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ABSTRACT

Title of dissertation: A BIFURCATIONAL ANALYSIS
OF THE ONSET OF TYPE ONE DIABETES

Adam Reddan, Master of Science Mathematics, 2018

Dissertation directed by: Professor Bradford Peercy
Department of Mathematics

The purpose of this paper is to combine two models of diabetes and analyze the periodic

behavior and the bifurcations produced by the newly combined model. The first of these

two models by Mahaffy [1] analyzes the onset of type 1 diabetes (T1D) at the cellular level

due to an imune response, where as the second, the Topp model [2], analyzes the coupled

dynamics between beta cell mass, insulin, and glucose. Both models include an equation

for beta cell mass which is the key equation in combining the two and will enable us to

look at how insulin and glucose levels change and relate to the onset of T1D. The resulting

model provides a plethora of mathematically interesting properties such as various different

bifurcations and bifurcation types as well as chaos. In terms of biology, we show that the

combined model produces a situation in which beta cells actually recover after the initial

attack on the pancreas. We are able look at the concentration of certain cell types in the

blood at different stages during the onset. Our goal is to use the mathematical properties

mentioned above to conclude that the combination of the Mahaffy and Topp models, and

thus coupling glucose and insulin to immune cells, leads to a case of recovery of beta cells

as well as forcing beta cell recovery by controlling the degradation of beta cell peptides.

This exhibits the impact that certain parameter changes have on pathways to T1D. From



this analysis, we can conclude that there are two types of recovery from T1D before it sets

in and becomes permanent. The first is cyclic recovery in which beta cell mass, insulin

concentrations, and glucose concentrations oscillate as they return to their healthy steady

state values and low levels of effector T-cells remain in the blood stream but not high enough

levels to induce full blown T1D. The second is noncyclic recovery in which beta cell mass,

insulin concentrations, and glucose concentrations return to healthy steady state values but

do not oscillate, which means that no effector T-cells remain in the blood after a certain

time period.
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Chapter 1: Introduction

Type 1 Diabetes (T1D) is an autoimmune disease in which the body’s own immune system

targets and kills the insulin producing beta cells in the pancreas resulting in dangerously high

blood sugar levels. Individuals with this disease are typically diagnosed during adolescence

and thus face a life time of impaired health of all forms, such as kidney failure, blindness,

amputation due to infection, and more, hence our motivation for studying its behavior.

While no known cure exists for T1D there are many treatments for it. Each involve injecting

insulin of some kind multiple times a day if not having it constantly supplied.

In T1D, T-cells play a significant role. T-cells mature in the thymus where they cross

react with self-proteins are normally eliminated in order to prevent autoimmunity. From here

they travel to the lymph nodes where they interact with antigen presenting cells (APCs).

These consist of a peptide held in a larger protein called a Major Histocompatibility Complex

(MHC). The peptide-MHC complex or p-MHC interacts with receptors on the surface of the

T-cells (TCRs) to activate and initiate the immune response. Normally the APCs display

antigens that come from foreign proteins such as from bacteria or viruses. However in T1D

the antigen proteins come from the individual’s own body which can be triggered by infection

or another injury initiating the disease. Once this process begins there is no known way of

stopping it since the targeted beta cells will produce peptides with the same self-antigen

causing an endless cycle of beta cell destruction.
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The model that will be the main focus of this paper comes from two independent models

that come from [1] and [2] and will be briefly described in the next section. Alone the Mahaffy

model only captures T1D itself at the cell population level while leaving out important

information and feedback regarding both insulin and glucose. At the same time the Topp

model is mostly used to model Type 2 Diabetes and therefore takes no information into

account regarding the destruction of beta cells by the immune system. Our aim is to combine

these two models in such a way as to include the effects that an autoimmune response has

on blood glucose levels and the effects that blood glucose levels can have on the autoimmune

response via the production of beta cells in response to elevated glucose levels.

Combining these two models leads to the highly complicated and nonlinear behavior of

the immune system itself, not to mention one with inappropriate responses to certain stimuli,

the two individual models as well as the combined model provides a plethora of bifurcations

and interesting trajectories.

Chapter 2: An Introduction to the Two Pre-Existing Models

Below are the two models that were combined to obtain our results. The Mahaffy Model

captures the cellular behavior of the immune system as autoimmunity sets in and destroys

beta cells. The Topp Model models the dynamics of beta cells mass and long-time average

concentrations of glucose and insulin concentrations in the blood. Since both models capture

the dynamics of beta cell mass and are single compartment models they were easily combined

to produce the results we discuss via the beta cell equation in each model.
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2.1 The Mahaffy Model

The Mahaffy Model [1] combines activated, memory, and effector T-cells along with beta

cell peptides and beta cell mass, equation (2.1) describes the rate at which T-cells are being

activated.The rate at which activated T-cells become memory cells i.e. the rate at which

activated T-cells fail to locate and destroy a beta cell is described by equation (2.2). The

rate at which activated T-cells effectively seek out and destroy beta cells thus allowing T1D

to progress and eventually settle in is given by equation (2.3). The rate of change in peptide

accumulation levels, equation (2.4) describes how many peptides will be available to activate

T-cells to seek out beta cells. The rate of change of the remaining population of beta cells is

given by equation (2.5). See Table 1.1 and 1.2 in Appendix 1 for default values and definitions

of parameters. Only the parameter R will differ from the Mahaffy Model in Table 1.1 and the

reasoning behind this will be discussed when the two models are combined. For the Mahaffy

Model alone the default value is R = 50× 10−6cells−1days−1 and has the same meaning as

is stated in Table 1.1. The Mahaffy Model is quite sensitive to changes in parameters e.g.

