-like problem, then an exact primal solution can be solved via the dual of

a regularized BP-like problem using column partition of A, under exact regularization. To

find Ax∗, it follows from Lemmas 2.5.2 and 2.5.3 that Ax∗ = b+y∗ (resp. Ax∗ = b+ σy∗
‖y∗‖2),

where y∗ is a dual solution to the LASSO (resp. BPDN)-like problem. Since the dual of the

LASSO/BPDN-like problem can be solved distributively using column partition of A, this

yields column partition based two-stage distributed schemes summarized in Algorithm 1.

See Section 2.3 for more illustration.

The dual problems used in each stage of Algorithm 1 have been derived in Sec-

tion 2.5. We will show that these dual problems can be formulated as separable or lo-

cally coupled convex optimization problems to which a wide range of existing distributed

59

schemes can be applied. For the purpose of illustration, we consider operator splitting

method based schemes including Douglas-Rachford (D-R) algorithm and its variations

[15], [26], consensus ADMM (C-ADMM) schemes [47], and inexact C-ADMM (IC-ADMM)

schemes [10]. Specific distributed schemes in each stage are given in the next subsections.

It should be pointed out that it is not our goal to improve the performance of the existing

schemes or seek the most efficient existing scheme but rather to demonstrate their appli-

cability to the obtained dual problems. In fact, many other synchronous or asynchronous

distributed schemes can be exploited under even weaker assumptions.

Algorithm 1 Two-stage Distributed Algorithm for LASSO/BPDN-like Problem: General
Structure

1: Initialization
2: Stage 1 Compute a dual solution y∗ to the LASSO-like problem (2.12) or BPDN-like

problem (2.14) using a column partition based distributed scheme;

3: Stage 2 Solve the dual of the following regularized BP-like problem for a sufficiently
small α > 0 using y∗ and a column partition based distributed scheme:

r-BPLASSO : min
Ax=b+y∗, x∈C

‖Ex‖? +
α

2
‖x‖22, (2.32)

or
r-BPBPDN : min

Ax=b+ σy∗
‖y∗‖2

, x∈C
‖Ex‖? +

α

2
‖x‖22, (2.33)

4: Output: obtain the subvector x∗Ii from a dual solution to (2.32) or (2.33) for each
i = 1, . . . , p

Remark 2.6.1. Before ending this subsection, we discuss a variation of the BP formula-

tion in the second stage for an important special case by exploiting solution properties of

(2.12) and (2.14). Consider E = λIN with λ > 0 and C is a polyhedral cone (i.e., d = 0),

and let y∗ be the unique dual solution to (2.12) or (2.14). For (2.12), by Lemma 2.5.2 and

E = λIN , we have Ax∗ = b+ y∗ and λ‖x∗‖1 = −yT∗ (b+ y∗) for any minimizer x∗ of (2.12),

noting that ‖x∗‖1 is constant on the solution set by Proposition 2.2.1. Suppose x∗ 6= 0 or

equivalently b + y∗ 6= 0. Then ‖x∗‖1 = − 1
λy

T
∗ (y∗ + b), and Ax∗

‖x∗‖1 = − λ(y∗+b)
yT∗ (y∗+b)

. Consider

60

the scaled regularized BP (or scaled r-BP) for α > 0:

min
z∈RN

‖z‖1 +
α

2
‖z‖22 s.t. Az = − λ(y∗ + b)

yT∗ (y∗ + b)
, z ∈ C. (2.34)

Once the unique minimizer z∗ of the above r-BP is obtained (satisfying ‖z∗‖1 = 1), the

least 2-norm minimizer x∗ of the LASSO-like problem is given by x∗ = − 1
λy

T
∗ (y∗ + b)z∗.

Similarly, for (2.14), by Lemma 2.5.3 and the assumption that the optimal value of (2.14)

is positive, we have −bT y∗−σ‖y∗‖2 > 0. Hence, x∗ can be solved from the following scaled

r-BP:

min
z∈RN

‖z‖1 +
α

2
‖z‖22 s.t. Az = −

b+ σy∗
‖y∗‖2

bT y∗ + σ‖y∗‖2
, x ∈ C. (2.35)

Once the unique minimizer z∗ is obtained (satisfying ‖z∗‖1 = 1), the least 2-norm mini-

mizer x∗ of the BPDN-like problem is given by x∗ = −(bT y∗ + σ‖y∗‖2)z∗.

The advantages of using the scaled r-BP (2.34) or (2.35) are two folds. First,

since ‖x∗‖1 may be small or near zero in some applications, a direct application of the

r-BPLASSO or r-BPBPDN using y∗ in Algorithm 1 may be sensitive to round-off errors.

Using the scaled r-BP (2.34) or (2.35) can avoid such a problem. Second, the suitable

value of α achieving exact regularization is often unknown. A simple rule for choosing

such an α is [38]: α ≤ 1
10‖x̂‖∞ , where x̂ 6= 0 is a sparse vector to be recovered. An estimate

of the upper bound of α is 1
10‖x̂‖1 in view of ‖x̂‖1 ≥ ‖x̂‖∞. When the scaled r-BP (2.34)

or (2.35) is used, we can simply choose α ≤ 1
10 as ‖z∗‖1 = 1.

61

2.6.2 Column Partition based Distributed Schemes for the Standard LASSO-

like Problem

Consider the standard LASSO-like problem, i.e., the LASSO-like problem (2.12)

with E = λIN for a constant λ > 0, ‖ · ‖? = ‖ · ‖1, and a general polyhedral set C given by

(2.9).

Stage One. We solve the dual problem (2.23), i.e.,

min
y,µ≥0

{‖y‖22
2

+ bT y + dTµ : ‖(AT y + CTµ)Ii‖∞ ≤ λ,∀i
}
.

Consider ` � N first. Let y := (y1, . . . ,yp) ∈ Rmp and µ := (µ1, . . . ,µp) ∈ R`p.

Define the consensus subspace Ay and the consensus cone Aµ:

Ay := {y |yi = yj , ∀ (i, j) ∈ E}, (2.36)

Aµ := {µ ≥ 0 |µi = µj , ∀ (i, j) ∈ E}. (2.37)

Hence, the dual problem (2.23) is equivalent to the consensus convex optimization prob-

lem:

min
(y,µ)∈Ay×Aµ

p∑
i=1

Ji(yi,µi), s.t. (yi,µi) ∈ Wi, ∀ i, (2.38)

where for each i = 1, . . . , p, the function

Ji(yi,µi) :=
1

p

(‖yi‖22
2

+ bTyi + dTµi

)
, (2.39)

and the set Wi := {(yi,µi) | ‖(A•Ii)Tyi + (C•Ii)
Tµi‖∞ ≤ λ}. To present distributed

schemes for (2.38), the following notation is used: let w := (y,µ) ∈ Rmp ×R`p and wi :=

62

(yi,µi) ∈ Rm×R` for each i. Let wk := (yk,µk) ∈ Rmp×R`p, zk = (zky, z
k
µ) ∈ Rmp×R`p,

wk
i = (yki ,µ

k
i) ∈ Rm × R`, and zki = ((zky)i, (z

k
µ)i) ∈ Rm × R` for each i = 1, . . . , p.

1.1) Distributed Averaging based Operator Splitting Scheme. Given y = (yi)
p
i=1, let

y := 1 ⊗ [1
p

∑p
i=1 yi] denote the averaging of y. Similarly, µ denotes the averaging of

µ = (µi)
p
i=1. Such averaging can be computed via a distributed averaging scheme, e.g.,

[90]. A distributed averaging based operator splitting scheme [15] is shown in Algorithm 2.

Algorithm 2 Distributed averaging based operator splitting scheme for solving (2.38)

1: Initialization with suitable constants η > 0 and % > 0
2: repeat
3: Compute w̃k+1 =

(
zky, (z

k
µ)+

)
via a distributed averaging scheme

4: zk+1
i = zki + %

[
ΠWi

(
2w̃k+1

i − zki − η∇Ji
(
(w̃k+1)i

))
− w̃k+1

i

]
for each i = 1, . . . , p

5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = (zky)i for each i.

1.2) Consensus-ADMM (C-ADMM) Scheme. A distributed consensus-ADMM

scheme is given in Algorithm 3.

Algorithm 3 Distributed C-ADMM scheme for solving (2.38)

1: Initialization with a suitable constant η > 0
2: repeat
3: pk+1

i = pki + η
∑

j∈Ni(w
k
i −wk

j) for i = 1, . . . , p

4: wk+1
i = arg minwi=(yi,µi)

Ji(wi) + wT
i pk+1

i + η
∑

j∈Ni

∥∥wi −
wk
i +wk

j

2

∥∥2

2
subject to

wi = (yi,µi) ∈ Wi, µi ≥ 0 for each i = 1, . . . , p
5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = yki for each i.

1.3) Local Averaging based Douglas-Rachford (D-R) Scheme. Recall wi = (yi,µi)

for each i. For each i = 1, . . . , p, define xi := (wi, (wij)j∈Ni) with wij denoting local copies

of wj ’s for agent i [26], the set AL
i := {xi |µi ≥ 0, wi = wij , ∀j ∈ Ni}, and Ĵi(xi) :=

63

Ji(wi)+δAL
i
(xi)+δWi(wi), where δ denotes the indicator function. Similarly, define ui :=

(w′i, (w
′
ij)j∈Ni) for each i. Given u = (ui)

p
i=1, we also define uLA

i = (w′
LA
i , (w′

LA
ij)j∈Ni),

where w′
LA
i = w′

LA
ji = 1

|Ni|+1

(
w′i +

∑
s∈Ni w

′
si) for all j ∈ Ni denotes the local averaging

[26]. This leads to Algorithm 4.

Algorithm 4 Local averaging based Douglas-Rachford (D-R) scheme for solving (2.38)

1: Initialization with suitable constants η ∈ (0, 1) and ρ > 0
2: repeat

3: xk+1
i = uk

LA

i ,∀ i = 1, . . . , p
4: uk+1

i = uki + 2η
(
prox

ρĴi
(2xk+1

i − uki)− xk+1
i

)
,∀ i

5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = (uk)i for each i.

Remark 2.6.2. The values of the parameters for convergence of the above schemes are

as follows: (i) 0 < η < 2
L and 0 < % < 2− Lη

2 for Algorithm 2, where L > 0 is the Lipschtiz

constant of
∑p

I=1∇Ji [15]; (ii) η > 0 for the C-ADMM scheme (Algorithm 3) [47]; and

(iii) η ∈ (0, 1) and ρ > 0 for the local averaging based D-R scheme (Algorithm 4). Similar

values can be found for the subsequent schemes.

We then consider the case where ` is large and C ∈ R`×N is given by (2.16), i.e.

C := {x = (xIi)
p
i=1 ∈ RN |CLiIi xIi ≤ dLi , ∀ i}. Recall that µ := (µLi)

p
i=1 ∈ R` with

µLi ∈ R`i . By Remark 2.5.1 and Section 2.5.2, the dual problem (2.23) is equivalent to

the consensus convex optimization problem:

min
(y,µ)∈Ay×R`+

p∑
i=1

Fi(yi, µLi), s.t. (yi, µLi) ∈ Ui, ∀ i, (2.40)

where, fore each i = 1, . . . , p, the function

Fi(yi, µLi) :=
1

p

(‖yi‖22
2

+ bTyi

)
+ dTLiµLi , (2.41)

64

and Ui := {(yi, µLi) | ‖(A•Ii)Tyi + (CLiIi)
TµLi‖∞ ≤ λ}.

1.4) Distributed Averaging based Operator Splitting Scheme for (2.40). Let w :=

(y, µ), wi := (yi, µLi), and z = (zy, zµ). The following operator splitting scheme can be

used for suitable constants η > 0 and % > 0 [15]:

ŵk+1 =
(
zky, (z

k
µ)+

)
ûk+1
i = ΠUi

(
2ŵk+1

i − zki − η∇Fi
(
(ŵk+1)i

))
, ∀ i

zk+1
i = zki + %

(
ûk+1
i − ŵk+1

i

)
, ∀ i = 1, . . . , p

(2.42a)

(2.42b)

(2.42c)

where in (2.42a), zky is computed via a distributed averaging scheme, and the projection

(zkµ)+ is easily implemented distributively. The output is a dual solution y∗ = (zky)i,∀ i.

1.5) C-ADMM Scheme for (2.40). To develop a distributed C-ADMM scheme,

it is easy to see that for any fixed yi, hi(y) := minµLi≥0
∑p

i=1 Fi(yi, µLi) subject to

(yi, µLi) ∈ Ui is a real-valued convex function. Thus the sub-gradient of hi always exists,

yielding Algorithm (2.43) for some η > 0.

qk+1
i = qki + η

∑
j∈Ni

(yki − ykj), ∀ i

(yk+1
i , µk+1

Li) = arg min
(yi,µLi)∈Ui, µLi≥0

Fi(yi, µLi) + yTi q
(k+1)
i

+ η
∑
j∈Ni

∥∥∥yi − yki + y
(k)
j

2

∥∥∥2

2
, ∀ i

(2.43a)

(2.43b)

The output is a dual solution y∗ = yki for each i.

Stage Two. The 2nd stage is defined by the regularized BP-like problem (2.10)

with the regularization parameter α > 0 and b replaced by b + y∗. Further, λ = 1 such

65

that E = IN . When ‖ · ‖? is the `1-norm, Corollary 2.4.2 shows that exact regularization

holds, i.e., the regularized problem attains a solution to the original BP-like problem for

all small α > 0.

Consider ` � N first. Using the consensus subspace Ay in (2.36) and the consen-

sus cone Aµ in (2.37), the reduced dual problem (2.18) becomes the consensus convex

optimization:

min
(y,µ)∈Ay×Aµ

p∑
i=1

Gi(yi,µi), (2.44)

where for each i = 1, . . . , p, the function

Gi(yi,µi) :=
1

p

(
bTyi + dTµi

)
+

1

2α

∥∥S(− (A•Ii)
Tyi − (C•Ii)

Tµi
)∥∥2

2
. (2.45)

The same notation introduced below (2.39) is used, e.g., w,wi,w
k,wk

i , z
k, zki for each

i = 1, . . . , p. Further, given y = (yi)
p
i=1 and µ = (µi)

p
i=1, let y and µ be the averaging of

y and µ, respectively.

2.1) Distributed Averaging based D-R Scheme. Algorithm 5 presents a distributed

averaging based D-R scheme.

Algorithm 5 Distributed averaging based D-R scheme for (2.44)

1: Initialization with suitable constants η ∈ (0, 1) and ρ > 0
2: repeat
3: Compute wk+1 =

(
zky, (z

k
µ)+

)
via a distributed averaging scheme

4: zk+1
i = zki + 2η

(
proxρGi

(
2wk+1

i − zki
)
−wk+1

i

)
, ∀ i

5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain (y∗, µ∗) = ((zky)i, (zkµ)+)i) for each i.

2.2) Distributed C-ADMM Scheme. A distributed C-ADMM scheme for solving

(2.44) is given below.

66

Algorithm 6 Distributed C-ADMM scheme for solving (2.44)

1: Initialization with a suitable constant η > 0
2: repeat
3: pk+1

i = pki + η
∑

j∈Ni(w
k
i −wk

j) for i = 1, . . . , p

4: wk+1
i = arg minwi=(yi,µi)

Gi(wi) + wT
i pk+1

i + η
∑

j∈Ni

∥∥wi −
wk
i +wk

j

2

∥∥2

2
s.t. µi ≥ 0

for each i
5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain(y∗, µ∗) = (wk)i for each i.

In Algorithms 5 and 6, once a dual solution (y∗, µ∗) is found, it follows from (2.19)

that the primal solution x∗ is given by x∗Ii = − 1
αS
(
(A•Ii)

T y∗+(C•Ii)
Tµ∗

)
for i = 1, . . . , p.

Remark 2.6.3. Since the function Gi(·) given by (2.45) involves the soft thresholding

operator S, it may be difficult to solve the subproblem in Line 4 of the above C-ADMM

scheme. In practice, we formulate this subproblem as: wk+1
i = (y∗i ,µ

∗
i), where wi =

(yi,µi) and (y∗i ,µ
∗
i , v
∗
Ii) = arg min(wi,vIi)

1
p

(
bTyi + dTµi

)
+ 1

2α

∥∥(A•Ii)
Tyi + (C•Ii)

Tµi +

vIi
∥∥2

2
+ wT

i pk+1
i + η

∑
j∈Ni

∥∥wi −
wk
i +wk

j

2

∥∥2

2
subject to µi ≥ 0 and ‖vIi‖∞ ≤ 1, for each

i. This new subproblem can be efficiently solved via a quadratic program. Besides, the

subproblem in Line 4 of Algorithm 5 can be solved in a similar way.

Remark 2.6.4. Another scheme for solving (2.44) is the distributed averaging based

operator splitting scheme [15]:

wk+1 =
(
zky, (z

k
µ)+),

zk+1
i = zki + %

[
wk+1
i − zki − η∇Gi

(
wk+1
i

)]
, ∀ i,

(2.46a)

(2.46b)

where (2.46a) is solved via distributed averaging, and ∇Gi is easy to compute. When C

is a box constraint with 0 ∈ C, the dual problem can be reduced to (2.20) depending on y

only, and a distributed scheme similar to (2.46) can be developed. A drawback of (2.46)

67

is that the Lipschitz constant of
∑

i∇Gi is given by (‖A‖2F + ‖C‖2F)/α, which is large for

a large N . This yields a small η > 0 and thus slow convergence. Nonetheless, the scheme

(2.46) can be used for a small or moderate N .

We then consider a large ` with C given by (2.16). It follows from Remark 2.5.1 and

Section 2.5.2 that the equivalent dual problem is given by: recalling that µ := (µLi)
p
i=1 ∈

R`,

min
(y,µ)∈Ay×R`+

p∑
i=1

F̃i(yi, µLi),

where F̃i(yi, µLi) := 1
2α

∥∥S(−(A•Ii)
Tyi−(CLiIi)

TµLi)
∥∥2

2
+ 1
p(bTyi)+dTLiµLi for i = 1, . . . , p.

Let w := (y, µ) and wi := (yi, µLi), and z = (zy, zµ). Distributed schemes similar to

Algorithms 5-6 can be developed by replacing Gi with F̃i.

2.6.3 Column Partition based Distributed Schemes for the Standard BDPN-

like Problem

Consider the standard BPDN-like problem, i.e., the BPDN-like problem (2.14) with

E = IN , ‖ · ‖? = ‖ · ‖1, and a polyhedral set C given by (2.9). Suppose the assumptions

given below (2.14) in Section 2.5.1 hold. Consider the dual problem (2.15). As shown in

Lemma 2.5.3, a dual solution y∗ 6= 0. Hence, the function ‖y‖2 is differentiable near y∗.

Stage One. Consider ` � N first. In light of (2.25), it is easy to verify that the

distributed Algorithms 2-4 can be applied by replacing the functions Ji in (2.39) with

Ĵi(yi,µi) :=
1

p

(
σ‖yi‖2 + bTyi + dTµi

)
, ∀ i = 1, . . . , p,

and setting λ = 1 in Wi. Moreover, an inexact C-ADMM scheme [10] can be applied; its

details are omitted. When ` is large and C is given by (2.16), letting µ := (µLi)
p
i=1 ∈ R`,

68

the schemes in (2.42)-(2.43) can be used by replacing Fi’s in (2.41) by F̂i(yi, µLi) :=

1
p

(
σ‖yi‖2 + bTyi

)
+ dTLiµLi and setting λ = 1 in Ui. When C = RN or C = RN+ , µ or µ

can be removed; see the discussions below (2.25).

Stage Two. The 2nd stage is defined by the regularized BP-like problem (2.10)

with the regularization parameter α > 0, b replaced by b+ σy∗
‖y∗‖2 , and E = IN . Hence, all

the results for the 2nd stage of the standard LASSO-like problem given in Section 2.6.2

apply.

2.6.4 Column Partition based Distributed Schemes for the Fused LASSO-like

and Fused BDPN-like Problems

Through this section, let ‖ · ‖? be the `1-norm, D1 ∈ R(N−1)×N be the first order

difference matrix, and we assume in addition that the graph G(V, E) satisfies (i, i + 1) ∈

E ,∀ i = 1, . . . , p − 1. Consider the fused LASSO-like problem first, i.e., the LASSO-like

problem (2.12) with E =

λIN
γD1

 for positive constants λ and γ and a general polyhedral

set C as before.

Stage One. Consider `� N first. To solve the dual problem (2.24) with F = γD1

and ṽ = (ṽ1, . . . , ṽN−1) ∈ RN−1, define ns :=
∑s

i=1 |Ii| for s = 1, . . . , p. Without loss

of generality, let I1 = {1, . . . , n1}, and Ii+1 = {ni + 1, . . . , ni + |Ii+1|} for each i =

1, . . . , p − 1. Define the index sets S1 := I1, Si := {ni−1} ∪ Ii for i = 2, . . . , p − 1, and

Sp := {np−1, . . . , N − 1}. Define ri := |Si| and vi := ṽSi for each i = 1, . . . , p. Thus for

i = 1, . . . , p− 1, vi and vi+1 overlap on one variable ṽni . Let v := (vi)
p
i=1 ∈ RN+p−2, and

the local coupling constraint ALC := {v ∈ RN+p−2 | (vi)ri = (vi+1)1, ∀ i = 1, . . . , p − 1}.

69

For each i = 1, . . . , p, define the function

Hi(yi,µi,vi) :=
1

p

(‖yi‖22
2

+ bTyi + dTµi

)
, (2.47)

and the set Vi := {(yi,µi,vi) | ‖vi‖∞ ≤ 1, ‖(A•Ii)Tyi + (C•Ii)
Tµi + γ[(D1)SiIi]

Tvi‖∞ ≤

λ }. The dual problem (2.24) is formulated as the locally coupled convex program:

min
(y,µ,v)∈Ay×Aµ×ALC

p∑
i=1

Hi(yi,µi,vi), (2.48)

subject to (yi,µi,vi) ∈ Vi, ∀ i = 1, . . . , p.

Let zk = (zky, z
k
µ, z

k
v) ∈ Rmp×R`p×RN+p−2, and η, ρ are suitable positive constants

depending on the Lipschitz constant of
∑p

i=1∇Hi; see [15, Thoerem 1] for details. For

any v = (vi)
p
i=1 ∈ RN+p−2 defined above, ṽ = (ṽi)

p
i=1 := ΠALC (v) is (ṽi)ri = (ṽi+1)1 =

1
2 [(vi)ri + (vi+1)1] for i = 1, . . . , p − 1, and for each i, (ṽi)j = (vi)j for the other indices

j. Clearly, this local averaging can be computed distributively. A distributed averaging

based operator splitting scheme is given in Algorithm 7. A local averaging based operating

splitting scheme can be developed in a similar way. These schemes can be extended to a

large ` with C given by (2.16) and be extended to the generalized total variation denoising

or `1-trend filtering with E = λD1 or E = λD2.

Algorithm 7 Distributed averaging based operator splitting scheme for solving (2.48)

1: Initialization with suitable constants η > 0 and % > 0
2: repeat

3: Compute ŵk+1 =
(
zky, (z

k
µ)+, z̃kv

)
, where zky and zkµ are solved via a distributed

averaging scheme, and z̃kv = ((z̃kv)i)
p
i=1 with (z̃kv)i computed distributively

4: zk+1
i = zki + %

[
ΠVi

(
2ŵk+1

i − zki − η∇Hi

(
ŵk+1
i

))
− ŵk+1

i

]
for each i = 1, . . . , p

5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = (zky)i for each i.

70

Stage Two. The 2nd stage is given by the regularized BP-like problem (2.10) with

the parameter α > 0, b replaced by b + y∗, and E =

 IN
γD1

 for a constant γ > 0 after

scaling. Consider a general polyhedral set C with `� N first.

We follow the same notation used in the first stage. Hence, the reduce dual problem

(2.21) can be formulated as the following locally coupled convex program:

min
(y,µ,v)∈Ay×Aµ×ALC

p∑
i=1

Pi(yi,µi,vi), (2.49)

where, for each i = 1, . . . , p, the function

Pi(yi,µi,vi) :=
1

p

(
bTyi + dTµi

)
+

1

2α

∥∥S(− (A•Ii)
Tyi − (C•Ii)

Tµi − γ[(D1)SiIi]
Tvi
)∥∥2

2
.

Let zk = (zky, z
k
µ, z

k
v) ∈ Rmp × R`p × RN+p−2, w := (y,µ,v) ∈ Rmp × R`p × RN+p−2 and

wi := (yi,µi,vi) ∈ Rm × R` × Rri for each i. This leads to Algorithm 8 below.

Algorithm 8 Distributed averaging based D-R scheme for (2.49)

1: Initialization with suitable constants η > 0 and ρ > 0
2: repeat

3: Compute ŵk+1 =
(
zky, (z

k
µ)+, z̃kv

)
, where zky and zkµ are solved via a distributed

averaging scheme, and z̃kv = ((z̃kv)i)
p
i=1 with (z̃kv)i computed distributively

4: zk+1
i = zki + 2η

(
proxρPi

(
2ŵk+1

i − zki
)
− ŵk+1

i

)
, ∀ i

5: k ← k + 1
6: until Stopping criterion is met

7: Output: obtain a dual solution (y∗, µ∗, ṽ∗) from
(
zky, (z

k
µ)+, z̃kv

)

Once a dual solution (y∗, µ∗, ṽ∗) is obtained from Algorithm 8, the primal solution

(x∗Ii)
p
i=1 is computed using (2.22). Moreover, to solve the subproblem in Line 4 of Al-

gorithm 8, we apply the similar technique given in Remark 2.6.3 to formulate it as a

quadratic program.

71

Another scheme for solving (2.49) is the distributed averaging based operator split-

ting scheme, which is suitable for a small or moderate N :

wk+1 =
(
zky, (z

k
µ)+, z̃kv

)
uk+1
i = ΠRi

(
2wk+1

i − zki − η∇Pi
(
wk+1
i

))
, ∀ i

zk+1
i = zki + %

(
uk+1
i −wk+1

i

)
, ∀ i = 1, . . . , p

(2.50a)

(2.50b)

(2.50c)

where for each i, the set Ri := Rm × R` × {vi | ‖vi‖∞ ≤ 1}.

Similar distributed schemes can be developed for the decoupled constraint given by

(2.16). Moreover, they can be extended to the generalized total variation denoising and

`1-trend filtering where E = λD1 or E = λD2 with λ > 0.

Remark 2.6.5. Consider the fused BPDN-like problem, i.e., the BPDN-like problem

(2.14) with E =

 IN
γD1

 for a constant γ > 0. Suppose the assumptions given below

(2.14) in Section 2.5.1 hold. In the first stage, to solve the dual problem (2.26) with

F = γD1 and ` � N , define the function Ĥi(yi,µi,vi) :=
(
σ‖yi‖2 + bTyi + dTµi)/p.

Then Algorithm 7 can be applied by replacing Hi with Ĥi. Similar results can be made

for a large ` with C given by (2.16). The second stage is almost identical to that of the

fused LASSO-like problem, except that b+ y∗ is replaced by b+ σy∗
‖y∗‖2 .

2.6.5 LASSO-like, BPDN-like, and Regularized BP-like Problems with the

Norm from the Group LASSO

Consider ‖x‖? :=
∑p

i=1 ‖xIi‖2 from the group LASSO (2.3); its dual norm ‖x‖� =

maxi=1,...,p ‖xIi‖2. Many preceding results for the `1-norm can be extended to this case.

72

For illustration, consider the standard LASSO-like problem with E = λIN for λ > 0

and a small `. In the first stage, by virtue of the dual problem (2.30), Algorithms 2-4 can be

used by replacing the setWi with the set Ŵi := {(yi,µi) | ‖(A•Ii)Tyi+ (C•Ii)
Tµi‖2 ≤ λ},

which has nonempty interior. When ` is large and C ∈ R`×N is given by (2.16), the

schemes in (2.42) and (2.43) can be used after the same replacement. In the second stage,

we assume that exact regularization holds (cf. Section 2.4.2). When E = IN and C

is a general polyhedral set, the reduced dual problem (2.27) is formulated as the con-

vex consensus optimization problem: min(y,µ)∈Ay×Aµ
∑p

i=1 Ji(yi,µi), where Ji(yi,µi) :=

(bTyi + dTµi)/p+ 1
2α

[(∥∥(A•Ii)
Tyi + (C•Ii)

Tµi
∥∥

2
− 1
)

+

]2
for i = 1, . . . , p, and Ay,Aµ are

defined in (2.36)-(2.37). Thus a distributed scheme similar to (2.46) can be applied.

In the second stage, when C is a box constraint set, consider the reduced dual prob-

lem (2.29). By introducing p copies of y’s given by yi and imposing the consensus condition

on yi’s, this problem can be converted to a convex program of the variable (yi, vIi)
p
i=1

with a separable objective function and separable constraint sets with nonempty interiors.

By Slater’s condition, the D-R scheme or operator splitting schemes similar to the scheme

(2.46) can be developed. If, in addition, C is a cone, the dual problems can be further

reduced to unconstrained problems of the variable y only, e.g., those for C = RN and

C = RN+ given in Case (b) of Section 2.5.3. These problems can be formulated as consen-

sus convex programs and solved by column partition based distributed schemes. Finally,

the primal solution x∗Ii can be computed distributively using a dual solution y∗ and the

operator S‖·‖2 (cf. Section 2.5.3).

The above results can be easily extended to the standard BPDN-like and fused

LASSO/BPDN-like problems; these details are omitted.

73

2.7 Overall Convergence of the Two-stage Distributed Algorithms

In this section, we analyze the overall convergence of the two-stage distributed

algorithms proposed in Section 2.6, assuming that a distributed algorithm in each stage is

convergent. To motivate the overall convergence analysis, it is noted that an algorithm of

the first-stage generates an approximate solution yk to the solution y∗ of the dual problem,

and this raises the question of whether using this approximate solution in the second stage

leads to significant discrepancy when solving the second-stage problem (2.32) or (2.33).

Inspired by this question and its implication to the overall convergence of the two-stage

algorithms, we establishes the continuity of the solution of the regularized BP-like problem

(2.10) in b, which is closely related to sensitivity analysis of the problem (2.10). We first

present some technical preliminaries.

Lemma 2.7.1. Let ‖ · ‖? be a norm on Rn and ‖ · ‖� be its dual norm. Then for any

x ∈ Rn, ‖v‖� ≤ 1 for any v ∈ ∂‖x‖?.

Proof. Fix x ∈ Rn, and let v ∈ ∂‖x‖?. Hence, ‖y‖? ≥ ‖x‖? + 〈v, y − x〉 for all y ∈ Rn.

Since ‖y − x‖? ≥
∣∣‖y‖? − ‖x‖?∣∣ ≥ 〈v, y − x〉, we have 〈v, y−x

‖y−x‖? 〉 ≤ 1 for any y 6= x. This

shows that ‖v‖� ≤ 1.

Another result we will use is concerned with the Lipschitz property of the linear

complementarity problem (LCP) under certain singleton property. Specifically, consider

the LCP (q,M): 0 ≤ u ⊥Mu+ q ≥ 0 for a given matrix M ∈ Rn×n and a vector q ∈ Rn.

Let SOL(q,M) denote its solution set. The following theorem is an extension of a well-

known fact in the LCP and variational inequality theory, e.g., [17, Propositioin 4.2.2], [23,

Theorem 10], and [69].

74

Theorem 2.7.1. Consider the LCP (q,M). Suppose a matrix E ∈ Rp×n and a set

W ⊆ Rn are such that for any q ∈ W, SOL(q,M) is nonempty and ESOL(q,M) is

singleton. The following hold:

(i) ESOL(·,M) is locally Lipschitz at each q ∈ W, i.e., there exist a constant Lq > 0

and a neighborhood N of q such that ‖ESOL(q′,M) − ESOL(q,M)‖ ≤ Lq‖q′ − q‖

for any q′ ∈ N ∩W;

(ii) If W is a convex set, then ESOL(·,M) is (globally) Lipschitz continuous on W, i.e.,

there exists a constant L > 0 such that ‖ESOL(q,M)− ESOL(q′,M)‖ ≤ L‖q − q′‖

for all q′, q ∈ W.

We apply the above results to the regularized BP-like problem subject to a generic

polyhedral constraint, in addition to the linear equality constraint, i.e.,

min
x∈C, Ax=b

‖Ex‖? +
α

2
‖x‖22, (2.51)

where α is a positive constant, E ∈ Rr×N , A ∈ Rm×N , the polyhedral set C := {x ∈

RN |Cx ≤ d} for some C ∈ R`×N and d ∈ R`, and b ∈ Rm with b ∈ AC := {Ax |x ∈ C}.

We shall show that its unique optimal solution is continuous in b, where we assume that

A 6= 0 without loss of generality. To achieve this goal, consider the necessary and sufficient

optimality condition for the unique solution x∗ of (2.51), namely, there exist (possibly non-

unique) multipliers λ ∈ Rm and µ ∈ R`+ such that

0 ∈ ET∂‖Ex∗‖? + αx∗ +ATλ+ CTµ, Ax∗ = b, 0 ≤ µ ⊥ Cx∗ − d ≤ 0. (2.52)

75

When we need to emphasize the dependence of x∗ on b, we write it as x∗(b) in the following

development. For a given b ∈ AC and its corresponding unique minimizer x∗ of (2.51),

define the set

S(x∗) :=
{

(w, λ, µ)
∣∣ w ∈ ∂‖Ex∗‖?, ETw+αx∗+A

Tλ+CTµ = 0, 0 ≤ µ ⊥ Cx∗−d ≤ 0
}
.

This set contains all the sub-gradients w and the multipliers λ, µ satisfying the optimality

condition at x∗, and it is often unbounded due to possible unboundeness of λ and µ (noting

that by Lemma 2.7.1, w’s are bounded). To overcome this difficulty in continuity analysis,

we present the following proposition.

Proposition 2.7.1. The following hold for the minimization problem (2.51):

(i) Let B be a bounded set in Rm. Then {x∗(b) | b ∈ AC ∩ B} is a bounded set;

(ii) Let (bk) be a convergent sequence in AC∩B. Then there exist a constant γ > 0 and an

index subsequence (ks) such that for each ks, there exists (wks , λks , µks) ∈ S(x∗(b
ks))

satisfying ‖(λks , µks)‖ ≤ γ.

Proof. (i) Suppose {x∗(b) | b ∈ AC ∩ B} is unbounded. Then there exists a sequence

(bk) in AC ∩ B such that the sequence
(
x∗(b

k)
)

satisfies ‖x∗(bk)‖ → ∞. For notational

simplicity, we let xk∗ := x∗(b
k) for each k. Without loss of generality, we assume that(xk∗

‖xk∗‖
)

converges to v∗ 6= 0. In view of A xk∗
‖xk∗‖

= bk

‖xk∗‖
, C xk∗

‖xk∗‖
≤ d
‖xk∗‖

, and the fact that

(bk) is bounded, we have Av∗ = 0 and Cv∗ ≤ 0. Further, for each k, there exist λk ∈ Rm

and µk ∈ R`+ and wk ∈ ∂‖Exk∗‖? such that ETwk + αxk∗ + ATλk + CTµk = 0, Axk∗ = bk,

and 0 ≤ µk ⊥ Cxk∗ − d ≤ 0 for each k. We claim that (Cv∗)
Tµk = 0 for all large k.

To prove this claim, we note that, by virtue of Cv∗ ≤ 0, that for each index i, either

(Cv∗)i = 0 or (Cv∗)i < 0. For the latter, it follows from
(
C xk∗
‖xk∗‖
− d
‖xk∗‖

)
i
→ (Cv∗)i that

76

(Cxk∗−d)i < 0 for all large k. Hence, we deduce from the optimality condition (2.52) that

µki = 0 for all large k. This shows that (Cv∗)i ·µki = 0,∀ i for all large k. Hence, the claim

holds. In view of this claim and Av∗ = 0, we see that left multiplying vT∗ to the equation

ETwk + αxk∗ + ATλk + CTµk = 0 leads to (Ev∗)
Twk + α(v∗)

Txk∗ = 0, or equivalently

(Ev∗)
T wk

‖x∗k‖
+ α(v∗)

T xk∗
‖xk∗‖

= 0, for all large k. Since (wk) is bounded by Lemma 2.7.1, we

have, by taking the limit, that α‖v∗‖22 = 0, leading to v∗ = 0, a contradiction. Hence,

{x∗(b) | b ∈ AC ∩ B} is bounded.

(ii) Given a convergent sequence (bk) in AC, we use xk∗ := x∗(b
k) for each k again.

Consider a sequence
(
(wk, λk, µk)

)
, where (wk, λk, µk) ∈ S(xk∗) is arbitrary for each k. In

view of the boundedness of (xk∗) proven in (i) and Lemma 2.7.1, we assume by taking a

suitable subsequence that (wk, xk∗)→ (ŵ, x̂). Let the index set Îµ := {i | (CT x̂− d)i < 0}.

