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ABSTRACT

Because of their simple hardware requirements, low bitwidth neural networks
(NNs) have gained significant attention over the recent years, and have been ex-
tensively employed in electronic devices that seek efficiency and performance.
Research has shown that scaled-up low bitwidth NNs can have accuracy levels on
par with their full-precision counterparts. As a result, there seems to be a trade-
off between quantization (q) and scaling (s) of NNs to maintain the accuracy. In
this paper, we propose QS-NAS which is a systematic approach to explore the
best quantization and scaling factors for a NN architecture that satisfies a targeted
accuracy level and results in the least energy consumption per inference when de-
ployed to a hardware–FPGA in this work. Compared to the literature using the
same VGG-like NN with different q and s over the same datasets, our selected op-
timal NNs deployed to a low-cost tiny Xilinx FPGA from the ZedBoard resulted
in accuracy levels higher or on par with those of the related work, while giving the
least power dissipation and the highest inference/Joule.

1 INTRODUCTION

With the rapid growth of the computational ability of processors, convolutional neural networks
(CNNs) have evolved to the point where they can surpass human-level accuracy in many applications
such as speech recognition and computer vision (Tan & Le, 2019; Howard et al., 2017). With all the
advancements in their performance, nevertheless, the energy consumption of CNNs on electronic
devices is still far away from any levels comparable to their biological paradigms.

General-purpose CPUs and GPUs can efficiently test CNNs with precisions ranging from 8-bit fixed-
point to 64-bit floating-point for inference (Jacob et al., 2018). Even though they can handle SIMD
(Single Instruction Multiple Data) instructions such as xnor and population-count operations to im-
plement extremely quantized NNs such as binarized neural networks (BNNs) (Hubara et al., 2016),
they are not yet as versatile as FPGAs to efficiently implement CNNs with arbitrary quantization
(Zhao et al., 2017). In contrast, FPGAs are commercial off-the-shelf devices that allow the imple-
mentation of any arithmetic with arbitrary precision using any desired implementation styles from
serial to parallel, and in many cases, are used for prototyping and proof-of-concept development.

In light of minimizing energy consumption of CNNs on hardware, many recent efforts take quanti-
zation as a variable to minimize to the point at which accuracy is maintained (Khoram & Li, 2018;
Choukroun et al., 2019). Also, many hardware-oriented methods take quantization fixed as a priori
(Mirzaeian, 2019). For instance, Yang et al. (2019) adopted a 4-bit quantization in advance to start
off with proposing an algorithm-hardware co-design for efficient CNN accelerators. All these effec-
tive methods, however, often disregard that a scaled-up lower-quantized (or vice-versa) CNN might
enjoy higher efficiency on hardware while maintaining the same accuracy. Most recently, neural ar-
chitecture search (NAS) has emerged as a methodology that relies on search strategies to manually
or automatically explore efficient CNNs. Abdelfattah et al. (2020) proposed Codesign-NAS that
exploits reinforcement learning based strategies to automatically navigate the search space of CNNs
and hardware architectures to simultaneously improve accuracy and efficiency, which takes approx-
imately 1000 GPU-hours to provide an efficient solution for the CIFAR-100 dataset on FPGA. In
this paper, we raise a problem as: given a choice of CNN that has a few degrees of freedom im-
plemented on a hardware that also has a few degrees of freedom, what is the best selection of the
independent variables that meets an implementation goal? A grid search over a span of variously
∗Equal contribution.
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Figure 1: (A) a baseline NN 〈q, s〉, (B) an arbitrary layer of NN 〈q, s〉 in more detail, (C) character-
istics of NN 〈q, s〉, and (D) a systolic architecture that adopts NN 〈q, s〉 for implementation.

quantized scaled CNNs experienced on hardware can provide options to trade off between accuracy
and efficiency, but not necessarily the most optimal options. We present QS-NAS which is a fast
regression-based method to explore the optimal quantization and scaling factors for a CNN architec-
ture that results in the least energy consumption per inference and meets a targeted accuracy when
deployed to a hardware.