changing δP , as well as many other parameters, causes cyclic oscillations in A(t),M(t), and

E(t) and the cyclic decay of beta cells. Many of these parameters, such as δP and ε lead to

Hopf bifurcations. The Mahaffy Model is

3



dA

dt
= (σ1 + α1M)f1(p)− (β + δA)A− εA2, (2.1)

dM

dt
= β2m1f2(p)A− f1(p)α1M − δMM, (2.2)

dE

dt
= β2m2(1− f2)A− δEE, (2.3)

dp

dt
= REB − δpp, (2.4)

dB

dt
= −k̂EB, (2.5)

where

f1(p) =
pn

kn1 + pn
, (2.6)

f2(p) =
âkm2

km2 + pm
. (2.7)

For the Hill functions (2.6) and (2.7) we have n,m, k1, k2 > 0, and 0 < â < 1. Equation (2.6)

is the fraction of incoming naive T-cells and memory T-cells that become activated. Lastly,

for the Mahaffy Model, we turn our attention to (2.7) which separates the activated T-cells

into f2 memory cells and (1 − f2) effector cells which depend on the number of peptides

produced by the destroyed beta cells.

2.2 The Topp Model

The Topp Model [2] describes the dynamics of the insulin glucose system and include how

the feed back from glucose effects beta cell mass. The equations are:

dB

dt
= (−r2G

2 + r1G− d0)B, (2.8)

dI

dt
= σ2B

G2

α2 +G2
− kI, (2.9)

dG

dt
= R0 − (EGO + SI)G. (2.10)
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where B(t) is the beta cell mass, I(t) is the concentration of insulin in the blood, and G(t)

is the concentration of glucose in the blood all at time t. The terms in (2.8) describe how

glucose concentration effects the rate of change in beta cell mass. For example, the term

−r2G
2 tells us that for very high concentrations of glucose beta cell mass will decrease at

a rate proprtional to G2 (with proportionality rate constant r2)the term r1G tells us that

for intermediate values of glucose concentration beta cell mass will rise linearly with glucose

with rate constant r1 and the term d0 tells us how fast beta cell mass decreases at zero

glucose. The first term in (2.9), σ2B
G2

α2+G2 , describes insulin secretion with maximum value

σ2B and the second term, −kI describes the insulin cleared in the blood. Lastly equation

(2.10) represents the change in glucose concentration which is equal to glucose production

minus glucose uptake. The parameter R0 is the net rate of production at zero glucose and

the term (EGO + SI)G is the insulin-independent and insulin-sensitive glucose uptake. The

difference in equation (2.10) is the balance between these two processes. The Topp Model

also has saddle node bifurcation for the parameters r1, r2, and d0 each of which represent

a pathway to T1D [2]. This model exhibits the bistability of the healthy steady state and

diseased steady state for beta cell mass.

2.3 The Combined Model

We can define the common term for beta cell mass to combine the two models into the one

seen below where all parameters and variables have the same meanings defined above. See

Appendix 1, Table 1.1 for parameter meanings and default values as well as Table 1.6 for
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variable meanings and units. We now arrive at the combined model:

dA

dt
= (σ1 + α1M)f1(p)− (β + δA)A− εA2, (2.11)

dM

dt
= β2m1f2(p)A− f1(p)α1M − δMM, (2.12)

dE

dt
= β2m2(1− f2)A− δEE, (2.13)

dp

dt
= REB − δpp, (2.14)

dB

dt
= (−r2G

2 + r1G− d0 − k̂E)B, (2.15)

dI

dt
= σ2B

G2

α2 +G2
− kI, (2.16)

dG

dt
= R0 − (EGO + SI)G, (2.17)

f1(p) =
pn

kn1 + pn
, (2.18)

f2(p) =
akm2

km2 + pm
. (2.19)

It is important to note that the value of R has been changed from R = 50 × 10−6 to

R = (50/300) × 10−6, due to the difference in the units used by Topp and Mahaffy to

quantify the change in beta cells. This change makes it so that beta cells are now being

measured in mg/dl throughout the combined model so that the healthy steady state does in

fact occur at a physiologically meaningful value B = 300 mg/dl.

Since the scale of the equations in the combined model vary in their orders of magnitude

by a significant amount we will be using the nondimensionalized model, described in section

2.3.1, for our bifurcation diagrams. We also use the quasi-steady state assumption dI
dt

= 0

instead of dp
dt

= 0. This will be justified and further explained in the results section.
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2.3.1 The Nondimensionalized Combined Model

By making the substitutions t = åτ, A = āa,M = m̄m,E = ēe, P = ρ̄ρ, B = b̄b, I = īi, and

G = ḡg with å = 1, ā = 1
ε̊a
, m̄ = ā̊aβ2m1 , ē = ā̊aβ2m2 , p̄ = Råēb̄, b̄ = 300, ī = 10,

ḡ =
√
α2 and by defining c14 = åR0√

α2
, one obtains the following nondimensionalized form of

the combined model. See appendix 1, Table 1.4 for parameter definitions and default values:

a′ = (c1 + c2m)f1(ρ)− c3a− a2, (2.20)

m′ = f2(ρ)a− c4f1m− c5m, (2.21)

e′ = (1− f2(ρ))a− c6e, (2.22)

ρ′ = eb− c7ρ, (2.23)

b′ = b(−c8g
2 + c9g − c10 − c11e), (2.24)

i′ = c12b
g2

1 + g2
− c13i, (2.25)

g′ = c14 − (c15 + c16i)g, (2.26)

f1(ρ) =
ρc17

cc1718 + ρc17
, (2.27)

f2(ρ) =
c19c

c21
20

cc2120 + ρc21
(2.28)
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This form of the combined model makes it much easier to analyze and construct the bifur-

cation diagrams and figures however our analysis will be done on equations (2.11)-(2.19).