If there exists an index i 6∈ Îµ such that (µki) has a zero subsequence (µk
′
i), then let

Î ′µ := Îµ ∪ {i}. We then consider the subsequence (µk
′
). If there exists an index j /∈ Î ′µ

such that (µk
′
j) has a zero subsequence (µk

′′
j), then let Î ′′µ := Î ′µ ∪ {j} and consider the

subsequence (µk
′′
). Continuing this process in finite steps, we obtain an index subsequence

(ks) and an index set Iµ such that (CTxks∗ − d)Iµ < 0 and µksIcµ > 0 for all ks’s, where

Icµ := {1, . . . , N} \ Iµ. By the complementarity condition in (2.52), we have µksIµ = 0 and

µksIcµ > 0 for each ks.

Since A 6= 0, there exits an index subset J ⊆ {1, . . . ,m} such that the columns of

(AT)•J (or equivalently (AJ•)
T) form a basis for R(AT). Hence, for each λks , there exists a

unique vector λ̃ks such that ATλks = (AJ•)
T λ̃ks . In view of the equations ETwks +αxks∗ +

(AJ•)
T λ̃ks + CTµks = 0 and AJ•x

ks
∗ = bksJ , we obtain via a straightforward computation

77

that

λ̃ks = −
(
AJ•(AJ•)

T
)−1
[
αbksJ +AJ•(E

Twks + CTµks)
]
,

xks∗ = (AJ•)
T
(
AJ•(AJ•)

T
)−1

bksJ

+
1

α

[
(AJ•)

T
(
AJ•(AJ•)

T
)−1

AJ• − I
](
ETwks + CTµks

)
, (2.53)

where CTµks = (CIcµ•)
TµksIc for each ks in view of µksIcµ > 0 and µksIµ = 0. Substituting xks∗

into the complementarity condition 0 ≤ µks ⊥ d− Cxks∗ ≥ 0, we deduce that µksIcµ satisfies

the following conditions:

0 ≤ µksIcµ ⊥ dIcµ − CIcµ•x
ks
∗ ≥ 0, CIµ•x

ks
∗ − dIµ = H µksIcµ + hks ≤ 0,

where dIcµ − CIcµ•x
ks
∗ = GµksIcµ + gks , and the matrices G,H and the vectors gks , hks are

given by

G :=
1

α
CIcµ•

[
I − (AJ•)

T
(
AJ•(AJ•)

T
)−1

AJ•

]
(CIcµ•)

T ,

gks :=
1

α
CIcµ•

[
I − (AJ•)

T
(
AJ•(AJ•)

T
)−1

AJ•

]
ETwks

−CIcµ•(AJ•)
T
(
AJ•(AJ•)

T
)−1

bksJ + dIcµ ,

H :=
1

α
CIµ•

[
I − (AJ•)

T
(
AJ•(AJ•)

T
)−1

AJ•

]
(CIcµ•)

T ,

hks :=
1

α
CIµ•

[
I − (AJ•)

T
(
AJ•(AJ•)

T
)−1

AJ•

]
ETwks

−CIµ•(AJ•)T
(
AJ•(AJ•)

T
)−1

bksJ + dIµ .

Since µksIcµ > 0, we must have GµksIcµ + gks = 0. For the matrices G,H and given vectors

g, h, define the polyhedral set K(G,H, g, h) := {z | z ≥ 0, Gz + g = 0, Hz + h ≤ 0} =

78

{z |Dz+v ≥ 0}, where D :=



I

G

−G

−H


and v :=



0

g

−g

−h


. Hence, for each ks, K(G,H, gks , hks)

contains the vector µksIcµ > 0 and thus is nonempty. We write v as vks when (g, h) =

(gks , hks). Let z̃ks be the least 2-norm point of K(G,H, gks , hks), i.e., z̃ks is the unique

solution to min 1
2‖z‖

2
2 subject to Dz+ vks ≥ 0. Since its underlying optimization problem

has a (feasible) polyhedral constraint, its necessary and sufficient optimality condition is:

z̃ks − DT ν = 0, 0 ≤ ν ⊥ Dz̃ks + vks ≥ 0 for some (possibly non-unique) multiplier ν.

Let SOL(vks , DDT) be the solution set of the LCP: 0 ≤ ν ⊥ vks + DDT ν ≥ 0. By the

uniqueness of z̃ks , z̃ks = DTSOL(vks , DDT) such that DTSOL(vks , DDT) is singleton.

Since gks and hks are affine functions of (wks , bks) and the sequences (wks) and

(bks) are convergent, (vks) is convergent and we let v∗ be its limit. We show as fol-

lows that the polyhedral set {z |Dz + v∗ ≥ 0} is nonempty. Suppose not. Then it

follows from a version of Farkas’ lemma [13, Theorem 2.7.8] that there exists w ≥ 0 such

that DTw = 0 and wT v∗ < 0. Since (vks) → v∗, we see that wT vks < 0 for all large

ks. By [13, Theorem 2.7.8] again, we deduce that Dz + vks ≥ 0 has no solution z for

all large ks, yielding a contradiction. This shows that {z |Dz + v∗ ≥ 0} is nonempty.

Thus SOL(v∗, DTD) is nonempty and DTSOL(v∗, DDT) is singleton. Define the function

R(v) := DTSOL(v,DDT). By Theorem 2.7.1, R(·) is locally Lipschitz continuous at v∗,

i.e., there exist a constant L∗ > 0 and a neighborhood V of v∗ such that for any v ∈ V

satisfying that {z |Dz + v ≥ 0} is nonempty, ‖R(v) − R(v∗)‖ ≤ L∗‖v − v∗‖. This, along

with the convergence of (vks) to v∗, show that {z̃ks | z̃ks = R(vks),∀ ks} is bounded. For

each ks, let µ̂ks := (µ̂ksIµ , µ̂
ks
Icµ) = (0, z̃ks). Hence, (µ̂ks) is a bounded sequence. Further, let

79

λ̃ks := −
(
AJ•(AJ•)

T
)−1[

αbksJ +AJ•(E
Twks +CT µ̂ks)

]
, and λ̂ks :=

(
λ̂ksJ , λ̂

ks
J c
)

= (λ̃ks , 0).

This implies that (λ̃ks), and thus (λ̂ks), is bounded. Hence,
(
(λ̂ks , µ̂ks)

)
is a bounded

sequence, i.e., there exists γ > 0 such that ‖(λ̂ks , µ̂ks)‖ ≤ γ for all ks.

Lastly, we show that (wks , λ̂ks , µ̂ks) ∈ S(xks∗) for each ks. In view of (2.53), define

x̂ks := (AJ•)
T
(
AJ•(AJ•)

T
)−1

bksJ +
1

α

[
(AJ•)

T
(
AJ•(AJ•)

T
)−1

AJ•−I
](
ETwks+CT µ̂ks

)
.

Therefore, AJ•x̂
ks = bksJ for each ks. Since the columns of (AJ•)

T form a basis for R(AT)

and bks ∈ AP, we have Ax̂ks = bks . Moreover, based on the constructions of λ̂ks and µ̂ks ,

it is easy to show that ETwks +αx̂ks +AT λ̂ks +CT µ̂ks = 0, (Cx̂ks−d)Iµ = Hz̃ks +hks ≤ 0,

and (Cx̂ks − d)Icµ = Gz̃ks + gks = 0 for each ks. In light of µ̂ks = (µ̂ksIµ , µ̂
ks
Icµ) = (0, z̃ks) ≥ 0,

we have 0 ≤ µ̂ks ⊥ Cx̂ks − d ≤ 0 for each ks. This implies that (wks , λ̂ks , µ̂ks) ∈ S(x̂ks)

for each ks. Since the optimization problem (2.51) has a unique solution for each bks , we

must have x̂ks = xks∗ . This shows that (wks , λ̂ks , µ̂ks) ∈ S(xks∗) for each ks.

With the help of Proposition 2.7.1, we are ready to show the desired continuity.

Theorem 2.7.2. Let α > 0, E ∈ Rr×N A ∈ Rm×N , C := {x ∈ RN |Cx ≤ d} for some

C ∈ R`×N and d ∈ R`, and b ∈ Rm with b ∈ AC := {Ax |x ∈ C}. Then the unique solution

x∗ of the minimization problem (2.51) is continuous in b on AC.

Proof. Fix an arbitrary b ∈ AC. Suppose x∗(·) is discontinuous at this b. Then there exist

ε0 > 0 and a sequence (bk) in AC such that (bk) converges to b but ‖xk∗ − x∗(b)‖ ≥ ε0

for all k, where xk∗ := x∗(b
k). By Statement (i) of Proposition 2.7.1, (xk∗) is bounded and

hence attains a convergent subsequence which, without loss of generality, can be itself.

Let the limit of (xk∗) be x̂. Further, as shown in Statement (ii) of Proposition 2.7.1, there

exists a bounded subsequence
(
(wks , λks , µks)

)
such that (wks , λks , µks) ∈ S(xks∗) for each

80

ks. Without loss of generality, we assume that
(
(wks , λks , µks)

)
converges to (ŵ, λ̂, µ̂).

Since (Exks∗) → Ex̂ and (wks) → ŵ with wks ∈ ∂‖Exks∗ ‖? for each ks, it follows from [6,

Proposition B.24(c)] that ŵ ∈ ∂‖Ex̂‖?. By taking the limit, we deduce that (x̂, ŵ, λ̂, µ̂)

satisfies ET ŵ+αx̂+AT λ̂+CT µ̂ = 0, Ax̂ = b, and 0 ≤ µ̂ ⊥ Cx̂−d ≤ 0, i.e., (ŵ, λ̂, µ̂) ∈ S(x̂).

This shows that x̂ is a solution to (2.51) for the given b. Since this solution is unique, we

must have x̂ = x∗(b). Hence, (xks∗) converges to x∗(b), a contradiction to ‖xks∗ −x∗(b)‖ ≥ ε0

for all ks. This yields the continuity of x∗ in b on AC.

When the norm ‖ · ‖? in the objective function of the optimization problem (2.51) is

given by the `1-norm or a convex PA function in general, the continuity property shown in

Theorem 2.7.2 can be enhanced. Particularly, the following result establishes the Lipschitz

continuity of x∗ in b, which is useful in deriving the overall convergence rate of the two-

stage distributed algorithm.

Theorem 2.7.3. Let f : Rn → R be a convex piecewise affine function, A ∈ Rm×N ,

C := {x ∈ RN |Cx ≤ d} for some C ∈ R`×N and d ∈ R`, and b ∈ Rm with b ∈ AC :=

{Ax |x ∈ C}. Then for any α > 0, minx∈C f(x) + α
2 ‖x‖

2
2 subject to Ax = b has a unique

minimizer x∗. Further, x∗ is Lipschitz continuous in b on AC, i.e., there exists a constant

L > 0 such that ‖x∗(b′)− x∗(b)‖ ≤ L‖b′ − b‖ for any b, b′ ∈ AC.

Proof. We first show the solution existence and uniqueness. Consider a real-valued convex

PA function f(x) = maxi=1,...,r

(
pTi x + γi

)
for a finite family of (pi, γi) ∈ RN × R, i =

1, . . . , r. Note that for any given α > 0 and any nonzero x,

f(x) +
α

2
‖x‖22 = ‖x‖22 ·

[
α

2
+ max
i=1,...,r

(
pTi

x

‖x‖22
+

γi
‖x‖22

)]
.

81

Hence, f(x) + α
2 ‖x‖

2
2 is coercive. Since it is continuous and strictly convex and the con-

straint set is closed and convex, the underlying optimization problem attains a unique

minimizer.

To prove the Lipschitz property of the unique minimizer x∗ in b, we consider the

following equivalent form of the underlying optimization problem:

mint+,t−,x t+ − t− + α
2 ‖x‖

2
2 subject to t+ ≥ 0, t− ≥ 0, Ax = b, Cx ≤ d, pTi x+ γi ≤ t+ − t−, i = 1, . . . , r.

(2.54)

Define the matrix W :=


pT1

...

pTr

 ∈ Rr×N and the vector Γ :=


γ1

...

γr

 ∈ Rr. Then the

constraints can be written as t+ ≥ 0, t− ≥ 0, Ax = b, Cx ≤ d, and Wx+Γ−t+1+t−1 ≤ 0,

where 1 denotes the vector of ones. Given b ∈ AC, the necessary and sufficient optimality

conditions for the minimizer x∗ are described by a mixed linear complementarity problem,

i.e., there exist Lagrange multipliers λ ∈ Rm, µ ∈ R`+, ν ∈ Rr+, θ+ ∈ R+ and θ− ∈ R+ such

that

αx∗ +ATλ+ CTµ+W T ν = 0, Ax∗ = b,

1− 1T ν − θ+ = 0, − 1 + 1T ν − θ− = 0,

0 ≤ µ ⊥ Cx∗ − d ≤ 0, 0 ≤ ν ⊥Wx∗ + Γ− t+1 + t−1 ≤ 0,

0 ≤ θ+ ⊥ t+ ≥ 0, 0 ≤ θ− ⊥ t− ≥ 0.

Note that the first and second equations are equivalent to the first equation and αb +

AATλ+ ACTµ+ AW T ν = 0. Further, it is noticed that θ+ = θ− = 0, and λ = λ+ − λ−

with 0 ≤ λ+ ⊥ λ− ≥ 0. Hence, by adding two slack variables ϑ and ϕ, the above mixed

82

linear complementarity problem is equivalent to

x∗ = − 1

α

(
ATλ+ −ATλ− + CTµ+W T ν

)
,

0 ≤ µ ⊥ −C
α

(
ATλ+ −ATλ− + CTµ+W T ν

)
− d ≤ 0,

0 ≤ ν ⊥ −W
α

(
ATλ+ −ATλ− + CTµ+W T ν

)
+ Γ− t+1 + t−1 ≤ 0,

0 ≤ t+ ⊥ 1− 1T ν ≥ 0,

0 ≤ t− ⊥ −1 + 1T ν ≥ 0,

0 ≤ λ+ ⊥ λ− ≥ 0,

0 ≤ ϑ ⊥ αb+AAT (λ+ − λ−) +ACTµ+AW T ν ≥ 0,

0 ≤ ϕ ⊥ αb+AAT (λ+ − λ−) +ACTµ+AW T ν ≤ 0.

The latter seven complementarity conditions in the above formulation yield the following

linear complementarity problem (LCP): 0 ≤ u ⊥Mu+ q ≥ 0, where

u = (µ, ν, t+, t−, λ+, λ−, ϑ, ϕ) ∈ R`+ × Rr+ × R+ × R+ × Rm+ × Rm+ × Rm+ × Rm+ , M is

a constant matrix of order (` + r + 4m + 2) that depends on A,C,W,α only, and the

vector q = (d,−Γ, 1, 1, 0, 0, αb,−αb) ∈ R` × Rr × R× R× Rm × Rm × Rm × Rm. Denote

this LCP by LCP(q,M). For any given b ∈ AC, LCP(q,M) attains a solution u which

pertains to the Lagrange multipliers λ, µ, ν, t+, t− and the slack variables ϑ and ϕ. This

shows that for any given b ∈ AC, LCP(q,M) has a nonempty solution set SOL(q,M).

Further, for any ũ = (µ̃, ν̃, t̃+, t̃−, λ̃+, λ̃−, ϑ̃, ϕ̃) ∈ SOL(q,M), if follows from the last two

complementarity conditions that x̃ := − 1
α

(
AT λ̃+−AT λ̃−+CT µ̃+W T ν̃

)
satisfies Ax̃ = b.

Besides, λ̃ := λ̃+ − λ̃−, µ̃, ν̃, and θ̃+ = θ̃− = 0 satisfy the optimality conditions of the

underlying optimization problem (2.54) at (t̃+, t̃−, x̃) for the given b ∈ AC. Define the

83

matrix

E := − 1

α

[
CT W T 0 0 AT −AT 0 0

]
∈ RN×(`+r+4m+2).

It follows from the solution uniqueness of the underlying optimization problem (2.54) that

for any b ∈ AC, ESOL(q,M) is singleton. Define the function F (q) := ESOL(q,M).

Hence, F (·) is singleton on the closed convex setW := {q = (d,−Γ, 1, 1, 0, 0, αb,−αb) | b ∈

AC} and x∗(b) = F (q). By Theorem 2.7.1, F is Lipscthiz on S, i.e., there exists L > 0

such that ‖F (q′)− F (q)‖2 ≤ L‖q′ − q‖2 for all q′, q ∈ W. Since ‖q′ − q‖2 =
√

2α‖b′ − b‖2

for any b′, b ∈ AC, the desired (global) Lipschitz property of x∗ in b holds.

For a general polyhedral set C, it follows from Lemmas 2.5.2 and 2.5.3 that y∗+ b ∈

AC (respectively σy∗
‖y∗‖2 + b ∈ AC), where y∗ is a solution to the dual problem (2.13) (re-

spectively (2.15)). Practically, y∗ is approximated by a numerical sequence (yk) generated

in the first stage. For the LASSO-like problem (2.12), one uses yk + b (with a large k)

instead of y∗ + b in the BPLASSO (2.32) in the second stage. This raises the question of

whether yk + b ∈ AC for all large k, which pertains to the feasibility of b ∈ AC subject

to perturbations. The same question also arises for the BPDN-like problem (2.14). We

discuss a mild sufficient condition on A and C for the feasibility under perturbations for

a given b. Suppose C has a nonempty interior and A has full row rank, which holds for

almost all A ∈ Rm×N with N ≥ m. In view of ri(AC) = Ari(C) = Aint(C) [60, Theorem

6.6], we see that AC has nonempty interior given by Ari(C) = Aint(C). Thus if b̂ := y∗+ b

is such that b̂ = Ax̂ for some x̂ ∈ int(C), then there exists a neighborhood N of b̂ such

that b ∈ AC for any b ∈ N . Additional sufficient conditions independent of b can also

be established. For example, suppose C is unbounded, and consider its recession cone

K := {x |Cx ≤ 0}. Let hi ∈ RN be generators of K, i.e., K = cone{h1, . . . , hs}. Define the

84

matrix H := [h1, . . . , hs]. A sufficient condition for AC to be open is AK = Rm, which is

equivalent to AHRs+ = Rm. By the Theorem of Alternative, the latter condition is further

equivalent to (i) AH has full row rank; and (ii) there exists a nonnegative matrix Q such

that AH(I +Q) = 0. Some simplified conditions can be derived from it for special cases.

For instance, when C = RN , A need to have full row rank; when C = RN+ , A need to have

full row rank and A(I +Q) = 0 for a nonnegative matrix Q.

Based on the previous results, we establish the overall convergence of the two-stage

algorithms.

Theorem 2.7.4. Consider the two-stage distributed algorithms for the LASSO-like prob-

lem (2.12) (resp. the BPDN-like problem (2.14)) with the norm ‖ · ‖?. Let (yk) be a

sequence generated in the first stage such that (yk)→ y∗ as k →∞ and b+yk ∈ AC (resp.

b + σyk

‖yk‖2
∈ AC) for all large k, where y∗ is a solution to the dual problem (2.13) (resp.

(2.15)), and (xs) be a convergent sequence in the second stage for solving (2.32) (resp.

(2.33)). Then the following hold:

(i) (xs)→ x∗ as k, s→∞, where x∗ is the unique solution to the regularized BPLASSO

(2.32) (resp. BPBPDN (2.33)).

(ii) Let ‖ · ‖? be the `1-norm. Suppose (yk) has the convergence rate O(1
kq) and (xs) has

the convergence rate O(1
sr). Then (xs) converges to x∗ in the rate of O(1

kq) +O(1
sr).

Proof. We consider the LASSO-like problem only; the similar argument holds for the

BPDN-like problem.

(i) For each k, let b̂k := b + yk, where (yk) is a sequence generated from the first

stage that converges to y∗. When b̂k is used in the BPLASSO (2.32) in the second

stage, i.e., the constraint Ax = b + y∗ is replaced by Ax = b̂k, we have ‖xs(̂bk) − x∗‖ ≤

85

‖xs(̂bk) − x∗(̂bk)‖ + ‖x∗(̂bk) − x∗‖, where x∗(̂b
k) is the unique solution to the BPLASSO

(2.32) corresponding to the constraint Ax = b̂k (and x ∈ C). Since
(
xs(̂bk)

)
converges

to x∗(̂b
k) as s → ∞ (for a fixed k), ‖xs(̂bk) − x∗(̂bk)‖ converges to zero. Further, note

that x∗ = x∗(̂b∗) with b̂∗ := b + y∗. Then it follows from the continuity property shown

in Theorem 2.7.2 that ‖x∗(̂bk) − x∗‖ = ‖x∗(̂bk) − x∗(̂b∗)‖ converges to zero as k → ∞ in

view of the convergence of (yk) to y∗. This establishes the convergence of the two-stage

algorithm.

(ii) When ‖ · ‖? is the `1-norm, we deduce via Theorem 2.7.3 that x∗ is Lipschitz

continuous in b on AC, i.e., there exists a constant L > 0 such that ‖x∗(b) − x∗(b′)‖ ≤

L‖b−b′‖ for any b, b′ ∈ AC. Hence, ‖xs(̂bk)−x∗‖ ≤ ‖xs(̂bk)−x∗(̂bk)‖+‖x∗(̂bk)−x∗(̂b∗)‖ ≤

‖xs(̂bk)− x∗(̂bk)‖+ L‖b̂k − b̂∗‖ = ‖xs(̂bk)− x∗(̂bk)‖+ L‖yk − y∗‖ = O(1
sr) +O(1

kq).

2.8 Numerical Results

We present numerical results to demonstrate the performance of the proposed two-

stage column partition based distributed algorithms for the standard LASSO/BPDN,

fused LASSO/BPDN, group LASSO, and their extensions, e.g., those subject to polyhedral

constraints. Distributed algorithms are implemented on MATLAB and run on a computer

of the following processor: Intel(R) Core(TM) i7-8550U CPU with 4 cores @ 1.80GHz

and RAM: 16.0GB. We consider a network of p = 40 agents with two topologies: the

first is a cyclic graph, and the second is a random graph shown in Figure 2.1. The matrix

A ∈ R100×4000 is random normal (i.e., m = 100 and N = 4000), and b ∈ R100 is a random

normal vector. For the standard/fused BPDN and its extensions, ‖b‖2 = 11.63 and the

parameter σ = 0.2, satisfying ‖b‖2 > σ. We consider even column partitioning, i.e., each

agent knows 100 columns of A.

86

Figure 2.1: The topology of the random graph

In each scheme, the stopping criterion is measured by the absolute error of two

neighboring iterates, and its termination tolerance is given below. Further, to simplify

notation, we use the following abbreviations: DA for distributed averaging, LA for local

averaging, DR for Douglas-Rachford, and OS for operator splitting. For instance, a DA-

OS scheme represents a distributed averaging based operator splitting scheme. In each

table below, Time stands for the computation time per agent.

In each DA based scheme, we use the distributed averaging scheme with optimal

constant edge weight [90, Section 4.1] for consensus computation. Numerical experiments

show that this scheme is highly efficient. For instance, to compute the average of y =

(yi)
p
i=1 with p = 40 and yi ∈ R100, it takes 0.0061 (resp. 0.001) seconds per agent

to converge on the cyclic (resp. the random) graph with the relative error less than

10−7. For the standard and fused LASSO/BPDN-like problems involving the `1-norm,

the subproblem in each scheme, e.g., the projection step in an OS scheme, the proximal

operator in DR scheme, or the subproblem in C-ADMM, is solved via a quadratic program;

see Remark 2.6.3. For the group LASSO, the projection step is formulated as a second

order cone program (SOCP) and solved by SeDuMi.

87

Standard LASSO: Stage One

Scheme DA-OS C-ADMM LA-DR

Parameter % = 1.2, η = 3 η = 1.5 η = 1.2, ρ = 0.6

Time (sec) 58.8 64.9 51.2

JRE, 1 8.1× 10−6 4.2× 10−5 4.5× 10−5

Standard LASSO: Stage Two

Scheme DA-DR C-ADMM LA-DR

Parameter ρ = 0.6, η = 0.8 η = 5.5 η = 0.8, ρ = 0.1

Time (sec) 41.2 26.7 66.2

JRE, 2 6.2× 10−6 5.2× 10−4 5.6× 10−3

JRE, o 3.5× 10−7 1.9× 10−5 6.2× 10−4

To evaluate the accuracy of the proposed schemes, let J denote the objective func-

tion of each (primal) problem, and x∗dist be a numerical primal solution obtained from a

proposed 2-stage distributed scheme. Let J∗dist := J(x∗dist), J
∗
true be the true optimal value

obtained from a high-precision centralized scheme, and JRE, o :=
|J∗dist−J

∗
true|

|J∗true|
be the overall

relative error of the optimal value. We also use JRE, s to denote the similar relative error

for stage s = 1, 2.

2.8.1 Numerical Results for the LASSO-like Problems

Consider the cyclic graph and C = RN unless otherwise stated.

• Standard LASSO The `1-penalty parameter λ = 1.8, and the regularization pa-

rameter in the second stage α = 0.18. We apply three schemes for each stage: DA-OS

(Algorithm 2), C-ADMM (Algorithm 3), LA-DR (Algorithm 4) for stage one, and DA-DR

(Algorithm 5), C-ADMM (Algorithm 6), LA-DR (similar to Algorithm 4) for stage two.

The termination tolerances for stages one and two are 10−4 and 10−5, respectively. See

the following table for the numerical results.

88

0 500 1000 1500 2000 2500 3000

Iteration Number

10
-3

10
-2

10
-1

10
0

10
1

10
2

DA-OS

C-ADMM

LA-DR

Figure 2.2: Convergence behaviors in stage one of standard LASSO.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration Number

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

DA-DR

C-ADMM

LA-DR

Figure 2.3: Convergence behaviors in stage two of standard LASSO.

The convergence behaviors of these schemes in the two stages are displayed in Fig-

ures 2.2-2.3. In the first stage, the errors of the dual variable is shown; in the second stage,

we compute the corresponding primal variables from its numerical dual solutions and dis-

play its convergence behavior, where y∗ and x∗ are the true dual and primal solutions,

respectively.

We also test the standard LASSO on the random graph via the DA-OS and C-

ADMM for stage one, and the DA-DR for stage two, which is also used for the scaled

regularized BP (cf. Remark 2.6.1) with the regularization constant α = 0.1 in stage two.

89

The same termination tolerances are used. See the following table for a summary of the

numerical results.

Standard LASSO: Stage One

Scheme DA-OS C-ADMM

Parameter % = 1.2, η = 3 η = 1.5

Time (sec) 54.7 73.3

JRE, 1 8.3× 10−6 3.2× 10−5

Standard LASSO: Stage Two

Scheme DA-DR DA-DR for scaled r-BP

Parameter ρ = 0.6, η = 0.8 ρ = 0.6, η = 0.8

Time (sec) 23.6 43.9

JRE, 2 1.5× 10−6 2.9× 10−4

JRE, o 4.7× 10−7 2.1× 10−6

• LASSO with C = RN+ This problem is known as the nonnegative garrote in the

literature [93]. We apply the DA-OS and C-ADMM for stage one, and the DA-DR and

C-ADMM for stage two with α = 0.18. The termination tolerances are 10−4 for both the

schemes in stage one, 10−4 for the DA-DR in stage two, and 5 × 10−5 for the C-ADMM

in stage two. See the following table for the numerical results.

90

Constrained LASSO: Stage One

Scheme DA-OS C-ADMM

Parameter % = 1.2, η = 3 η = 1.5

Time (sec) 12.4 24.9

JRE, 1 1.2× 10−5 7.5× 10−5

Constrained LASSO: Stage Two

Scheme DA-DR C-ADMM

Parameter ρ = 0.6, η = 0.95 η = 5.5

Time (sec) 71.5 32.8

JRE, 2 3.5× 10−3 3.5× 10−3

JRE, o 1.3× 10−3 7.8× 10−3

• Fused LASSO The matrix E =

 λI

γD1

 with λ = 0.6 and γ = 0.4, and the regular-

ization constant α = 0.18. We apply DA-OS (Algorithm 7) for stage one and the DA-DR

(Algorithm 8) for stage two with termination tolerances 8× 10−4 and 10−4, respectively.

We obtain JRE, o = 1.6× 10−4.

Fused LASSO: Stage One

Scheme DA-OS

Parameter % = 0.3, η = 3

Time (sec) 213.8

JRE, 1 8.5× 10−5

Fused LASSO: Stage Two

Scheme DA-DR

Parameter ρ = 0.4, η = 0.6

Time (sec) 271.9

JRE, 2 6.5× 10−4

91

• Group LASSO The penalty constant λ = 1.8, and the regularization parameter α =

0.18. For stage one, a DA-OS scheme similar to Algorithm 2 is used by replacing the setWi

with Ŵi := {yi | ‖(A•Ii)Tyi‖2 ≤ λ} as in Section 2.6.5. Its projection step is formulated

as a SOCP and solved by SeDuMi. For stage two, we exploit the reduced dual problem

via the soft thresholding operator S‖·‖2 and apply the DA-OS scheme similar to that in

(2.46) by dropping µ and replacing Gi with Ji(yi) := (bTyi)/p+ 1
2α

[(∥∥(A•Ii)
Tyi − 1

)
+

]2
for each i. The termination tolerances for stages one and two are 10−5 and 8 × 10−7,

respectively. We obtain JRE, o = 3.6× 10−4.

Group LASSO: Stage One

Scheme DA-OS

Parameter % = 1.2, η = 2

Time (sec) 52.8

JRE, 1 3.6× 10−4

Group LASSO: Stage Two

Scheme DA-OS

Parameter ρ = 0.005, η = 0.3

Time (sec) 19.5

JRE, 2 4.5× 10−5

2.8.2 Numerical Results for the BPDN-like Problems

Consider the cyclic graph and C = RN unless otherwise stated.

• Standard BPDN The regularization parameter in the second stage α = 0.15. We

apply DA-OS and IC-ADMM [10] (with the parameters c and βi’s) for stage one, and

DA-DR, C-ADMM, LA-OS for stage two. The termination tolerances for the first and

second stages are 4× 10−4 and 10−5 respectively.

92

Standard BPDN: Stage One

Scheme DA-OS IC-ADMM

Parameter % = 1.2, η = 3 c = 1.5, βi = 1.7, ∀ i

Time (sec) 26.6 58.5

JRE, 1 5.9× 10−4 1.7× 10−5

Standard BPDN: Stage Two

Scheme DA-DR C-ADMM LA-OS

Parameter ρ = 0.5, η = 0.95 η = 5.5 η = 0.95, ρ = 0.1

Time (sec) 13.2 24.4 33.9

JRE, 2 1.68× 10−5 1.3× 10−3 5.1× 10−4

JRE, o 1.7× 10−5 1.3× 10−3 5.1× 10−4

We also test the standard BPDN on the random graph with the regularization

parameter α = 0.18. We apply DA-OS for stage one, and DA-DR for stage two. The table

below shows the numerical results with JRE, o = 5.6× 10−4.

Standard BPDN: Stage One

Scheme DA-OS

Parameter % = 1.2, η = 3

Time (sec) 19.9

JRE, 1 7.04× 10−4

Standard BPDN: Stage Two

Scheme DA-DR

Parameter ρ = 0.5, η = 0.95

Time (sec) 6.8

JRE, 2 1.28× 10−3

• BPDN with C = RN+ We apply the DA-OS for stage one, and the DA-DR for stage

two with α = 0.18. The termination tolerances for stage one and stage two are 10−5 and

10−4, respectively. We obtain JRE, o = 4.9× 10−4.

93

Constr. BPDN: Stage One

Scheme DA-OS

Parameter % = 1.2, η = 3

Time (sec) 37.1

JRE, 1 1.5× 10−4

Constr. BPDN: Stage Two

Scheme DA-DR

Parameter ρ = 0.95, η = 0.6

Time (sec) 49.0

JRE, 2 7.4× 10−4

• Fused BPDN The matrix E =

 IN
γD1

 with γ = 2/3, and the regularization constant

α = 0.18. We apply DA-OS and DA-DR for stage one and stage two with the termination

tolerances 10−4 and 2× 10−4, respectively. We obtain JRE, o = 6.9× 10−4.

Fused BPDN: Stage One

Scheme DA-OS

Parameter % = 1.2, η = 3

Time (sec) 248.4

JRE, 1 1.5× 10−6

Fused BPDN: Stage Two

Scheme DA-DR

Parameter ρ = 0.4, η = 0.8

Time (sec) 205.3

JRE, 2 7.7× 10−4

2.8.3 Discussions and Comparison

We compare the proposed two-stage schemes with two existing distributed schemes:

the DC-ADMM [10], [47] for the standard LASSO with C = RN , and the PDC-ADMM

[8] for the standard LASSO with C = RN+ . These two schemes cannot handle the non-

polyhedral constraints in the BPDN-like problems and the additional coupling in the fused

LASSO/BPDN. Hence, we focus on the standard LASSO and its constrained case. The

results of the DC-ADMM and PDC-ADMM over the cyclic graph on the same computer

with the tolerance 10−4 are given below.

94

Standard LASSO

Scheme DC-ADMM

Parameter c = 0.05

Time (sec) 307.1

JRE, o 4.1× 10−4

Iteration No. 12974

Constrained LASSO

Scheme PDC-ADMM

Parameter c = τi = 0.01

Time (sec) 323.5

JRE, o 3.6× 10−2

Iteration No. 4632

The overall computation time of the proposed two-stage schemes for the standard

(resp. constrained) LASSO is 78-121 seconds (resp. 57-94 seconds) with smaller JRE, o.

Hence, the proposed schemes outperform the DC-ADMM and PDC-ADMM in both com-

putation time and numerical accuracy.

Since the communication cost is proportional to the number of iterations, we com-

pare the number of iterations of the proposed two-stage schemes vs. DC-ADMM (resp.

PDC-ADMM) for the standard LASSO (resp. constrained LASSO) on the cyclic graph.

The following table summarizes the number of iterations for the proposed two-stage

schemes.

Stage
Standard LASSO: Iteration No. Constr. LASSO: Iteration No.

DA-OS/DR C-ADMM LA-DR DA-OS/DR C-ADMM

One OS: 1930 2624 2105 OS: 1175 2864

Two DR: 3483 4104 9999 DR: 2683 2846

For the standard LASSO, the total iteration numbers of the two-stage DA based

scheme, C-ADMM, and LA-DR scheme are 5413, 6728, and 12094, respectively. For the

constrained LASSO, the total iteration number is 3958 for the DA-based scheme and is

5710 for the C-ADMM. Note that the DA-based schemes need additional iterations for

distributed averaging computation, leading to extensive communications. Nevertheless,

95

the proposed two-stage C-ADMM takes fewer or a similar number of iterations and less

computation time while achieving better numerical accuracy in comparison with the DC-

ADMM and PDC-ADMM. Finally, the memory costs of the proposed two-stage schemes

are same or similar to those of the DC-ADMM or PDC-ADMM.

2.9 Summary

In this chapter, column partition based distributed schemes are developed for a class

of densely coupled convex sparse optimization problems, including BP, LASSO, BPDN

and their extensions. By leveraging duality theory, exact regularization techniques, and

solution properties of the aforementioned problems, we develop dual based fully distributed

schemes via column partition. Sensitivity results are used to establish overall convergence

of the two-stage distributed schemes for LASSO, BPDN, and their extensions.

96

CHAPTER III

Fully Distributed Optimization based CAV Platooning

Control under Linear Vehicle Dynamics

Chapters 3 and 4 are concerned with the second topics of this thesis, namely de-

veloping fully distributed optimization algorithms for real-time implementation of CAV

platooning control schemes under both linear and nonlinear vehicle dynamics.

3.1 Introduction

The recent advancement of connected and autonomous vehicle (CAV) technologies

provides a unique opportunity to mitigate urban traffic congestion through innovative

traffic flow control and operations. Supported by advanced sensing, vehicle communica-

tion, and portable computing technologies, CAVs can sense, share, and process real-time

mobility data and conduct cooperative or coordinated driving. This has led to a surging

interest in self-driving technologies. Among a number of emerging self-driving technolo-

gies, vehicle platooning technology receives substantial attention. Specifically, the vehicle

platooning technology links a group of CAVs through cooperative acceleration or speed

97

control. It allows adjacent group members to travel safely at a higher speed with smaller

spacing between them and thus has a great potential to increase lane capacity, improve

traffic flow efficiency, and reduce congestion, emission, and fuel consumption [4], [33].

A number of effective distributed control or optimization schemes have been pro-

posed for CAV platooning [84], [85], [96], [99]. The recent paper [22] develops model

predictive control (MPC) based car-following control schemes for CAV platooning by ex-

ploiting transportation, control and optimization methodologies. These control schemes

take vehicle constraints, transient dynamics and and asymptotic dynamics of the entire

platoon into account, and can be computed in a partially distributed manner i.e., they re-

quire all vehicles to exchange information with a central central component for centralized

data processing or perform centralized computation in at least one step of these schemes.

In this chapter, we develop a fully distributed optimization based and platoon cen-

tered CAV car following control scheme over a general vehicle communication network

under linear vehicle dynamics. We propose a general p-horizon MPC model subject to

the linear vehicle dynamics and various physical or safety constraints. Typically, a fully

distributed optimization scheme requires the objective function and constraints of the un-

derlying optimization problem to be decoupled [26]. However, the proposed MPC is a

centralized control approach and its underlying optimization problem does not satisfy this

requirement since its objective function is densely coupled and its constraints are locally

coupled; see Remark 3.3.2 for details. Therefore, this chapter develops new techniques to

overcome this difficulty.