2 PROBLEM STATEMENT AND A REGRESSION-BASED SOLUTION

To simplify and unify formulations, we assume a CNN is made by stacking L blocks (Fig. 1-A).
Each block is composed of a 2D convolution with weights and input quantized to q bits (input/output
layers excluded), followed by a batch-normalization and a quantizing ReLU activation function as
instructed by Coelho Jr et al. (2020). To compensate the accuracy loss resulted by low quantization,
we impose a scaling variable s to each 2D convolution layer of the CNN, that scales the number of
all filters per layers, and correspondingly the number of channels per filter & fmap as illustrated in
Fig. 1-B. We refer to this CNN as either NN 〈q, s〉 or as q-bit NN-s. As denoted in Fig. 1-C, the
sizes of the model and fmap ofNN 〈q, s〉 are proportional to qs2 and qs respectively that will govern
the sizes of weight memory and fmap memory in hardware. The computation is also proportional
to s2. Since q ≤ 8 in our work, we observe that look-up table (LUT)-based MAC components
are more energy-efficient than FPGA’s built-in digital signal processor (DSP) units, and note that
the power and utilization costs of LUT-based combinational multipliers and adders in FPGAs are
proportional to q2 and q respectively (Sun et al., 2008). Given an adequate choice of FPGA, we
consider a commonly-practiced systolic architecture, as depicted in Fig. 1-D, consisting of a 2D
grid of P ×M multiply-accumulate (MAC) units, and define an optimization problem as:

min
q , s

Energy( HW | NN 〈q, s〉 )

s.t. NN 〈q, s〉 = �
i=1...L

F〈q, s N̂i, ĤFi
, ŴFi

, s Ĉi〉
i (X〈q, ĤXi

, ŴXi
, s Ĉi〉)

Accuracy(NN ) ≥ target accuracy

(1)

that reads: minimize the energy per inference of CNN deployed to hardware with respect to q and
s, provided that a target accuracy is satisfied. The solution to this problem lies in understanding the
behaviour of both the functions Energy and the Accuracy. Based on the evidence and experiments
we use regression-based approximators to predict the behaviour of the two functions.

It is well-studied that scaling up CNNs increases their accuracy (Tan & Le, 2019; Howard et al.,
2017), and that the accuracy of quantized models degrades to their least when the quantization is
lowered to BNNs (Zhao et al., 2017; Umuroglu et al., 2017). Clearly, the accuracy does not exceed
a certain level and will saturate to a level no more than 100% for large q and s. We postulate that a
rational polynomial as formulated in Eqn. (2)-II can approximate the accuracy ofNN 〈q, s〉, because
it satisfies all the mentioned characteristics. We also model the energy and power of the hardware
with meticulous consideration upon full recognition of its components and their toggling rate during
the run-time. For the hardware, the majority of energy consumption for a workload NN 〈q, s〉 are
attributed to computation of multiplications (∝ q2s2) and additions (∝ qs2), and communication
for the model weight (∝ qs2) and the fmap (∝ qs) parameters. Taking a static power into account,
if the execution time is constant for all implementations ofNN 〈q, s〉, the energy and power become
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Figure 2: (A)&(B) regression on the accuracy of 16 cross-product experiments (black dots) of
VGG〈q, s〉, (C)&(D) accuracy contours extracted from the regression, (E) regression on J/inference
of VGG〈q, s〉 deployed and experienced (black dots) on FPGA, and (F)&(G) Concluding the mini-
mum J/inference of VGG〈q, s〉 on FPGA w.r.t. q and accuracy for CIFAR-10 & SVHN respectively.

proportional and will correspond to Eqn. (2)-I, which will be further elaborated in Section 4. Thus:
Energy(HW|NN 〈q, s〉) = Ê3.q

2.s2 + Ê2.q.s
2 + Ê1.q.s+ Ê0

Accuracy(NN 〈q, s〉) =
Â6.q.s + Â5.s + Â4.q + Â3

q.s + Â2.s + Â1.q + Â0

(2)

where Êi and Âi are constants determined after regression. To minimize the Energy, we plug s as
a function of q and Accuracy in function Energy and solve ∂Energy

∂q |Accuracy=target accuracy = 0.