Chapter 3: Geometric Reduction of the Combined Model to Observe Steady

State Solutions

This section is devoted to describing the methods used to find the equilibrium points for the

combined model,(2.11) - (2.19), and then to present the results. We begin by setting the left

hand side of every equation in the Combined Model equal to 0 and assuming that B 6= 0.

This is the crucial first step as it allows one to solve for G in terms of just E. We start by

noticing that now (2.15) is quadratic in G so via the quadratic formula we have

G±(E) =
r1 ±

√
r2

1 − 4r2(d0 + k̂E)

2r2

. (3.1)

From this point on whenever we have a function with ± in it we will emphasize whether the

+ equation or the − equation is being referred to by a subscript on the dependent variable

such as G+(E). Similarly one can use equation (2.17) to solve for insulin in terms of glucose

to get

I±(E) = I(G±(E)) =
R0 − EGOG±(E)

SG±(E)
. (3.2)

Now by plugging both (3.1) and (3.2) into (2.16) and solving for B we obtain our first

important function:

B±(E) =
kI±(E)(α2 +G2

±(E))

σ2G2
±(E)

. (3.3)
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Now we begin to derive a separate function H(E,B). We start with the left hand side of

every equation in the Combined Model set equal to 0 again and use equation (2.14) to get:

p(E,B) =
REB

δp
, (3.4)

which now gives us via (2.18) and (2.19)

f1(E,B) =
(REB

δp
)n

kn1 + (REB
δp

)n
(3.5)

f2(E,B) =
akm2

km2 + (REB
δp

)m
. (3.6)

From here we can solve equation (2.12) for M in terms of A to get

M(A, p(E,B)) =
β2m1f2A

α1f1 + δM
. (3.7)

Now by plugging (3.7) into (2.11) we obtain a quadratic in terms of A. So by the quadratic

formula we have:

A±(E,B) =
−b±

√
b2 − 4ac

2a
, (3.8)

where

a = −ε, b =
f1f2α1β2m1

α1f1 + δM
− (β + δA), c = f1σ1.

Then finally by plugging (3.8) into (2.13) we obtain the implicit function of E in terms of E

and B

H±(E,B) = β2m2(1− f2(E,B))A±(E,B)− δEE. (3.9)

It is important to note that only H(E,B) = 0 is of interest. Now that we have (3.3) and

(3.9) we can use them to verify that the combined model will reduce to the Mahaffy and

Topp models respectively when decoupled. To see this first set B = 300, since we have

normalized B to be 300 instead of 1,as was done by Mahaffy [1], in (3.9). As one can verify

9



using the ”Boot Method”, discussed in the next section, we have H(E,B∗) = H(E) = 0

for E = 0, E = 11622, and E = 35562 for B∗ = 0, 36.96, and 300, respectively. We

have that the three values of E correspond to the three equilibrium points for the Mahaffy

Model. After plugging these values into equations (3.8) and (3.7) we recover the same three

equilibrium points in the reduced AME model discussed in the Mahaffy paper confirming

that the combined model successfully reduces to the Mahaffy model when decoupled. It is

important to note that these equilibrium values in the AME model were scaled down by

Ā = 103, M̄ = 104, Ē = 106.

Now consider equation (3.3) where k̂ = 0. Since the term −k̂E is the only term in it that

differs from the original Topp Model setting it equal to 0 decouples the full model isolating

the last three equations as the Topp model. To check this we set k̂ = 0 in (3.3) and plot the

results. As one can see from Figure 3.1 we get two nontrivial equilibrium points that match

the two nontrivial equilibrium points obtained in [2]. To verify the third equilibrium point

simply assume that B=0 and plug it into (2.16) to get I=0 and then plug that into (2.17) to

get the same diseased steady state as Topp et al. Thus showing that one can recover both

the Mahaffy Model and the Topp Model by making certain changes in parameters.

3.1 Equilibrium Points and Stability Analysis

The equations derived in the previous section are of particular use when finding equilibrium

points too. Before proceeding one can simplify the work we are about to do by noticing

that H+(E,B) < 0 for all (E,B) and can therefore be ignored. By plotting both B±(E)

and H−(E,B) = 0 together, see Figure 3.2 and Figure 3.3, one finds six points of inter-

section between the curves of equation (3.3) with the contours of H−(E) = 0 at (E,B) =

(0, 300), (11.753, 296.54), (74567, 134.34),

10
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350

B

Nontrivial Equilibrium Points of the Topp Model

BP
BM

Figure 3.1: This is a plot of BP = B+(E) and BM = B−(E) when k̂ = 0. As one can

see B+(E) = 300 which corresponds to the healthy steady state and B−(E) = 36.96 which

corresponds to the threshold steady state. B = 0 is the diseased steady state (not shown)

(0, 36.96), (95.607, 38.23), and (77913.936, 128.2).