The main contributions of this chapter are summarized as follows:

(1) We propose a new form of the objective function in the MPC model with new sets

of weight matrices. This new formulation facilitates the development of fully dis-

98

tributed schemes and closed loop stability analysis whereas it can achieve desired

traffic transient performance of the whole platoon. Based on the new formulation, a

decomposition method is developed for the strongly convex quadratic objective func-

tion. This method decomposes the central objective function into the sum of locally

coupled (strongly) convex quadratic functions, where local coupling satisfies the net-

work topology constraint under a mild assumption on network topology. Along with

locally coupled constraints in the MPC model, the underlying optimization model is

formulated as a locally coupled convex quadratically constrained quadratic program

(QCQP).

(2) Fully distributed schemes are developed for solving the above-mentioned convex

QCQP arising from the MPC model using the techniques of locally coupled opti-

mization and operator splitting methods. Specifically, by introducing copies of local

coupling variables of each vehicle, an augmented optimization model is formulated

with an additional consensus constraint. One of the major challenges in develop-

ing a fully distributed scheme for the model is the computation time. In order to

facilitate real time implementation, the computation time for the scheme should

be less than one second. A generalized Douglas-Rachford splitting method based

distributed scheme is developed, where only local information exchange is needed,

leading to a fully distributed scheme which can be used for real time implementation.

Other operator splitting method based distributed scheme are also discussed.

(3) The new formulation of the weight matrices and objective function leads to different

closed loop dynamics in comparison with that in [22]. Besides, since a general

p-horizon MPC is considered, it calls for new stability analysis of the closed loop

99

dynamics. We perform detailed stability analysis and choose suitable weight matrices

for desired traffic transient performance for a general horizon length p. In particular,

we prove that up to a horizon of p = 3, the closed loop dynamic matrix is Schur

stable. Extensive numerical tests are carried out to test the proposed distributed

schemes under different MPC horizon p’s and to evaluate the closed loop stability

and performance.

The materials of this chapter are reported in our recent journal publication [64] which is

in print. The rest of the chapter is organized as follows. Section 3.2 introduces the linear

vehicle dynamics, state and control constraints, and vehicle communication networks. The

model predictive control model with a general prediction horizon p is proposed and for-

mulated as a constrained optimization problem in Section 3.3; fundamental properties of

this optimization problem are established. Section 3.4 develops fully distributed schemes

by exploiting a decomposition method for the central quadratic objective function, locally

coupled optimization, and operator splitting methods. Control design and stability anal-

ysis for the closed loop dynamics is presented in Section 3.5 with numerical results given

in Section 3.6. Finally, summary is given in Section 3.7.

3.2 Vehicle Dynamics, Constraints, and Communication Networks

We consider a platoon of multiple vehicles on a straight roadway, where the (un-

controlled) leading vehicle is labeled by the index 0 and its n following CAVs are labeled

by the indices i = 1, . . . , n, respectively. Let xi, vi denote the longitudinal position and

speed of the ith vehicle, respectively. Let τ > 0 be the sampling time, and each time

interval is given by [kτ, (k + 1)τ) for k ∈ Z+ := {0, 1, 2, . . .}. We consider the following

kinematic model for linear vehicle dynamics widely adopted in system-level studies with

100

the acceleration ui(k) as the control input for vehicle i:

xi(k + 1) = xi(k) + τvi(k) +
τ2

2
ui(k), vi(k + 1) = vi(k) + τui(k). (3.1)

State and control constraints. Each vehicle in a platoon is subject to several impor-

tant state and control constraints. For each i = 1, . . . , n,

(i) Control constraints: amin ≤ ui ≤ amax, where amin < 0 and amax > 0 are pre-

specified acceleration and deceleration bounds for a vehicle.

(ii) Speed constraints: vmin ≤ vi ≤ vmax, where 0 ≤ vmin < vmax are pre-specified

bounds on longitudinal speed for a vehicle;

(iii) Safety distance constraints: these constraints guarantee sufficient spacing between

neighboring vehicles to avoid collision even if the leading vehicle comes to a sudden

stop. This gives rise to the safety distance constraint of the following form:

xi−1 − xi ≥ L+ r · vi −
(vi − vmin)2

2amin
, (3.2)

where L > 0 is a constant depending on vehicle length, and r is the reaction time.

Besides, we assume that the leading vehicle satisfies the same acceleration and speed

constraints, i.e., amin ≤ u0(k) ≤ amax, and vmin ≤ v0(k) ≤ vmax for all k ∈ Z+. Note

that constraints (i) and (ii) are decoupled across vehicles, whereas the safety distance

constraint (iii) is state-control coupled since such a constraint involves control inputs of

two vehicles. This yields challenges to distribution computation. Further, the identical

acceleration or deceleration bounds are considered, although the proposed approach can

handle a general case with different acceleration or deceleration bounds.

101

Communication network topology. We consider a general communication network

whose topology is modeled by a graph G(V, E), where V = {1, 2, . . . , n} is the set of nodes

where the ith node corresponds to the ith CAV, and E is the set of edges connecting two

nodes in V. Let Ni denote the set of neighbors of node i, i.e., Ni = {j | (i, j) ∈ E}. The

following assumption on the communication network topology is made throughout the

chapter:

A.1 The graph G(V, E) is undirected and connected. Further, two neighboring CAVs

form a bidirectional edge of the graph, i.e., (1, 2), (2, 3), . . . , (n − 1, n) ∈ E , and the

first CAV can receive x0(k), v0(k), and u0(k) from the leading vehicle at each k ∈ Z+.

Since the graph is undirected, for any i, j ∈ V with i 6= j, (i, j) ∈ E means that there

exists an edge between node i and node j. In other words, vehicle i can receive infor-

mation from vehicle j and send information to vehicle j, and so does vehicle j. The set-

ting given by A.1 includes many widely used communication networks of CAV platoons,

e.g., predecessor-following, predecessor-leader following, immediate-preceding, multiple-

preceding, and preceding-and-following networks [97].

3.3 Model Predictive Control for CAV Platooning Control

We exploit the model predictive control (MPC) approach for car following control of

a platoon of CAVs. Let ∆ be the desired constant spacing between two adjacent vehicles,

and (x0, v0, u0) be the position, speed, and control input of the leading vehicle, respectively.

Define the vectors: (i) z(k) :=
(
x0 − x1 − ∆, . . . , xn−1 − xn − ∆

)
(k) ∈ Rn, representing

the relative spacing error; (ii) z′(k) :=
(
v0 − v1, . . . , vn−1 − vn

)
(k) ∈ Rn, representing

the relative speed between adjacent vehicles; and (iii) u(k) :=
(
u1, . . . , un

)
(k) ∈ Rn,

representing the control input. Further, let wi(k) := ui−1(k)− ui(k) for each i = 1, . . . , n,

102

and w(k) :=
(
w1, . . . , wn

)
(k) ∈ Rn, which stands for the difference of control input between

adjacent vehicles. Hence, for any k ∈ Z+, u(k) = −Snw(k) + u0(k) · 1, where 1 :=

(1, . . . , 1)T is the vector of ones, and

Sn :=



1 0 0 . . . 0

1 1 0 . . . 0

...
...

. . .
. . .

...

1 1 . . . 1 0

1 1 . . . 1 1


∈ Rn×n, S−1

n =



1

−1 1

. . .
. . .

−1 1

−1 1


∈ Rn×n. (3.3)

Given a prediction horizon p ∈ N, the p-horizon MPC control is determined by

solving the following constrained optimization problem at each k ∈ Z+, involving all

vehicles’ control inputs for given feasible state (xi(k), vi(k))ni=1 and (x0(k), v0(k), u0(k)) at

time k subject to the vehicle dynamics model (3.1):

minimize J(u(k), . . . , u(k + p− 1)) := (3.4)

1

2

p∑
s=1

(
τ2uT (k + s− 1)S−Tn Qw,sS

−1
n u(k + s− 1)︸ ︷︷ ︸

ride comfort

+ zT (k + s)Qz,sz(k + s) + (z′(k + s))TQz′,sz
′(k + s)︸ ︷︷ ︸

traffic stability and smoothness

)

subject to: for each i = 1, . . . , n and each s = 1, . . . , p, zi(k+ s) = xi−1(k+ s)− xi(k+ s),

and z′i(k + s) = vi−1(k + s)− vi(k + s), where xi(k + s) and vi(k + s) are given in terms

of ui(k), . . . , ui(k + p− 1) as shown in the vehicle dynamics model (3.1), and

amin ≤ ui(k + s− 1) ≤ amax, vmin ≤ vi(k + s) ≤ vmax, (3.5)

103

xi−1(k + s)− xi(k + s) ≥ L+ r · vi(k + s)− (vi(k + s)− vmin)2

2amin
, (3.6)

where Qz,s, Qz′,s and Qw,s are n × n symmetric positive semidefinite weight matrices to

be discussed soon. When p > 1, (x0(k + s + 1), v0(k + s + 1), u0(k + s)) are unknown

at time k for s = 1, . . . , p − 1. In this case, we assume that u0(k + s) = u0(k) for all

s = 1, . . . , p− 1 and use these u0(k+ s)’s and the vehicle dynamics model (3.1) to predict

(x0(k + s+ 1), v0(k + s+ 1)) for s = 1, . . . , p− 1.

Remark 3.3.1. The three terms in the objective function J intend to minimize traffic flow

oscillations via mild control. Particularly, the first term penalizes the magnitude of control

for mild control and ride comfort, whereas the second and last terms penalize the variations

of the relative spacing and relative speed to reduce traffic oscillations, respectively. The

weight matrices Qz,s, Qz′,s and Qw,s in the above J are chosen such that smooth traffic

dynamics and asymptotic stability is achieved in the closed loop dynamics; see Section 3.5

for details. The presence of the matrix Sn in the first term is due to the coupled vehicle

dynamics through the CAV platoon. To illustrate this, let w̃(k+ s− 1) := w(k+ s− 1)−

u0(k) · e1 for s = 1, . . . , p. Thus w̃(k + s − 1) = −S−1
n u(k + s − 1) for each s = 1, . . . , p.

Therefore, the first term in J satisfies τ2uT (k+s−1)S−Tn Qw,sS
−1
n u(k+s−1) = τ2w̃T (k+

s− 1)Qw,s w̃(k + s− 1) for each s. Lastly, non-constant spacing car following polices can

be considered; see Remark 3.4.3 for details.

The weight matrices Qz,s, Qz′,s, and Qw,s, s = 1, . . . , p determine transient and

asymptotic dynamics, and they depend on vehicle network topologies and can be chosen

by stability analysis and transient dynamics criteria of the closed loop system. To develop

fully distributed schemes for a broad class of vehicle network topologies and to facilitate

104

control design and analysis, we make the following blanket assumption on Qz,s, Qz′,s, and

Qw,s throughout the rest of the chapter:

A.2 For each s = 1, . . . , p, Qz,s and Qz′,s are diagonal and positive semidefinite (PSD),

and Qw,s is diagonal and positive definite (PD).

The reasons for considering this class of diagonal positive semidefinite or positive

definite weight matrices are three folds: (i) Diagonal matrices have a simpler interpre-

tation in transportation engineering so that the selection of such matrices is easier to

practitioners. For instance, the diagonal Qz,s and Qz′,s mean that one imposes penalties

on each element of z(k + s) and z′(k + s) without considering their coupling. Further, by

suitably choosing the weight matrices Qw,s, it can be shown that the ride comfort term in

equation (3.4), which corresponds to acceleration of CAVs, is similar to imposing direct

penalties on ui’s, which simplifies control design. (ii) This class of weight matrices facili-

tates the development of fully distributed schemes for general vehicle network topologies.

(iii) Closed-loop stability and performance analysis is relatively simpler (although still

nontrivial) when using this class of weight matrices. The detailed discussions of choosing

diagonal, positive semidefinite or positive definite weight matrices for satisfactory closed

loop dynamics will be given in Section 3.5.

The sequential feasibility has been established in [21], [22] for the MPC model (3.4)

when r ≥ τ . Define P((xi, vi)
n
i=0, u0) := {u ∈ Rn | amin ≤ ui ≤ amax, vmin ≤ vi + τui ≤

vmax, hi(u) ≤ 0, ∀ i = 1, . . . , n}, where hi(u) := L + r(vi + τui) − (vi+τui−vmin)2

2amin
+ (xi −

xi−1) + τ(vi − vi−1) + τ2

2 [ui − ui−1] for each i = 1, . . . , n. Specifically, the sequential

feasibility implies that for any feasible xi(k), vi(k), u0(k) at time k, the constraint set

P((xi(k), vi(k))ni=0, u0(k)) is non-empty such that the MPC model (3.4) has a solution

u∗(k) such that the constraint set P((xi(k + 1), vi(k + 1))ni=0, u0(k + 1)) is non-empty.

105

Using this result, we show below that under a mild assumption, the constraint sets of the

MPC model have nonempty interior for any MPC horizon p ∈ N. This result is important

to the development of distributed algorithms.

Corollary 3.3.1. Consider the linear vehicle dynamics (3.1) and assume r ≥ τ . Suppose

the leading vehicle is such that (v0(k), u0(k)) is feasible and v0(k) > vmin for all k ∈ Z+.

Then the constraint set of the p-horizon MPC model (3.4) has nonempty interior at each

k.

Proof. Fix an arbitrary k ∈ Z+. Since v0(k) > vmin, it follows from [22, Proposition 3.1]

that there exists a vector denoted by û(k) in the interior of P((xi(k), vi(k))ni=0, u0(k)).

Let xi(k + 1) and vi(k + 1) be generated by û(k) (and (xi(k), vi(k))ni=0, u0(k)). Since

v0(k + 1) > vmin, we deduce via [22, Proposition 3.1] again that there exists a vector

denoted by û(k+1) in the interior of the constraint set P((xi(k+1), vi(k+1))ni=0, u0(k+1)).

Continuing this process in p-steps, we derive the existence of an interior point in the

constraint set of the p-horizon MPC model (3.4).

3.3.1 Constrained MPC Optimization Model

Consider the constrained MPC optimization model (3.4) at an arbitrary but fixed

time k ∈ Z+ subject to the linear vehicle dynamics (3.1). In view of the following results:

for each s = 1, . . . , p,

vi(k + s) = vi(k) + τ

s−1∑
j=0

ui(k + j), z′(k + s) = z′(k) + τ

s−1∑
j=0

w(k + j),

z(k + s) = z(k) + sτz′(k) + τ2
s−1∑
j=0

2(s− j)− 1

2
w(k + j),

w(k + s) = S−1
n

[
− u(k + s) + u0(k) · 1

]
,

106

we formulate (3.4) as the constrained convex minimization problem (where we omit k since

it is fixed):

minimize J(u) := 1
2uTWu + cTu + γ,

subject to ui ∈ Xi, (Hi(u))s ≤ 0, ∀ i = 1, . . . , n, ∀ s = 1, . . . , p,

(3.7)

where u := (u1, . . . ,un) ∈ Rnp with ui := (ui(k), . . . , ui(k + p − 1)) ∈ Rp, W is a PD

matrix to be shown in Lemma 3.3.1 below, c ∈ Rnp, γ ∈ R, each Xi := {z ∈ Rp | amin · 1 ≤

z ≤ amax · 1, (vmin − vi(k)) · 1 ≤ τSpz ≤ (vmax − vi(k)) · 1} is a polyhedral set, and each

(Hi(·))s is a convex quadratic function characterizing the safety distance given by (3.12).

Here Sp is the p× p matrix of the form given by (3.3). Further, u0 := u0(k) · 1p ∈ Rp for

the given u0(k). An important property of the matrix W in (3.7) is given below.

Lemma 3.3.1. Suppose that Qz,s and Qz′,s are PSD and Qw,s are PD for all s = 1, . . . , p

(but not necessarily diagonal). Then the matrix W in (3.7) is PD.

Proof. Let u be an arbitrary nonzero vector in Rnp. Since J(·) is quadratic, we have

1
2uTWu = limλ→∞

J(λu)
λ2

. In view of the equivalent formulation of J(·) given by (3.4), we

deduce that for any λ > 0, J(λu) = J(λu(k), . . . , λu(k + p− 1)) ≥ λ2

2

∑p
s=1 τ

2uT (k + s−

1)S−Tn Qw,sS
−1
n u(k + s− 1) > 0, where the first inequality follows from the fact that Qz,s

and Qz′,s are PSD, and the second inequality holds because Qw,s, and thus S−Tn Qw,sS
−1
n ,

are PD. Therefore, J(λu)
λ2
≥ 1

2

∑p
s=1 τ

2uT (k + s− 1)S−1
n Qw,sS

−1
n u(k + s− 1) > 0, leading

to 1
2uTWu ≥ 1

2

∑p
s=1 τ

2uT (k + s− 1)S−1
n Qw,sS

−1
n u(k + s− 1) > 0. Hence, W is PD.

107

To establish the closed form expressions of the matrix W and the vector c in (3.7),

we define the following matrices for any i, j ∈ {1, . . . , p}:

Vi,j := S−Tn

 p∑
s=max(i,j)

(τ4

4
[2(s− i) + 1] · [2(s− j) + 1]Qz,s + τ2Qz′,s

)S−1
n ∈ Rn×n.

Clearly, Vi,j = Vj,i for any i, j. Moreover, let Q̃w,s := S−Tn Qw,sS
−1
n for s = 1, . . . , p. Hence,

the symmetric matrix W is given by W = ETV E, where

V =



V1,1 + τ2Q̃w,1 V1,2 V1,3 · · · · · · V1,p

V2,1 V2,2 + τ2Q̃w,2 V2,3 · · · · · · V2,p

· · · · · · · · ·

· · · · · · · · ·

Vp,1 Vp,2 Vp,3 · · · · · · Vp,p + τ2Q̃w,p


∈ Rnp×np, (3.8)

and E ∈ Rnp×np is the permutation matrix satisfying



u(k)

u(k + 1)

...

u(k + p− 1)


= E



u1

u2

...

un


.

Specifically, the (i, j)-entry of the matrix E is given by

Ei,j =


1 if i = n · k + s, j = p · (s− 1) + k + 1, for k = 0, . . . , p− 1, s = 1, . . . , n;

0, otherwise.

(3.9)

In particular, when p = 1, we have E = In.

108

For a fixed k ∈ Z+, we also define for each s = 1, . . . , p,

ds(k) := z(k) + sτz′(k) + τ2
s−1∑
j=0

2(s− j)− 1

2
S−1
n · 1 · u0(k),

fs(k) := z′(k) + τ
s−1∑
j=0

S−1
n · 1 · u0(k).

In light of S−1
n given by (3.3), we have S−1

n · 1 = e1. Therefore, we obtain

ds(k) = z(k) + sτz′(k) +
τ2

2
s2e1u0(k), fs(k) = z′(k) + τse1u0(k). (3.10)

In view of

z(k+s) = ds(k)−τ2
s−1∑
j=0

2(s− j)− 1

2
S−1
n u(k+j), z′(k+s) = fs(k)−τ

s−1∑
j=0

S−1
n u(k+j),

the linear terms in the objective function J are given by

−
p∑
i=1

(
p∑
s=i

[τ2

2
[2(s− i) + 1]dTs (k)Qz,s + τfTs (k)Qz′,s

])
S−1
n · u(k + i− 1). (3.11)

Using the permutation matrix E given in (3.9), we can write cTu as cTu =
∑n

i=1 c
T
Iiui,

where cIi is the subvector of c corresponding to ui. Since Qz,s and Qz′,s are diagonal, it

is easy to obtain the following lemma via ds(k), fs(k) in (3.10) and the structure of S−1
n

given by (3.3).

Lemma 3.3.2. Consider the vector c = (cI1 , . . . , cIn) given above. Then for each i =

1, . . . , n, the subvector cIi depends only on zi(k), z′i(k), zi+1(k), z′i+1(k)’s for i = 1, . . . , n−

1, and cIn depends only on zn(k), z′n(k). Further, only cI1 depends on u0(k).

109

The above lemma shows that each cIi only depends on the information of the adja-

cent vehicles of vehicle i, and thus can be easily established from any vehicle network. This

property is important for developing fully distributed schemes to be shown in Section 3.4.2.

To find the vector form of the safety constraint, we note that for s = 1, . . . , p,

xi(k+s) = xi(k)+sτvi(k)+τ2
s−1∑
j=0

2(s− j)− 1

2
ui(k+j), vi(k+s) = vi(k)+τ

s−1∑
j=0

ui(k+j).

The safety distance constraint for the i-th vehicle at time k is given by: for s = 1, . . . , p,

0 ≥ −
[
xi−1(k) + sτvi−1(k)− (xi(k) + sτvi(k))

]
− τ2

s−1∑
j=0

2(s− j)− 1

2
[ui−1(k + j)

− ui(k + j)] + L+ rvi(k) + rτ
s−1∑
j=0

ui(k + j)− 1

2amin

[
τ2
(s−1∑
j=0

ui(k + j)
)2

(3.12)

+ 2τ(vi(k)− vmin)

s−1∑
j=0

ui(k + j) + (vi(k)− vmin)2
]

:= (Hi(ui−1,ui))s,

where (Hi(·, ·))s is a convex quadratic function for each s = 1, . . . , p. Hence, the set

Zi := {u ∈ Rnp | (Hi(ui−1,ui))s ≤ 0, ∀ i = 1, . . . , p} is closed and convex. The problem

(3.7) becomes minu J(u) subject to ui ∈ Xi and u ∈ Zi for all i = 1, . . . , n, which is

a convex quadratically constrained quadratic program (QCQP) and can be solved via a

second-order cone program or a semi-definite program in the centralized manner.

Remark 3.3.2. The above results show that each Xi’s are decoupled from the other vehi-

cles, whereas the constraint function Hi for vehicle i is locally coupled with its neighboring

vehicles. Specifically, Hi depends not only on ui but also on ui−1 of vehicle (i− 1), which

can exchange information with vehicle i. We will explore this local coupling property to

develop fully distributed schemes for solving (3.7) in the next section.

110

3.4 Operator Splitting Method based Fully Distributed Algorithms for

Constrained Optimization in MPC

We develop fully distributed algorithms for solving the underlying optimization

problem given by (3.7) at each time k using the techniques of locally coupled convex

optimization and operator splitting methods. One of the major techniques for developing

fully distributed schemes for the underlying optimization problem given by (3.7) is to

formulate it as a locally coupled convex optimization problem [26]. Section 1.2.1 shows

the formulation of such problems into a locally coupled convex optimization problem. In

what follows, we will develop a decomposition method for the underlying matrix W given

in equation (3.7). This decomposition helps us to write the objective function as a locally

coupled convex optimization problem.

3.4.1 Decomposition of a Strongly Convex Quadratic Objective Function

The framework of locally coupled optimization problems requires that both an ob-

jective function and constraints are expressed in a locally coupled manner. Especially,

the central objective function in (1.1) is expected to be written as the sum of mutiple

locally coupled functions preserving certain desired properties, e.g., the (strong) convex-

ity if the central objective function is so, where local coupling satisfies network topology

constraints. While the constraints of the problem (3.7) have been shown to be locally

coupled (cf. Remark 3.3.2), the central strongly convex quadratic objective function, par-

ticularly its quadratic term 1
2uTWu, is densely coupled and thus need to be decomposed

into the sum of locally coupled (strongly) convex quadratic functions, where the local

111

coupling should satisfy the network topology constraint. In this subsection, we address

this decomposition problem under a mild assumption on network topology.

We start from a slightly general setting. Let λ := (λ1, . . . , λn) ∈ Rn and Λ =

diag(λ) = diag(λ1, . . . , λn) be a diagonal matrix, i.e., λ is the vector representation of the

diagonal entries of Λ. Therefore, the following matrix is tridiagonal:

S−Tn ΛS−1
n =



λ1 + λ2 −λ2

−λ2 λ2 + λ3 −λ3

. . .
. . .

. . .

−λn−1 λn−1 + λn −λn

−λn λn


. (3.13)

Consider a general p ∈ N. Let Θ be a symmetric block diagonal matrix given by

Θ =



Θ1,1 Θ1,2 · · · · · · Θ1,p

Θ2,1 Θ2,2 · · · · · · Θ2,p

· · · · · · · · ·

· · · · · · · · ·

Θp,1 Θp,2 · · · · · · Θp,p


∈ Rnp×np,

where Θi,j = diag(θi,j) ∈ Rn×n is diagonal for some θi,j ∈ Rn, and θi,j = θj,i for all

i, j = 1, . . . , p. Let (θi,j)k denote the kth entry of the vector θi,j . For each i = 1, . . . , n,

112

define the matrix

Ui :=



(θ1,1)i (θ1,2)i · · · (θ1,p)i

(θ2,1)i (θ2,2)i · · · (θ2,p)i

· · · · · · · · ·

(θp,1)i (θp,2)i · · · (θp,p)i


∈ Rp×p. (3.14)

It can be shown that Θ = ETdiag(U1, . . . , Un)E, where E is the permutation matrix given

by (3.9). Hence, Θ is PD (resp. PSD) if and only if each Ui is PD (resp. PSD).

Let

V =



S−Tn

S−Tn

. . .

S−Tn


︸ ︷︷ ︸

:=S−T

Θ



S−1
n

S−1
n

. . .

S−1
n


︸ ︷︷ ︸

:=S−1

=



V1,1 V1,2 · · · V1,p

V2,1 V2,2 · · · V2,p

· · · · · · · · ·

Vp,1 Vp,2 · · · Vp,p


,

where Vi,j := S−Tn Θi,jS
−1
n is symmetric and tridiagonal. Letting E be the permutation

matrix given by (3.9), a straightforward computation shows that ETV E is a symmetric

113

block tridiagonal matrix given by

W = ETV E =



W1,1 W1,2

W2,1 W2,2 W2,3

. . .
. . .

. . .

Wn−1,n−2 Wn−1,n−1 Wn−1,n

Wn,n−1 Wn,n


∈ Rnp×np,

where each Wi,j ∈ Rp×p is symmetric and Wi,j = Wj,i. Furthermore, for each i = 1, . . . , n

and j ∈ {i, i+ 1},

Wi,j =



(V1,1)i,j (V1,2)i,j · · · (V1,p)i,j

(V2,1)i,j (V2,2)i,j · · · (V2,p)i,j

· · · · · · · · ·

(Vp,1)i,j (Vp,2)i,j · · · (Vp,p)i,j


∈ Rp×p,

where (Vr,s)i,j denotes the (i, j)-entry of the block Vr,s. In view of Vi,j = S−Tn Θi,jS
−1
n

and (3.13), we have that Wi,i = Ui + Ui+1 and Wi,i+1 = −Ui+1 for i = 1, . . . , n − 1, and

Wn,n = Un. Moreover, since W = ETV E = ETS−TΘ S−1E, W is PD (resp. PSD) if and

only if Θ is PD (resp. PSD), which is also equivalent to that each Ui is PD (resp. PSD);

see the comment after (3.14).

In what follows, we consider PSD (resp. PD) matrix decomposition for a PSD (resp.

PD) W generated by θi,j ∈ Rn+ for i = 1, . . . , n and j ≥ i. The goal of this decomposition is

to construct PSD matrices W̃ s ∈ Rnp×np for s = 1, . . . , n such that the following conditions

hold:

114

(i)

W̃ 1 =



(W̃ 1)1,1 (W̃ 1)1,2

(W̃ 1)2,1 (W̃ 1)2,2

0 · · · 0

... · · ·
...

0 · · · 0


(ii)

W̃n =



0 · · · 0

... · · ·
...

0 · · · 0

(W̃n)n−1,n−1 (W̃n)n−1,n

(W̃n)n,n−1 (W̃n)n,n


(iii) for each s = 2, . . . , n− 1,

W̃ s =



0(s−2)p×(s−2)p

(W̃ s)s−1,s−1 (W̃ s)s−1,s 0

(W̃ s)s,s−1 (W̃ s)s,s (W̃ s)s,s+1

0 (W̃ s)s+1,s (W̃ s)s+1,s+1

0 · · · 0

... · · ·
...

0 · · · 0



;

(iv) W =
∑n

s=1 W̃
s.

115

For notational simplicity, let Ŵ s denote the possibly nonzero block in each W̃ s. Specifi-

cally,

Ŵ 1 :=

(W̃ 1)1,1 (W̃ 1)1,2

(W̃ 1)2,1 (W̃ 1)2,2

 ∈ R2p×2p, Ŵn :=

(W̃n)n−1,n−1 (W̃n)n−1,n

(W̃n)n,n−1 (W̃n)n,n

 ∈ R2p×2p,

and for each s = 2, . . . , n− 1,

Ŵ s :=


(W̃ s)s−1,s−1 (W̃ s)s−1,s 0

(W̃ s)s,s−1 (W̃ s)s,s (W̃ s)s,s+1

0 (W̃ s)s+1,s (W̃ s)s+1,s+1

 ∈ R3p×3p.

When W is PD, we also want each Ŵ s in the above decomposition to be PD.

Proposition 3.4.1. Let W be a PSD matrix generated by θi,j ∈ Rn+ for i = 1, . . . , n.

Then there exist PSD matrices W̃ s, s = 1, . . . , n satisfying the above conditions. More-

over, suppose W is PD. Then there exist PD matrices Ŵ s, s = 1, . . . , n such that their

corresponding W̃ s’s satisfy the above conditions.

Proof. Let W be generated by θi,j ’s such that W is PSD, and let Ui’s be defined in (3.14)

corresponding to θi,j ’s. Note that each Ui is PSD as W is PSD. Let

W̃ 1 =



U1 0

0 0

0 · · · 0

... · · ·
...

0 · · · 0


, W̃n =



0 · · · 0

... · · ·
...

0 · · · 0

Un −Un

−Un Un


,

116

and for each s = 2, . . . , n− 1,

W̃ s =



0(s−2)p×(s−2)p

Us −Us 0

−Us Us 0

0 0 0

0 · · · 0

... · · ·
...

0 · · · 0



.

Since each Ui is PSD, so is W̃ s for each s = 1, . . . , n. Clearly, W =
∑n

s=1 W̃
s.

Now suppose W is PD. Hence, each Ui given by (3.14) is PD. Define

W̆ 1 :=
1

2

U1 + U2 −U2

−U2 U2

 , W̆n :=
1

2

 Un −Un

−Un Un

 ,

W̆ 2 :=
1

2


U1 + U2 −U2 0

−U2 U2 + U3 −U3

0 −U3 U3

 ,

and for each s = 3, . . . , n− 1,

W̆ s :=
1

2


Us −Us 0

−Us Us + Us+1 −Us+1

0 −Us+1 Us+1

 ∈ R3p×3p.

117

Note that W̆ 1 = 1
2


U1 0

0 0

+

 U2 −U2

−U2 U2


 and the two matrices on the right hand

side are both PSD and the intersection of their null spaces is the zero subspace. Hence,

W̆ 1 is PD. Similarly, W̆ 2 is PD, and the other W̆ s’s are PSD. Since W̆ 1 is PD, we see that

for an arbitrary δ1 ∈ (0, λmin(W̆ 1)), Ŵ 1 := W̆ 1 − δ1 · I2p is PD. Hence,

Ẁ 2 := W̆ 2 + δ1 ·


Ip

Ip

0

 =
1

2


U1 + U2 + 2δ1 · Ip −U2 0

−U2 U2 + U3 + 2δ1 · Ip −U3

0 −U3 U3



is also PD. Therefore, for an arbitrary δ2 ∈ (0, λmin(Ẁ 2)), the matrix Ŵ 2 := Ẁ 2 − δ2 ·
0

Ip

Ip

 is PD. Further, it is easy to show that the matrix Ẁ 3 := W̆ 3+δ2 ·


Ip

Ip

0



is PD such that for any δ3 ∈ (0, λmin(Ẁ 3)), the matrix Ŵ 3 := Ẁ 3 − δ3 ·


0

Ip

Ip

 is

PD. Continuing this process by induction, we see that Ŵ s is PD for all s = 4, . . . , n − 1

and Ŵn−1 := Ẁn−1 − δn−1 ·


0

Ip

Ip

 is PD for an arbitrary δn−1 ∈ (0, λmin(Ẁn−1)),

where Ẁn−1 is PD. Finally, define Ŵn := W̆n+δn−1 ·I2p, which is clearly PD. Using these

PD Ŵ s, s = 1, . . . , n, we construct W̃ s by setting the possibly nonzero block in each W̃ s

118

as Ŵ s. Specifically,

(W̃ 1)1,1 (W̃ 1)1,2

(W̃ 1)2,1 (W̃ 1)2,2

 = Ŵ 1 ∈ R2p×2p,

(W̃n)n−1,n−1 (W̃n)n−1,n

(W̃n)n,n−1 (W̃n)n,n

 = Ŵn ∈ R2p×2p,

and for each s = 2, . . . , n− 1,


(W̃ s)s−1,s−1 (W̃ s)s−1,s 0

(W̃ s)s,s−1 (W̃ s)s,s (W̃ s)s,s+1

0 (W̃ s)s+1,s (W̃ s)s+1,s+1

 = Ŵ s ∈ R3p×3p.

A straightforward calculation shows that W =
∑n

s=1 W̃
s, yielding the desired result.

To obtain the desired decomposition using the above proposition, we observe that

the matrix V in (3.8) is given by S−TΘS−1 for some matrix Θ of the form given below

(3.13) whose blocks are positive combinations of Qz,s, Qz′,s and Qw,s. Since Qz,s and Qz′,s

are diagonal and PSD and Qw,s are diagonal and PD, each block of Θ is diagonal and PD

or PSD. Moreover, by Lemma 3.3.1, W is PD. Hence, there are uncountably many ways to

construct positive δs, and thus PD Ŵ s, as shown in the above proposition. Therefore, we

obtain the following strongly convex decomposition for the objective function J in (3.7),

where we set the constant γ = 0 without loss of generality:

J(u) =
1

2
uTWu + cTu =

n∑
i=1

1

2
uT W̃ iu +

n∑
i=1

cTIiui

= J1(u1,u2) +

n−1∑
i=2

Ji(ui−1,ui,ui+1) + Jn(un−1,un)

119

where the strongly convex functions Ji are given by

J1(u1,u2) :=
1

2

[
uT1 uT2

]
Ŵ1

u1

u2

+ cTI1u1,

for i = 2, . . . , n− 1

Ji(ui−1,ui,ui+1) :=
1

2

[
uTi−1 uTi uTi+1

]
Ŵi


ui−1

ui

ui+1

+ cTIiui, (3.15)

Jn(un−1,un) :=
1

2

[
uTn−1 uTn

]
Ŵn

un−1

un

+ cTInun.

Remark 3.4.1. The above decomposition method is applicable to any vehicle commu-

nication network satisfying the assumption A.1 in Section 3.2, i.e., (i, i + 1) ∈ E for all

i = 1, . . . , n − 1. Besides, various alternative approaches can be developed to construct

PD matrices Ŵ s using the similar idea given in the above proposition. Further, a similar

decomposition method can be developed for other vehicle communication networks differ-

ent from the the cyclic-like graph. For instance, if such a graph contains edges other than

(i, i+ 1) ∈ E , one can add or subtract certain small terms pertaining to these extra edges

in relevant matrices, which will preserve the desired PD property.

In what follows, we write each Ji as Ji(ui, (uj)j∈Ni) for notational convenience,

where Ni denotes the set of neighbors of vehicle i in a vehicle network such that i−1, i+1 ∈

Ni for i = 2, . . . , n− 1 and 2 ∈ N1, n− 1 ∈ Nn.

120

3.4.2 Operator Splitting Method based Fully Distributed Algorithms

For illustration simplicity, we consider the cyclic like network topology through

this subsection, although the proposed schemes can be easily extended to other network

topologies under a suitable assumption (cf. Remark 3.4.1). In this case, N1 = {2},

Nn = {n− 1}, and Ni = {i− 1, i+ 1} for i = 2, . . . , n− 1.

Define the constraint set

P := {u = (u1, . . . ,un) ∈ Rnp |ui ∈ Xi, u ∈ Zi, i = 1, . . . , n}.

Recall that P is defined by convex quadratic functions. The underlying optimization

problem (3.7) at time k becomes minu J(u) subject to u ∈ P.

We formulate this problem as a locally coupled convex optimization problem [26]

and solve it using fully distributed algorithms. Specifically, in view of the decompositions

given by (3.15), the objective function in (3.7) can be written as

J(u) =
n∑
i=1

Ji(ui, (uj)j∈Ni),

In view of Remark 3.3.2, the safety constraints are also locally coupled. Let IS denote the

indicator function of a (closed convex) set S. Define, for each i = 1, . . . , n,

Ĵi(ui, (uj)j∈Ni) := Ji(ui, (uj)j∈Ni) + IXi(ui) + IZi(ui−1,ui).

As in [26], define ûi :=
(
ui, (ui,j)j∈Ni

)
, where the new variables ui,j represent the predicted

values of uj of vehicle j in the neighbor of vehicle i, and let û := (ûi)i=1,...,n ∈ R`. Define

121

the consensus subspace

A := {û |ui,j = uj , ∀ (i, j) ∈ E}.

Then the underlying optimization problem (3.7) can be equivalently written as

min
û

n∑
i=1

Ĵi(ûi), subject to û ∈ A.