3 TRAINING VGG 〈q, s〉 ON CIFAR-10 AND SVHN
We perform our experiments on two datasets: CIFAR-10 and SVHN. We selected a VGG-like archi-
tecture (Simonyan et al., 2014) that is extensively used in the works of Hubara et al. (2016); Zhao
et al. (2017); Umuroglu et al. (2017); Alemdar et al. (2017); Prost-Boucle et al. (2017) using various
scale and quantization with the following architecture and with the q-bit layers implicitly included:

(in)−2×(64sC3×3)−MP2×2−2×(128sC3×3)−MP2×2 −2×(256sC3×3)−MP2×2−2×(512sFC)−10SV M−(out). (3)

This VGG has approximately 2 × 149s2 million q-bit multiply or add operations and a model size
3.7qs2 Mb. The largest fmap size is contributed by its second layer which has a size 64qs Kb. We
down-scaled this VGG from 1 to 1/8th, and up-scaled the quantization from 1, which is a BNN,
to 8 bits. We used QKeras (Coelho Jr et al., 2020) libraries to train each of the 16 cross-product
experiment in 120 epochs. We used a least-square-error method to fit the rational polynomial to
our 16-point experiments. Figs. 2-(A) and 2-(B) show the fitted surfs for the 16 experiments (black
dots). For the CIFAR-10 and the SVHN, the root mean square error (RMSE) is 0.74% and 0.18%
respectively. We evaluate this regression on two new testing data, i.e. VGG〈q=3, s=1/4〉 and VGG〈q=
3, s=1/2〉, that predicts 84.1% / 95.7% and 88.1% / 96.1%, whilst actual values are 84.2% / 95.9%
and 88.7% / 96.2% for CIFAR-10 / SVHN datasets respectively. On a 2D plot, Figs. 2-(C) & 2-(D)
demonstrate how the accuracy of the VGG for the two datasets behave with respect to q and s.

4 SCALABLE HARDWARE TO IMPLEMENT VGG 〈q, s〉

Similar to works of Zhao et al. (2017); Umuroglu et al. (2017); Alemdar et al. (2017); Prost-Boucle
et al. (2017), we design a hardware accelerator for FPGAs, as partially depicted in Fig. 1-D and
described in Verilog HDL, that relies on FPGA’s resources and BRAMs that store the weight and in-
termediate fmap of VGG〈q, s〉 during run-time. All our hardware configurations were implemented
on a ZedBoard evaluation platform which is equipped with the Xilinx FPGA XC7Z020-CLG484
that incorporates 4.9Mb (=140×36Kb) on-chip BRAMs. Also, all power and latency analyses were
measured using the Xilinx Vivado Design Suite. The design comprises two main blocks: 1) an array
of P processing engines (PEs) that each incorporates M multipliers/adders and a weight memory
sub-bank that stores a partition of the CNN weights, and 2) an input and an output memory that
swap turn per process termination of every CNN’s layer and store the temporary fmap data. Both
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Table 1: Comparison with FPGA implementations using differently quantized scaled VGG-like
architectures on CIFAR-10 and SVHN. Pchip and Pwall are the powers of FPGA and the board.

Dataset Authors Platform Price Workload
(NN-64s)

Quant.
(q bit)

Accuracy
(%)

Clock
(MHz)

Throughput
(FPS)

Pchip
(W)

Pwall
(W)

FPS/Pchip
(Inference/J)

FPS/Pwall
(Inference/J)

This work ZedBoard low NN-16 3 84.16±(0.15) 143 2,982 0.42 - 7,158 -
This work ZedBoard low NN-32 3 88.74±(0.18) 143 2,982 1.23 - 2,418 -
Umuroglu et al. (2017) ZC706 high NN-64 1 80.10 200 21,900 3.60 11.7 6,080 1,870

CIFAR-10 Prost-Boucle et al. (2017) VC709 high NN-64 2 86.71 250 27,043 6.80 - 3,976 -
Prost-Boucle et al. (2017) VC709 high NN-128 2 89.39 250 13,526 13.64 - 992 -
Zhao et al. (2017) ZedBoard low NN-128 1 88.68 143 168 - 4.7 - 35.8
Alemdar et al. (2017) VC709 high NN-128 2 87.89 200 1,695 9.58 - 178 -
This work ZedBoard low NN-16 3 95.86±(0.10) 143 2,982 0.42 - 7,158 -
This work ZedBoard low NN-32 3 96.21±(0.08) 143 2,982 1.23 - 2,418 -