Since the curve H±(E,B) = 0 represents all points (E,B) such that the Mahaffy terms

equal zero and the values of B±(E) represent the values of E that make the terms from

the Topp model zero each point of intersection represents a nontrivial equilibrium point

for the full model. Using the six points in the EB plane mentioned above we can use

A−(E,B),M−(E,B), p(E,B), I±(E), G±(E) to find the values of A,M,p,I, and G that cor-

respond to each of the six points of intersection. One must be careful to make sure that

the correct forms of I±(E), G±(E) are used when finding the values that correspond to a

point of intersection, if the curve comes from B− then the minus form of the equations must
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B(E) VS H(E,B)=0

0
0

0

0

0

0
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Figure 3.2: This is a plot of B±(E) and H(E,B) = 0. The black curve is the contour of

H+(E,B) = 0, the blue curve is B+(E), and the red curve is B−(E). Since each point

of intersection with the contour of H(E,B) = 0 is a steady state we can clearly see two

equilibrium points together with what appears to be a point of tangency but is in fact two

distinct points of intersection. See Figure 3.3. We also have that (0, B±(0)) as two more

equilibrium points.

also be used where as only the minus form of the Mahaffy equations will be used since the

plus forms gives negative values only. By plugging each point of intersection into the ap-

propriate equations one obtains the nontrivial equilibrium points for the full model. Lastly

one can solve for the seventh and final equilibrium point of interest by simply setting B=0

and solving for each variable by hand in the full model to obtain the equilibrium point

(A,M,E, p,B, I,G) = (0, 0, 0, 0, 0, 0, 600).

We now describe the method used to numerically solve for the steady states of the com-

bined model. When finding the values of E and B for which B± and H±(E,B) intersect
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B(E) VS H(E,B)=0
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Figure 3.3: This figure is a closer view of EQ PTS III and VI since they occur too close

together to be seen in figure 2

one must make an initial guess for B∗ and E based on Figures 3.2 and 3.3 and use matlab’s

fsolve function to output the accurate value of E at the point of intersection closest to the

initial guess for B. (BetterZeros.m). From here enter the newly obtained value of E into

either B+ or B− (BetterEBPlots.m). This will produce the actual value of B at the point

of intersection. From here using the equations mentioned above one can accurately find all

other variable values at each of the seven equilibrium points by entering the values of E

and B for A,M,E,p,B,I, and G just found (BetterEBPlots.m). The stability for each equi-

librium point was found in XPPAUT using the software’s implemented Newton’s method

to locate the steady state from a nearby initial condition and numerical Jacobian to calcu-

late the eigenvalues. Which in turn allows us to determine the stability of each equilibrium

point. The results of this process are shown, for default parameter values, in the table below.
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Table1: Equilibrium Points of the Full Model

EQ PT Values Stability

— (A,M,E, p,B, I,G) —

I (0, 0, 0, 0, 300, 10, 100) Stable

II (11.753, 7037.9, 1175.8, 0.058113, 296.54, 9.9452, 100.46) Unstable

III (255.31, 380.19, 74567, 1.6696, 134.34, 6.6152, 139.29) Unstable

IV (0, 0, 0, 0, 36.96, 2.8, 250) Unstable

V (95.607, 56437, 9565.7, 0.060949, 38.23, 2.8744, 246.18) Unstable

VI (262.89, 395.5779, 77913.936, 1.6648, 128.2, 6.3262, 144.12) Unstable

VII (0, 0, 0, 0, 0, 0, 600) Stable

In particular EQ PTs I, III, and VII are of interest to us. First EQ PT I has no ele-

vated populations of immune system cells primed to target beta cells and has healthy values

for beta cell mass, insulin concentration, and glucose level and therefore can be assumed to

be the healthy steady state. Next we have EQ PT III, the healthy threshold steady state.

We have given EQ PT III this name because despite having elevated populations of activated

T-cells, memory cells, effector cells, and peptides beta cell mass, insulin concentration, and

glucose levels remain at a healthy value. Last we have the diseased steady state, EQ PT

VII. We know EQ PT VII is the diseased steady state because B = 0 immediately gives us

I = 0 since there are no more beta cells to produce any insulin leaving G = R0

EGO
= 600 as

our steady state value for glucose. As for the impact this has on the rest of the model having

no beta cell mass means that there are no beta cells to be killed and produce peptides which
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is why we have p = 0 and since there are no more peptides to prime the T-cells to activate

and seek out beta cells we have that A = 0 which implies that both M = 0 as well as E = 0

since there are no activated T-cells to become memory or effector cells.

Chapter 4: Results

4.1 Tristability and Bifurcation Analysis

We start by first presenting a theoretical method to avoid T1D by varying the death rate

of peptides, δP , so that we end up in the healthy basin of attraction, the subset of the flow

for (2.11) − (2.19) such that all trajectories converge to EQ PT I as t → ∞. As we can

see Figures 4.1 and 4.2 and especially when viewed from the B VS δP plane in Figure B.1

in Appendix 2 show us that for the approximate range of values 0 ≤ δP ≤ 1, that leads

to tristability in the full model. To see how the tristability was established we start at

A = 500,M = 0, E = 1 × 106, B = 300, I = 10, and G = 100 and continue in δP until we

reach a state of stable oscillation with δP = 1. From here, we lower the death rate of peptides

to 0.2 and continue in δP until we reach the nearest steady state, EQ PT III. From here we

raise δP back to its default value of 1 and continue in δP until we reach stability again, this

time at EQ PT I the healthy steady state. We also consider what happens when we start at

the initial condition (0,0,0,0,0,600) with δP = 1 and since glucose does not directly depend on

peptide levels the diseased steady state undergoes no bifurcations and just remains a stable

steady state as shown in figures 4.1, 4.2, and 2.1, thus showing tristability. This means

that if we start at stable oscillations for default peptide death rates we can transition to the
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Figure 4.1: This figure is the bifurcation diagrams of EQ PT I, EQ PT III, and EQ PT VII with

respect to A = x1 as we vary the turn over rate of peptides, δP . The larger of the two loops seen

is the path that EQ PT II and V take as they produce a saddle node bifurcation. The smaller of

the two loops is the path that EQ PT III and VI take as they produce as saddle node bifurcation.