Let Pi := {ûi |ui ∈ Xi, (Hi(ui,i−1,ui))s ≤ 0, ∀ s = 1, . . . , p} for notational simplicity.

Then the underlying optimization problem becomes

min
û

F (û) :=

n∑
i=1

Ji(ûi) +

n∑
i=1

IPi(ûi) + IA(û), (3.16)

where F : R` → R∪{+∞} denotes the extended-valued objective function. Thus F is the

sum of two indictor functions of closed convex sets and the convex quadratic function given

by J(û) :=
∑n

i=1 Ji(ûi), by slightly abusing the notation. Note that A is polyhedral. It is

easy to show via Corollary 3.3.1 that the Slater’s condition holds under the mild assump-

tions given in Corollary 3.3.1, e.g., v0(k) > vmin for all k ∈ Z+. Hence, by [60, Corollary

23.8.1], ∂F (û) =
∑n

i=1

(
∇Ji(ûi) +NPi(ûi)

)
+NA(û) in light of ∂IC(x) = NC(x), where

NC(x) denotes the normal cone of a closed convex set C at x ∈ C. Finally, the formula-

tion given by (3.16) is a locally coupled convex optimization problem; see Section 1.2.1.

This formulation allows one to develop fully distributed schemes. Particularly, in fully

distributed computation, each vehicle i only knows ûi and Ĵi (i.e., Ji and Pi) but does not

know ûj and Ĵj with j 6= i. Each vehicle i will exchange information with its neighboring

vehicles to update ûi via a distributed scheme.

122

Algorithm 9 Generalized Douglas-Rachford Splitting Method based Fully Distributed
Algorithm

1: Choose constants 0 < α < 1 and ρ > 0
2: Initialize k = 0, and choose an initial point z0

3: while the stopping criteria is not met do
4: for i = 1, . . . , n do
5: Compute zki using equation (3.17), and let wk+1

i ← zki
6: end for
7: for i = 1, . . . , n do

8: zk+1
i ← zki + 2α ·

[
Prox

ρĴi

(
2wk+1

i − zki
)
− wk+1

i

]
9: end for

10: k ← k + 1
11: end while
12: return û∗ = wk

We introduce more notation first. For a proper, lower semicontinuous convex func-

tion f : Rn → R ∪ {+∞}, let Proxf (·) denote the proximal operator, i.e., for any given

x ∈ Rn,

Proxf (x) := arg min
z∈Rn

f(z) +
1

2
‖z − x‖22.

Further, ΠC denotes the Euclidean projection onto a closed convex set C. Using this

notation, we present a specific operator splitting method based distributed scheme for

solving (3.16). By grouping the first two sums (with separable variables) in the objective

function of (3.16), we apply the generalized Douglas-Rachford splitting algorithm [26].

Recall that Ĵi(ûi) := Ji(ûi) + IPi(ûi) for each i = 1, . . . , n. For any constants α and ρ

satisfying 0 < α < 1 and ρ > 0, this algorithm is given by:

wk+1 = ΠA(zk), zk+1 = zk + 2α ·
[
Prox

ρĴ1+···+ρĴn

(
2wk+1 − zk

)
− wk+1

]
.

It is shown in [15], [26] that the sequence (wk) converges to the unique minimizer û∗ of

the optimization problem (3.16). In the above scheme, ΠA is the orthogonal projection

onto the consensus subspace A such that the following holds: for any û := (û1, . . . , ûn)

123

where ûi :=
(
ui, (uij)j∈Ni

)
, u := ΠA(û) is given by [26, Section IV]:

uj = uij =
1

1 + |Nj |

(
ûj +

∑
k∈Nj

ûkj

)
, ∀ (i, j) ∈ E . (3.17)

Furthermore, due to the decoupled structure of Ĵi’s, we obtain the distributed version of

the above algorithm, which is also summarized in Algorithm 9:

wk+1
i = zki , i = 1, . . . , n; (3.18a)

zk+1
i = zki + 2α ·

[
Prox

ρĴi

(
2wk+1

i − zki
)
− wk+1

i

]
, i = 1, . . . , n. (3.18b)

In the distributed scheme (3.18), the first step (or Line 5 of Algorithms 9) is a

consensus step, and the consensus computation is carried out in a fully distributed and

synchronous manner as indicated in [26, Section IV]. The second step in (3.18) (or Line

8 of Algorithms 9) does not need inter-agent communication [26] and is performed using

local computation only. For effective computation in the second step, recall that Ĵi(ûi) :=

Ji(ûi)+IPi(ûi) for each i = 1, . . . , n such that the proximal operator Prox
ρĴi

(ûi) becomes

Prox
ρĴi

(ûi) = arg min
z∈Pi

Ji(z) +
1

2ρ
‖z − ûi‖22.

Since Pi is the intersection of a polyhedral set and a quadratically constrained convex set

and Ji is a quadratic convex function, Prox
ρĴi

(ûi) is formulated as a QCQP and can be

solved via a second order cone program [1] or a semidefinite program. Efficient numerical

packages, e.g., SeDuMi [75], can be used for solving the QCQP with high accuracy. Lastly,

a typical (global) stopping criterion in the scheme (3.18) (or Algorithm 9) is defined

by the error tolerance of two neighboring zk’s, i.e., ‖zk+1 − zk‖2 ≤ ε, where ε > 0

124

is an error tolerance. For distributed computation, one can use its local version, i.e.,

‖zk+1
i − zki ‖2 ≤ ε/n, as a stopping criterion for each vehicle.

Remark 3.4.2. Other distributed algorithms can be used to solve the underlying opti-

mization problem (3.16). For example, the three operator splitting method based schemes

developed in [15] can be applied. To describe such schemes, let L̂ := maxi=1,...,n ‖Ŵ i‖2 > 0.

Note that the Hessian HJ(û) = diag(Ŵ i)i=1,...,n. Hence, ∇J is L̂-Lipschitz continuous

and thus 1/L̂-cocoercive. Further, the two indicator functions are proper, closed, and

convex functions. Choose the constants γ, λ such that 0 < γ < 2/L̂ and 0 < λ < 2− γL̂
2 .

Then for any initial condition z0, the iterative scheme is given by [15, Algorithm 1]:

wk+1 = ΠA(zk), zk+1 = zk + λ ·
[
ΠP1×···×Pn

(
2wk+1 − zk − γ∇J(wk+1)

)
− wk+1

]
.

In view of the similar discussions for consensus computation and decoupled structure of

the projection ΠP1×···×Pn , we obtain the distributed version of the above algorithm:

wk+1
i = zki , i = 1, . . . , n;

zk+1
i = zki + λ ·

[
ΠPi

(
2wk+1

i − zki − γ · [Ŵ iwk+1
i + cIi]

)
− wk+1

i

]
, i = 1, . . . , n.

In this scheme, the Euclidean projection ΠPi can be formulated as a QCQP or a second

order cone program and solved via SeDuMi.

When each Ŵ i is PD, each Ji is strongly convex. Thus ∇J is µ-strongly monotone

with µ = mini=1,...,n λmin(Ŵ i), i.e., (x−y)T (∇J(x)−∇J(y)) ≥ µ‖x−y‖22,∀x, y. Since the

subdifferential of the indicator function of a closed convex set is monotone, an accelerated

scheme developed in [15, Algorithm 2] can be exploited. In particular, let η be a constant

with 0 < η < 1, and γ0 ∈ (0, 2/(L̂ · (1 − η)). Set the initial points for an arbitrary z0,

125

w0 = ΠA(z0) and v0 = (z0 − w0)/γ0. The distributed version of this scheme is given by:

wk+1
i = zki + γkv

k
i , i = 1, . . . , n;

vk+1
i =

1

γk

(
zki + γkv

k
i − wk+1

i

)
, i = 1, . . . , n;

γk+1 = −µ̃γ2
k +

√
(µ̃γ2

k)2 + γ2
k ;

zk+1
i = ΠPi

(
wk+1
i − γk+1v

k+1
i − γk+1[Ŵ iwk+1

i + cIi]
)
, i = 1, . . . , n,

where µ̃ := η · µ. It is shown in [15, Theorem 1.2] that (wk) converges to the unique

minimizer û∗ with ‖wk − û∗‖2 = O(1/(k+ 1)). However, our numerical results show that

Algorithm 9 outperforms the three operator splitting method based schemes in term of

real-time computation when p ≥ 3; see Section 3.6.2 for comparison and details.

Remark 3.4.3. The proposed MPC formulation, decomposition method, and fully dis-

tributed schemes can be extended to non-constant spacing car following policies, for exam-

ple, the time-headway spacing policy. This policy is given by ∆i(k) = d0 + vi(k) ·h, ∀ k ∈

Z+ for the ith vehicle, where d0 > 0 is a constant, and h > 0 is the constant time-headway.

In this case, it can be shown that zi(k + 1) = zi(k) + τz′i(k) + τ2

2 wi(k) − τh · ui(k) and

z′i(k+ 1) = z′i(k) + τwi(k) for each i. Therefore, for each s = 1, . . . , p, (zi(k+ s), z′i(k+ s))

depends on ui(k), . . . , ui(k+s−1) and ui−1(k), . . . , ui−1(k+s−1) only such that its MPC

formulation also leads to a locally coupled QCQP, to which the proposed fully distributed

schemes are applicable.

3.5 Control Design and Stability Analysis of the Closed Loop Dynamics

In this section, we discuss how to choose the weight matrices Qz,s, Qz′,s and Qw,s

to achieve the desired closed loop performance, including stability and traffic transient

126

dynamics. For the similar reasons given in [22, Section 5], we focus on the constraint free

case.

Under the linear vehicle dynamics, the closed-loop system is also a linear system.

Specifically, the linear closed-loop dynamics are given by

z(k + 1) = z(k) + τz′(k) +
τ2

2
w(k), z′(k + 1) = z′(k) + τw(k), (3.19)

where w(k) is a unique solution to an unconstrained optimization problem arising from

the MPC and is a linear function of z(k) and z′(k) to be determined as follows.

Case (i): p = 1. In this case, we write Qz,1, Qz′,1, Qw,1 as Qz, Qz′ , Qw respectively. Then

the objective function becomes

J(w(k)) =
1

2

[
zT (k + 1)Qz, z(k + 1) + (z′(k + 1))TQz′z

′(k + 1)
]

+
τ2

2
w̃T (k)Qww̃(k),

where we recall that w̃(k) = w(k)− u0(k)e1. It follows from the similar argument in [22,

Section 5] that the the closed-loop system is given by the following linear system:

z(k + 1)

z′(k + 1)

 =

[
Ac

]z(k)

z′(k)

+

 τ
2

2 In

τIn

 ŴQwe1 · u0(k), (3.20)

where Ac is the closed loop dynamics matrix given below, and

Ac :=

In − τ2

4 ŴQz τIn − Ŵ
(
τ3

4 Qz + τ
2Qz′

)
− τ

2ŴQz In − Ŵ
(
τ2

2 Qz +Qz′
)
 ; Ŵ :=

[
τ2Qz

4
+Qz′ +Qw

]−1

.

(3.21)

127

The matrix Ac in (3.20) plays an important role in the closed loop stability and

desired transient dynamical performance. Since Qz, Qz′ and Qw are all diagonal and PSD

(resp. PD), we have Qz = diag(α), Qz′ = diag(β), and Qw = diag(ζ), where α,β ∈ Rn+

and ζ ∈ Rn++ with α = (αi)
n
i=1, β = (βi)

n
i=1, and ζ = (ζi)

n
i=1. Hence, we write the matrix

Ac as Ac(α,β, ζ, τ) to emphasize its dependence on these parameters. The following

result asserts asymptotic stability of the linear closed-loop dynamics; its proof resembles

that for [22, Proposition 5.1] and is thus omitted.

Proposition 3.5.1. Given any τ ∈ R++ and any α,β, ζ ∈ Rn++, the matrix Ac(α,β, ζ, τ)

is Schur stable, i.e., each eigenvalue µ ∈ C of Ac(α,β, ζ, τ) satisfies |µ| < 1. Moreover,

for any eigenvalue µi of Ac, the following hold:

(1) if µi is non-real, then |µi|2 = ζi
di

, where di := αiτ
2

4 + βi + ζi;

(2) if µi is real, then 1− (αiτ
2

2 + βi)
1
di
< µi < 1− αiτ

2

4di
.

Case (ii): p > 1. Fix k. For a general p ∈ N, let w := (w(k), . . . , w(k + p − 1)) ∈ Rnp.

Recall that for each s = 1, . . . , p,

z(k+s) = z(k)+sτz′(k)+τ2
s−1∑
j=0

2(s− j)− 1

2
w(k+j), z′(k+s) = z′(k)+τ

s−1∑
j=0

w(k+j),

and with slightly abusing notation, the objective function is

J(w(k), . . . , w(k + p− 1)︸ ︷︷ ︸
w

) =
1

2

p∑
s=1

(
τ2w̃T (k + s− 1)Qw,sw̃(k + s− 1)

+ zT (k + s)Qz,sz(k + s) + (z′(k + s))TQz′,sz
′(k + s)

)
,

128

where w̃(k + s) := w(k + s) − u0(k) · e1 introduced in Remark 3.3.1. It follows from the

similar development in Section 3.3.1 that

J(w) =
1

2
wTHw + wT

G

z(k)

z′(k)

− u0(k)g

+ γ̃,

where γ̃ is a constant. By a similar argument as in Lemma 3.3.1, it can be shown that

H ∈ Rpn×pn is a symmetric PD matrix. Further, it resembles the matrix V in (3.8) (by

replacing S−1
n with In), i.e.,

H =



H̆1,1 + τ2Qw,1 H̆1,2 H̆1,3 · · · · · · H̆1,p

H̆2,1 H̆2,2 + τ2Qw,2 H̆2,3 · · · · · · H̆2,p

· · · · · · · · ·

· · · · · · · · ·

H̆p,1 H̆p,2 H̆p,3 · · · · · · H̆p,p + τ2Qw,p


∈ Rnp×np,

(3.22)

where H̆i,j ’s are diagonal PD matrices given by

H̆i,j :=

p∑
s=max(i,j)

(τ4

4
[2(s− i) + 1] · [2(s− j) + 1]Qz,s + τ2Qz′,s

)
∈ Rn×n.

Moreover, it follows from (3.10) and (3.11) that the matrix G and constant vector g are

G :=


G1,1 G1,2

...
...

Gp,1 Gp,2

 ∈ Rpn×2n, g := τ2


Qw,1e1

...

Qw,pe1

 ∈ Rpn.

129

where Gi,1,Gi,2 ∈ Rn×n are given by: for each i = 1, . . . , p,

Gi,1 = τ2
p∑
s=i

2(s− i) + 1

2
Qz,s, Gi,2 = τ3

p∑
s=i

s
2(s− i) + 1

2
Qz,s + τ

p∑
s=i

Qz′,s.

Hence, the optimal solution is w∗ = (w∗(k), w∗(k + 1), . . . , w∗(k + p− 1)) =

−H−1
(
G

z(k)

z′(k)

−u0(k)g
)

, and w∗(k) = −
[
In 0 · · · 0

]
H−1

(
G

z(k)

z′(k)

−u0(k)g
)

.

Define the matrix K and the vector d as

K := −
[
In 0 · · · 0

]
H−1G ∈ Rn×2n, d :=

[
In 0 · · · 0

]
H−1g ∈ Rn. (3.23)

The closed loop system becomes

z(k + 1)

z′(k + 1)

 =


In τIn

0 In

+

 τ
2

2 In

τIn

K

︸ ︷︷ ︸
Ac

z(k)

z′(k)

+

 τ
2

2 In

τIn

u0(k) · d, (3.24)

where Ac is the closed loop dynamics matrix, and the subscript of Ac represents the closed

loop.

Since Qz,s, Qz′,s are diagonal PSD and Qw,s are diagonal PD for all s = 1, . . . , p, we

write them as Qz,s = diag(αs), Qz′,s = diag(βs), and Qw,s = diag(ζs), where αs,βs ∈ Rn+

and ζs ∈ Rn++ for all s = 1, . . . , p with αs = (αsi)
n
i=1, βs = (βsi)

n
i=1, and ζs = (ζsi)ni=1 for

each s. Let α := (α1, . . . ,αp), β := (β1, . . . ,βp), and ζ := (ζ1, . . . , ζp). We write the

matrix Ac as Ac(α,β, ζ, τ) to emphasize its dependence on these parameters.

It can be shown that there exists a permutation matrix Ê ∈ R2n×2n such that

Ã := ÊTAcÊ is a block diagonal matrix, i.e., Ã = diag(Ã1, Ã2, . . . , Ãn) whose each block

130

Ãi ∈ R2×2 is given by

Ãi =

1 τ

0 1

+

 τ
2

2

τ

 K̃i, ∀ i = 1, . . . , n.

Here for each i = 1, . . . , n, K̃i := −eT1 H̃−1
i G̃i ∈ R1×2, where H̃i ∈ Rp×p is given as:

H̃i :=



(H̆1,1 + τ2Qw,1)i,i (H̆1,2)i,i (H̆1,3)i,i · · · · · · (H̆1,p)i,i

(H̆2,1)i,i (H̆2,2 + τ2Qw,2)i,i (H̆2,3)i,i · · · · · · (H̆2,p)i,i

· · · · · · · · ·

· · · · · · · · ·

(H̆p,1)i,i (H̆p,2)i,i (H̆p,3)i,i · · · · · · (H̆p,p + τ2Qw,p)i,i


,

and

G̃i :=


(G1,1)i,i (G1,2)i,i

...
...

(Gp,1)i,i (Gp,2)i,i

 ∈ Rp×2.

Note that H̃ = diag(H̃1, H̃2, . . . , H̃n) = ETHE for the permutation matrix E ∈ Rpn×pn

given by (3.9). Since H is PD, so are all the H̃i’s.

As examples, we give the closed form expressions of H̃i and G̃i for some small p’s.

When p = 1, H̃i = τ2
(
τ2

4 α
1
i +β1

i +ζ1
i

)
and G̃i =

[
τ2

2 α
1
i

τ3

2 α
1
i + τβ1

i

]
for each i = 1, . . . , s.

When p = 2, we have, for each i = 1, . . . , n,

H̃i = τ2

 τ
2

4 α
1
i + 9τ2

4 α2
i + β1

i + β2
i + ζ1

i
3τ2

4 α2
i + β2

i

3τ2

4 α2
i + β2

i
τ2

4 α
2
i + β2

i + ζ2
i

 ∈ R2×2,

131

and

G̃i =

τ2 α
1
i+3α2

i
2

τ3

2 α
1
i + 3τ3α2

i + τ(β1
i + β2

i)

τ2

2 α
2
i τ3α2

i + τβ2
i

 ∈ R2×2.

Lemma 3.5.1. Let p = 2. For any τ > 0, (α1
i , β

1
i , ζ

1
i) > 0 and 0 6= (α2

i , β
2
i , ζ

2
i) ≥ 0 for

each i = 1, . . . , n, Ac(α,β, ζ, τ) is Schur stable, i.e., its spectral radius is strictly less than

1.

Proof. By the previous argument, it suffices to show that each Ãi is Schur stable for

i = 1, . . . , n. Fix an arbitrary i. Letting K̃i =

[
c1 c2

]
, we have

Ãi =

1 + τ2

2 c1 τ + τ2

2 c2

τc1 1 + τc2

 ,

where

c1 = −d2α
1
i + α2

i (2β
2
i + 3ζ2

i)

2d′
, c2 = −

d2(τ
2

2 α
1
i + β1

i) + 3τ2

2 α2
i β

2
i + ζ2

i (3τ2α2
i + β2

i)

τd′
,

and d′ := det(H̃i)/τ
4, and ds = τ2

4 α
s
i + βsi + ζsi for s = 1, 2. Hence, d′ = d1d2 + τ2α2

i (β
2
i +

9
4ζ

2
i) + β2

i ζ
2
i . Define

α′ := d2α
1
i + α2

i (2β
2
i + 3ζ2

i), β′ := d2β
1
i +

τ2

2
α2
i β

2
i + ζ2

i

(3

2
τ2α2

i + β2
i

)
, γ′ := d2ζ

1
i .

Clearly, α′, β′, γ′ are all positive for any τ > 0, (α1
i , β

1
i , ζ

1
i) > 0 and 0 6= (α2

i , β
2
i , ζ

2
i) ≥ 0.

Moreover, we deduce from a somewhat lengthy but straightforward calculation that d′ =

τ2

4 α
′ + β′ + γ′ > 0. Hence, c1 = − α′

2d′ , c2 = − τ2α′/2+β′

τd′ , and

132

Ãi =

1− α′τ2

4d′ τ
(

1−
(
α′τ2

4 + β′

2

)
1
d′

)
−α′τ

2d′ 1−
(
α′τ2

2 + β′
)

1
d′

 ∈ R2×2. It follows from [22, Proposition

5.1] that Ãi is Schur stable, and so is Ac(α,β, ζ, τ).

Using a similar technique but more lengthy calculations, it can be shown that when

p = 3, the matrix A(α,β, ζ, τ) is Schur stable for τ > 0, (α1
i , β

1
i , ζ

1
i) > 0, 0 6= (α2

i , β
2
i , ζ

2
i) ≥

0 and 0 6= (α3
i , β

3
i , ζ

3
i) ≥ 0 for each i = 1, . . . , n. For p > 4, we expect that the same

result holds (supported by numerical experience) although its proof becomes much more

complicated. Nevertheless, it is observed that in the p-horizon MPC, when the parameters

αsi , β
s
i (and possibly including ζsi) with s ≥ 3 are medium or large, large control inputs are

generated, which causes control or speed saturation and may lead to undesired close-loop

dynamics. Motivated by this observation, we obtain the following stability result for small

(αsi , β
s
i) ≥ 0 for s = 3, . . . , p.

Proposition 3.5.2. Let p ≥ 3. For any τ > 0, (α1
i , β

1
i , ζ

1
i) > 0 and 0 6= (α2

i , β
2
i , ζ

2
i) ≥ 0

for each i = 1, . . . , n, and ζsi > 0 for s = 3, . . . , p and i = 1, . . . , n, there exists a positive

constant ε such that for any αsi , β
s
i ∈ [0, ε) for s = 3, . . . , p and i = 1, . . . , n, Ac(α,β, ζ, τ)

is Schur stable.

Proof. Consider p ≥ 3. Fix arbitrary τ > 0, (α1
i , β

1
i , ζ

1
i) > 0, and 0 6= (α2

i , β
2
i , ζ

2
i) ≥ 0 for

each i = 1, . . . , n and ζsi > 0 for s = 3, . . . , p and i = 1, . . . , n. Suppose αsi = βsi = 0 for

all s = 3, . . . , p and i = 1, . . . , n. Then Qz,s = Qz′,s = 0 for all s ≥ 3. Hence, Hi,j = 0 for

133

all i ≥ 3 and any j. Thus it is easy to show that for each i = 1, . . . , n,

H̃i =



H̃2
i

τ2ζ3
i

. . .

τ2ζpi


∈ Rp×p, G̃i =



G̃2
i

0

...

0


∈ Rp×2,

where H̃2
i ∈ R2×2 and G̃2

i ∈ R2×2 correspond to p = 2 given before. Hence, K̃i :=

−eT1 H̃−1
i G̃i = −eT1 (H̃2

i)
−1G̃2

i . It follows from Lemma 3.5.1 that Ac(α,β, ζ, τ) is Schur

stable, i.e., spectral radius is strictly less than 1. Since the spectral radius of Ac(α,β, ζ, τ)

is continuous in αsi , β
s
i for all s = 3, . . . , p and i = 1, . . . , n, a small perturbation to αsi , β

s
i

for all s = 3, . . . , p and i = 1, . . . , n still leads to the Schur stable matrix Ac. This yields

the desired result.

Based on the above results, one may choose Qz,s, Qz′,s, Qw,s in the following way.

Let us, vs ∈ Rn+ and ws ∈ Rn++ be positive or nonnegative vectors of the same order.

Let η > 1 (e.g., η = 5 or higher) be a constant and let κz, κz′ and κw be some positive

constants. Then for s = 2, . . . , p, let

Qz,s =
κz

(s− 1)η
diag(us), Qz′,s =

κz′

(s− 1)η
diag(vs), Qw,s =

κw
(s− 1)η

diag(ws)

For a given MPC horizon p ∈ N, suppose that the closed loop dynamic matrix

Ac(α,β, ζ, τ) is Schur stable. Since the acceleration of the leading vehicle is bounded,

i.e., amin ≤ u0(k) ≤ amax for all k ∈ Z+, the closed loop dynamics given by (3.20) or

(3.24) is bounded-input-bounded-output stable. Particularly, if u0(k) → 0 as k → ∞,

then (z(k), z′(k))→ 0 as k →∞.

134

3.6 Numerical Results

3.6.1 Numerical Experiments and Weight Matrices Design

We conduct numerical tests to evaluate the performance of the proposed fully dis-

tributed schemes and the CAV platooning control. In these tests, we consider a platoon of

an uncontrolled leading vehicle labeled by the index 0 and ten (i.e., n = 10) CAVs follow-

ing the leading vehicle. The following physical parameters are used for the CAVs and their

constraints throughout this section unless otherwise stated: the desired spacing ∆ = 50m,

the vehicle length L = 5m, the sample time τ = 1s, the reaction time r = τ = 1s,

the acceleration and deceleration limits amax = 1.35m/s2 and amin = −8m/s2, and the

speed limits vmax = 27.78m/s and vmin = 10m/s. The initial state of the platoon is

z(0) = z′(0) = 0 and vi(0) = 25m/s for all i = 0, 1, . . . , n. Further, the vehicle communi-

cation network is given by the cyclic-like graph, i.e., the bidirectional edges of the graph

are (1, 2), (2, 3), . . . , (n− 1, n) ∈ E .

When n = 10, a particular choice of these weight matrices is given as follows: for

p = 1,

α1 =
(
38.85, 40.2, 41.55, 42.90, 44.25, 45.60, 46.95, 48.30, 49.65, 51.00

)
:= α̃,

β1 =
(
130.61, 136.21, 141.82, 147.42, 153.03, 158.64, 164.24, 169.85, 175.46, 181.06

)
:= β̃,

ζ1 =
(
62, 74, 90, 92, 106, 194, 298, 402, 454, 480

)
:= ζ̃.

For p ≥ 2, we choose α1 = α̃− 1, β1 = β̃ − 1, ζ1 = ζ̃ − 1, and

αs =
0.0228

(s− 1)4
× α̃, βs =

0.044

(s− 1)4
× β̃, ζs =

0.0026

(s− 1)4
× ζ̃, s = 2, . . . , p.

135

The above vectors αs,βs, ζs define the weight matrices Qz,s, Qz′,s, Qw,s for s = 1, . . . , 5,

which further yield the closed loop dynamics matrix Ac; see the discussions below (3.23).

It is shown that when these weights are used, the spectral radius of Ac is 0.8498 for p = 1,

and 0.8376 for p = 2, . . . , 5, respectively.

Discussion on the selection of MPC horizon. We discuss the choice of the MPC

prediction horizon p based on numerical tests as follows. Our numerical experience shows

that for p > 1, the weight matrices Qz,1, Qz′,1 and Qw,1 play a more important role for the

closed loop dynamics. For fixed Qz,1, Qz′,1 and Qw,1 with the large penalties in Qz,s, Qz′,s

and Qw,s for s > 1, the closed loop dynamics may be mildly improved but at the expense

of undesired large control. Hence, we choose smaller penalties in Qz,s, Qz′,s and Qw,s for

s > 1, which only lead to slightly better closed loop performance compared with the case

of p = 1. Further, when a large p is used, the underlying optimization problem has a larger

size, resulting in longer computation time and slow convergence of the proposed distributed

scheme. Besides, the current MPC model assumes that the future u0(k + s) = u0(k) for

all s = 1, . . . , p − 1 at each k. This assumption is invalid when the true u0(k + s) is

substantially different from u0(k), which implies that the prediction performance is poor

for a large p. Hence, it is recommended that a smaller p be used, for example, p ≤ 5.

The following scenarios are used to evaluate the proposed CAV platooning control.

• Scenario 1. The leading vehicle performs instantaneous deceleration/acceleration and

then keeps a constant speed for a while. The goal of this scenario is to test if the platoon

can maintain stable spacing and speed when the leading vehicle is subject to acceleration

or deceleration disturbances. The motion profile of the leading vehicle is as follows: the

leading vehicle decelerates from k = 51s to k = 54s with the deceleration −2m/s2, and

136

maintains a constant speed till k = 100s. After k = 100s, it restores to its original speed

25m/s with the acceleration 1m/s2.

• Scenario 2. The leading vehicle performs periodical acceleration/deceleration. The

goal of this scenario is to test whether the proposed control scheme can reduce periodical

spacing and speed fluctuation. The motion profile of the leading vehicle in this scenario is

as follows: the leading vehicle periodically changes its acceleration and deceleration from

k = 51s to k = 100s with the period T = 4s and acceleration/deceleration ±1m/s2. Then

it maintains its original constant speed 25m/s after k = 100s.

• Scenario 3. In this scenario, we aim to test the performance of the proposed control

scheme in a real traffic environment, particularly when the leading vehicle undergoes traffic

oscillations. We use real world trajectory data from an oscillating traffic flow to generate

the leading vehicle’s motion profile. Specifically, we consider NGSIM data on eastbound

I-80 in San Francisco Bay area in California. We use the data of position and speed

of a real vehicle to generate its control input at each second and treat this vehicle as a

leading vehicle. Since the maximum of acceleration of this vehicle is close to 2m/s2, we

choose amax = 2m/s2. All the other parameters or physical limits remain the same. The

experiment setup of this scenario is: zi(0) = 0m, vi(0) = 25m/s for each i, and the time

length is 45s. To further test the proposed CAV platooning control in a more realistic

traffic setting in Scenario 3, random noise is added to each CAV to simulate dynamical

disturbances, model mismatch, signal noise, communication delay, and road condition

perturbations. In particular, at each k, the random noise with the normal distribution

N (0.04, 0) is added to the first CAV, and the noise with the normal distribution N (0.02, 0)

is added to each of the rest of the CAVs. Here a larger noise is imposed to the first CAV

137

Table 3.1: Parameters in Algorithm 9 for different MPC horizon p’s

MPC horizon p = 1 p = 2 p = 3 p = 4 p = 5

α 0.95 0.95 0.95 0.8 0.8

ρ 0.3 0.3 0.3 0.1 0.1

Error tolerance 10−3 2× 10−3 5× 10−3 7× 10−3 1.25× 10−2

since there are more noises and disturbances between the leading vehicle and the first

CAV.

3.6.2 Performance of Fully Distributed Schemes and CAV Platooning Control

The generalized Douglas-Rachford splitting method based distributed algorithm

(i.e., Algorithm 9) is tested. For each MPC horizon p, the parameters α, ρ, and the

error tolerance for the stopping criteria in this algorithm are chosen to achieve desired

numerical accuracy and efficiency; see the discussions below (3.18) for error tolerances

and Table 3.1 for a list of these parameters and error tolerances. In particular, we choose

a larger error tolerance for a larger p to meet the desired computation time requirement

of one second per vehicle. For comparison, we also test the three operator splitting based

distributed scheme and its accelerated version given in Remark 3.4.2, where we choose

δi = λmin(Ẁ i)/2, γ = 1.9/L̂ and λ = 1.05. Here L̂ is the Lipschitz constant defined in

Remark 3.4.2. For the accelerated scheme, we let η = 0.2 and γ0 = 1.9/(0.8× L̂).

Initial guess warm-up. For a given p, the augmented locally coupled optimization

problem (3.16) has nearly 3np scalar variables and 3np scalar constraints when the cyclic-

like network topology is considered. These sizes can be even larger for other network

topologies satisfying the assumption A1. Hence, when p is large, the underlying opti-

mization problem is of large size, which may affect the numerical performance of the

138

distributed schemes. Several techniques are developed to improve the efficiency of the

proposed Douglas-Rachford distributed schemes for real-time computation, particularly

for a large p. For illustration, we discuss the initial guess warm-up technique as fol-

lows. When implementing the proposed scheme, we often choose a numerical solution

obtained from the last step as an initial guess for the current step and run the proposed

Douglas-Rachford scheme. Such the choice of an initial guess usually works well when

two neighboring control solutions are relatively close. However, it is observed that the

convergence of the proposed distributed scheme is sensitive to an initial guess, especially

when the CAV platoon is subject to significant traffic oscillations, which results in highly

different control solutions between two neighboring instants. In this case, using a neigh-

boring control solution as an initial guess leads to rather slow convergence. To solve this

problem, we propose an initial guess warm-up technique, motivated by the fact that con-

trol solutions are usually unconstrained for most of k’s. Specifically, we first compute an

unconstrained solution in a fully distributed manner, which can be realized by setting Pi

as the Euclidean space in Algorithm 9. This step can be efficiently computed since the

proximal operator is formulated by an unconstrained quadratic program and has a closed

form solution. In fact, letting Ji(ûi) = 1
2 ûTi Ŵiûi + cTIiûi, the closed form solution to the

proximal operator is given by ProxρJi(û
′
i) = −(ρŴi + I)−1(ρcIi − û′i), where Ŵi is PD.

We then project this unconstrained solution onto the constrained set in one step. Due to

the decoupled structure of the problem (3.16), this one-step projection can be computed

in a fully distributed manner. We thus use this projected solution as an initial guess for

the Douglas-Rachford scheme. Numerical experience shows that this new initial guess

significantly improves computation time and solution quality when p is large.

139

Table 3.2: Scenario 1: computation time and numerical accuracy

MPC horizon
Computation time per CAV (s) Relative numer. error

Mean Variance Mean Variance

p = 1 0.0248 0.0017 3.4× 10−4 1.9× 10−7

p = 2 0.0603 0.0034 1.5× 10−3 2.6× 10−6

p = 3 0.1596 0.0764 3.2× 10−3 1.1× 10−5

p = 4 0.1528 0.1500 4.0× 10−3 1.7× 10−5

p = 5 0.2365 0.2830 6.6× 10−3 5.7× 10−5

Table 3.3: Scenario 2: computation time and numerical accuracy

MPC horizon
Computation time per CAV (s) Relative numer. error

Mean Variance Mean Variance

p = 1 0.0464 0.0039 4.0× 10−4 1.9× 10−7

p = 2 0.1086 0.0153 1.1× 10−3 1.4× 10−6

p = 3 0.3296 0.2593 3.2× 10−3 1.13× 10−5

p = 4 0.5049 0.6257 5.9× 10−3 4.6× 10−5

p = 5 0.5784 0.7981 1.13× 10−2 1.3× 10−5

Table 3.4: Scenario 3: computation time and numerical accuracy

MPC horizon
Computation time per CAV (s) Relative numer. error

Mean Variance Mean Variance

p = 1 0.0825 0.0023 1.30× 10−3 3.5× 10−6

p = 2 0.2011 0.0051 7.5× 10−3 1.6× 10−4

p = 3 0.5830 0.3462 1.20× 10−2 4.2× 10−4

p = 4 0.8904 0.4685 1.69× 10−2 3.3× 10−4

p = 5 0.9967 0.7467 3.25× 10−2 1.3× 10−4

140

Table 3.5: Scenario 3: computation time and numerical accuracy with initial guess warm-
up

MPC horizon
Computation time per CAV (s) Relative numer. error

Mean Variance Mean Variance

p = 1 0.0243 0.0023 5.0× 10−4 7.0× 10−7

p = 2 0.0097 0.0017 2.6× 10−3 1.6× 10−5

p = 3 0.0579 0.0253 2.2× 10−3 1.1× 10−5

p = 4 0.1063 0.1103 3.7× 10−3 2.4× 10−5

p = 5 0.1258 0.1155 8.5× 10−3 1.5× 10−5

Performance of distributed schemes. Distributed algorithms are implemented on

MATLAB and run on a computer of the following processor with 4 cores: Intel(R)

Core(TM) i7-8550U CPU @ 1.80GHz and RAM: 16.0GB. We test the fully distributed

Algorithm 9 for Scenarios 1-3. At each k ∈ N, we use the optimal solution obtained

from the last step as an initial guess unless otherwise stated. To evaluate the numerical

accuracy of the proposed distributed scheme, we compute the relative error between the

numerical solution from the distributed scheme and that from a high precision centralized

scheme when the latter solution, labeled as the true solution, is nonzero. The mean and

variance of computation time per vehicle and relative errors for different MPC horizon

p’s in noise-free Scenarios 1-3 are displayed in Table 3.2- 3.4, respectively. The numer-

ical performance for Scenario 3 under noises is similar to that without noise and is thus

omitted.

It is observed from the numerical results that when the MPC horizon p increases,

more computation time is needed with mildly deteriorating numerical accuracy. This

observation agrees with the discussion on the choice of p given in Section 3.6.1, which sug-

gests a relatively small p for practical computation. Besides, we have tested the proposed

141

initial guess warm-up technique on Scenario 3 for different p’s using the same parameters

and error tolerances for Algorithm 9; see Table 3.1. To compute a warm-up initial guess

using an iterative distributed scheme, we use the same α and ρ for each p with error

tolerance 5 × 10−4 for p = 1 and 10−3 for the other p’s. A summary of the numerical

results is shown in Table 3.5. Compared with the results given in Table 3.4 without

initial guess warm-up, the averaging computation time is reduced by at least 80% and

the relative numerical error is reduced by at least two thirds for p ≥ 2 when the initial

guess warm-up is used. This shows that the initial guess warm-up technique considerably

improves the numerical efficiency and accuracy, and it is especially suitable for real-time

computation when a large p is used. Hence, we conclude that Algorithm 9, together with

the initial guess warm-up technique, is suitable for real-time computation with satisfactory

numerical precision.

We have also tested the three-operator splitting based distributed scheme and its

accelerated version given in Remark 3.4.2. These schemes provide satisfactory computa-

tion time and numerical accuracy when p is small. For example, when p = 1, the mean

of computation time per CAV is 0.0553 seconds with the variance 0.0284 for Scenario 1

and 0.219 seconds with the variance 0.138 for Scenario 2, respectively. However, for a

slightly large p, e.g., p ≥ 3, it takes much longer than 1 second for an individual CAV

to complete computation. This is because when p ≥ 3, the Lipschitz constant L̂ is large,

yielding a small constant γ and slow convergence. Hence, these schemes are not suitable

for real-time computation when p ≥ 3.

Performance of the CAV platooning control. We discuss the closed-loop perfor-

mance of the proposed CAV platooning control for the three aforementioned scenarios

with different MPC horizon p’s. In each scenario, we evaluate the performance of the

142

0 20 40 60 80 100 120 140 160 180 200

Time (s)

47

48

49

50

51

52

53

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

47

48

49

50

51

52

53

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

16

17

18

19

20

21

22

23

24

25

26

S
p
e
e
d
 (

m
/s

)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(c) Time history of vehicle speed.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

16

17

18

19

20

21

22

23

24

25

26

S
p
e
e
d
 (

m
/s

)
i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(d) Time history of vehicle speed.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(e) Time history of control input.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(f) Time history of control input

Figure 3.1: Scenario 1: the proposed CAV platooning control with p = 1 (left column)
and p = 5 (right column).

143

0 20 40 60 80 100 120 140 160 180 200

Time (s)

49.6

49.7

49.8

49.9

50

50.1

50.2

50.3

50.4

50.5

50.6

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

49.6

49.7

49.8

49.9

50

50.1

50.2

50.3

50.4

50.5

50.6

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

24.8

25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

S
p
e
e
d
 (

m
/s

)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(c) Time history of vehicle speed.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

24.8

25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

S
p
e
e
d
 (

m
/s

)
i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(d) Time history of vehicle speed.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(e) Time history of control input.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(f) Time history of control input

Figure 3.2: Scenario 2: the proposed CAV platooning control with p = 1 (left column)
and p = 5 (right column).

144

0 5 10 15 20 25 30 35 40 45

Time (s)

48.8

49

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 5 10 15 20 25 30 35 40 45

Time (s)

49

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 5 10 15 20 25 30 35 40 45

Time (s)

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

S
p
e
e
d
 (

m
/s

)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(c) Time history of vehicle speed.

0 5 10 15 20 25 30 35 40 45

Time (s)

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

S
p
e
e
d
 (

m
/s

)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(d) Time history of vehicle speed.

0 5 10 15 20 25 30 35 40 45

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(e) Time history of control input.

0 5 10 15 20 25 30 35 40 45

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(f) Time history of control input

Figure 3.3: Scenario 3: the proposed CAV platooning control with p = 1 (left column)
and p = 5 (right column).

145

0 5 10 15 20 25 30 35 40 45

Time (s)

48.8

49

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 5 10 15 20 25 30 35 40 45

Time (s)

48.5

49

49.5

50

50.5

51

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 5 10 15 20 25 30 35 40 45

Time (s)

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

S
p
e
e
d
 (

m
/s

)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(c) Time history of vehicle speed.

0 5 10 15 20 25 30 35 40 45

Time (s)

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

S
p
e
e
d
 (

m
/s

)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(d) Time history of vehicle speed.

0 5 10 15 20 25 30 35 40 45

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(e) Time history of control input.

0 5 10 15 20 25 30 35 40 45

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
m

 (
m

/s
2
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

(f) Time history of control input

Figure 3.4: Scenario 3 under noises: the proposed CAV platooning control with p = 1
(left column) and p = 5 (right column).

146

spacing between two neighboring vehicles (i.e., Si−1,i(k) := xi−1(k)− xi(k) = zi(k) + ∆),

the vehicle speed vi(k), and the control input ui(k), i = 1, . . . , n for p = 1, 2, 3, 4, 5. We

present the closed-loop performance for p = 1 and p = 5 only for each scenario; see Fig-

ures 3.1-3.3 for (noise free) Scenarios 1-3 respectively, and Figure 3.4 for Scenario 3 with

noises. In fact, it is observed from these figures (and the other tests) that there is little

difference in control performance between p = 1 and a higher p, e.g., p = 5. We comment

more on the closed-loop performance of each scenario as follows:

(i) Scenario 1. Figure 3.1 shows that the spacing between the uncontrolled leading

vehicle and the first CAV, i.e., S0,1, has mild deviation from the desired ∆ when

the leading vehicle performs instantaneous acceleration or deceleration, while the

spacings between the other CAVs remain the desired constant ∆. Further, it takes

about 35s for S0,1 to converge to the steady state with the maximum spacing de-

viation 2.66m. The similar performance can be observed for the vehicle speed and

control input. In particular, it can be seen that all the CAVs show the exactly same

speed change and control, implying that the CAV platoon performs a “coordinated”

motion with “consensus” under the proposed platooning control.

(ii) Scenario 2. Figure 3.2 displays that under the periodic acceleration/deceleration

of the leading vehicle, the CAV platoon also demonstrates a “coordinated” motion

with “consensus”. For example, only S0,1 demonstrates mild fluctuation, whereas

the spacings between the other CAVs remain the desired constant, and all the CAVs

show the exactly same speed change and control. Moreover, under the proposed

platooning control, the oscillations of S0,1 are relatively small with the maximal

magnitude less than 0.22m. Such oscillations quickly decay to zero within 30s when

the leading vehicle stops its periodical acceleration/deceleration.

147

(iii) Scenario 3. In this scenario, the leading vehicle undergoes various traffic oscilla-

tions through the time window of 45s. In spite of such oscillations, it is seen from

Figure 3.3 that only S0,1 demonstrates small spacing variations with the maximum

magnitude less than 1m, but the spacings between the other CAVs remain almost

constant ∆ through the entire time window. This shows that the CAV platoon also

demonstrates a “coordinated” motion with “consensus” as in Scenarios 1-2.

(iv) Scenario 3 subject to noises. Figure 3.4 shows the control performance of the CAV

platoon in Scenario 3 under noises. It can be seen that there are more noticeable

spacing deviations from the desired constant ∆ for all CAVs due to the noises.

However, the variation of S0,1 remains to be within 1m, and the maximum deviation

of each Si−1,i with i ≥ 2 is less than 0.5m. Further, the profiles of the CAV speed

and control still demonstrate a nearly “coordinated” motion in spite of the noises.

In summary, the proposed platooning control effectively mitigates traffic oscillations

of the spacing and vehicle speed of the platoon; it actually achieves a (nearly) consensus

motion of the entire CAV platoon even under small random noises and perturbations.

Compared with other platoon centered approaches, e.g., [22], the proposed control scheme

performs better since it uses different weight matrices that lead to decoupled closed loop

dynamics; this choice of the weight matrices also facilitates the development of fully dis-

tributed computation.

3.7 Summary

The present chapter develops fully distributed optimization based MPC schemes

for CAV platooning control under the linear vehicle dynamics. Such schemes do not

require centralized data processing or computation and are thus applicable to a wide

148

range of vehicle communication networks. New techniques are exploited to develop these

schemes, including a new formulation of the MPC model, a decomposition method for

a strongly convex quadratic objective function, formulating the underlying optimization

problem as locally coupled optimization, and Douglas-Rachford method based distributed

schemes. Control design and stability analysis of the closed loop dynamics is carried out

for the new formulation of the MPC model. Numerical tests are conducted to illustrate

the effectiveness of the proposed fully distributed schemes and CAV platooning control.

Our future research will address nonlinear vehicle dynamics [63], closed loop stability

analysis under non-constant spacing car following polices, and various robust issues under

uncertainties and disturbances, e.g., communication network malfunction and failure, time

delays in communication and control, model mismatch, and sensing errors.

149

CHAPTER IV

Nonconvex, Fully Distributed Optimization based CAV

Platooning Control under Nonlinear Vehicle Dynamics

4.1 Introduction

Most of the existing research considers the linear vehicle dynamics [21], [22], [64],

[84]. Although the linear vehicle dynamics is suitable for smaller passenger vehicles, non-

linear dynamic effects, e.g, aerodynamiec drag, friction, and rolling resistance, play a

non-negligible role in trucks, heavy duty vehicles, and other types of CAVs. Motivated by

the lack of research for nonlinear vehicle dynamics, this chapter aims to develop fully dis-

tributed optimization based and platoon centered CAV platooning under nonlinear vehicle

dynamics over a general vehicle communication network. To achieve this goal, we propose

a general p-horizon MPC model subject to the nonlinear vehicle dynamics of the CAVs

and various physical or safety constraints. Several new challenges arise for the MPC hori-

zon p ≥ 2 when the nonlinear vehicle dynamics is considered. First, the underlying MPC

optimization problem gives rise to a densely coupled, nonconvex optimization problem,

where both the objective function and constraints are nonconvex. This is very different

150

from the linear vehicle dynamics treated in Chapter 3, for which a convex MPC model is

obtained so that various convex distributed optimization schemes can be used. Second,

a local optimal solution to the MPC is characterized by a highly sophisticated nonlinear

equation and does not attain a closed-form expression. Hence, the closed loop system

is defined by a time-varying nonlinear dynamical system, whose right-hand side has no

closed form expression, subject to non-vanishing external disturbances. These pose a dif-

ficulty in closed loop stability analysis and control design. To address these challenges,

we exploit new techniques for distributed algorithm development and control analysis and

design, which constitute main contributions of this chapter.

The major contributions of this chapter are summarized as follows:

(1) To develop fully distributed schemes for the nonconvex MPC optimization problem

when p ≥ 2, we first formulate the underlying densely coupled MPC optimization

problem as a locally coupled, albeit nonconvex, optimization problem using a decom-

position method developed for the linear CAV dynamics. Furthermore, we propose

a sequential convex programming (SCP) [45] based distributed scheme to solve the

locally coupled optimization problem. This SCP based scheme solves a sequence

of convex, quadratically constrained quadratic programs (QCQPs) that approxi-

mate the original nonconvex program at each iteration; such a convex QCQP can

be efficiently solved using (generalized) Douglas-Rachford method or other operator

splitting methods [15] in the fully distributed manner. The SCP based distributed

scheme converges to a stationary point, which often coincides or is close to an optimal

solution, under mild assumptions.

(2) To analyze the closed loop dynamics, we first formulate the closed loop system as

a tracking system defined by a time-varying, nonlinear dynamical system subject

151

to non-vanishing external disturbances. We apply stability theory of linear time-

varying systems and Lyapunov theory for input-to-state stability to show that for

all sufficiently small parameters pertaining to the nonlinear dynamics terms, the

closed loop system is locally input-to-state stable provided that the corresponding

linear closed loop dynamics under the linear vehicle dynamics (or equivalently when

the abovementioned parameters are zero) is Schur stable.

(3) For real-time implementation, the computation time of the schemes should be less

than one second. This is the major reason for the choice of Douglas-Rachford method

based fully distributed schemes. Moreover, we develop initial warm-up techniques to

further improve the computation time. Extensive numerical tests have been carried

out for three types of CAV platoons in different scenarios: a homogeneous small-

size CAV platoon, a heterogeneous medium-size CAV platoon, and a homogeneous

large-size CAV platoon. The numerical results illustrate the effectiveness of the

proposed distributed scheme and CAV platooning control under the nonlinear vehicle

dynamics.

This chapter is organized as follows. Section 4.2 introduces the nonlinear vehicle

dynamics, state and control constraints, and vehicle communication networks. Sequen-

tial feasibility and properties of the constraint sets are established in Section 4.3; these

properties lay a ground for distributed optimization. A MPC model with a general pre-

diction horizon p is proposed in Section 4.4 and is formulated as a nonconvex constrained

optimization problem. Section 4.5 develops sequentially convex programming based fully

distributed schemes for the densely coupled nonconvex MPC optimization problem. Con-

trol design and stability analysis for the closed loop dynamics is given in Section 4.6, and

152

Numerical tests and their results are presented in Section 4.7. Finally, summary is given

in Section 4.8.

4.2 Vehicle Dynamics, Constraints, and Communication Topology

We use the similar terminology given in Section 3.2 for the linear dynamics. Here

we introduce the following nonlinear vehicle dynamical model which in addition captures

aerodynamic drag, friction, and rolling resistance [97]:

xi(k + 1) = xi(k) + τvi(k) +
τ2

2

(
ui(k)− c2,i · v2

i (k)− c3,i · g
)
, (4.1a)

vi(k + 1) = vi(k) + τ
(
ui(k)− c2,i · v2

i (k)− c3,i · g
)
, (4.1b)

where ui(k) denotes the desired driving/braking acceleration treated as the control input.

c2,i · v2
i (k) characterizes the deceleration due to aerodynamic drag with the coefficient

c2,i > 0, and c3,i · g characterizes friction and rolling resistance with g = 9.8m/s2 being

the gravity constant and c3,i > 0 being the rolling friction coefficient. For different vehicles,

the coefficients c2,i, c3,i can be different.

The coefficients c2,i and c3,i in model (4.1) are usually small for many different

types of cars or road conditions. For example, c2,i typically ranges from 2.5× 10−4/m to

4.5 × 10−4/m, and c3,i typically ranges from 0.006 to 0.015 [97]. Since these coefficients

are small, the nonlinear terms in (4.1) are often neglected in system-level studies. This

yields the widely adopted double-integrator linear model given in linear dynamics (3.1).

The model (3.1) is suitable for small-size passenger cars, while model (4.1) can be

used for medium-size or large-size vehicles, e.g., trucks and heavy-duty vehicles. These

models are all well studied and widely accepted in the literature.

153

State and control constraints. Each vehicle in a platoon is subject to several im-

portant state and control constraints given in Section 3.2. Further it is possible that the

vehicle platoon is possibly inhomogeneous, i.e., different vehicles have different control

constraints. Hence, we let the acceleration/deceleration bounds ai,max, ai,min as well as

the vehicle length Li and the reaction time ri be different for different types of vehicles.

Communication network topology. The communication network topology for the

nonlinear dynamics is assumed to be the same as that of linear dynamics. In particular,

we assume that A.1 holds true; see Section 3.2 for details.

4.3 Sequential Feasibility and Properties of Constraint Sets

The sequential feasibility has been shown for a CAV platoon under the linear vehicle

dynamics [22]; see the definition of sequential feasibility on page 105. In what follows, we

establish the sequential feasibility under the nonlinear vehicle dynamics (4.1).

4.3.1 Sequential Feasibility

For notational convenience, define ai(k, ui(k)) := ui(k) − c2,iv
2
i (k) − c3,ig for given

(vi(k), ui(k))’s. It is noted that u0(k) is the actual acceleration of the leading vehicle at

time k instead of its control. Hence, we set c2,0 = c3,0 = 0 for notational convenience.

When k is fixed, we often write it as ai(ui) to emphasize the dependence of ai on ui. Then

the nonlinear vehicle dynamics given by (4.1) can be written as

xi(k + 1) = xi(k) + τvi(k) +
τ2

2
ai(k, ui(k)), vi(k + 1) = vi(k) + τai(k, ui(k)).

154

Given (xi, vi)
n
i=0 and u0, we introduce the following constraint set on the control u

subject to the nonlinear vehicle dynamics and the state and control constraints:

W((xi, vi)
n
i=0, u0) :=

{
u ∈ Rn | ai,min ≤ ui ≤ ai,max, vmin ≤ vi + τai(ui) ≤ vmax,

hi(u) ≤ 0, i = 1, . . . , n
}
,

where the function hi’s are given by

hi(u) := Li + ri(vi + τai(ui))−
(vi + τai(ui)− vmin)2

2ai,min
+ (xi − xi−1) + τ(vi − vi−1)

+
τ2

2
[ai(ui)− ai−1(ui−1)], (4.2)

and by abusing notation, ai(ui) := ui − c2,iv
2
i − c3,ig for each i = 0, 1, . . . , n. Further,

we define the following functions that describe the safety distances between two adjacent

vehicles on their current position and speed:

pj((xi, vi)
n
i=0) := Lj + rjvj −

(vj − vmin)2

2aj,min
+ (xj − xj−1), ∀ j = 1, . . . , n.

To simplify notation, we often write these functions as pj when (xi, vi)
n
i=0 and u0 are fixed

in the subsequent development. The sequential feasibility holds if W((xi, vi)
n
i=0, u0) is

nonempty for any given feasible (xi, vi)
n
i=0 and u0, i.e., a0,min ≤ u0 ≤ a0,max, vmin ≤ v0 ≤

vmax, vmin ≤ v0 + τu0 ≤ vmax, vmin ≤ vi ≤ vmax and pi((xi, vi)
n
i=0) ≤ 0 for all i = 1, . . . , n.

Proposition 4.3.1. Consider the nonlinear vehicle dynamics given by (4.1). Suppose

the nonnegative constants c2,i, c3,i are such that c2,iv
2
max + c3,ig ≤ ai,max and ri ≥ τ for

each i = 1, . . . , n. Then the system is sequentially feasible for an arbitrary feasible initial

condition.

155

Proof. We present some technical preliminaries first. For each given vi satisfying vmin ≤

vi ≤ vmax, define the continuous function qi : R→ R as

qi(w) := vi +

(
τ

2
+ ri

)
· w − vi − vmin

ai,min
w − τw2

2ai,min
, ∀ i = 1, . . . , n. (4.3)

Moreover, in view of the definition of hi given by (4.2), we write hi as hi(ai, ai−1) by

slightly abusing notation. We claim the following result:

Claim : Given any feasible (xi, vi)
n
i=0 and u0, assume that there exist ai’s such that

vi + τai ≥ vmin,∀ i = 0, 1, . . . , n. If qi(ai) ≤ vmin, then hi(ai, ai−1) ≤ 0,

for all i = 1, . . . , n.

To prove this claim, we first show that vi−1+(vi−1+τai−1)
2 ≥ vmin for each i = 1, . . . , n.

Clearly, we deduce via v0 ≥ vmin and v0 + τa0 ≥ vmin that vi−1+(vi−1+τai−1)
2 ≥ vmin when

i = 1. For each i ≥ 2, it follows from the feasibility of (xi, vi)
n
i=0 that vi−1 ≥ vmin. This,

along with the assumption that vi−1 + τai−1 ≥ vmin, yields vi−1+(vi−1+τai−1)
2 ≥ vmin for

each i ≥ 2. Further, for each i = 1, . . . , n, we obtain, using pi ≤ 0, that

hi(ai, ai−1) = L+ ri(vi + τai)−
(vi + τai − vmin)2

2ai,min
+ (xi − xi−1) + τ(vi − vi−1)

+
τ2

2
(ai − ai−1)

=
[
L+ rivi −

(vi − vmin)2

2ai,min
+ (xi − xi−1)

]
︸ ︷︷ ︸

=pi

+τ
[
riai + (vi − vi−1) +

τ

2
(ai − ai−1)− τa2

i

2ai,min
− ai
ai,min

(vi − vmin)
]

≤ τ
[
vi +

(
ri +

τ

2

)
ai −

ai
ai,min

(
vi − vmin

)
− τa2

i

2ai,min

156

−vi−1 + (vi−1 + τai−1)

2

]
= τ

[
qi(ai)−

vi−1 + (vi−1 + τai−1)

2

]
≤ τ

[
qi(ai)− vmin

]
,

where the last inequality follows from vi−1+(vi−1+τai−1)
2 ≥ vmin for each i = 1, . . . , n. Since

qi(ai) ≤ vmin, we have hi(ai, ai−1) ≤ 0 for each i = 1, . . . , n, completing the proof of the

claim.

With the help of the above result, we prove that there exists u = (ui)
n
i=1 ∈

W((xi, vi)
n
i=0, u0) for any feasible (xi, vi)

n
i=0 and u0. For this purpose, consider the follow-

ing choice of ui’s for a feasible vi:

ui :=


ai,min + c2,iv

2
i + c3,ig, if vi + τai,min ≥ vmin

vmin−vi
τ + c2,iv

2
i + c3,ig, if vi + τai,min < vmin

, ∀ i = 1, . . . , n. (4.4)

We show that the above u = (ui)
n
i=1 ∈ W((xi, vi)

n
i=0, u0) by considering the following

two cases for each fixed i:

(C.1) vi + τai,min ≥ vmin. In this case, ai(ui) = ai,min < 0.

(a) Control constraint. In view of c2,i, c3,i > 0, we have ui > ai,min. By the

assumption that c2,iv
2
max + c3,ig ≤ ai,max, we have ui = ai,min + c2,iv

2
i + c3,ig ≤

c2,iv
2
max + c3,ig ≤ ai,max. Thus ai,min < ui ≤ ai,max.

(b) Speed constraint. By virtue of ai(ui) = ai,min, τai,min < 0, and the assumption

vi + τai,min ≥ vmin, we have vmin ≤ vi + τai,min < vi ≤ vmax. Thus vmin ≤

vi + τai(ui) = vi + τai,min < vmax.

(C.2) vi + τai,min < vmin. In this case, ai(ui) = vmin−vi
τ ≤ 0.

157

(a) Control constraint. Since c2,i, c3,i > 0 and vmin > vi + τai,min, we have ui >

ai(ui) = vmin−vi
τ >

vi+τai,min−vi
τ = ai,min. By the assumption that c2,iv

2
max +

c3,ig ≤ ai,max and using ai(ui) = vmin−vi
τ ≤ 0, we also have ui ≤ c2,iv

2
i + c3,ig ≤

ai,max. Thus ai,min < ui ≤ ai,max.

(b) Speed constraint. Since vi + τai(ui) = vmin and ai(ui) ≤ 0, we have vmin =

vi + τai(ui) ≤ vmax.

These results show that the ai(ui)’s satisfy vi + τai(ui) ≥ vmin,∀ i = 0, 1, . . . , n such that

all the assumptions in the claim proved above hold.

To show that the proposed u given by (4.4) satisfies the safety distance constraints,

we consider cases (C.1) and (C.2) separately. For the former case, note that qi(ai(ui)) =

qi(ai,min) = ri · ai,min + vmin < vmin. By the claim proved above, hi(ai, ai−1) ≤ 0. For the

latter case, in light of vi = vmin − τai(ui), we have

qi(ai(ui)) = vmin + (ri − τ) · ai(ui)−
vi − vmin

ai,min
ai(ui) +

τ

2
ai(ui)

[
1− ai(ui)

ai,min

]
.

Since ri ≥ τ , ai(ui) ≤ 0 and vi−vmin ≥ 0, we have (ri−τ)·ai(ui) ≤ 0 and −(vi−vmin)
ai,min

ai(u) ≤

0. It has been shown in part (a) of (C.2) that ai(u) > ai,min. This yields τ
2ai(ui)[1−

ai(ui)
ai,min

] ≤

0. We thus conclude that qi(ai(ui)) ≤ vmin, leading to hi(ai, ai−1) ≤ 0. Consequently,

u ∈ W((xi, vi)
n
i=0, u0).

4.3.2 Nonempty Interior of the Constraint Sets

Consider the non-polyhedral constraint set arising from the nonlinear vehicle dy-

namics subject to the control, speed, and safety distance constraints. We show that under

158

mild assumptions, this constraint set has nonempty interior. This property is critical for

the Slater’s constraint qualification in optimization.

Proposition 4.3.2. Consider the nonlinear vehicle dynamics (4.1). Suppose the non-

negative constants c2,i, c3,i are such that c2,iv
2
max + c3,ig < ai,max and ri ≥ τ for each

i = 1, . . . , n. For any feasible (xi, vi)
n
i=0 and u0, if v0 > vmin and v0 + τu0 > vmin, then

W((xi, vi)
n
i=0, u0) has nonempty interior.

Proof. Given a feasible (xi, vi)
n
i=0 and u0 such that a0,min ≤ u0 ≤ a0,max, vmin < v0 ≤ vmax,

vmin < v0 + τa0 ≤ vmax, vmin ≤ vi ≤ vmax and pi ≤ 0 for all i = 1, . . . , n, we show that for

each i = 1, . . . , n, there exists ûi satisfying ai,min < ûi < ai,max, vmin < vi+τai(ûi) < vmax,

and hi(ûi−i, ûi) < 0, where û := (û1, . . . , ûn)T ∈ Rn. We prove this result by induction on

i as follows.

Consider i = 1 first. Let u1 be given by (4.4). By the given assumptions and the

proof of Proposition 4.3.1, we obtain the following:

(C.1) If v1 + τa1,min ≥ vmin, then ai,min < u1 ≤ c2,1v
2
max + c3,1g < ai,max, vmin ≤ v1 +

τa1(u1) = v1 + τa1,min < vmax, and q1(a1(u1)) = r1ai,min + vmin < vmin. Since q1(·)

given by (4.3) is continuous, there exists a constant ε > 0 such that û1 := u1 + ε

satisfies ai,min < û1 < ai,max, vmin < v1 + τa1(û1) < vmax, and q1(a1(û1)) < vmin.

It follows from the Claim given in the proof of Proposition 4.3.1 that h1(û1) ≤

τ [q1(a1(û1))− vmin] < 0.

(C.2) If v1 + τa1,min < vmin, then a1(u1) = vmin−v1
τ , ai,min < u1 ≤ c2,1v

2
max + c3,1g < ai,max,

vmin = v1 + τa1(u1) < vmax, and q1(a1(u1)) ≤ vmin. As shown in the proof for the

159

Claim in Proposition 4.3.1,

h1(u1) ≤ τ
[
q1(a1(u1))− v0 + (v0 + τu0)

2

]
< τ

[
q1(a1(u1))− vmin

]
≤ 0,

where we use the assumptions that v0 > vmin and v0+τu0 > vmin. Hence, h1(u1) < 0.

By the continuity of q1(·) and h1(·), we see that there exists a small constant ε > 0

such that û1 := u1 + ε satisfies ai,min < û1 < ai,max, vmin < v1 + τa1(û1) < vmax,

and h1(û1) < 0.

Now assume that for each i with 1 ≤ i ≤ n − 1, there exists ûj satisfying ai,min <

ûj < ai,max, vmin < vj +τaj(ûj) < vmax, and hj(ûj , ûj−1) < 0 for all j = 1, . . . , i. Consider

i+ 1 as follows. As before, let ui+1 be given in (4.4), and consider two cases:

(C.1’) vi+1 + τai,min ≥ vmin. By the proof of Proposition 4.3.1 and a similar argument

for (C.1) given above, we deduce that there exists a constant ε > 0 such that

ûi+1 := ui+1 + ε satisfies the desired results.

(C.2’) vi+1 + τai,min < vmin. Similarly, ai,min < ui+1 < ai,max, vmin = vi+1 + τai+1(ui+1) <

vmax, and qi+1(ai+1(ui+1)) ≤ vmin, where ai+1(ui+1) = vmin−vi+1

τ . Moreover,

hi+1(ûi, ui+1) ≤ τ
[
qi+1(ai+1(ui+1))− vi + (vi + τai(ûi))

2

]
< τ

[
qi+1(ai+1(ui+1))− vmin

]
≤ 0,

where the strict inequality follows from the assumption that vi ≥ vmin and the

induction hypothesis vi + τai(ûi)) > vmin. Hence, hi+1(ûi, ui+1) < 0. Then by the

similar argument for (C.2) above, we see that there exists a constant ε > 0 such that

ûi+1 := ui+1 + ε yields the desired results.

160

Consequently, by the induction principle, there exists a vector û in the interior of

W((xi, vi)
n
i=0, u0).

In light of the above result, we make the following assumptions throughout the rest

of the chapter unless otherwise stated:

A.3 For each i = 1, . . . , n, the nonnegative constants c2,i, c3,i satisfy c2,iv
2
max + c3,ig <

ai,max and the reaction time ri satisfies ri ≥ τ . Further, (v0(k), u0(k)) is feasible

with v0(k) > vmin for all k ∈ Z+.

It will be shown in Corollary 4.4.1 that under this assumption, the constraint set of a

general p-horizon model predictive control model has nonempty interior.

4.4 Model Predictive Control for CAV Platooning

We consider the model predictive control (MPC) approach for CAV platooning, and

we use the same formulation given in Section 3.3. Precisely, the objective function is

exactly the same as (3.4) and the constraints under the nonlinear vehicle dynamics (4.1)

are similar to (3.5), and (3.6) but assume that the acceleration/deceleration bounds ai,max,

and ai,min, the vehicle length Li and the reaction time ri are different for different vehicles

i, for i = 1, . . . , n. In particular, we assume that A.2 holds true; see Section 3.3 for details.

More discussions on the class of weight matrices specified in A.2 can be found in

Section 3.3. We show below that under the assumption A.3, the constraint set of the

p-horizon MPC model has nonempty interior at each k for an arbitrary MPC horizon

p ∈ N.

Corollary 4.4.1. Suppose the assumption A.3 holds. Then for any p ∈ N, the constraint

set of the p-horizon MPC optimization problem (3.4) has nonempty interior at each k.

161

Proof. The proof is similar to [64, Corollary 3.1]. Fix an arbitrary k ∈ Z+. Since

v0(k) > vmin, by Proposition 4.3.2, there exists a vector denoted by û(k) in the inte-

rior of the set W((xi(k), vi(k))ni=0, u0(k)). Let xi(k + 1) and vi(k) be generated by û(k)

(and (xi(k), vi(k))ni=0, u0(k)). Since v0(k + 1) > vmin, we deduce via Proposition 4.3.2

again that there exists a vector denoted by û(k + 1) in the interior of the constraint set

W((xi(k + 1), vi(k + 1))ni=0, u0(k + 1)). Continuing this process in p-steps, we derive the

existence of an interior point in the constraint set of the p-horizon MPC model (3.4).

4.4.1 Constrained Optimization Model under the Nonlinear Vehicle Dynam-

ics

In this subsection, we discuss the constrained optimization model (3.4) arising

from the MPC at each time k under the nonlinear vehicle dynamics (4.1) with the pos-

itive parameters c2,i and c3,i. For notational simplicity, define the parameter vectors

ϕd := (c2,1, . . . , c2,n) ∈ Rn+ and ϕf := (c3,1, . . . , c3,n) ∈ Rn+, where the subscripts d and f

denote the drag and friction respectively. Further, ϕ := (ϕd,ϕf) ∈ R2n
+ . For notational

convenience, we set c2,0 = c3,0 = 0; this is because u0(k) is the actual acceleration of the

leading vehicle instead of its control.

Consider the constrained MPC optimization model (3.4) at an arbitrary but fixed

time k ∈ Z+. Let u(k) := (u1(k), . . . ,un(k)) ∈ Rnp with ui(k) := (ui(k), . . . , ui(k + p −

1)) ∈ Rp. Recall that for each i = 1, . . . , n and j = 0, . . . , p− 1,

ai
(
k + j, ui(k), . . . , ui(k + j)

)
= ui(k + j)− c2,iv

2
i (k + j)− c3,ig,

162

where we note that vi(k + j) depends on ui(k), . . . , ui(k + j − 1) for j ≥ 1. Specifically,

for p > 1,

ai(k, ui(k)) = ui(k)− c2,iv
2
i (k)− c3,ig,

ai(k + 1, ui(k), ui(k + 1)) = ui(k + 1)− c2,i

[
vi(k) + τai(k, ui(k))

]2 − c3,ig,

...
...

...

ai
(
k + p− 1, ui(k), . . . , ui(k + p− 1)

)
= ui(k + p− 1)− c2,i

[
vi(k)

+ τ

p−2∑
s=0

ai(k + s, ui(k), . . . , ui(k + s))
]2
− c3,ig

By slightly abusing the notation, we may denote each ai
(
k + j, ui(k), . . . , ui(k + j)

)
by

ai(k + j,ui(k)).

Define for each i = 1, . . . , n and j = 0, 1, . . . , p− 1,

bi(k + j,ui−1(k),ui(k)) := ai−1(k + j,ui−1(k))− ai(k + j,ui(k)),

where a0(k+j,u0(k)) := u0(k) for all j = 0, 1, . . . , p−1 due to u0(k) := u0(k)·1. It follows

from the nonlinear vehicle dynamics (4.1) that for each i = 1, . . . , n and j = 1, . . . , p,

zi(k + j) = zi(k) + jτz′i(k) + τ2
j−1∑
s=0

2(j − s)− 1

2
bi(k + s,ui−1(k),ui(k)), (4.5)

z′i(k + j) = z′i(k) + τ

j−1∑
s=0

bi(k + s,ui−1(k),ui(k)). (4.6)

For a fixed k ∈ Z+, define for each i = 1, . . . , n,

ai(ui(k)) :=
(
ai
(
k, ui(k)

)
, . . . , ai

(
k + p− 1, ui(k), . . . , ui(k + p− 1)

))
.

163

In what follow, we often omit k in ui(k) when k is fixed. Further, define the function a :

Rnp → Rnp as a(u) :=
(
a1(u1), . . . ,an(un)

)
. Note that if ϕ = (ϕd,ϕf) = (c2,i, c3,i)

n
i=1 =

0, then a(u) = u for all u ∈ Rnp. We introduce more notation. Define the following

matrices:

Qw := diag
(
Qw,1, . . . Qw,p

)
∈ Rnp×np, S−1 := diag

(
S−1
n , . . . , S−1

n︸ ︷︷ ︸
p−copies

)
∈ Rnp×np.

Furthermore, let E ∈ Rnp×np be the permutation matrix given by (3.9). E = In when

p = 1, and 

u(k)

u(k + 1)

...

u(k + p− 1)


= E



u1

u2

...

un


= Eu.

Using these matrices, it is easy to verify that the following term in the objective function

J in (3.4) satisfies

S−1


u(k)

...

u(k + p− 1)





T

Qw

S−1


u(k)

...

u(k + p− 1)



 = uT ETS−TQwS−1E︸ ︷︷ ︸
:=Ψ

u.

where Ψ ∈ Rnp×np is symmetric PD when A.2 holds. Therefore, the objective function J

in the MPC model (3.4) becomes

J(u) = J(u(k), . . . , u(k + p− 1))

=
1

2

[p∑
s=1

zT (k + s)Qz,sz(k + s) + (z′(k + s))TQz′,sz
′(k + s)

]
+
τ2

2
uTΨ u

164

=
1

2

[p∑
s=1

zT (k + s)Qz,sz(k + s) + (z′(k + s))TQz′,sz
′(k + s)

]
+
τ2

2
aT (u)Ψ a(u)

+
τ2

2

(
uTΨu− aT (u)Ψa(u)

)
.

In light of the expressions for z(k + j) and z′(k + j) given by (4.5)-(4.6), it follows from

the similar argument in [64, Section 3.1] that the objective function

J(u) =
1

2
aT (u)Wa(u) + cTa(u) + γ +

τ2

2

(
uTΨu− aT (u)Ψa(u)

)
,

whereW ∈ Rnp×np, c ∈ Rnp, and γ ∈ R. In fact, W = ETS−TΘS−1E for a symmetric PSD

matrix Θ whose blocks are diagonal; see [64, Section 3.1] for the closed-form expression

of W . In particular, under the assumption A.3, W is a positive definite (PD) matrix

that only depends on Qz,s, Qz′,s and Qw,s, s = 1, . . . , p [64, Lemma 3.1]. In addition, the

linear term in J(u) can be written as cTa(u) =
∑n

i=1 c
T
Iiai(ui), where cIi is the subvector

of c corresponding to ai(ui). By [64, Lemma 3.2], the subvector cIi depends only on

zi(k), z′i(k), zi+1(k), z′i+1(k)’s for i = 1, . . . , n − 1, cIn depends only on zn(k), z′n(k), and

only cI1 depends on u0(k). These properties are important for developing fully distributed

schemes later on.

To characterize the constraints, let the matrix Sp ∈ Rp×p be defined in the same

way as in (3.3) with n replaced by p, and (Spui)0 := 0. Recall that for each i = 1, . . . , n

and j = 1, . . . , p,

vi(k + j) = vi(k) + τ

j−1∑
s=0

ai(k + s,ui(k)) = vi(k) + τ
(
Sp ai(ui)

)
j
.

165

Further, xi−1(k + j) − xi(k + j) = zi(k + j) + ∆ depends only on ui(k) and ui−1(k) as

shown in (4.5). Hence, we see that for each i = 1, . . . , n and each j = 1, . . . , p, the safety

distance constraint is given by:

(
Hi(ui−1(k),ui(k))

)
j

:= Li+ri·vi(k+j)− (vi(k + j)− vmin)2

2ai,min
−[xi−1(k+j)−xi(k+j)] ≤ 0.