Lastly the solid red line seen at the bottom is the path EQ PT VII takes. See Figure 4.2 for a

detailed view of the two hopf bifurcations and the saddle node bifurcation of EQ PT I and EQ PT

III.
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Figure 4.2: This figure is a closer view of figure 4.1. Here we can see where the Hopf

bifurcations occur in EQ PT III (super critical) and in EQ PT V (sub critical). The figure

shows the Saddle node bifurcations of EQ III and VI Note that negative values of δp are

nonphysiological.
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healthy basin of attraction by first lowering the death rate of peptides until the oscillatory

behavior disappears for the new value of δP then by quickly raising it back to the default

value δP = 1 arrive in the healthy basin of attraction and thus avoiding the diseased basin

of attraction all together.

4.2 Two Parameter Bifurcations

Figure 4.3: In black we see the continuation of EQ PT III’s supercritical Hopf bifurcation

and in red we see the continuation of the saddle-node bifurcation

For two parameter bifurcations, we are particularly interested in δP for the same reasons

we have been up until now but also in the rate constant r1 since any saddle-node bifurcations

it undergoes represents a pathway to T1D [2]. We again turn our attention to EQ PT III

and continue it in r1 at its supercritical Hopf bifurcation and see two key things of interest,

see Figure 4.3. The first is that EQ PT III now undergoes a Hopf-Hopf bifurcation as r1

increases to r1 = 1.180437×10−3. Next we continue EQ PT III at its Saddle-Node bifurcation

in r1 resulting in a Zero-Hopf bifurcation as seen in Figure 4.4. Now we continue EQ PT

III’s subcritical Hopf bifurcation in r1 and obtain no new results indicating that while there

is cyclic behavior these oscillations do not provide a new pathway nor get rid of an already
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Figure 4.4: Here we see a close up of figure 4.3 showing a Zero-Hopf bifurcation at the

tangential intersection of EQ PT III’s supercritical Hopf bifurcation (in black) and its saddle-

node bifurcation (in red).

existing pathway to T1D. See Figure 4.3

From here we continue EQ PT I at its Saddle-Node bifurcation in r1 and find that its

stability does not change as we alter r1 and undergoes no further bifurcations with respect

to r1. However δP must increase in order to maintain the same dynamics.

Since the diseased steady state, EQ PT VII, is always stable independent of δP and r1

continuing it in r1 yielded no new results. However for small δP as r1 increases we find

additional dynamics connecting through EQ PT III.

4.3 Period Doubling

As is shown in Figures 4.3 and 4.5 by changing the values of δP and r1 to 0.055812 and

0.001631 the combined model undergoes a period doubling bifurcation. It is in this range of

values that oscillations also change from stable to unstable. As one can see from the figures

mentioned above as well as Figure 4.6 as the A vs δP plane is shifted in the r1 direction the

Hopf bubble caused by the period doubling bifurcation appears. Figure 4.7 beta cell mass
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Figure 4.5: Period doubling cascade zoomed in. In blue we see unstable oscillations and in

green we see stable oscillations.

Figure 4.6: Period doubling cascade zoomed out after decreasing r1 to obtain a period

doubling bifurcation. This compares to Figure 4.2 but with much larger x1-axis to capture

the Hopf bubble and additional dynamics.

is severely impaired by this point in time due to the highly cyclic behavior of a very low

peptide level as well as the increase in glucose-sensitive beta cell replication coefficient r1.

However since the range of parameters for this behavior is so small we conclude that it is of

little biological importance.
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Figure 4.7: This is a period 8 oscillations corresponding to Figure 4.3. Activated T-cells vs

Time (Days). In the dimensional model the range of values for activated T-cells would range

from 2000 to about 8500. The parameters used to generate this figure were all default values

except for the values of δP = 0.055812 and r1 = 0.001631.

Figure 4.8: Beta cell mass oscillations for a very low level of beta cell mass in the nondi-

mensional model as T1D finally sets in for this set of parameters. In the dimensional model

the range of beta cell mass would be 0.3 to 1 mg. The corresponding glucose concentration

would be approximately 587 mg/dl.
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4.4 Beta Cell recovery

Figure 4.9: This fiure shows the cyclic recovery of beta cells and glucose levels for δP = 0.2.

With beta cell mass in red, glucose concentration in orange, and effector T-cell population

in black versus time (Days)

Figure 4.10: This figure shows the noncyclic recovery of Beta cell mass and glucose for

elevated values of δP = 2.With beta cell mass in red, glucose concentration in orange, and

effector T-cell population in black versus time (Days)

As shown in Figure 4.9 for low values of δP (δP = 0.2) the beta cell mass and glucose

concentration return to the healthy steady state values, b=1 and g=0.70711 respectively
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Figure 4.11: The cyclic pattern exhibited by T1D without the recovery of beta cell mass or

glucose concentration. With beta cell mass in red, glucose concentration in orange, and effec-

tor T-cell population in black versus time (Days). The variables are from the nondimensional

model

for the scaled model (2.20) − (2.28), while still showing the cyclic behavior of the immune

system. This corresponds to a build up of the peptides needed to trigger the immune system

to target beta cells but not enough effector T-cells to overwhelm the beta cells in the pancreas

causing T1D. In Figure 4.10 we see that for high values of the peptide turnover rate (δP = 2)

we get noncyclic recovery from the attack on the beta cells by the immune system which

corresponds to insufficient peptide levels to sustain the chronic nature of T1D and therefore

lead to recovery. In Figure 4.11 we show the beta cells come under attack by the effector

T-cells in cyclic oscillations but never recover.
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4.5 Quasi-Steady State Assumptions

Figure 4.12: Here we see the dynamics of the beta cell mass without the peptide QSSA being

made

Figure 4.13: Here we see the beta cell mass dynamics with the peptide QSSA being made

The quasi-steady state assumption (QSSA) made in the Mahaffy Model dp
dt

= 0 did not

apply for the combined model. To see this scale both δP and R by 100 at an initial condition

that is not a steady state and track the dynamics of the combined model with the assumption

being made and then again without it being made, see Figures 4.11 and 4.12. However since

parameters c12 and c13 are so large compared to the other parameters in the scaled model
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there is another variable that we can use to make a QSSA. By setting dI
dt

= 0 and solving

for I we obtain I(t) = σ2
k
B(t) G2(t)

α2+G2(t)
. As one can see from Figures 15 and 16 the insulin

QSSA is a valid assumption to make as it does not alter the behavior of the model for default

parameters.