Note that H1(·) depends only on u1(k) although it is written in the above form for nota-

tional convenience. Combining the above results, the MPC model (3.4) is formulated as

the following optimization problem:

minimize J(u) := 1
2aT (u)

(
W − τ2Ψ

)
a(u) + cTa(u) + γ + τ2

2 uTΨu,

subject to ui ∈ Xi, vmin ≤ vi(k) + τ
(
Sp ai(ui)

)
s
≤ vmax,

(Hi(ui−1,ui))s ≤ 0, ∀ i = 1, . . . , n, ∀ s = 1, . . . , p,

(4.7)

where Xi := {ui ∈ Rp | ai,min1 ≤ ui ≤ ai,max1} for each i = 1, . . . , n. It can be shown via

the expressions of W and Ψ given in [64, Section 3.1] that W − τ2Ψ is PSD. When p = 1,

(4.7) is clearly a convex optimization problem. When p > 1, since all but the first entry

functions of ai(·) are nonconvex in ui for each i, it is easy to verify that the objective

function J is nonconvex, and the velocity and safety distance constraints are nonconvex.

Hence, when p > 1, (4.7) yields a nonconvex optimization problem. Since J is continuous,

each Xi is compact, and the other constraints are defined by continuous functions, the op-

timization problem in (4.7) has a (possibly non-unique) solution. Moreover, the objective

function J is densely coupled, and the safety distance constraint function
(
Hi(ui−1,ui)

)
j

not only depends on ui but also on ui−1 of the (i−1)-th vehicle, and thus is locally coupled

with its neighboring vehicles. This coupling structure, together with the nonconvexity of

166

the optimization problem (4.7), leads to many challenges in developing fully distributed

schemes.

4.5 Fully Distributed Algorithms for Coupled Nonconvex MPC Opti-

mization Problem

In this section, we develop fully distributed algorithms for solving the underlying

coupled, nonconvex optimization problem (4.7) at each time k ∈ Z+. To achieve this goal,

several new techniques are exploited: the formulation of locally coupled (albeit nonconvex)

optimization, sequential convex programming, and operator splitting methods.

4.5.1 Formulation of MPC Optimization Problem as Locally Coupled Opti-

mization

Since the safety distance constraint of each vehicle i is coupled with its neighboring

vehicle (i − 1) whereas the acceleration and velocity constraints are decoupled, the con-

straints of the MPC optimization problem (4.7) are locally coupled [26]. Motivated by

distributed computation for locally coupled convex optimization [26], [64], we observe that

(4.7) can be formulated as a locally coupled nonconvex optimization problem. see Section

1.2.1 for details.

The framework of a locally coupled optimization problem requires that both its

objective function and constraints are expressed in a locally coupled manner satisfying

the communication network topology constraint. However, the objective function in the

underlying MPC optimization problem (4.7) is densely coupled. As indicated in Subsection

3.4.1 for convex optimization, this difficulty can be overcome by using certain matrix

decomposition techniques. Specifically, it is shown in Proposition 3.4.1 that under the

167

assumption A.2, the PSD or PD matrix W ∈ Rnp×np in (4.7) can be decomposed as

W =
∑n

s=1 W̃
s, where all W̃ s ∈ Rnp×np are PSD and satisfy the locally coupled conditions.

Since Qw is diagonal and PD, it follows from the similar argument in [64, Lemma

4.1] that the PD matrix Ψ ∈ Rnp×np can be decomposed in the similarly way. Specifically,

there exist matrices Ψ̃s such that Ψ =
∑n

s=1 Ψ̃s, where Ψ̃s’s satisfy the abovementioned

conditions with W̃ s (resp. Ŵ s) replaced by Ψ̃s (resp. Ψ̂s). By setting γ ≡ 0 in (4.7)

without losing generality, the objective function J(u) in (4.7) can be decomposed as

J(u) = J1(u1,u2) +
n−1∑
i=2

Ji(ui−1,ui,ui+1) + Jn(un−1,un),

where the functions Ji’s on the right hand side are given by

J1(u1,u2) :=
1

2

[
aT1 (u1) aT2 (u2)

](
Ŵ 1 − τ2Ψ̂1

)a1(u1)

a2(u2)

+ cTI1a1(u1)

+
τ2

2

[
uT1 uT2

]
Ψ̂1

u1

u2

 ,

Ji(ui−1,ui,ui+1) :=
1

2

[
aTi−1(ui−1) aTi (ui) aTi+1(ui+1)

](
Ŵ i − τ2Ψ̂i

)


ai−1(ui−1)

ai(ui)

ai+1(ui+1)



+cTIiai(ui) +
τ2

2


ui−1

ui

ui+1



T

Ψ̂i


ui−1

ui

ui+1

 ,∀ i = 2, . . . , n− 1, (4.8)

Jn(un−1,un) :=
1

2

[
aTn−1(un−1) aTn (un)

](
Ŵn − τ2Ψ̂n

)an−1(un−1)

an(un)



168

+cTInan(un) +
τ2

2

[
uTn−1 uTn

]
Ψ̂n

un−1

un

 .

In view of the assumption A.1, the above decomposition of J satisfies the communication

network topology constraint. Note that Ŵ i − τ2Ψ̂i may not be PSD or PD although

W − τ2Ψ is PSD.

Remark 4.5.1. Another decomposition of J is as follows. Note that V := W − τ2Ψ is

PSD, and it can be written as V = ETS−TΦS−1E for a symmetric PSD matrix Φ whose

blocks are all diagonal. Therefore, the similar decomposition can be made to V whose

corresponding V̂ i is PSD. In view of the objective function J in (4.7), we can decompose

J in a similar way by replacing Ŵ i − τ2Ψ̂i in the above decomposition by V̂ i.

In what follows, we use the above decomposition to formulate a locally coupled

optimization problem by introducing copies of local variables. We consider the cyclic like

network topology through this subsection, although the proposed formulation and schemes

can be easily extended to other network topologies satisfying the assumption A.1. In this

case, N1 = {2}, Nn = {n− 1}, and Ni = {i− 1, i+ 1} for i = 2, . . . , n− 1. Hence, each Ji

in the decomposition of J can be written as Ji(ui, (uj)j∈Ni).

Recall that for each i = 1, . . . , n, Xi := {ui ∈ Rp | ai,min1 ≤ ui ≤ ai,max1}. Further,

define

Yi :=
{
ui ∈ Rp

∣∣ vmin ≤ vi(k) + τ
(
Sp ai(ui)

)
s
≤ vmax, ∀ s = 1, . . . , p

}
, (4.9)

Zi :=
{

(ui−1,ui) ∈ Rp × Rp
∣∣ (Hi(ui−1,ui))s ≤ 0, ∀ s = 1, . . . , p

}
. (4.10)

169

As indicated before, Z1 depends only on u1 although it is written in the above form for

notational convenience. Let δS denote the indicator function of a closed set S. Define, for

each i = 1, . . . , n,

Ĵi(ui, (uj)j∈Ni) := Ji(ui, (uj)j∈Ni) + δXi(ui) + δYi(ui) + δZi(ui−1,ui).

For each i = 1, . . . , n, define ûi :=
(
ui, (ui,j)j∈Ni

)
, where the new variables ui,j represent

the predicted values of uj of vehicle j in the neighbor Ni of vehicle i, and let û :=

(û1, . . . , ûn) ∈ RN . Define the consensus subspace

A :=
{

û ∈ RN
∣∣ui,j = uj , ∀ (i, j) ∈ E

}
.

Then the underlying optimization problem (4.7) can be equivalently written as the follow-

ing locally coupled optimization problem:

min
û

n∑
i=1

Ĵi(ûi), subject to û ∈ A. (4.11)

In the above formulation, the functions Ĵi’s are decoupled, and the consensus constraint

A gives rise to the only coupling in this formulation.

4.5.2 Sequential Convex Programming and Operator Splitting Method based

Fully Distributed Algorithms for the MPC Optimization Problem

When the MPC horizon p = 1, the underlying MPC optimization problem (4.7)

or (4.11) is a convex quadratically constrained quadratic program (QCQP), for which the

fully distributed schemes developed in [64] can be applied. We consider p > 1 from now on.

170

In this case, the underlying MPC optimization problem (4.7) or (4.11) yields a non-convex

minimization problem whose objective function and constraints are non-convex, whereas

the coefficients c2,i > 0 and c3,i > 0 defining the nonlinearities are small. Therefore, it is

expected that an optimal solution under the nonlinear vehicle dynamics is “close” to that

under the linear vehicle dynamics. The latter solution, which can be obtained using fully

distributed schemes [64], may be used as an initial guess for a distributed scheme for the

nonlinear vehicle dynamics. We formally discuss this observation as follows.

The general theory of perturbed optimization can be found in the monograph [7];

we consider a special case here. Let f : Rn × Rq → R and gi : Rn × Rq → R with

i = 1, . . . ,m be all continuous functions. Let Ω ⊂ Rn be a compact set, and Θ ⊆ Rq be a

set of parameter vectors that contain the zero vector. Fix a parameter vector θ ∈ Θ, and

define the parameter dependent constraint set

Wθ :=
{
x ∈ Rn

∣∣ gi(x, θ) ≤ 0, ∀ i = 1, . . . ,m
}
.

We assume that for each parameter vector θ ∈ Θ, the set Ω ∩ Wθ is nonempty. Since

gi(·, θ) is continuous for a given θ, Ω∩Wθ is a nonempty compact set such that for a fixed

θ ∈ Θ, the minimization problem

Pθ : min
x∈Ω∩Wθ

f(x, θ)

has a nonempty closed solution set denoted by Sθ.

For each x ∈ Ω ∩W0, define the index set I(x) := {i | gi(x, 0) = 0} ⊆ {1, . . . ,m},

which corresponds to the index set of active inequality constraints. We introduce the

following assumption on Ω ∩W0.

171

A.4 For any x� ∈ Ω∩W0 whose corresponding I(x�) is nonempty, there exists a sequence

(w`) in Ω ∩W0 such that: (i) for each `, gi(w
`, 0) < 0 for all i = 1, . . . ,m; and (ii)

(w`) converges to x�.

The following lemma presents a sufficient condition related to the Slater’s condition

for A.4 to hold.

Lemma 4.5.1. Suppose each gi(·, 0) is a convex function, Ω ∩ W0 is a convex compact

set, and there exists z ∈ Ω ∩ W0 such that gi(z, 0) < 0 for all i = 1, . . . ,m. Then A.4

holds.

Proof. Let z ∈ Ω ∩ W0 be such that gi(z, 0) < 0 for each i = 1, . . . ,m, and consider

x ∈ Ω ∩ W0 whose index set I(x) is nonempty. Therefore, for any λ ∈ (0, 1], gi(x +

λ(z − x), 0) = gi(λz + (1 − λ)x, 0) ≤ λgi(z, 0) + (1 − λ)gi(x, 0) ≤ λgi(z, 0) < 0 for each

i = 1, . . . ,m. Therefore, A.4 holds.

Proposition 4.5.1. Suppose P0 has the unique minimizer x∗, i.e., S0 = {x∗}. Then

under the abovementioned assumptions (including A.4), for any ε > 0, there exists η > 0

such that for all θ ∈ Θ with ‖θ‖ ≤ η, supz∈Sθ ‖z − x∗‖ < ε.

Proof. Suppose not. Then there exist ε0 > 0 and a sequence (θk) in Θ with ‖θk‖ → 0 such

that for each k, there exist zk ∈ Sθk with ‖zk−x∗‖ ≥ ε0. Since zk belongs to the compact

set Ω, (zk) has a convergent subsequence whose limit z∗ ∈ Ω satisfies ‖z∗ − x∗‖ ≥ ε.

Without loss of generality, we may assume that this subsequences is (zk) itself. Since

gi(z
k, θk) ≤ 0 for all i = 1, . . . ,m, it follows from the continuity of each gi(·, ·) that

gi(z
∗, 0) ≤ 0. Hence, z∗ ∈ Ω ∩ W0. Consider a fixed but arbitrary x ∈ Ω ∩ W0. Hence,

either I(x) is empty or I(x) is nonempty. For the former case, we deduce via the continuity

of gi(x, ·) that gi(x, θ
k) < 0, i = 1, . . . ,m for all large k. Hence, x ∈ Ω∩Wθk for all large k.

172

This shows that f(x, θk) ≥ f(zk, θk) for all large k, and therefore f(x, 0) ≥ f(z∗, 0). For

the latter case, it follows from the assumption A.4 on Ω∩W0 that there exists a sequence

(w`) in Ω ∩W0 which converge to x such that gi(w
`, 0) < 0 for all ` and all i = 1, . . . ,m .

By the continuity of gi’s and the fact that (θk)→ 0, we see that for ` = 1, there exists an

index s1 such that gi(w
1, θs1) < 0 for all i = 1, . . . ,m. Then for ` = 2, there exists an index

s2 with s2 > s1 such that gi(w
2, θs2) < 0 for all i = 1, . . . ,m. Continuing this process, we

obtain a strictly increasing index sequence (s`) such that for each `, gi(w
`, θs`) < 0 for all

i = 1, . . . ,m. Hence, each w` ∈ Ω∩Wθs` such that f(w`, θs`) ≥ f(zs` , θs`). Since (θs`) is a

subsequence of (θk) and (zs`) is a subsequence of (zk), we have that θs` → 0 and zs` → z∗.

This leads to f(x, 0) ≥ f(z∗, 0). Consequently, f(x, 0) ≥ f(z∗, 0) for all x ∈ Ω∩W0. This

implies that z∗ is a minimizer of P0. Since x∗ is the unique minimizer of P0, we must have

z∗ = x∗, yielding a contradiction to ‖z∗ − x∗‖ ≥ ε0.

We apply this proposition to the optimization problem (4.7). Recall that the pa-

rameter vector ϕ = (ϕd,ϕf) = (c2,i, c3,i)
n
i=1 ∈ R2n

+ . To emphasize the dependence of the

objective function J on ϕ, we write it as J(u,ϕ) by abusing the notation. Further, the

constraints in (4.7) can be written as X ∩ Y ∩ Z, where X = X1 × · · · × Xn is a con-

vex and compact set, and Y ∩ Z = {u | gi(u,ϕ) ≤ 0, i = 1, . . . ,m} for some real-valued

functions gi, which also depend on ϕ. It is shown in [64] that when ϕ = 0, J(u, 0) is a

strongly convex quadratic function, and each gi(u, 0) is an affine or a convex quadratic

function. Hence, when ϕ = 0, (4.7) becomes a convex optimization problem which attains

a unique optimal solution u∗,0. Further, when ri ≥ τ for all i and v0(k) > vmin, this convex

optimization problem has non-empty interior [64, Corollary 3.1] such that A.4 holds by

Lemma 4.5.1. Therefore, letting Sϕ denote the solution set of (4.7) corresponding to the

parameter vector ϕ, we obtain the following corollary from Proposition 4.5.1.

173

Corollary 4.5.1. Consider the optimization problem (4.7) with the parameter vector ϕ ∈

R2n
+ at time k. Suppose ri ≥ τ for all i and v0(k) > vmin. Then for any ε > 0, there exists

η > 0 such that for all ϕ ∈ R2n
+ with ‖ϕ‖ ≤ η, supu∈Sϕ ‖u− u∗,0‖ < ε.

To solve the coupled non-convex optimization problem (4.7) with ϕ 6= 0, we exploit

the sequential convex programming (SCP) method [45]. To be self-contained, we provide

a brief description of the SCP method for an important special case as follows. Consider

the nonlinear program

(P ′) : min
x∈Rn

f(x) subject to x ∈ P, gi(x)− ri(x) ≤ 0, ∀ i = 1, . . . , `, (4.12)

where P ⊆ Rn is a closed convex set, f and each gi are C1 (but not necessarily convex)

functions, and each ri is a convex C1-function. We assume that ∇f and ∇gi are Lipschitz

on P, i.e. there exist constants Lf > 0 and Lgi > 0 such that ‖∇f(x) − ∇f(x′)‖2 ≤

Lf‖x−x′‖2 and ‖∇gi(x)−∇gi(x′)‖2 ≤ Lgi‖x−x′‖2 for all x, x′ ∈ P and i = 1, . . . , `. Let

x̂ be a feasible point of (P ′), i.e., x̂ ∈ P ′ and gi(x̂)− ri(x̂) ≤ 0, i = 1, . . . , `. Consider an

approximation of the constraint set of (P ′) at x̂:

C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1)

:=
{
z ∈ P | gi(x̂) +∇gi(x̂)T (z − x̂) +

Lgi
2
‖z − x̂‖22 − [ri(x̂) +∇ri(x̂)T (z − x̂)] ≤ 0,

i = 1, . . . , `
}
.

It is shown in [45, Lemma 3.3] that C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1) is a nonempty closed

convex set. The following lemma provides a simple sufficient condition for the Slater’s con-

174

dition to hold for the approximated constraint set; this condition is useful for convergence

analysis of the SCP scheme.

Lemma 4.5.2. Given a feasible point x̂ of (P ′), suppose C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1) is

not singleton. Then the Slater’s condition holds for C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1), i.e.,

there exists ẑ ∈ P such that gi(x̂)+∇gi(x̂)T (ẑ−x̂)+
Lgi
2 ‖ẑ−x̂‖

2
2−[ri(x̂)+∇ri(x̂)T (ẑ−x̂)] <

0,∀ i = 1, . . . , `.

Proof. Clearly, x̂ ∈ C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1). Since C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1)

is not singleton, there exists x′ ∈ C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1) and x′ 6= x̂. Let I(x̂) :=

{i | gi(x̂)− ri(x̂) = 0} denote the index set of active constraints at x̂ of (P). Thus x′ ∈ P

and [∇gi(x̂)−∇ri(x̂)]T (x′−x̂)+
Lgi
2 ‖x

′−x̂‖22 ≤ 0 for all i ∈ I(x̂). Since
Lgi
2 ‖x

′−x̂‖22 > 0 for

all i ∈ I(x̂), we have [∇gi(x̂)−∇ri(x̂)]T (x′− x̂) < 0 for all i ∈ I(x̂). Let d := x′− x̂. Since

P is a closed convex set, d ∈ TP(x̂) [61, Lemma 3.13], where TP(x̂) denotes the tangent

cone of P at x̂. This shows that the (generalized) MFCQ holds. It thus follows from [45,

Proposition 3.5] that the Slater’s condition holds for C(x̂, {∇gi(x̂)}`i=1, {∇ri(x̂)}`i=1).

The SCP scheme solves (P ′) in (4.12) as follows [45]: consider an approximation of

the objective function f for a given feasible point x̂: f̃(z; x̂) := f(x̂) + [∇f(x̂)]T (z − x̂) +

Lf
2 ‖z − x̂‖

2
2. Clearly, f̃ is a strongly convex function in z. At each step, the SCP scheme

solves the convex optimization problem at xk using the convex approximation f̃(·;xk) over

the approximating convex constraint set C(xk, {∇gi(xk)}`i=1, {∇ri(xk)}`i=1) to generate a

unique optimal solution xk+1. It then updates the gradients ∇f , ∇gi, and ∇ri using xk+1,

and formulates another convex optimization problem and solves it again. It is shown in

[45, Theorem 3.4] that any accumulation point of the sequence (xk) generated by the SCP

175

scheme is a KKT point of (P ′), provided that the accumulation point x∗ satisfies the

Slater’s condition for C(x∗, {∇gi(x∗)}`i=1, {∇ri(x∗)}`i=1).

We now apply the SCP scheme to develop a fully distributed scheme for the non-

convex MPC optimization problem (4.7). Consider the locally coupled formulation (4.11)

of the MPC optimization problem (4.7). Recall that ûi :=
(
ui, (ui,j)j∈Ni

)
, and û :=

(û1, . . . , ûn). For each i = 1, . . . , n, it follows from the velocity constraint Yi in (4.9) and

the safety distance constraint Zi in (4.10) that there are real-vauled smooth functions

gi,s and convex quadratic functions ri,s for s = 1, . . . , 3p such that ûi ∈ Yi ∩ Zi if and

only if gi,s(ûi)− ri,s(ûi) ≤ 0 for s = 1, . . . , 3p; specific choices of gi,s and ri,s are given in

Sections 4.5.3 and 4.7.2. In view of the real-valued objective function J(û) =
∑n

i=1 Ji(ûi),

the problem (4.11) becomes

min

n∑
i=1

Ji(ûi),

subject to û ∈ A, ûi ∈ Xi, gi,s(ûi)− ri,s(ûi) ≤ 0, ∀ i = 1, . . . , n, s = 1, . . . , 3p.

Recall that X = X1 × · · · × Xn is a convex compact set. Since X is compact and A is the

consensus subspace, it is easy to show that there are positive Lipschitz constants LJi and

Lgi,s for the gradients of Ji and gi,s on A ∩ X , i.e., for all û, û′ ∈ A ∩ X ,

‖∇Ji(ûi)−∇Ji(û′i)‖2 ≤ LJi · ‖ûi − û′i‖2, ∀ i = 1, . . . , n,

‖∇gi,s(ûi)−∇gi,s(û′i)‖2 ≤ Lgi,s · ‖ûi − û′i‖2, ∀ i = 1, . . . , n, s = 1, . . . , 3p.

To develop a SCP based fully distributed scheme, we introduce more notation.

Given any û = (ûi)
n
i=1 ∈ X and any vectors dJi , dgi,s , and dri,s for i = 1, . . . , n and

176

s = 1, . . . , 3p, consider the following function as a convex approximation of the original

nonconvex objective function J , where y = (y1, . . . , yn) ∈ RN with each yi being a suitable

subvector of y:

f(y; û, {dJi}ni=1) :=

n∑
i=1

(
Ji(ûi) + dTJi(ûi)(yi − ûi) +

LJi
2
‖yi − ûi‖22

)
,

and the following sets as convex approximations of the original nonconvex constraint sets

Y ∩ Z:

C
(
û, {dgi,s , dri,s , i = 1, . . . , n, s = 1, . . . , 3p}

)
:=

{
y ∈ X | gi,s(ûi) + dTgi,s(yi − ûi) +

Lgi,s
2
‖yi − ûi‖22

−
[
ri,s(ûi) + dTri,s(yi − ûi)

]
≤ 0, i = 1, . . . , n, s = 1, . . . , 3p

}
,

Clearly, f is a strongly convex quadratic function in y and decoupled in yi’s, and the

convex set C
(
û, {dgi,s , dri,s , i = 1, . . . , n, s = 1, . . . , p}

)
is the Cartesian product of Ci’s for

i = 1, . . . , n, where each

Ci
(
ûi, {dgi,s}

3p
s=1, {dri,s}

3p
s=1

)
:=

{
yi ∈ Xi | gi,s(ûi) + dTgi,s(yi − ûi) +

Lgi,s
2
‖yi − ûi‖22

−
[
ri,s(ûi) + dTri,s(yi − ûi)

]
≤ 0, s = 1, . . . , 3p

}
.

Using the above notation, the iterative scheme of the SCP method is: for a feasible

initial guess û0,

ûk+1 = arg min
y

{
f(y; ûk, {∇Ji(ûki)}ni=1)

∣∣ y ∈ A, and

y ∈ C
(
ûk, {∇gi,s(ûki),∇ri,s(û

k
i), i = 1, . . . , n, s = 1, . . . , 3p}

)}
.(4.13)

177

By virtue of Corollary 4.5.1, the initial û0 can be chosen as a solution to the problem

(4.7) or (4.11) whose objective function is J with ϕ = 0 and the approximate constraints

are polyhedral or quadratically constrained convex sets; see Section 4.5.3 for details. An

efficient fully distributed scheme has been developed in [64] to compute such û0. It is

shown in [45, Theorem 4.3] that if û0 is feasible, then ûk is feasible for all k and the

constraint set in each step k is a nonempty closed convex set [45, Lemma 3.3].

The convex minimization problem (4.13) at each step k can be solved via opera-

tor splitting method based fully distributed schemes. Fix ûk = (ûki)
n
i=1 and the related

gradients evaluated at ûk. We write the objective function f(y; û, {dJi}ni=1) as f(y) and

the constraint sets Ci
(
ûki , {∇gi,s(û

k
i),∇ri,s(û

k
i), s = 1, . . . , 3p}

)
as Ci’s for notational sim-

plicity. Clearly, ûki ∈ Ci for each i. If Ci is singleton for some i, i.e., Ci = {ûki }, then we

have ûk+1
i = ûki such that the optimization problem can be reduced to a simpler problem.

When Ci is non-singleton, it follows from Lemma 4.5.2 that the Slater’s condition holds

for that Ci. Let F (y) := f(y; ûk, {∇Ji(ûki)}ni=1)+δC(y)+δA(y). By [60, Corollary 23.8.1],

∂F (y) = {∇f(y)}+NC(y) +NA(y). As a result, several operator splitting method based

fully distributed algorithms [15], [26] can be applied to solve the convex optimization

problem (4.13).

Motivated by [64], we consider the (generalized) Douglas-Rachford splitting method

based distributed scheme. Specifically, define for each i = 1, . . . , n, fi(yi) := Ji(û
k
i) +

dTJi(û
k
i)(yi−ûi)+

LJi
2 ‖yi−ûki ‖22, and f̂i(y) := fi(yi)+δCi(yi). Hence, the objective function

f(y) =
∑n

i=1 fi(yi). For any constant 0 < α < 1 and ρ > 0, the Douglas-Rachford splitting

178

method based scheme is given by

wt+1 = ΠA(zt), zt+1 = zt + 2α ·
[
Prox

ρf̂1+···+ρf̂n

(
2wt+1 − zt

)
− wt+1

]
, ∀ t ∈ Z+,

(4.14)

where Proxh denotes the proximal operator of a proper lower semicontinuous convex

function h, and ΠA denotes the Euclidean projection onto A. Since A is the consen-

sus subspace, it is shown that [26, Section IV] that for any û := (û1, . . . , ûn) where

ûi :=
(
ui, (uij)j∈Ni

)
, u := ΠA(û) is given by:

uj = uij =
1

1 + |Nj |

(
ûj +

∑
k∈Nj

ûkj

)
, ∀ (i, j) ∈ E . (4.15)

Furthermore, since f̂i’s are decoupled, a distributed version of the above algorithm is given

by:

wt+1
i = zti, i = 1, . . . , n; (4.16a)

zt+1
i = zti + 2α ·

[
Prox

ρf̂i

(
2wt+1

i − zti
)
− wt+1

i

]
, i = 1, . . . , n. (4.16b)

Note that the proximal operator in the second equation of (4.14) is given by

Prox
ρf̂i

(2wt+1
i −zti) = arg minyi∈Ci fi(yi)+

1
2ρ‖yi−(2wt+1

i −zti)‖22, where Ci is the intersection

of the polyhedral set Xi and a quadratically constrained convex set. Since fi is a convex

quadratic function, Prox
ρf̂i

(2wt+1
i −zti) can be formulated as a second-order cone program

or QCQP and solved by SeDuMi [75]. See Algorithm 10 for its pseudo-code.

Since X is a compact set, the numerical sequence (ûk) generated by Algorithm 10

always has an accumulation point denoted by û∗. It follows from [45, Theorem 3.4] that

179

Algorithm 10 Sequential Convex Programming and Douglas-Rachford Splitting Method
based Fully Distributed Algorithm for p ≥ 2

1: Choose constants 0 < α < 1 and ρ > 0
2: Solve the problem (4.11) with ϕ = 0 via a fully distributed scheme and obtain a

solution ûlin

3: Initialize k = 0, and set an initial point û0 = ûlin

4: while the stopping criteria is not met do
5: Compute ∇Ji(ûki), ∇gi,s(û

k
i), ∇ri,s(û

k
i), and set z0 = ûk and t = 0.

6: repeat
7: for i = 1, . . . , n do
8: Compute zti using equation (4.15), and let wt+1

i ← zti
9: end for

10: for i = 1, . . . , n do

11: zt+1
i ← zti + 2α ·

[
Prox

ρf̂i

(
2wt+1

i − zti
)
− wt+1

i

]
12: end for
13: t← t+ 1
14: until an accumulation point is achieved
15: Set ûk+1 = wt and k ← k + 1
16: end while
17: return û∗ = ûk

under very mild conditions, û∗ is feasible and is a KKT point of the nonconvex program

(4.7). Our numerical experiences show that (ûk) converges to û∗ which is a local minimizer

of (4.7). This coincides with the observation made in Corollary 4.5.1 when c2,i and c3,i

are small.

4.5.3 Approximation of the Objective Function and Constraint Functions

When p > 1, the underlying MPC optimization problem (4.7) and its locally cou-

pled formulation (4.11) give rise to non-convex optimization problems with complicated

objective functions and constraints, especially the velocity and safety distance constraints

for a relatively large p, due to highly sophisticated closed-form expressions for ai(ui)’s.

To facilitate computation, particularly for real-time computation, we derive a simplified

model to approximate the objective function and constraint functions below. We start

with the constraints for u = (u1, . . . ,un) first, where we omit k since it is fixed.

180

The exact closed-form expressions for ai(ui)’s are given in the recursive manner at

the beginning of Section 4.4.1. These expressions are highly sophisticated especially for

large j’s because of the nonlinear relation in aerodynamic drag. Since the coefficients c2,i’s

and c3,i’s are small, we only consider the terms in ai(ui) that are linearly in c2,i’s and c3,i’s

while ignoring the terms involving higher orders of c2,i’s and c3,i’s. Such an approximation

is accurate enough for transportation applications and facilitates numerical computation.

Toward this goal, recall that the matrix Sp ∈ Rp×p is defined in the same was as in

(3.3) with n replaced by p, and (Spui)0 := 0. We then have, for each i = 1, . . . , n and

s = 1, . . . , p, (
ai(ui)

)
s
≈
(
ui
)
s
− c2,i

[
vi(k) + τ

(
Spui

)
s−1

]2
− c3,ig,

where
(
ai(ui)

)
s

denotes the s-entry of ai(ui) that corresponds to ai(k+s−1, ui(k), . . . , ui(k+

s− 1)), and
(
ui
)
s

denotes the s-entry of ui that corresponds to ui(k+ s− 1). Therefore,

ai(ui) ≈ ui − c2,i

[
v2
i (k)1 + 2τvi(k)S̃pui + τ2

(
S̃pui

)
◦
(
S̃pui

)]
− c3,ig1, (4.17)

where S̃p :=

 0 0

Ip−1 0

Sp ∈ Rp×p, and ◦ denotes the Hadamard product of two vectors

in Rp. Slightly abusing notation, we let ai(ui) represent its approximation given on the

right-hand side of (4.17). It is easy to derive the Jacobian of ai(ui) as

Jai(ui) = Ip − 2c2,iτvi(k)S̃p − 2c2,iτ
2diag(S̃pui)S̃p, (4.18)

where for a vector v = (v1, . . . , vp) ∈ Rp, diag(v) denotes the p × p diagonal matrix

whose diagonal entries are given by v1, . . . , vp. Here we use the fact that the Jacobian of

(Ax) ◦ (Ax) is given by J(Ax) ◦ (Ax) = 2diag(Ax)A for a matrix A.

181

Approximate speed constraint. Using the approximated ai(·), we have, for each

i = 1, . . . , n and j = 1, . . . , p,

vi(k + j) = vi(k) + τ
∑j

s=1

(
ai(ui)

)
s
≈ vi(k) + τ

((
Spui

)
j
− j · c3,ig − c2,i

∑j−1
s=0

[
vi(k) + τ

(
Spui

)
s

]2
)
.

(4.19)

It should be noted that the resulting approximation of vi(k + j) remains a nonlinear and

nonconvex function in ui(k), . . . , ui(k + j − 1) or ui. The approximated speed constraint

for ui is given by

Yi :=
{

ui ∈ Rp
∣∣∣ vmin ≤ vi(k) + τ

((
Spui

)
j
− j · c3,ig − c2,i

j−1∑
s=0

[
vi(k) + τ(Spui

)
s

]2) ≤ vmax,

j = 1, . . . , p
}
.

For j = 1, . . . , p, define the function

qi,j(ui) := vi(k) + τ
((
Spui

)
j
− j · c3,ig − c2,i

j−1∑
s=0

[
vi(k) + τ(Spui

)
s

]2)
. (4.20)

A straightforward calculation shows that the gradient of qi,j is given by

∇qi,j(ui) = τ

((
Sp)j,• − 2τc2,i

j−1∑
s=0

[
vi(k) + τ(Spui

)
s

](
Sp)s•

)T
.

Approximate safety distance constraint. For each i = 1, . . . , n and j = 1, . . . , p, the

safety distance constraint is given by

(
Hi(ui−1,ui)

)
j

:= Li + ri · vi(k+ j)− (vi(k + j)− vmin)2

2ai,min
− [xi−1(k+ j)− xi(k+ j)] ≤ 0.

182

To derive an approximation of
(
Hi(ui−1,ui)

)
j
, recall that the expression for zi(k + j) =

xi−1(k+ j)− xi(k+ j) is given by (4.5), where for each s = 0, 1, . . . , j − 1, it follows from

(4.19) that

bi(k + s,ui−1,ui) =
(
ai−1(ui−1)− ai(ui)

)
s+1

=
[
ui−1(k + s)− c2,i−1v

2
i−1(k + s)− c3,i−1g

]
−
[
ui(k + s)− c2,iv

2
i (k + s)− c3,ig

]
≈
[
ui−1(k + s)− ui(k + s)

]
−
(
c2,i−1

[
vi−1(k) + τ

(
Spui−1

)
s

]2
− c2,i

[
vi(k) + τ

(
Spui

)
s

]2
)

−
(
c3,i−1 − c3,i

)
g.

Further, by using the approximation of vi(k + j) given in (4.19), we obtain

(
Hi(ui−1,ui)

)
j
≈ Li + ri ·

[
vi(k) + τ

((
Spui

)
j
− j · c3,ig − c2,i

j−1∑
s=0

[
vi(k) + τ

(
Spui

)
s

]2)]
− 1

2ai,min

[
vi(k)− vmin + τ

((
Spui

)
j
− j · c3,ig

− c2,i

j−1∑
s=0

[
vi(k) + τ

(
Spui

)
s

]2)]2

−

{
zi(k) + ∆ + jτz′i(k) (4.21)

+ τ2
j−1∑
s=0

2(j − s)− 1

2

[
ui−1(k + s)− ui(k + s)−

(
c2,i−1

[
vi−1(k)

+ τ
(
Spui−1

)
s

]2 − c2,i

[
vi(k) + τ

(
Spui

)
s

]2)− (c3,i−1 − c3,i

)
g
]}

.

By slightly abusing the notation, we let
(
Hi(ui−1,ui)

)
j

denote its approximation given

above. Clearly, this approximating function is smooth but nonconvex. Further, when

ϕ = (ϕd,ϕf) = (c2,i, c3,i)
n
i=1 = 0, each

(
Hi(ui−1,ui)

)
j

reduces to a convex quadratic

function in (ui−1,ui). To compute the gradient of
(
Hi(ui−1,ui)

)
j
, let the vector p and

183

the matrix Rp be given by

p :=



1

2

...

p


∈ Rp, Rp :=



1 0 0 . . . 0

3 1 0 . . . 0

...
...

. . .
. . .

...

2p− 3 2p− 5 . . . 1 0

2p− 1 2p− 3 . . . 3 1


∈ Rp×p.

It is noted that for each i = 1, . . . , n and j = 1, . . . , p,

xi−1(k + j)− xi(k + j) = zi(k + j) = zi(k) + ∆ +
τ2

2

[
Rp

(
ai−1(ui−1)− ai(ui)

)]
j

Hence, using the gradient of qi,j and the Jacobian of ai given by (4.18), the gradients of(
Hi(ui−1,ui)

)
j

with respect to ui and ui−1 (for i ≥ 2) are respectively given by

∇ui
(
Hi(ui−1,ui)

)
j

= ri · ∇qi,j(ui)

− 1

ai,min

[
vi(k)− vmin + τ

((
Spui

)
j
− j · c3,ig − c2,i

j−1∑
s=0

[
vi(k) + τ

(
Spui

)
s

]2)] · ∇qi,j(ui)
+
τ2

2

[
(Rp)j• Jai(ui)

]T
,

and for i ≥ 2,

∇ui−1

(
Hi(ui−1,ui)

)
j

= −τ
2

2

[
(Rp)j• Jai−1(ui−1)

]T
.

Approximate objective function. Consider the decomposition of the (central) objec-

tive function given by local objective functions Ji’s in (4.8). The approximate objective

function Ji can be easily obtained by substituting (4.17) into (4.8). In what follows, we

184

compute the gradient of Ji. It follows from J1(u1,u2) := 1
2

[
aT1 (u1) aT2 (u2)

] (
Ŵ 1 −

τ2Ψ̂1
)a1(u1)

a2(u2)

+ cTI1a1(u1) + τ2

2

[
uT1 uT2

]
Ψ̂1

u1

u2

 that

∇u1J1(u1,u2) =

[(
Ja1(u1)

)T
0

] (
Ŵ 1 − τ2Ψ̂1

)a1(u1)

a2(u2)



+
(
Ja1(u1)

)T
cI1 + τ2

[
Ip 0

]
Ψ̂1

u1

u2

 ,

∇u2J1(u1,u2) =

[
0
(
Ja2(u2)

)T] (Ŵ 1 − τ2Ψ̂1
)a1(u1)

a2(u2)

+ τ2

[
0 Ip

]
Ψ̂1

u1

u2

 .

The similar result holds for ∇Jn(un−1,un) and ∇Ji(ui−1,ui,ui+1) for i = 2, . . . , n− 1.