Figure 4.14: Full model without the Insulin QSSA being made showing E vs time (Days).

Figure 4.15: E vs Time (Days) with the insulin QSSA being made
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Chapter 5: Discussion

As we have shown combining the Topp and Mahaffy models and allowing glucose values to

feed back into the Mahaffy terms have allowed us to see both mathematical and biological

behavior that is not only interesting but also important in understanding the nature of how

T1D progresses and then eventually sets in. This is best illustrated in the recovery of beta

cells for high enough values of peptide turnover rates. We are now also able to see the effect

that peptides have on the cyclic behavior of the activation of T-cells and how that cyclic

behavior undergoes period doubling. Our analysis of the tristability of the combined model

suggests that it may be experimentally possible to control whether one ends up in the healthy

basin of attraction or the diseased basin of attraction by starting at stable oscillations, then

lowering the death rate of peptides until stable oscillations have stopped, and then suddenly

raising δP back up to its default value of 1.

While more general versions of the Mahaffy and Topp Models exist these two were chosen

instead of their more general counter parts for several reasons. For the Mahaffy Model our

reasoning comes down to the time scale. The more general model proposed by Majid et al.

[3] is a two clone model that models the onset of T1D but as stated in Topp et al. [2] a

two clone model becomes more significant on the time scale of minutes instead of days. The

Topp Model also has been generalized in two different ways Goel et al. [4]. The first way

is by including an insulin degregation term, −dII in the beta cell mass equation for when
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there is a surplus of insulin signaling to the pancreas to lower beta cell mass. The second

way is to also to treat the parameter for insulin sensitivity as a function of maximal insulin

secretion per beta cell, hypersecretion of insulin. We did not consider these changes to the

Topp model because the lack of insulin in T1D due to reduced beta cell mass likely makes

these additional terms less important.
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Appendix 1:

Below are four tables of parameters along with default values where appropriate. The first

of these tables, Tables 1.1 and 1.2, are tables of default parameter values used in the full

model presented above (2.11) - (2.19). The values in Tables 1.1 and 1.2 were obtained from

Mahaffy et al. [1] and Topp et al. [2]. The parameter values for the Mahaffy parameters

were obtained by taking the values in Table B2 in Mahaffy and solving for the original

parameter values using the appropriate scalings given by Mahaffy. The third and fourth of

these tables, Table 1.3 and 1.4, are the default values of the composite parameters used in

the nondimensional model, (2.20)-(2.28),the fifth, Table 1.5, is a table of scalings used to

obtain the nondimensionalized model, (2.20)-(2.28), and the sixth table, Table 1.6, is a table

of both the independent variable and the dependent variables and their meanings.
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Table 1.1:

Parameter Default

value

Meaning Units

n 2 Hill coeff. for T cell activation –

k1 2 Peptide level for 1
2 max activation peptide units

m̂ 3 Hill coeff. for memory-cell production –

â 0.7 maximal fraction of memory cells produced –

k2 1 peptide level for 1
2 max memory cells peptide units

σ1 20 influx of naive T cells from Thymus cellday−1

α1 2 rate of production of A per M day−1

β + δA 1 rate of cell division + death rate of activated T cells day−1

ε 1× 10−3 T cell competition parameter (cellday)−1

β2m1 10 rate of cell division times maximum number of

memory cells produced per proliferating T cell

day−1

δM 0.01 death rate of memory T cells day−1

β2m2 100 rate of cell division times number of effector cells

produced per proliferating T cells

day−1

δE 0.3 death rate of effector T cells day−1

R 50
300
×10−6 peptide accumulation rate day−1cell−1
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Table 1.2:

Parameter Default

value

Meaning Units

δp 1 peptide turnover rate day−1

k̂ 0.14 ×

10−6

beta-cell killing per effector T cell day−1cell−1

S 0.72 Total insulin sensitivity mlµU−1day−1

EGO 1.44 Total glucose effectiveness at zero insulin day−1

R0 864 net rate of glucose production at zero glucose mgdl−1day−1

σ2 43.2 maximum rate of insulin secretion per beta cell µUml−1day−1

α2 20000 half max of the sigmoid G2

α2+G2 squared mg2dl2

k 432 combined insulin uptake at the liver, kidneys,

and insulin receptors (insulin cleared)

day−1

d0 0.06 beta cell death rate at zero glucose day−1

r1 0.84 ×

10−3

rate constant mg−1dlday−1

r2 0.24 ×

10−5

rate constant mg−2dl2day−1
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Table 1.3:

Comp.

Par.

Definition Default

value

c1 σ1å
ā

0.02

c2 α1åm̄
ā

20

c3 (β + δA)̊a 1

c4 α1̊a 2

c5 δM å 0.01

c6 δE å 0.3

c7 δP å 1

c8 r2̊aḡ
2 0.048

c9 r1̊aḡ 0.1188

c10 d0̊a 0.06

c11 κ̊aē 0.014

c12 σ2 b̄̊a
ī

1296

c13 k 432

c14 R0å
ḡ

6.1094
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Table 1.4:

Comp.

Par.

Definition Default

value

c15 EGOå 1.44

c16 Så̄i 7.2

c17 n 2

c18 k1
p̄

0.4

c19 â 0.7

c20 k2
p̄

0.2

c21 m̂ 3
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Table 1.5:

Scaled

Variable

Scaling Definition Default

Value

t å — 1

A ā 1
ε̊a

1× 103

M m̄ ā̊aβ2m1 1× 104

E ē ā̊aβ2m2 1× 105

p p̄ Råēb̄ 5

B b̄ 300 300

I ī 10 10

G ḡ
√
α2 141.4214
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Table 1.6:

Variable Meaning Units

A Population of

activated T cells

at time t

cells

M Population of

memory T cells

at time t

cells

E Population of ef-

fector T cells at

time t

cells

p peptide level at

time t

peptide levels

B concentration of

remaining beta

cells per volume

mg/dl

I Insulin µU
ml

G Concentration of

glucose

mg/dl

t time days
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Appendix 2:

This section is devoted to additional figures

Figure 2.1: Bifurcation diagram showing tristability in the beta cell vs δP plane. Stable

oscillation in green, unstable in blue. Stable steady state in red and unstable steady state

in black
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Appendix 3:

Below are the two matlab files used to find equilibrium points.

This is BetterEBPlots.m

%The parameters form Mahaffy be low were

%ca l c u l a t e d us ing Table B.2 however t h e i r va l u e s do not appear anywhere in

%the paper i t s e l f

% This coresponds to Bet terFu l lMode l . ode

clear a l l

c lc

%t h i s i s the time s c a l e

sa =1;

%Mahaffy parameters

n=2;

k1=2;

m=3;

a =0.7 ;

k2=1;

sigma1 =20;
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alpha1 =2;

%beta=2;

%DeltaA=0.01;

%lamda1=(be ta+del taA )

Lamda1=1;

DeltaM =0.01;

DeltaE =0.3;

DeltaP=1;

e p s i l o n=1e−3;

%M1=8;

%M2=60;

%Lamda2=be ta ∗2ˆm1

Lamda2=10;

%Lamda3=be ta ∗2ˆm2

Lamda3=100;

R=(50/300)∗10ˆ(−6);

kappa =0.14∗10ˆ(−6);

%Topp parameters

S=0.72;

EGO=1.44;

R0=864;

sigma2 =43.2;

alpha2 =20000;

37



k=432;

d0 =0.06;

r2 =0.24∗10ˆ(−5);

r1 =0.84∗10ˆ(−3);

E=−1:5:1 e5 ;

B=−1:0.5 :306;

[ e , b]=meshgrid (E,B) ;

%Below I de f i n e the f unc t i on s used in the d e f i n i t i o n s o f H(E,B) and B(E)

p=@( e , b) R∗e .∗b/DeltaP ;

f 1=@( e , b) p( e , b ) . ˆ n . / ( k1ˆn+p( e , b ) . ˆ n ) ;

f 2=@( e , b) a∗k2ˆm. / ( k2ˆm+p( e , b ) . ˆm) ;

%Came from M’=beta2 ˆm1f2∗A−alpha1 ∗ f 1 ∗M−deltaM∗M

coe f 1=@( e , b) Lamda2∗ f 2 ( e , b ) . / ( alpha1 .∗ f 1 ( e , b)+DeltaM ) ;

%M=@(e , b ) coe f1 ( e , b )∗A;

%the s e are the c o e f f i c e n t s to be used to de r i v e A(E,B)

coe f a=−e p s i l o n ;

coe fb=@( e , b) alpha1∗ coe f 1 ( e , b ) . ∗ f 1 ( e , b)−Lamda1 ;

c o e f c=@( e , b) sigma1∗ f 1 ( e , b ) ;
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AP=@( e , b) (−coe fb ( e , b)+sqrt ( coe fb ( e , b).ˆ2−4∗ coe f a ∗ c o e f c ( e , b ) ) ) / ( 2∗ coe f a ) ;

AM=@( e , b) (−coe fb ( e , b)−sqrt ( coe fb ( e , b).ˆ2−4∗ coe f a ∗ c o e f c ( e , b ) ) ) / ( 2∗ coe f a ) ;

MP=@( e , b) coe f 1 ( e , b)∗AP( e , b ) ;

MM=@( e , b) coe f 1 ( e , b)∗AM( e , b ) ;

HP=@( e , b) Lamda3∗(1− f 2 ( e , b ) ) . ∗AP( e , b)−DeltaE∗e ;

HM=@( e , b) Lamda3∗(1− f 2 ( e , b ) ) . ∗AM( e , b)−DeltaE∗e ;

%I now de f i n e the f unc t i on s to be used in d e r i v i n g B(E)

CoeffA=−r2 ;

CoeffB=r1 ;

CoeffC=@( e ) −d0−kappa∗e ;

GP=@( e ) (−CoeffB+sqrt ( CoeffBˆ2−4∗CoeffA .∗ CoeffC ( e ) ) ) / ( 2∗ CoeffA ) ;

GM=@( e ) (−CoeffB−sqrt ( CoeffBˆ2−4∗CoeffA .∗ CoeffC ( e ) ) ) / ( 2∗ CoeffA ) ;

% %0=R 0−(E G0+S∗ I )∗G

IP=@( e ) 1/S∗ ( (R0 . /GP( e))−EGO) ;

IM=@( e ) 1/S∗ ( (R0 . /GM( e))−EGO) ;

% %0=sigma2∗B∗Gˆ2/( a lpha2+Gˆ2)− kI

BP=@( e ) k∗IP ( e ) . ∗ ( alpha2+GP( e ) . ˆ 2 ) . ∗ ( ( sigma2 ∗(GP( e ) . ˆ 2 ) ) . ˆ ( − 1 ) ) ;