Under the assumption A.2, the convex QCQP is feasible for all small ‖ϕ‖ > 0. This

implies that the nonconvex program (4.11) with approximate constraints is feasible for all

small ‖ϕ‖.

4.6 Control Design and Stability Analysis of Closed Loop Dynamics

In this section, we discuss the choice of the weight matrices Qz,s, Qz′,s and Qw,s

to achieve the desired closed loop performance, including stability and traffic transient

dynamics. It should be noted that all the proofs in this section are omitted and can

be found in the online version of our own manuscript [63, Section 6]. We present the

statements in this thesis for completeness.

185

For the similar reasons given in [22, Section 5], we focus on the constraint free

case. Recall that ϕ := (ϕd,ϕf) ∈ R2n
+ , where ϕd := (c2,1, . . . , c2,n) ∈ Rn+ and ϕf :=

(c3,1, . . . , c3,n) ∈ Rn+. Further, c2,0 = c3,0 = 0 as indicated before.

When ϕ = 0, the nonlinear vehicle dynamics reduces to the linear vehicle dynamics

given by (3.1), for which the closed loop stability of the MPC based platooning control

with a general horizon p has been analyzed in [Section 3.5]. Throughout the rest of this

section, we assume that for a given p, the weight matrices Qz,s, Qz′,s and Qw,s satisfying

the assumption A.3 are chosen such that Ac is Schur stable.

4.6.1 Reformulation of the Closed Loop Dynamics as a Tracking System

Consider the nonlinear vehicle dynamics (4.1). It follows from the definitions of

z(k), z′(k) and w(k) that for i = 1, . . . , n,

zi(k + 1) = zi(k) + τz′i(k)

+
τ2

2

(
wi(k)− [c2,i−1v

2
i−1(k)− c2,iv

2
i (k)]− [c3,i−1 − c3,i]g

)
,(4.22a)

z′i(k + 1) = z′i(k) + τ
(
wi(k)− [c2,i−1v

2
i−1(k)− c2,iv

2
i (k)]− [c3,i−1 − c3,i]g

)
.(4.22b)

For given (v0(k), u0(k)), k ∈ Z+, the equilibrium of the above discrete-time system

is (ze, z
′
e) = (0, 0) such that ve,i(k) = v0(k) for all i = 1, . . . , n. Hence, the corresponding

we,i(k) = [c2,i−1 − c2,i]v
2
0(k) + [c3,i−1 − c3,i]g, ∀ i = 1, . . . , n.

186

Let we(k) := (we,1(k), . . . , we,n(k))T . By shifting w(k) from the time-varying we(k), we

define ŵ(k) := w(k)− we(k). Hence, this yields the following equations: for i = 1, . . . , n,

zi(k + 1) = zi(k) + τz′i(k) +
τ2

2

(
ŵi(k) + ri(k)

)
, z′i(k + 1) = z′i(k) + τ

(
ŵi(k) + ri(k)

)
,

where for each i = 1, . . . , n,

ri(k) := we,i(k)− [c2,i−1v
2
i−1(k)− c2,iv

2
i (k)]− [c3,i−1 − c3,i]g

= c2,i−1

(
v2

0(k)− v2
i−1(k)

)
− c2,i

(
v2

0(k)− v2
i (k)

)
.

In light of v(k) = −Snz′(k) + v0(k) · 1, we have v2
0(k) − v2

i (k) = (Snz
′(k))i · [2v0(k) −

(Snz
′(k))i] for each i. We thus define the vector-valued smooth function h : Rn×R→ Rn

as h(z′, v0) := (h1(z′, v0), . . . , hn(z′, v0))T , where h1(z′, v0) := c2,1(Snz
′)1

[
(Snz

′)1 − 2v0

]
,

and for i = 2, . . . , n,

hi(z
′, v0) := c2,i−1(Snz

′)i−1

[
2v0 − (Snz

′)i−1

]
− c2,i(Snz

′)i
[
2v0 − (Snz

′)i
]
.

Clearly, h(0, v0) = 0 for any v0. Further, we decompose h as the sum of the following two

functions:

h(z′, v0) = v0 ·

(
2



−c2,1

c2,1 − c2,2

. . .

c2,n−1 − c2,n


Sn

︸ ︷︷ ︸
:=D(ϕd)

)
· z′ + h̃(z′), (4.23)

187

where the vector-valued function h̃ := (h̃1, . . . , h̃n)T : Rn → Rn is given by:

h̃i(z
′) := c2,i[(Snz

′)i]
2 − c2,i−1[(Snz

′)i−1]2, ∀ i = 1, . . . , n.

or equivalently

h̃(z′) :=



c2,1

−c2,1 c2,2

. . .
. . .

−c2,n−1 c2,n


[(
Snz

′) ◦ (Snz′)] = S−1
n diag(ϕd)︸ ︷︷ ︸

:=D̃(ϕd)

[(
Snz

′) ◦ (Snz′)].

(4.24)

Note that the elements of D and D̃ are linear in ϕd such that D(ϕd) = D̃(ϕd) = 0

when ϕd = 0. Using this notation, the nonlinear vehicle dynamics (4.1) is described by

the following discrete-time system:

z(k + 1)

z′(k + 1)

 =

In τIn

0 In


z(k)

z′(k)

+

 τ
2

2 In

τIn

(ŵ(k) + h(z′(k), v0(k))
)

=


In τIn

0 In

+ v0(k) ·

 τ
2

2 In

τIn

[0 D(ϕd)

]
z(k)

z′(k)



+

 τ
2

2 In

τIn

(ŵ(k) + h̃(z′(k))
)
.

By slightly abusing notation, we also write the function h̃ as h̃ϕd(z
′) to emphasize its

dependence on ϕd. Noting that h̃ is linear in ϕd for any fixed z′, we see that h̃0(z′) ≡ 0

for any given z′ ∈ Rn.

188

Define the following matrices:

A :=

In τIn

0 In

 , B :=

 τ
2

2 In

τIn

 , ∆A(ϕd) := B

[
0 D(ϕd)

]
, Â(k) := A+ v0(k) ·∆A(ϕd).

(4.25)

As before, we often write Â(k) as Â(v0(k),ϕd) to stress its dependence on v0(k) and ϕd.

Let z := (z, z′) ∈ Rn×Rn. We obtain the following non-autonomous nonlinear dynamical

system:

z(k + 1) = Â(k)z(k) +B
(
ŵ∗(k) + h̃ϕd(z

′(k))
)
, ∀ k ∈ Z+, (4.26)

where ŵ∗(k) is an optimal solution to the unconstrained MPC optimization problem (4.7)

which implicitly depends on z(k), v0(k) and u0(k). For any fixed ϕd, the closed loop system

given by (4.26) yields a non-autonomous nonlinear dynamical system, since h̃ is nonlinear

in z′ and v0(k) is time varying. In what follows, we further discuss the non-autonomous

system (4.26) for different MPC horizon p.

Case (i): p = 1. In this case, the closed-form expression of ŵ∗(k) is derived below.

Letting w̃(k) := w(k) − u0(k) · e1 = ŵ(k) + d(k), where d(k) := we(k) − u0(k) · e1, the

unconstrained MPC becomes

min J(ŵ(k)) :=
1

2

{
zT (k + 1)Qzz(k + 1) + (z′(k + 1))TQz′z

′(k + 1)

+ τ2[ŵ(k) + d(k)]TQw[ŵ(k) + d(k)]T
}

subject to z(k + 1) = z(k) + τz′(k) + τ2

2

[
ŵ(k) + h(z′(k), v0(k))

]
, and z′(k + 1) = z′(k) +

τ
[
ŵ(k) + h(z′(k), v0(k))

]
, where Qz := Qz,1, Qz′ := Qz′,1, and Qw := Qw,1. Hence,

∇J(ŵ(k)) =
(τ4

4
Qz + τ2Qz′ + τ2Qw

)
ŵ(k) +

τ2

2
Qzz(k) +

(τ3

2
Qz + τQz′

)
z′(k)

189

+
(τ4

4
Qz + τ2Qz′

)
h(z′(k), v0(k)) + τ2Qwd(k).

Define the matrix

Ŵ :=

[
τ2Qz

4
+Qz′ +Qw

]−1

. (4.27)

Using this matrix, we obtain the closed form expression for the optimal solution ŵ∗(k) as

ŵ∗(k) = −Ŵ ·
[Qz

2
z(k) +

(τQz
2

+
Qz′

τ

)
z′(k) +

(τ2

4
Qz +Qz′

)
h(z′(k), v0(k)) +Qwd(k)

]
.

Substituting ŵ∗(k) into (4.26), using the following matrix Ac derived in [22, Section 5]

(which agrees with the closed loop dynamics matrix in (3.21) when p = 1)

Ac :=

In − τ2

4 ŴQz τIn − Ŵ
(
τ3

4 Qz + τ
2Qz′

)
− τ

2ŴQz In − Ŵ
(
τ2

2 Qz +Qz′
)
 (4.28)

and in view of h(z′, v0) = v0D(ϕd)z
′ + h̃ϕd(z

′), the closed loop dynamics is characterized

by:

z(k + 1) = Ac z(k) +B
{
− Ŵ

(τ2

4
Qz +Qz′

)
h(z′(k), v0(k))

−ŴQwd(k) + h(z′(k), v0(k))
}

=
(
Ac + v0(k) ·∆Ā(ϕd)

)
z(k)−BŴQwd(k) + B̆h̃ϕd(z

′(k)),

where the matrices ∆Ā and B̆ are given by

B̆ := B
[
In − Ŵ

(τ2

4
Qz +Qz′

)]
, ∆Ā(ϕd) := B̆

[
0 D(ϕd)

]
. (4.29)

190

By using d(k) = we(k)− u0(k) · e1, the closed loop dynamics for p = 1 becomes:

z(k+1) =
(
Ac +v0(k) ·∆Ā(ϕd)

)
z(k)+B

(
u0(k)d−ŴQwwe(k)

)
+ B̆h̃ϕd(z

′(k)), (4.30)

where d = ŴQwe1 that agrees with what is given in (3.23) for p = 1, and we(k) depends

on v0(k) and ϕ. Further, there exists a positive constant κ̃ such that ‖we(k)‖ ≤ κ̃ · ‖ϕ‖

for any v0(k) ∈ [vmin, vmax].

Case (ii): p > 1. In this case, recall that for any fixed k ∈ Z+, u0(k + s) = u0(k)

for all s = 1, . . . , p − 1 in the MPC model. Hence, v0(k + s) = v0(k) + τsu0(k) for all

s = 1, . . . , p − 1. Define Â(k + s) := A + v0(k + s) · ∆A(ϕd) for all s = 0, 1, . . . , p − 1.

Given Â(k + s) with s = 0, . . . , p − 1, define the state transition matrix as the following

matrix product for any s, s′ ∈ {0, . . . , p} with s ≤ s′,

Φ
Â

(k + s, k + s) := I; Φ
Â

(k + s′, k + s) := Â(k + s′ − 1)× · · · × Â(k + s), ∀ s′ > s.

Based upon the above notation, we obtain, for any fixed k ∈ Z+ and s = 1, . . . , p,

z(k + s) = Φ
Â

(k + s, k)z(k)

+

s−1∑
i=0

Φ
Â

(k + s, k + i+ 1)B
[
ŵ(k + i) + h̃ϕd(z

′(k + i))
]

(4.31)

= Φ
Â

(k + s, k)z(k) +
s−1∑
i=0

Φ
Â

(k + s, k + i+ 1)Bŵ(k + i) (4.32)

+

s−1∑
i=0

Φ
Â

(k + s, k + i+ 1)Bh̃ϕd(z
′(k + i)).

In light of (4.24) and (4.31), the following lemma can be established via an induction

argument on s and straightforward calculations; its proof is omitted.

191

Lemma 4.6.1. Fix an arbitrary k ∈ Z+. For each s = 1, . . . , p, h̃ϕd(z
′(k+s)) is a vector-

valued function whose each entry is a multivariate polynomial in (z′(k), u0(k), v0(k), ŵ(k),

. . . , ŵ(k + s− 1)) and ϕd.

Further, in view of u0(k + s) = u0(k) for any s ≥ 0 and a fixed k ∈ Z+, we have for

each s = 0, . . . , p− 1,

w̃(k+ s) = w(k+ s)−u0(k+ s)e1 = ŵ(k+ s) +we(k+ s)−u0(k)e1 = ŵ(k+ s) + d(k+ s),

where d(k + s) := we(k + s)− u0(k)e1. Here we recall that for each s = 0, . . . , p− 1,

we,i(k + s) = [c2,i−1 − c2,i]v
2
0(k + s) + [c3,i−1 − c3,i]g, ∀ i = 1, . . . , n,

where v0(k + s) = v0(k) + sτu0(k). Note that we(k) depends on ϕ linearly. Consider

the unconstrained MPC model. Define the following augmented matrices and vector: for

s = 1, . . . , p

Qz,s :=

Qz,s
Qz′,s

 ; Qw :=


Qw,1

. . .

Qw,p

 ; d̃(k) :=


d(k)

...

d(k + p− 1)

 .

For any fixed k ∈ Z+, the objective function in the MPC model is written as

J(ŵ(k), . . . , ŵ(k + p− 1)︸ ︷︷ ︸
:=ŵ(k)

) =
1

2

(p∑
s=1

z(k + s)TQz,sz(k + s)
)

+
τ2

2
[ŵ(k) + d̃(k)]TQw[ŵ(k) + d̃(k)].

192

Substituting the expression for z(k+s) given by (4.31) into the objective function J ,

we obtain the objective function written as J(ŵ) for a fixed k. It follows from the previous

development and Lemma 4.6.1 that J is a polynomial function in (ŵ, z(k), v0(k), u0(k),ϕ).

Moreover, the Hessian of the objective function J with respect to ŵ is given by

HJ(ŵ) =

[
∂J2(ŵ)

∂ŵi∂ŵj

]
i,j

:= Ĥ(ŵ, z(k), v0(k), u0(k),ϕ).

When k is fixed, we write this Hessian as Ĥ(ŵ, z, v0, u0,ϕ) to emphasize its dependence on

these variables. Clearly, Ĥ is an analytic, thus smooth, function, and for any (ŵ, z, v0, u0),

Ĥ(ŵ, z, v0, u0,ϕ)|ϕ=0 = H, where H is the constant PD matrix given by (3.22). Moreover,

when ϕ = 0, the objective function J reduces to the one for the linear vehicle dynamics

whose corresponding optimal solution is given in Section 3.5 as

ŵ∗(z, v0, u0,ϕ)|ϕ=0 = −H−1
(
G · z− u0 · g

)
.

However, unlike Case (i) where p = 1, the closed form expression of a critical point or

a local minimizer ŵ∗ is unavailable for p > 1, and some implicit function theorems are

needed. Instead of applying the classical local implicit function theorem, we consider

results on non-local (or global) implicit functions to express ŵ∗ in term of z, v0, u0 and ϕ,

since the variables z, v0, u0 can be non-local.

Proposition 4.6.1. [63, Proposition 6.1] Let Uz be a bounded set in R2n, U0 be a bounded

set containing [a0,min, a0,max], and V0 be a bounded set containing [vmin, vmax]. Let Uŵ be

a bounded set in Rnp containing all ŵ∗(z, v0, u0, 0) for all z ∈ Uz, v0 ∈ V0, and u0 ∈ U0.

Then for any constant λ̃ with 0 < λ̃ < λmin(H), there exists a positive constant µ1 > 0 such

193

that Ĥ(ŵ, z, v0, u0,ϕ) is PD and λmin(Ĥ(ŵ, z, v0, u0,ϕ)) ≥ λ̃ for all (ŵ, z, v0, u0,ϕ) ∈

Uŵ × Uz × V0 × U0 × B∞(0, µ1), where B∞(0, µ1) := {ϕ | ‖ϕ‖∞ < µ1}.

To obtain an implicit form of ŵ∗(k) in terms of z(k), v0(k), u0(k) from the MPC

optimization problem for small ‖ϕ‖, we shall exploit the following global implicit function

theorems [27], [62].

Theorem 4.6.1. [27, Theorem 2] Consider the sets U ⊆ Rn and V ⊆ Rm, where U is

connected (U and V are not necessarily open). Let f : U ′ × V ′ → Rm be a Cr-function

with r ≥ 1, where U ′ ⊆ Rn and V ′ ⊆ Rm are open sets containing U and V respectively.

Further, suppose the following hold:

(i) For some x∗ ∈ U , there exists exactly one y∗ ∈ V such that f(x∗, y∗) = 0;

(ii) For any (x, y) ∈ G′f := {(x, y) ∈ U ′ × V ′ : f(x, y) = 0}, Dyf(x, y) is invertible;

(iii) For any sequence
(
(xk, yk)

)
∈ Gf := {(x, y) ∈ U × V : f(x, y) = 0} with (xk) → x∗,

there exists a subsequence (yk′) of (yk) such that (yk′) converges to a point in V.

Then there exists a unique Cr-function g : U → V such that f(x, g(x)) = 0,∀x ∈ U .

An easily verified condition in replace of condition (iii) in the above theorem is given

by the following theorem; its proof resembles that of [27, Theorem 5], which exploits the

covering map argument.

Theorem 4.6.2. [63, Theorem 6.2]] Let U ⊆ Rn be a connected set, and V ⊆ Rm be a

closed set. Let f : U ′×V ′ → Rm be a Cr-function with r ≥ 1, where U ′ ⊆ Rn and V ′ ⊆ Rm

are open sets containing U and V respectively. Suppose the following hold:

(i) For some x∗ ∈ U , there exists exactly one y∗ ∈ V such that f(x∗, y∗) = 0;

194

(ii) For any (x, y) ∈ G′f := {(x, y) ∈ U ′ × V ′ : f(x, y) = 0}, Dyf(x, y) is invertible;

(iii) There is a positive constant ρ such that ‖(Dyf(x, y))−1‖ · ‖Dxf(x, y)‖ ≤ ρ for all

(x, y) ∈ G′f .

Then there exists a unique Cr function g : U → V such that f(x, g(x)) = 0, ∀x ∈ U .

Using the above theorem, we establish a result on global implication function for

ŵ∗ as follows.

Proposition 4.6.2. [63, Proposition 6.2] Let Uz be a bounded open convex set in R2n,

let U0 be a bounded open convex set containing [a0,min, a0,max], and let V0 be a bounded

open convex set containing [vmin, vmax]. Let Uŵ be a compact set in Rnp containing all

ŵ∗(z, v0, u0, 0) for all z ∈ Uz, v0 ∈ V0, and u0 ∈ U0. Then there exist a positive constant

µ2 > 0 and a unique smooth function h : Uz × V0 × U0 × B∞(0, µ2) → Uŵ such that

ŵ∗ = h(z, v0, u0,ϕ) for all (z, v0, u0,ϕ) ∈ Uz × V0 × U0 × B∞(0, µ2).

The above proposition implies that the unconstrained nonconvex optimization prob-

lem min J(ŵ) has a unique local minimizer ŵ∗ on Uŵ for any fixed (z, v0, u0,ϕ) ∈

Uz×V0×U0×B∞(0, µ2). Hence, for any (z(k), v0(k), u0(k),ϕ) ∈ Uz×V0×U0 at each k,

ŵ∗(k) = h(z(k), v0(k), u0(k),ϕ), ŵ∗(k) =

[
In 0 · · · 0

]
h(z(k), v0(k), u0(k),ϕ).

Moreover, note that h(z, v0, u0, 0) = −H−1
(
G · z − u0g

)
for any fixed (z, v0, u0) ∈ Uz ×

V × U0. Define

∆ĥ(z, v0, u0,ϕ) :=

[
In 0 · · · 0

](
h(z, v0, u0,ϕ)− h(z, v0, u0, 0)

)
.

195

Since Uz × V0 × U0 × B∞(0, µ2) is an open convex set, it follows from the Mean-value

Theorem that for any fixed (z, v0, u0,ϕ) ∈ Uz × V0 × U0 × B∞(0, µ2),

∆ĥ(z, v0, u0,ϕ) =

∫ 1

0
Dϕĥ(z, v0, u0, tϕ)dt ·ϕ.

Therefore, there exists a positive constant κ such that ‖∆ĥ(z, v0, u0,ϕ)‖ ≤ κ‖ϕ‖∞ for

all (z, v0, u0,ϕ) ∈ Uz × V0 × U0 × B∞(0, µ2).

Substituting the above results to the closed loop dynamics (4.26), we obtain

z(k + 1) = Â(k)z(k) +B
(
ŵ∗(k) + h̃ϕd(z

′(k))
)

=
(
A+ v0(k)∆A(ϕd)

)
z(k) +B

[
−
[
In 0 · · · 0

]
H−1

(
G · z(k)− u0(k)g

)]
+B

(
∆ĥ(z, v0, u0,ϕ) + h̃ϕd(z

′(k))
)

=
[(
A+BK)︸ ︷︷ ︸

Ac

+v0(k) ·∆A(ϕd)
]
z(k) +B

(
u0(k) · d + ∆ĥ(z, v0, u0,ϕ) + h̃ϕd(z

′(k))
)
,

where the constant matrix K and the constant vector d are given by (3.23), and Ac is the

closed loop dynamics matrix for the linear vehicle dynamics given by (3.21). This leads

to the closed loop dynamics for p > 1:

z(k + 1) =
(
Ac + v0(k) ·∆A(ϕd)

)
z(k) +B

[
u0(k)d + ∆ĥ(z(k), v0(k), u0(k),ϕ)

]
+Bh̃ϕd(z

′(k))

(4.33)

for all (z, v0, u0,ϕ) ∈ Uz × V0 × U0 × B∞(0, µ2), where Uz is a bounded open convex set

in R2n, U0 is a bounded open convex set containing [a0,min, a0,max], and V0 is a bounded

open convex set containing [vmin, vmax].

196

4.6.2 Local Input-to-state Stability of the Closed Loop System

We give a brief overview of (local) input-to-state stability first. Consider the discrete-

time system on Rn:

x(k + 1) = f(x(k), u(k), k), ∀ k ∈ Z+, (4.34)

where f : Rn × Rm × Z+ → Rn, and f(·, ·, k) is continuous for any fixed k ∈ Z+. Let

u := (u(0), u(1), . . .) be a sequence of vectors in Rm that represents an input function on

Z+. We assume that f(0, 0, k) = 0 for all k ∈ Z+ such that xe = 0 is an equilibrium of

the system (4.34) under the 0-input, i.e., u = 0. We let ‖u‖∞ := sup{‖u(k)‖ : k ∈ Z+}.

Hence, for any u ∈ `m∞, ‖u‖∞ < ∞. For a given initial condition ξ ∈ Rn and an input

function u, let x(k, ξ,u) denote the trajectory of the system (4.34).

We introduce the notions of K class of functions [35, pp. 135]. A continuous function

α : R+ → R+ is a K-function if it is strictly increasing on [0,∞) and α(0) = 0. It is a

K∞-function if it is a K-function and α(t)→∞ as t→∞. It is a positive definite function

if α(t) > 0 for all t > 0 and α(0) = 0. A function β : R+ × R+ → R+ is a KL-function if

(i) for any fixed t ≥ 0, the function β(·, t) is a K-function; and (ii) for any fixed s ≥ 0, the

function β(s, ·) is decreasing and β(s, t)→ 0 as t→∞.

Definition 4.6.1. The time-varying discrete-time system (4.34) is locally input-to-state

stable (ISS) if there exist a KL-function β : R+ × R+ → R+, a K-function γ : R+ → R+,

and two positive constants θx, θu such that for all ξ with ‖ξ‖ ≤ θx and u ∈ `m∞ with

‖u‖∞ ≤ θu, the following holds:

‖x(k, ξ,u)‖ ≤ β(‖ξ‖, k) + γ(‖u‖∞), ∀ k ∈ Z+.

197

The above definition follows from [35, Definition 5.2] for continuous-time systems

and [32, Definition 3.1] for global ISS of discrete-time systems. Also see [25], [65], [74] for

details. In what follows, we extend the Lyapunov approach for global ISS in [32, Lemma

3.5] and [30] to local input-to-state stability (ISS) for the time-varying system (4.34); see

[31, Lemma 2.3] for a similar local version of the ISS.

Theorem 4.6.3. Consider the time-varying discrete-time system (4.34) defined by f :

Rn ×Rm ×Z+ → Rn. Suppose there exists a local ISS-Lyapunov function V : Rn ×Z+ →

R+ for the system (4.34), namely, there exist two sets Dx := {x ∈ Rn | ‖x‖ ≤ r} and

Du := {u ∈ Rm | ‖u‖ ≤ ru} for some positive constants r and ru, where ru can be +∞,

such that the following hold:

(i) There exist two K∞-functions α1 and α2 such that α1(t) ≤ α2(t),∀ t ≥ 0 and

α1(‖x‖) ≤ V (x, k) ≤ α2(‖x‖) for all x ∈ Dx and all k ∈ Z+;

(ii) There exist a K∞-function α3 and a K-function σ such that V (f(x, u, k), k + 1) −

V (x, k) ≤ −α3(‖x‖) + σ(‖u‖) for all x ∈ Dx and u ∈ Du and all k ∈ Z+.

Then there exist positive constants θx > 0 and θu > 0 such that the following hold:

(i) For any ξ with ‖ξ‖ ≤ θx and u = (u(k))k∈Z+ ∈ `m∞ with ‖u‖∞ ≤ θu, x(k, ξ,u) ∈ Dx

for all k ∈ Z+;

(ii) The system (4.34) is locally input-to-state stable in terms of the positive constants

θx and θu given in Definition 4.6.1.

Since the closed loop dynamics for p = 1 given by (4.30) and that for p > 1 given

by (4.33) share the similar structure except that the latter holds on a restricted set, we

provide the following result for local input-to-state stability under the assumption that

198

the closed loop dynamic matrix Ac under the linear vehicle dynamics given in (3.21) is

Schur stable.

Theorem 4.6.4. [63, Theorem 6.4] Fix p ∈ N. Suppose the weight matrices Qz,s, Qz′,s

and Qw,s satisfying A.1 are such that Ac given in (3.21) is Schur stable. Then there exist

positive constants µ and ν such that for all ϕ with ‖ϕ‖∞ ≤ µ, any v0(k) ∈ [vmin, vmax]

and any u0(k) with |u0(k)| ≤ ν for all k ∈ Z+, the closed loop dynamics given by (4.30)

or (4.33) is locally input-to-state stable.

4.7 Numerical Results

4.7.1 Numerical Experiment Setup and Weight Matrix Design

Numerical tests are carried out to evaluate the performance of the proposed fully

distributed schemes and the platooning control for a possibly heterogeneous CAV platoon.

We consider a platoon of an uncontrolled leading vehicle labeled by the index 0 and ten

CAVs, i.e., n = 10. The sample time τ = 1s, and the speed limits vmax = 27.78m/s and

vmin = 10m/s. Since the physical parameters of CAV platoons as well as algorithm and

control design depend heavily on vehicle types, we consider the following three types of

CAV platoons: (i) a homogeneous small-size CAV platoon; (ii) a heterogeneous medium-

size CAV platoon; and (iii) a homogeneous large-size CAV platoon. Identical minimal

(resp. maximal) values of nonlinear dynamics coefficients c2,i’s and c3,i’s are chosen for

the homogeneous small-size (resp. large-size) CAV platoon, whereas inhomogeneous values

of c2,i’s and c3,i’s are chosen for the heterogeneous medius-size CAV platoon. Other

parameters for the CAVs and their constraints, i.e., the vehicle length Li(m), the reaction

time ri(s), the acceleration and deceleration limits ai,max(m/s2) and ai,min(m/s2), and the

199

desired spacing ∆(m), are chosen accordingly. See Tables 4.1- 4.2 for the values of these

parameters [22], [97].

Table 4.1: Physical parameters for homogeneous small-size and large-size CAV platoons

Li ri ai,min ai,max c2,i(×10−4) c3,i(×10−2) ∆(m)

Small-size 5 1.0 −8 1.4 2.5 0.6 50

Large-size 10 1.25 −6.8 1.4 4.5 1.5 65

The initial state of each CAV platoon is z(0) = z′(0) = 0 and vi(0) = 25m/s for all

i = 0, 1, . . . , n. The cyclic-like graph is considered for the vehicle communication network,

i.e., the bidirectional edges of the graph are (1, 2), (2, 3), . . . , (n− 1, n) ∈ E . Following the

discussions in [64, Section 6], we choose the MPC horizon p as 1 ≤ p ≤ 5.

We present the choices of weight matrices for each of the abovementioned three CAV

platoons. Define

α̃ :=
(
38.85, 40.2, 41.55, 42.90, 44.25, 45.60, 46.95, 48.30, 49.65, 51.00

)
∈ R10,

β̃ :=
(
130.61, 136.21, 141.82, 147.42, 153.03, 158.64, 164.24, 169.85, 175.46, 181.06

)
∈ R10,

ζ̃ :=
(
62, 74, 90, 92, 106, 194, 298, 402, 454, 480

)
∈ R10.

Table 4.2: Physical parameters for a heterogeneous medium-size CAV platoon with ∆ =
60m

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

Li(m) 7 7 7 7 7 7 7 7 7 7

ri(s) 1.21 1.155 0.99 1.045 1.21 1.155 0.99 1.045 1.155 1.045

ai,min(m/s2) −8.14 −7.77 −6.66 −7.03 −8.14 −7.77 −6.66 −7.03 −7.77 −7.03

ai,max(m/s2) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

c2,i(×10−4) 3.85 3.675 3.15 3.325 3.85 3.675 3.15 3.325 3.675 3.325

c3,i(×10−2) 1.155 1.103 0.945 0.998 1.155 1.103 0.945 0.998 1.103 0.998

200

For all the three CAV platoons, α1 = 6α̃, β1 = β̃, and ζ1 = 0.5ζ̃ when p = 1.

• Homogeneous small-size and heterogenous medium-size CAV platoons: for p ≥ 2,

α1 = 9(α̃− 1), β1 = β̃ − 1, ζ1 = 0.5(ζ̃ − 1), and

αs =
0.1368

(s− 1)4
× α̃, βs =

0.044

(s− 1)4
× β̃, ζs =

0.0013

(s− 1)4
× ζ̃, s = 2, . . . ,min(p, 3).

• Homogeneous large-size CAV platoon: for p ≥ 2, α1 = 6(α̃ − 1), β1 = β̃ − 1,

ζ1 = 0.5(ζ̃ − 1), and

αs =
0.0684

(s− 1)4
× α̃, βs =

0.044

(s− 1)4
× β̃, ζs =

0.0013

(s− 1)4
× ζ̃, s = 2, . . . ,min(p, 3).

And for all the above CAV platoons: for p = 4, 5,

αs =
0.0228

(s− 1)4
× α̃, βs =

0.044

(s− 1)4
× β̃, ζs =

0.0026

(s− 1)4
× ζ̃, s = 4, . . . , p.

The above vectors αs,βs, ζs define the weight matrices Qz,s, Qz′,s, Qw,s for s =

1, . . . , 5, which further yield the closed loop dynamics matrix Ac; see the discussions

below (3.23). It is shown that when these weights are used, Ac is Schur stable for each

p = 1, . . . , 5 and each CAV platoon.

We use the same three scenarios described in the linear vehicle dynamics Section

3.6.1. In scenario 3, we use ai,max = 1.8m/s2 for each vehicle.

4.7.2 Performance of the Proposed Fully Distributed Scheme

As indicated in Section 4.5.2, when p = 1, the underlying MPC optimization problem

(4.11) is a convex QCQP, for which the generalized Douglas-Rachford splitting method

201

based fully distributed algorithm developed in [64] is used. In what follows, we focus on

p > 1.

When p > 1, the underlying MPC optimization problem (4.11) is nonconvex, and

the sequential convex programming and Douglas-Rachford splitting method based fully

distributed scheme is applied (cf. Algorithm 10). To apply this algorithm, we discuss the

choices of the smooth functions gi,s and the convex function ri,s for the (approximated)

nonconvex constraint sets Yi and Zi, where i = 1, . . . , n. In view of the definition of Yi

given before (4.20), we see that Yi = {ui | vmin − qi,j(ui) ≤ 0, qi,j(ui) − vmax ≤ 0, j =

1, . . . , p}, where qi,j(·) is given by (4.20). Define gi,s(ui) := vmin−qi,j(ui), and ri,s(ui) :≡ 0

for s = 1, . . . , p; gi,s(ui) :≡ 0, and ri,s(ui) := −qi,j(ui) + vmax for s = p+ 1, . . . , 2p. Then

Yi = {ui | gi,s(ui) − ri,s(ui) ≤ 0, s = 1, . . . , 2p}. Similarly, let g′i,s(ui−1,ui) be the right

hand side of (4.21), and r′i,s(ui−1,ui) ≡ 0. Then Zi = {ûi | g′i,s(ûi) − r′i,s(ûi) ≤ 0, s =

1, . . . , p}. The gradient of these functions are given in Section 4.5.3. Furthermore, the

Lipschitz constants LJi ’s and Lgi,s ’s are given by νp‖HJi(ûi)‖2 and 0.9‖Hgi,s(ûi)‖2, where

νp = 0.8 for p = 2, 3 and νp = 0.9 for p = 4, 5 respectively, and Hf denotes the Hessian

of a real-valued smooth function f . The reasons for each Hessian scaled by these factors

are twofold: (i) the 2-norm of Hessian is conservative; and (ii) the scaled Hessian leads to

faster convergence.

Initial guess warm-up. To achieve real-time computation of the proposed distributed

scheme (i.e., Algorithm 10), we exploit the initial guess warm-up technique for both the

linear stage (cf. Line 2) and the inner loop of the SCP-DR stage (cf. Lines 6-14). For

the former stage, see [64, Section 6.2] for its warm-up scheme. We discuss a warm-up

scheme for the latter stage. Recall that the inner loop solves the following convex opti-

mization problem: miny=(yi)∈A
∑n

i=1 fi(yi)+δCi(yi), where for each i = 1, . . . , n, fi(yi) :=

202

Table 4.3: Error tolerances for outer and inner loops at different MPC horizon p’s

p = 1 p = 2 p = 3 p = 4 p = 5

Outer loop 2.5× 10−3 6.5× 10−3 7.5× 10−3 1.0× 10−2 1.25× 10−2

Inner loop NA 4.0× 10−3 5.0× 10−3 7.5× 10−3 1.0× 10−2

Ji(û
k
i) + dTJi(û

k
i)(yi − ûi) +

LJi
2 ‖yi − ûki ‖22, and Ci is the intersection of the box-constraint

set Xi corresponding to the control constraint and a quadratically constrained convex

set corresponding to the (approximated) velocity and safety distance constraints; see Sec-

tion 4.5.2 for details. Since the (approximated) velocity and safety distance constraints are

often inactive, we replace Ci by Xi in a warm-up scheme. Further, the generalized Douglas-

Rachford scheme given by (4.16) is used to solve miny=(yi)∈A
∑n

i=1 fi(yi) + δXi(yi) in a

fully distributed manner by replacing Ci by Xi. Since fi and the box constraint set Xi are

fully decoupled, solving the proximal operator based optimization problem in this scheme

boils down to solving finitely many decoupled univariate optimization problems of the

form: mint∈[c,d] at
2 + bt + e, where t ∈ R, and a, b, c, d, e ∈ R are given constants with

a > 0. Such a univariate optimization problem has a simple closed-form solution, which

considerably reduces computation load of the Douglas-Rachford scheme. Numerical tests

show that the proposed warm-up scheme significantly improves computation time and

solution quality.

Performance of distributed schemes. We implement the proposed fully distributed

algorithms via MATLAB on a computer with 4-cores processor: Intel(R) Core(TM) i7-

8550U CPU @ 1.80GHz and RAM: 16.0GB. These distributed algorithm are tested

for the three types CAV platoons, namely homogeneous small-size and large-size CAV

platoons and a heterogeneous medium-size CAV platoon, on Scenarios 1-3 for different

203

MPC horizon p’s. The proposed initial guess warm-up schemes are used with the error

tolerance give by 10−7 for all the cases. Moreover, we choose α = 0.9 and ρ = 0.1 for

the proximal operator based Douglas-Rachford scheme in all of these algorithms. Further,

the stopping criteria are characterized by the minimum of absolute and relative errors of

two neighboring iterates for p = 2, 3, whereas for p = 4, 5, these criteria are characterized

by absolute errors of two neighboring iterate. The list of error tolerances for the outer

and inner loop (for all the three types of CAV platoons) at p’s is shown in Table 4.3.

Note that there is no inner loop when p = 1, since the underlying MPC optimization

problem is a convex QCQP and solved via the fully distributed scheme given in [64]. A

summary of mean and variance of computation time per CAV for different CAV platoons

with different p’s on the three scenarios is displayed in Tables 4.4- 4.6. Moreover, to

evaluate the numerical accuracy of the proposed schemes for p = 1, we compute the

relative error between the numerical solution from the distributed schemes and that from

a high precision centralized scheme when the latter solution, treated as a true solution, is

nonzero; see Tables 4.7. Note that for p ≥ 2, a true solution is hard to compute even in

a centralized manner.