BM=@( e ) k∗IM( e ) . ∗ ( alpha2+GM( e ) . ˆ 2 ) . / ( sigma2 ∗(GM( e ) . ˆ 2 ) ) ;
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contour ( e , b ,HP( e , b ) , [ 0 , 0 ] , ’ ShowText ’ , ’ on ’ , ’ l i n e c o l o r ’ , ’ r ’ )

hold on

contour ( e , b ,HM( e , b ) , [ 0 0 ] , ’ ShowText ’ , ’ on ’ , ’ l i n e c o l o r ’ , ’ k ’ )

hold on

e =−1:5:1 e5 ;

%These two l i n e s turn BP and BM in to f i x e d v e c t o r s

BPv=BP( e ) ;

BMv=BM( e ) ;

%This l i n e a s s i gn s a l o g i c a l to each va lue o f BP. I t r e turns 1 f o r True

%va lue s o f BPv and re turns a 0 f o r Fa lse i f BPv i s imaginary or complex

l og ind=BPv==real (BPv ) ;

plot ( e ( l og ind ) ,BPv( l og ind ) , ’b ’ , e ( l og ind ) ,BMv( log ind ) , ’ r ’ )

% p l o t ( e ,BP( e ) , ’ b ’ )

% ho ld on

% p l o t ( e ,BM( e ) , ’ r ’ )

t i t l e ( ’B(E) VS H(E,B)=0 ’ )

%z l a b e l ( ’ H Plus ’ )

xlabel ( ’E ’ )

ylabel ( ’B ’ )

%legend ( ’BP’ , ’BM’ , ’H’ )

%
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% % %ax i s ( [ x y z ] )

% %ax i s ([−0.05 1 −1 400 ] )

This is BetterZeros.m

%This i s the code t ha t f i n d s the ze ros o f H in BetterEBPlots .m in t h i s code

%B i s t r e a t e d as a parameter and t h i s code shou ld mimic the code in

%pra c t i c e .m the va lue guessed f o r B shou ld be based on the f i g u r e produced

%by BetterEBPlots .m

clear a l l

c lc

format long

%time s c a l e

sa =1;

%Mahaffy parameters

n=2;

k1=2;

m=3;

a =0.7 ;

k2=1;

sigma1 =20;

alpha1 =2;

%beta=2;

%DeltaA=0.01;
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%lamda1=(be ta+del taA )

Lamda1=1;

DeltaM =0.01;

DeltaE =0.3;

DeltaP =0.2;

e p s i l o n=1e−3;

%M1=8;

%M2=60;

%Lamda2=be ta ∗2ˆm1

Lamda2=10;

%Lamda3=be ta ∗2ˆm2

Lamda3=100;

R=(50/300)∗10ˆ(−6);

kappa =0.14∗10ˆ(−6);

a16 =0.1 ;

%Topp parameters

S=0.72;

EGO=1.44;

R0=864;

sigma2 =43.2;

alpha2 =20000;

k=432;

d0 =0.06;
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r2 =0.24∗10ˆ(−5);

r1 =0.84∗10ˆ(−3);

%the parameter b use t h i s as your guess based on the f i g u r e produced in

%BetterEBPlots .m

b=44.5;

e =0 :15 : 6∗10ˆ(5 ) ;

p=@( e ) R∗e .∗b/DeltaP ;

f 1=@( e ) p( e ) . ˆ n . / ( k1ˆn+p( e ) . ˆ n ) ;

f 2=@( e ) a∗k2ˆm. / ( k2ˆm+p( e ) . ˆm) ;

%Came from M’=beta2 ˆm1f2∗A−alpha1 ∗ f 1 ∗M−deltaM∗M

coe f 1=@( e ) Lamda2∗ f 2 ( e ) . / ( alpha1 .∗ f 1 ( e)+DeltaM ) ;

M=@( e ) coe f 1 ( e )∗A;

%the s e are the c o e f f i c e n t s to be used to de r i v e A(E,B)

coe f a=−e p s i l o n ;

coe fb=@( e ) alpha1∗ coe f 1 ( e ) . ∗ f 1 ( e)−Lamda1 ;

c o e f c=@( e ) sigma1∗ f 1 ( e ) ;

AP=@( e ) (−coe fb ( e)+sqrt ( coe fb ( e ).ˆ2−4∗ coe f a ∗ c o e f c ( e ) ) ) / ( 2∗ coe f a ) ;

AM=@( e ) (−coe fb ( e)−sqrt ( coe fb ( e ).ˆ2−4∗ coe f a ∗ c o e f c ( e ) ) ) / ( 2∗ coe f a ) ;
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HP=@( e ) Lamda3∗(1− f 2 ( e ) ) . ∗AP( e)−DeltaE∗e ;

HM=@( e ) Lamda3∗(1− f 2 ( e ) ) . ∗AM( e)−DeltaE∗e ;

%i n i t i a l guess o f E f o r f s o l v e

e0 =4.66 e4 ;

%The s t u f f needed to p l o t s o l u t i o n curves

e =0 :15 :6∗10ˆ(5 ) ;

% p l o t ( e ,HP( e ) , ’ r ’ )

% ho ld on

% p l o t ( e ,HM( e ) , ’ b ’ )

% x l a b e l ( ’E’ )

% y l a b e l ( ’H’ )

% ax i s ([−100 4e4 −4500 2e5 ] )

% legend ( ’HP’ , ’HM’ )

%t i t l e ( ’ P l o t s o f H(E,300 ) ’ )

%the awnsers

%e=f z e r o (HP, e0 )

e=fzero (HM, e0 )
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