Table 4.4: Scenario 1: computation time per CAV (sec)

MPC horizon
Small-size Medium-size Large-size

Mean Variance Mean Variance Mean Variance

p = 1 0.0952 3.43× 10−4 0.1333 1.44× 10−4 0.1087 2.32× 10−4

p = 2 0.1616 1.6× 10−3 0.2795 4.5× 10−3 0.2759 1.6× 10−3

p = 3 0.1721 1.40× 10−3 0.2673 4.11× 10−3 0.2667 2.35× 10−3

p = 4 0.1665 6.33× 10−4 0.2535 2.02× 10−3 0.3038 0.1440

p = 5 0.2243 0.2340 0.3056 0.4440 0.3296 0.4240

204

Table 4.5: Scenario 2: computation time per CAV (sec)

MPC horizon
Small-size Medium-size Large-size

Mean Variance Mean Variance Mean Variance

p = 1 0.1098 7.33× 10−4 0.1421 2.55× 10−4 0.1204 7.54× 10−4

p = 2 0.1771 1.2× 10−3 0.2857 6.7× 10−3 0.2814 3.3× 10−3

p = 3 0.1939 4.83× 10−4 0.2804 2.78× 10−3 0.2734 1.62× 10−3

p = 4 0.2241 9.58× 10−3 0.3165 5.93× 10−3 0.3681 0.0241

p = 5 0.2418 0.0113 0.3051 0.0109 0.3449 0.0150

Table 4.6: Scenario 3: computation time per CAV (sec)

MPC horizon
Small-size Medium-size Large-size

Mean Variance Mean Variance Mean Variance

p = 1 0.1109 1.2× 10−3 0.1408 4.09× 10−4 0.1125 8.38× 10−4

p = 2 0.1559 2.3× 10−3 0.2528 6.3× 10−3 0.2503 4.8× 10−3

p = 3 0.2257 0.1320 0.2398 4.91× 10−3 0.2437 3.98× 10−3

p = 4 0.2053 7.73× 10−3 0.2883 9.73× 10−3 0.3216 0.0132

p = 5 0.2256 0.0136 0.2882 0.0135 0.3250 0.0249

The numerical results show that for each p and each CAV platoon type, the mean

computation time is less than 0.369s and thus less than the reaction time ri or sample

time τ with overall fairly small variances, for all the three scenarios. Indeed, the com-

putation time for p = 1 is the least and becomes larger for a higher p for most cases.

Further, the computation times vary for different CAV vehicle types. In particular, the

computation time for the small-size platoon is less than that of the medium-size and the

large-size platoons. This is because the nonlinear effects play an increasing role in the

latter types of platoons when c2,i and c3,i become larger. Additionally, the heterogeneous

dynamics in the middle-size platoon also require more computation. Besides, the numeri-

205

Table 4.7: Relative numerical error for p = 1

Scenarios
Small-size Medium-size Large-size

Mean Variance Mean Variance Mean Variance

Sc. 1 1.07× 10−3 1.44× 10−7 5.66× 10−4 1.24× 10−6 5.29× 10−4 5.14× 10−8

Sc. 2 9.11× 10−4 3.82× 10−6 1.11× 10−3 7.54× 10−6 4.38× 10−4 2.73× 10−8

Sc. 3 1.47× 10−3 3.51× 10−6 6.85× 10−4 8.41× 10−7 5.85× 10−4 2.45× 10−7

Table 4.8: Maximum steady state error of spacing (m)

MPC horizon
Scenarios 1-2 (among 10 vehicles) Scenario 3 (among 9 vehicles)

Small-size Medium-size Large-size Small-size Medium-size Large-size

p = 1 0.0571 0.0941 0.1138 0 0.0431 0

p = 2 0.1107 0.1507 0.2738 0.1003 0.1277 0.2199

p = 3 0.1122 0.1530 0.2793 0.1051 0.1369 0.2374

p = 4 0.1321 0.1687 0.2831 0.1142 0.1363 0.2106

p = 5 0.1438 0.1880 0.3052 0.1438 0.1538 0.2342

cal accuracy is satisfactory for p = 1 as shown in Table 4.7. Hence, we conclude that the

proposed distributed schemes are suitable for real-time computation of a heterogenous or

homogeneous CAV platoon with satisfactory numerical precision.

4.7.3 Performance of CAV Platooning Control

We evaluate the closed-loop performance of the proposed CAV platooning control

with different MPC horizon p’s for different CAV platoons on the three scenarios men-

tioned before. For each CAV platoon and scenario, we consider the spacing between two

neighboring vehicles (i.e., Si−1,i(k) := xi−1(k) − xi(k) = zi(k) + ∆), the vehicle speed

vi(k), and the control input ui(k), i = 1, . . . , n for p = 1, 2, 3, 4, 5.

206

Steady state error. When (c2,i, c3,i) 6= 0 and u0(k) = 0 and v0(k) = v0,∞ > 0 for all large

k, it is observed from the numerical tests that when the closed-loop dynamics of the CAV

platoon reaches its steady state (zss, z
′
ss) ∈ Rn×Rn, i.e., (z(k), z′(k)) becomes the constant

vector (zss, z
′
ss) for all large k, zss is nonzero. Physically, the nonzero steady state is due to

nonlinear vehicle dynamics and the PD-like control structure of the MPC control scheme.

To illustrate this phenomenon, consider the closed-loop dynamics in (4.30) for p = 1. (It is

noted that only for p = 1, we have a closed-form expression for the closed-loop dynamics.)

Since (zi(k), z′i(k)) is constant for all large k when a CAV platoon reaches its steady state, it

follows from (4.22) that wi(k)−[c2,i−1v
2
i−1(k)−c2,iv

2
i (k)]−[c3,i−1−c3,i]g = 0 for all large k.

It is easy to see from (4.22) that z′ss = 0. Let zss := (zss, z
′
ss) = (zss, 0). In view of u0(k) =

0 for all large k, we deduce via (4.30) that zss =
(
Ac + v0,∞∆Ā(ϕd)

)
zss − BŴQwwe,∞,

where we,∞ is defined in the way of we(k) by setting v0(k) ≡ v0,∞. Since zss = (zss, 0),

we see that (I − Ac)zss = −BŴQwwe,∞. By the expression for Ac given in (4.28), we

obtain 1
2BŴQzzss = −BŴQwwe,∞. Since BŴ has full column rank and Qz, Qw are

diagonal PD, we further have 1
2Qzzss = −Qwwe,∞ or equivalently zss = −2Q−1

z Qwwe,∞.

Since we,∞ 6= 0, we conclude that zss 6= 0. Note that we,∞ depends on c2,i−1 − c2,i and

c3,i−1 − c3,i and v0,∞ with c2,0 = c3,0 = 0. Hence, if a CAV platoon is homogeneous, then

we,∞, and thus zss, is a multiple of e1. Moreover, in light of Q−1
z Qw = diag(ζ1α1

, . . . , ζnαn),

it is observed that |(zss)i| will be smaller for a large αi and a small ζi. This observation

agrees with numerical results. In addition, when p ≥ 2, similar observations are made

although the closed form expression of zss is hard to obtain. The maximum steady state

error of spacing, i.e., ‖zss‖∞, is displayed in Table 4.8 for different CAV platoons, different

p’s, and the three scenarios. Note that in Scenario 3, we consider the steady state errors

for Si−1,i, i = 2, 3, . . . , 9 since S0,1 does not reach its steady state in this scenario.

207

We present the closed-loop performance only for p = 1 and p = 5 for each type

of CAV platoons in each scenario because of the length limit; see Figures 4.1-4.9. The

closed-loop performance in each scenario is commented as follows:

(i) Scenario 1. Figures 4.1, 4.2, and 4.3 show the MPC control performance of the

homogenous small-size CAV platoon, the heterogeneous medium-size CAV platoon,

and the homogenous large-size CAV platoon in Scenario 1, respectively. It can be

seen that the spacing between the leading vehicle and the first CAV, i.e., S0,1, in all

the CAV platoons has small deviations (less than 0.5m) from the desired spacing ∆

when the leading vehicle takes instantaneous acceleration or deceleration. Further,

when p = 1, the spacings between the other CAVs in the two homogeneous CAV

platoons remain the desired constant ∆, and there are small deviations from the

desired spacing ∆ for the other CAVs in the heterogeneous CAV platoon or the two

homogeneous CAV platoons when p = 5. In all the cases, the convergence to the

steady states is fast (within 15 secs) and the steady state errors in spacing are nonzero

but are small; see Table 4.8. In fact, the maximum steady state errors increase as

p becomes larger; compared with the desired spacing ∆ = 50m, 60m or 65m, the

largest relative error ‖zss‖∞∆ ≤ 0.47% for all the three types of CAV platoons. Lastly,

the time history of speed and control input demonstrates satisfactory performance.

In particular, it is observed that all the CAVs show the same speed change and almost

identical control, implying that the CAV platoon performs a nearly coordinated

motion under the proposed platooning control.

(ii) Scenario 2. Figures 4.4, 4.5, and 4.6 display the MPC control performance of the

homogenous small-size, the heterogeneous medium-size, and the homogenous large-

size CAV platoons in Scenario 2, respectively, where the leading vehicle undertakes

208

periodic acceleration/deceleration. In all the cases, S0,1 demonstrates the largest

fluctuations whose maximum magnitude of deviations is 0.25m when ∆ = 50m,

0.3m when ∆ = 60m, and 0.5m when ∆ = 65m. Besides, all the CAV platoons

demonstrates nearly coordinated motions. For example, when p = 1, the spacings

Si−1,i for i = 2, . . . , 10 remain the desired constant for the two homogeneous CAV

platoons, and they have small deviations from the desired spacing for the heteroge-

neous CAV platoon and p = 5 of the two homogeneous CAV platoons. Moreover,

the fluctuations of S0,1 and other Si,i+1’s quickly converge to their steady states

within 15s when the leading vehicle stops its periodical acceleration. The steady

state errors in spacing are as same as those in Scenario 1. The time history of speed

and control input shows nearly identical behaviors for all the CAVs in each case.

(iii) Scenario 3. Figures 4.7, 4.8, and 4.9 show the control performance of the homogenous

small-size, the heterogeneous medium-size, and the homogenous large-size CAV pla-

toons in Scenario 3, respectively, where the leading vehicle undergoes various traffic

oscillations through the time window of 45s. It is observed that S0,1 demonstrates

the largest spacing variations with the maximum magnitude less than or equal to

0.25m when ∆ = 50m, 0.3m when ∆ = 60m, and 0.46m when ∆ = 65m; the other

spacings Si−1,i, i = 2, . . . , 10 either are the desired constant or demonstrate nearly

constant deviations with maximum magnitude less than 0.14m, in spite of the oscil-

lation of S0,1. Further, the spacings Si−1,i, i = 2, . . . , 10 almost reach steady states

between 5s and 25s and after k = 35. The maximum steady state errors of these

spacings are shown in Table 4.8. It is seen that the maximum steady state error

often appears at S1,2. Compared with the desired spacing ∆ = 50m, 60m or 65m,

209

the largest relative error ‖zss‖∞∆ ≤ 0.37% for all the three types of CAV platoons in

Scenario 3. Finally, all the CAV platoons demonstrates nearly coordinated motions.

Consequently, the proposed platooning control effectively mitigates traffic oscilla-

tions of the spacing and vehicle speed of the CAV platoons of different types with small

or almost negligible steady state errors. In fact, it achieves nearly consensus motions of

the entire CAV platoons even under some perturbations.

4.8 Summary

This chapter develops a nonconvex, fully distributed optimization based MPC scheme

for CAV platooning control of a heterogeneous CAV platoon under the nonlinear vehicle

dynamics. Different from the existing research on the linear vehicle dynamics, various

new techniques are exploited to address several major challenges induced by the nonlinear

vehicle dynamics, including distributed algorithm development for the coupled nonconvex

MPC optimization problem, and stability analysis of time-varying nonlinear closed-loop

dynamics. For the former, we apply locally coupled optimization and sequential con-

vex programming for distributed algorithm development. For the latter, global implicit

function theorems and Lyapunov theory for input-to-state stability, among many other

techniques, are invoked for closed loop stability analysis. Extensive numerical tests are

conducted to illustrate the effectiveness of the proposed fully distributed schemes and

CAV platooning control for homogeneous and heterogeneous CAV platoons in different

scenarios.

210

0 50 100 150 200

Time (s)

49.4

49.6

49.8

50

50.2

50.4
S

p
a

c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 50 100 150 200

Time (s)

49.7

49.8

49.9

50

50.1

50.2

50.3

S
p

a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 50 100 150 200

Time (s)

16

18

20

22

24

26

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 50 100 150 200

Time (s)

16

18

20

22

24

26

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.1: Scenario 1 for the homogeneous small-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

211

0 50 100 150 200

Time (s)

59.4

59.6

59.8

60

60.2

60.4
S

p
a

c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 50 100 150 200

Time (s)

59.7

59.8

59.9

60

60.1

60.2

60.3

60.4

S
p

a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 50 100 150 200

Time (s)

16

18

20

22

24

26

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 50 100 150 200

Time (s)

16

18

20

22

24

26

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.2: Scenario 1 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

212

0 50 100 150 200

Time (s)

64.4

64.6

64.8

65

65.2

65.4
S

p
a

c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 50 100 150 200

Time (s)

64.6

64.8

65

65.2

65.4

65.6

S
p

a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 50 100 150 200

Time (s)

16

18

20

22

24

26

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 50 100 150 200

Time (s)

16

18

20

22

24

26

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.3: Scenario 1 for the homogeneous large-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

213

0 50 100 150 200

Time (s)

49.9

49.95

50

50.05

50.1

50.15

50.2

50.25
S

p
a

c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 50 100 150 200

Time (s)

49.95

50

50.05

50.1

50.15

50.2

50.25

50.3

S
p

a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 50 100 150 200

Time (s)

24.5

25

25.5

26

26.5

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 50 100 150 200

Time (s)

24.5

25

25.5

26

26.5

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.4: Scenario 2 for the homogeneous small-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

214

0 50 100 150 200

Time (s)

59.9

59.95

60

60.05

60.1

60.15

60.2

60.25

60.3
S

p
a

c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 50 100 150 200

Time (s)

59.95

60

60.05

60.1

60.15

60.2

60.25

60.3

60.35

S
p

a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 50 100 150 200

Time (s)

24.5

25

25.5

26

26.5

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 50 100 150 200

Time (s)

24.5

25

25.5

26

26.5

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.5: Scenario 2 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

215

0 50 100 150 200

Time (s)

64.95

65

65.05

65.1

65.15

65.2

65.25

65.3

65.35
S

p
a

c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 50 100 150 200

Time (s)

65

65.1

65.2

65.3

65.4

65.5

65.6

S
p

a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 50 100 150 200

Time (s)

24.5

25

25.5

26

26.5

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 50 100 150 200

Time (s)

24.5

25

25.5

26

26.5

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

1.5

A
c
c
e
le

ra
ti
o
n
/D

e
c
e
le

ra
ti
o
n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.6: Scenario 2 for the homogeneous large-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

216

0 10 20 30 40 50

Time (s)

49.8

49.85

49.9

49.95

50

50.05

50.1

50.15

50.2
S

p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 10 20 30 40 50

Time (s)

49.95

50

50.05

50.1

50.15

50.2

50.25

50.3

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 10 20 30 40 50

Time (s)

21

22

23

24

25

26

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 10 20 30 40 50

Time (s)

21

22

23

24

25

26

27

S
p

e
e

d
 (

m
/s

)
i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 10 20 30 40 50

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
c
c
e

le
ra

ti
o

n
/D

e
c
e

le
ra

ti
o

n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 10 20 30 40 50

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
c
c
e

le
ra

ti
o

n
/D

e
c
e

le
ra

ti
o

n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.7: Scenario 3 for the homogeneous small-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

217

0 10 20 30 40 50

Time (s)

59.85

59.9

59.95

60

60.05

60.1

60.15

60.2

60.25
S

p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 10 20 30 40 50

Time (s)

59.9

60

60.1

60.2

60.3

60.4

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 10 20 30 40 50

Time (s)

21

22

23

24

25

26

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 10 20 30 40 50

Time (s)

21

22

23

24

25

26

27

S
p

e
e

d
 (

m
/s

)
i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 10 20 30 40 50

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
c
c
e

le
ra

ti
o

n
/D

e
c
e

le
ra

ti
o

n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 10 20 30 40 50

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
c
c
e

le
ra

ti
o

n
/D

e
c
e

le
ra

ti
o

n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.8: Scenario 3 for the heterogeneous medium-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

218

0 10 20 30 40 50

Time (s)

64.8

64.9

65

65.1

65.2

65.3

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(a) Time history of spacing changes.

0 10 20 30 40 50

Time (s)

64.9

65

65.1

65.2

65.3

65.4

65.5

S
p
a
c
in

g
 (

m
)

S01

S12

S23

S34

S45

S56

S67

S78

S89

S910

(b) Time history of spacing changes.

0 10 20 30 40 50

Time (s)

21

22

23

24

25

26

27

S
p

e
e

d
 (

m
/s

)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(c) Time history of vehicle speed.

0 10 20 30 40 50

Time (s)

21

22

23

24

25

26

27

S
p

e
e

d
 (

m
/s

)
i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(d) Time history of vehicle speed.

0 10 20 30 40 50

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
c
c
e

le
ra

ti
o

n
/D

e
c
e

le
ra

ti
o

n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(e) Time history of control input.

0 10 20 30 40 50

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
c
c
e

le
ra

ti
o

n
/D

e
c
e

le
ra

ti
o

n
 (

m
/s

2
)

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

(f) Time history of control input

Figure 4.9: Scenario 3 for the homogeneous large-size CAV platoon: platooning control
with p = 1 (left column) and p = 5 (right column).

219

CHAPTER V

Conclusions

In this thesis, we have studied two topics in fully distributed optimization algorithms

i.e., (i) column partition based distributed algorithm for coupled convex sparse optimiza-

tion problems, and (ii) fully distributed optimization based CAV platooning control under

linear and nonlinear vehicle dynamics. In this chapter, we summarize the results that we

have established in these two areas, and discuss several future research directions.

5.1 Column Partition based Distributed Algorithm for Coupled Convex

Sparse Optimization Problems

In Chapter II, using duality theory, exact regularization techniques and solution

properties we developed a two-stage column partition based fully distributed schemes

to solve a class of densely coupled convex sparse optimization problems, including BP,

LASSO, BPDN and their extensions. These schemes are dual based and are applicable

when the underlying matrix is column partitioned. The overall convergence of the two-

stage distributed schemes is established in Section 2.7. The numerical results given in

Section 2.8 indicate that the proposed two-stage distributed schemes are effective when

220

compared to the existing C-ADMM and PDC-ADMM schemes to solve standard lasso and

polyhedral constrained lasso respectively. The proposed schemes and techniques shed light

on the development of column partition based distributed schemes for a broader class of

densely coupled problems, which will be future research topics. The distributed algorithm

development in this thesis relies on first-order techniques, a further investigation on the

usage of second-order Newton like distributed schemes will be a future research area.

5.2 Fully Distributed Optimization based CAV Platooning Control

In Chapter III, we developed fully distributed optimization based MPC schemes

for CAV platooning control under the linear vehicle dynamics. Such schemes do not re-

quire centralized data processing or computation and are thus applicable to a wide range

of vehicle communication networks. Major developments in this chapter include a new

formulation of the MPC model, a decomposition method for a strongly convex quadratic

objective function, formulation the underlying optimization problem as locally coupled op-

timization and Douglas-Rachford method based distributed schemes to implement them in

real time. Control design and stability analysis of the closed loop dynamics is carried out

for the new formulation of the MPC model. Further in Chapter IV, we extend these fully

distributed CAV platooning control to nonlinear dynamics scenario where the underlying

optimization problem in nonconvex. SCP based schemes are developed to solve these non-

convex problems. Extensive numerical tests are conducted to illustrate the effectiveness of

the proposed fully distributed schemes and CAV platooning control for homogeneous and

heterogeneous CAV platoons in different scenarios. The development of fully distributed

algorithms for nonconvex minimization problem, shed light on large scale isoperimetric

graph partitioning problem [14] which will be a future research topic. Further, Newton

221

type distributed schemes do not consider constraints other than the consensus constraint.

A key challenge for developing such distributed schemes for the transportation application

is to effectively handle locally coupled constraints which will be a future research area.

222

Bibliography

[1] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Mathematical Pro-
gramming, vol. 95, no. 1, pp. 3–51, 2003.

[2] P. Barooah, P. G. Mehta, and J. P. Hespanha, “Mistuning-based control design to
improve closed-loop stability margin of vehicular platoons,” IEEE Transactions on
Automatic Control, vol. 54, no. 9, pp. 2100–2113, 2009.

[3] H. H. Bauschke, P. L. Combettes, et al., Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, 2011, vol. 408.

[4] C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview
of platooning systems,” in Proceedings of the 19th ITS World Congress, Oct 22-26,
Vienna, Austria (2012), 2012.

[5] D. P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, 2015.

[6] D. P. Bertsekas, Nonlinear Programming, 2nd. Athena Scientific, Belmont, MA,
1999.

[7] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems.
Springer Science & Business Media, 2000.

[8] T.-H. Chang, “A proximal dual consensus ADMM method for multi-agent con-
strained optimization,” IEEE Transactions on Signal Processing, vol. 64, no. 14,
pp. 3719–3734, 2016.

[9] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous distributed ADMM
for large-scale optimization-Part I: Algorithm and convergence analysis,” IEEE Trans-
actions on Signal Processing, vol. 64, no. 12, pp. 3118–3130, 2016.

[10] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via
inexact consensus ADMM,” IEEE Transactions on Signal Processing, vol. 63, no. 2,
pp. 482–497, 2014.

[11] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning over distributed mod-
els,” IEEE Transactions on Signal Processing, vol. 63, no. 4, pp. 1001–1016, 2014.

[12] P. L. Combettes, “Solving monotone inclusions via compositions of nonexpansive
averaged operators,” Optimization, vol. 53, no. 5-6, pp. 475–504, 2004.

[13] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem.
Academic Press Inc., Cambridge, 1992.

[14] S. Danda, A. Challa, B. D. Sagar, and L. Najman, “Revisiting the isoperimetric
graph partitioning problem,” IEEE Access, vol. 7, pp. 50 636–50 649, 2019.

223

[15] D. Davis and W. Yin, “A three-operator splitting scheme and its optimization ap-
plications,” Set-valued and Variational Analysis, vol. 25, no. 4, pp. 829–858, 2017.

[16] J. Eckstein and D. P. Bertsekas, “On the Douglas—Rachford splitting method and
the proximal point algorithm for maximal monotone operators,” Mathematical Pro-
gramming, vol. 55, no. 1, pp. 293–318, 1992.

[17] F. Facchinei and J.-S. Pang, Finite Dimensional Variational Inequalities and Com-
plementarity Problems. Springer-Verlag, 2003.

[18] A. Forestiero and G. Papuzzo, “Distributed algorithm for big data analytics in
healthcare,” in 2018 IEEE/WIC/ACM International Conference on Web Intelli-
gence (WI), IEEE Computer Society, 2018, pp. 776–779.

[19] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing.
Birkhäuser, Basel, 2013.

[20] M. P. Friedlander and P. Tseng, “Exact regularization of convex programs,” SIAM
Journal on Optimization, vol. 18, no. 4, pp. 1326–1350, 2007.

[21] S. Gong and L. Du, “Cooperative platoon control for a mixed traffic flow includ-
ing human drive vehicles and connected and autonomous vehicles,” Transportation
Research Part B: Methodological, vol. 116, pp. 25–61, 2018.

[22] S. Gong, J. Shen, and L. Du, “Constrained optimization and distributed computa-
tion based car following control of a connected and autonomous vehicle platoon,”
Transportation Research Part B: Methodological, vol. 94, pp. 314–334, 2016.

[23] M. S. Gowda and R. Sznajder, “On the Lipschitzian properties of polyhedral multi-
functions,” Mathematical Programming, vol. 74, no. 3, pp. 267–278, 1996.

[24] M. Hong, T.-H. Chang, X. Wang, M. Razaviyayn, S. Ma, and Z.-Q. Luo, “A block
successive upper-bound minimization method of multipliers for linearly constrained
convex optimization,” Mathematics of Operations Research, vol. 45, no. 3, pp. 833–
861, 2020.

[25] J. Hu, J. Shen, and V. Putta, “Generalized input-to-state `2-gains of discrete-
time switched linear control systems,” SIAM Journal on Control and Optimization,
vol. 54, no. 3, pp. 1475–1503, 2016.

[26] J. Hu, Y. Xiao, and J. Liu, “Distributed algorithms for solving locally coupled opti-
mization problems on agent networks,” in 2018 IEEE Conference on Decision and
Control, IEEE, 2018, pp. 2420–2425.

[27] S. Ichiraku, “A note on global implicit function theorems,” IEEE Transactions on
Circuits and Systems, vol. 32, no. 5, pp. 503–505, 1985.

[28] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A distributed Newton method for
network optimization,” in Proceedings of the 48h IEEE Conference on Decision and
Control (CDC) held jointly with 2009 28th Chinese Control Conference, IEEE, 2009,
pp. 2736–2741.

[29] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient methods,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1131–1146, 2014.

[30] Z. P. Jiang and Y. Wang, “A converse Lyapunov theorem for discrete-time systems
with disturbances,” Systems & Control Letters, vol. 45, no. 1, pp. 49–58, 2002.

224

[31] Z.-P. Jiang, Y. Lin, and Y. Wang, “Nonlinear small-gain theorems for discrete-time
feedback systems and applications,” Automatica, vol. 40, no. 12, pp. 2129–2136,
2004.

[32] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear sys-
tems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.

[33] P. Kavathekar and Y. Chen, “Vehicle platooning: A brief survey and categorization,”
in ASME 2011 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, American Society of Mechanical
Engineers, 2011, pp. 829–845.

[34] A. Kesting, M. Treiber, M. Schönhof, and D. Helbing, “Adaptive cruise control
design for active congestion avoidance,” Transportation Research Part C: Emerging
Technologies, vol. 16, no. 6, pp. 668–683, 2008.

[35] H. K. Khalil, Nonlinear Systems. Prentice Hall, 1996.

[36] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “`1 trend filtering,” SIAM Review,
vol. 51, no. 2, pp. 339–360, 2009.

[37] J. Koshal, A. Nedic, and U. V. Shanbhag, “Multiuser optimization: Distributed algo-
rithms and error analysis,” SIAM Journal on Optimization, vol. 21, no. 3, pp. 1046–
1081, 2011.

[38] M.-J. Lai and W. Yin, “Augmented `1 and nuclear-norm models with a globally
linearly convergent algorithm,” SIAM Journal on Imaging Sciences, vol. 6, no. 2,
pp. 1059–1091, 2013.

[39] C. Lenzen and R. Wattenhofer, “Distributed algorithms for sensor networks,” Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, vol. 370, no. 1958, pp. 11–26, 2012.

[40] S. Li, K. Li, R. Rajamani, and J. Wang, “Model predictive multi-objective vehicular
adaptive cruise control,” IEEE Transactions on Control Systems Technology, vol. 19,
no. 3, pp. 556–566, 2011.

[41] Z. Li, Z. Ding, J. Sun, and Z. Li, “Distributed adaptive convex optimization on
directed graphs via continuous-time algorithms,” IEEE Transactions on Automatic
Control, vol. 63, no. 5, pp. 1434–1441, 2017.

[42] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with network
independent step-sizes and separated convergence rates,” IEEE Transactions on
Signal Processing, vol. 67, no. 17, pp. 4494–4506, 2019.

[43] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear op-
erators,” SIAM Journal on Numerical Analysis, vol. 16, no. 6, pp. 964–979, 1979.

[44] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent: Parallelism
and convergence properties,” SIAM Journal on Optimization, vol. 25, no. 1, pp. 351–
376, 2015.

[45] Z. Lu, “Sequential convex programming methods for a class of structured nonlinear
programming,” Simon Fraser University, Tech. Rep., 2013.

[46] G. Marsden, M. McDonald, and M. Brackstone, “Towards an understanding of adap-
tive cruise control,” Transportation Research Part C: Emerging Technologies, vol. 9,
no. 1, pp. 33–51, 2001.

225

[47] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear re-
gression,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5262–5276,
2010.

[48] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, 2010.

[49] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed optimization
methods,” IEEE Transactions on Signal Processing, vol. 65, no. 1, pp. 146–161,
2016.

[50] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “Distributed basis pursuit,”
IEEE Transactions on Signal Processing, vol. 60, no. 4, pp. 1942–1956, 2012.

[51] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, “D-ADMM: A communication-
efficient distributed algorithm for separable optimization,” IEEE Transactions on
Signal Processing, vol. 61, no. 10, pp. 2718–2723, 2013.

[52] S. Mousavi and J. Shen, “Solution uniqueness of convex piecewise affine functions
based optimization with applications to constrained `1 minimization,” ESAIM: Con-
trol, Optimisation and Calculus of Variations, vol. 25, p. 56, 2019.

[53] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent op-
timization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

[54] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization
in multi-agent networks,” IEEE Transactions on Automatic Control, vol. 55, no. 4,
pp. 922–938, 2010.

[55] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed
graphs,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–615, 2014.

[56] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed algorithms for
topic models.,” Journal of Machine Learning Research, vol. 10, no. 8, 2009.

[57] I. Notarnicola and G. Notarstefano, “Constraint-coupled distributed optimization:
A relaxation and duality approach,” IEEE Transactions on Control of Network Sys-
tems, vol. 7, no. 1, pp. 483–492, 2019.

[58] G. B. Passty, “Ergodic convergence to a zero of the sum of monotone operators in
hilbert space,” Journal of Mathematical Analysis and Applications, vol. 72, no. 2,
pp. 383–390, 1979.

[59] Z. Peng, M. Yan, and W. Yin, “Parallel and Distributed Sparse Optimization,” in
2013 Asilomar Conference on Signals, Systems and Computers, IEEE, 2013, pp. 659–
646.

[60] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.

[61] A. Ruszczynski, Nonlinear Optimization. Princeton University Press, 2006.

[62] I. Sandberg, “Global implicit function theorems,” IEEE Transactions on Circuits
and Systems, vol. 28, no. 2, pp. 145–149, 1981.

[63] J. Shen, E. K. H. Kammara, and L. Du, “Nonconvex, fully distributed optimization
based CAV platooning control under nonlinear vehicle dynamics,” arXiv preprint
arXiv:2104.08713, 2021.

226

[64] J. Shen, E. K. H. Kammara., and L. Du, “Fully distributed optimization based CAV
platooning control under linear vehicle dynamics,” Transportation Science, in print,
arXiv:2103.11081, 2021.

[65] J. Shen and J. Hu, “Stability of discrete-time switched homogeneous systems on
cones and conewise homogeneous inclusions,” SIAM Journal on Control and Opti-
mization, vol. 50, no. 4, pp. 2216–2253, 2012.

[66] J. Shen, J. Hu, and E. K. H. Kammara, “Column partition based distributed al-
gorithms for coupled convex sparse optimization: Dual and exact regularization ap-
proaches,” IEEE Transactions on Signal and Information Processing over Networks,
vol. 7, pp. 375–391, 2021.

[67] J. Shen and S. Mousavi, “Exact support and vector recovery of constrained sparse
vectors via constrained matching pursuit,” arXiv preprint arXiv:1903.07236, 2019.

[68] J. Shen and S. Mousavi, “Least sparsity of p-norm based optimization problems with
p > 1,” SIAM Journal on Optimization, vol. 28, no. 3, pp. 2721–2751, 2018.

[69] J. Shen and J.-S. Pang, “Linear complementarity systems with singleton properties:
Non-Zenoness,” in 2007 American Control Conference, IEEE, 2007, pp. 2769–2774.

[70] W. Shi, Q. Ling, G. Wu, and W. Yin, “A proximal gradient algorithm for decen-
tralized composite optimization,” IEEE Transactions on Signal Processing, vol. 63,
no. 22, pp. 6013–6023, 2015.

[71] S. E. Shladover, C. Nowakowski, X.-Y. Lu, and R. Ferlis, “Cooperative adaptive
cruise control: Definitions and operating concepts,” Transportation Research Record:
Journal of the Transportation Research Board, no. 2489, pp. 145–152, 2015.

[72] S. E. Shladover, D. Su, and X.-Y. Lu, “Impacts of cooperative adaptive cruise control
on freeway traffic flow,” Transportation Research Record: Journal of the Transporta-
tion Research Board, vol. 2324, pp. 63–70, 2012.

[73] M. Sion, “On general minimax theorems,” Pacific Journal of Mathematics, vol. 8,
no. 1, pp. 171–176, 1958.

[74] E. D. Sontag, “Input-to-state stability: Basic concepts and results,” in Nonlinear
and Optimal Control Theory, Springer, 2008, pp. 163–220.

[75] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625–653,
1999.

[76] H. Terelius, U. Topcu, and R. M. Murray, “Decentralized multi-agent optimization
via dual decomposition,” IFAC proceedings volumes, vol. 44, no. 1, pp. 11 245–11 251,
2011.

[77] V. D. Thoke and V. Sangli, “Theory of distributed computing and parallel process-
ing with its applications, advantages and disadvantages.,” International Journal of
Innovation in Engineering, Research and Technology, 2014.

[78] P. Tseng, “A modified forward-backward splitting method for maximal monotone
mappings,” SIAM Journal on Control and Optimization, vol. 38, no. 2, pp. 431–446,
2000.

[79] J. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms,” IEEE Transactions on
Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

227

[80] J. N. Tsitsiklis, “Problems in decentralized decision making and computation.,”
Massachusetts Inst of Tech Cambridge Lab for Information and Decision Systems,
Tech. Rep., 1984.

[81] B. Van Arem, C. J. Van Driel, and R. Visser, “The impact of cooperative adap-
tive cruise control on traffic-flow characteristics,” IEEE Transactions on Intelligent
Transportation Systems, vol. 7(4), pp. 429–436, 2006.

[82] B. Van Scoy and L. Lessard, “A distributed optimization algorithm over time-varying
graphs with efficient gradient evaluations,” IFAC-PapersOnLine, vol. 52, no. 20,
pp. 357–362, 2019.

[83] J. Vander Werf, S. E. Shladover, M. A. Miller, and N. Kourjanskaia, “Effects of
adaptive cruise control systems on highway traffic flow capacity,” Transportation
Research Record, vol. 1800, no. 1, pp. 78–84, 2002.

[84] J. Wang, S. Gong, S. Peeta, and L. Lu, “A real-time deployable model predictive
control-based cooperative platooning approach for connected and autonomous vehi-
cles,” Transportation Research Part B: Methodological, vol. 128, pp. 271–301, 2019.

[85] M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Cooperative car-
following control: Distributed algorithm and impact on moving jam features,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 5, pp. 1459–1471,
2016.

[86] M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling horizon con-
trol framework for driver assistance systems. Part II: Cooperative sensing and coop-
erative control,” Transportation Research Part C: Emerging Technologies, vol. 40,
pp. 290–311, 2014.

[87] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method for net-
work utility maximization–i: Algorithm,” IEEE Transactions on Automatic Control,
vol. 58, no. 9, pp. 2162–2175, 2013.

[88] S. X. Wu, H.-T. Wai, L. Li, and A. Scaglione, “A review of distributed algorithms for
principal component analysis,” Proceedings of the IEEE, vol. 106, no. 8, pp. 1321–
1340, 2018.

[89] X. Wu, J. Zhang, and F.-Y. Wang, “Stability-based generalization analysis of dis-
tributed learning algorithms for big data,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 31, no. 3, pp. 801–812, 2020.

[90] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems &
Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[91] W. Yin, “Analysis and generalizations of the linearized Bregman method,” SIAM
Journal on Imaging Sciences, vol. 3, no. 4, pp. 856–877, 2010.

[92] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient de-
scent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[93] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped
variables,” Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), vol. 68, no. 1, pp. 49–67, 2006.

[94] H. Zhang, W. Yin, and L. Cheng, “Necessary and sufficient conditions of solution
uniqueness in 1-norm minimization,” Journal of Optimization Theory and Applica-
tions, vol. 164, no. 1, pp. 109–122, 2015.

228

[95] M. Zhao and Y. Yang, “Optimization-based distributed algorithms for mobile data
gathering in wireless sensor networks,” IEEE Transactions on Mobile Computing,
vol. 11, no. 10, pp. 1464–1477, 2011.

[96] S. Zhao and K. Zhang, “A distributionally robust stochastic optimization-based
model predictive control with distributionally robust chance constraints for coop-
erative adaptive cruise control under uncertain traffic conditions,” Transportation
Research Part B: Methodological, vol. 138, pp. 144–178, 2020.

[97] Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed model pre-
dictive control for heterogeneous vehicle platoons under unidirectional topologies,”
IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp. 899–910, 2017.

[98] Y. Zhou, S. Ahn, M. Chitturi, and D. A. Noyce, “Rolling horizon stochastic optimal
control strategy for ACC and CACC under uncertainty,” Transportation Research
Part C: Emerging Technologies, vol. 83, pp. 61–76, 2017.

[99] Y. Zhou, M. Wang, and S. Ahn, “Distributed model predictive control approach for
cooperative car-following with guaranteed local and string stability,” Transportation
Research part B: Methodological, vol. 128, pp. 69–86, 2019.

229