SVHN Umuroglu et al. (2017) ZC706 high NN-64 1 96.40 200 21,900 3.60 11.7 6,080 1,870
Prost-Boucle et al. (2017) VC709 high NN-64 2 97.60 250 27,043 7.08 - 3,820 -
Alemdar et al. (2017) VC709 high NN-64 2 97.27 200 3,390 4.80 - 709 -
Prost-Boucle et al. (2017) VC709 high NN-128 2 97.70 250 13,526 13.70 - 987 -

the partitioned CNN weights and the fmap data are packed along their channels for every VGG’s
layer and are stored and folded in one or multiple entries in their designated BRAMs in hardware.
Each PE concurrently computes one output channel from a layer of the CNN at a time, while inter-
nally processes its task using an input-channel tiling scheme where the packed fmap values directly
accessed from the input memory, and the packed weight values from the weight sub-banks are
element-wise multiplied and accumulated. Using a roofline model, the most energy-efficient config-
uration of the hardware for our workload VGG 〈q, s〉 is given by P=64s and M=64 that correspond
to the VGG’s second layer. With P= M= 64s and the Model Size = 3.7qs2Mb, the width and
depth of the total weight memory is 4096qs2 and 3.7qs2/64s/64s/q Mega (=872) entries respec-
tively. Also, given the largest Fmap Size = 64qs Kb of our VGG, the width and depth of the
instantiated input/output memory units in hardware are 64qs and 64qs/64s/q Kilo (=1024) entries.
Taking 1024 for the depth of all memory sub-banks in our hardware configurations, the total design
requires approximately [4096qs2/36] and 2 × [64qs/36] of 36Kb BRAMs for the weight memory
and input/output memory allocation that justifies employing the tiny FPGA from the ZedBoard for
the span of q and s in this work. The peak performance of the hardware is 2.P.M.freq that, given
P= M= 64s, is approximately 1.2s2 GOPS at clock rate 143 MHz. Considering the 2 × 149s2

million operations of our VGG 〈q, s〉, the execution time per inference and the throughput of all our
implementations at clock rate 143 MHz remain approximately constant and equal to 0.34 mS and
2,982 FPS respectively. Thus, with scaling the VGG〈q, s〉, the efficiently-configuredHW scales cor-
respondingly such that the width of weight and fmap memory units, and consequently their power
consumption, scales by qs2 and qs respectively. The number of multipliers and adders scales by
PM ∝ s2, and their power consumption scale by q2s2 and qs2 respectively. Thus, with the con-
stant execution time and considering a static power, the Eqn. (2)-I is once again concluded from an
implementation perspective.

The 16 cross-product experiments of the VGG 〈q, s〉 were implemented on the FPGA and the power,
delay, and energy per inference were measured for each deployment. Fig. 2-(E) shows the energy
measurements of 12 out of the 16 experiments (black dots) on our selected tiny FPGA, and a surf
in accordance to Eqn. (2)-I that fits the experiments using a least-square-error method with an
RMSE= 9.7uJ. For evaluation, we tested the Energy(HW〈P=16,M=16〉|NN 〈q=3, s=1/4〉) and the
Energy(HW〈P=32,M=32〉|NN 〈q=3, s=1/2〉) configurations, for which the polynomial predicts 154
uJ and 477 uJ, whereas their actual measurements are 140 uJ and 414 uJ respectively. Having
determined the two unknown functions, the system of Eqn. (2) is thus established and different
optimal VGG architectures for different accuracy levels can be pursued. Figs. 2-(F) and 2-(G) plot
the function Energy w.r.t. to q and Accuracy, demonstrating convex curves that reveal different
quantization levels result in the least energy consumption given different accuracy levels for the two
datasets. We look for delicate pairs of q and s that result in moderately high (VGG〈q=3, s=1/2〉)
and low (VGG〈q=3, s=1/4〉) accuracy levels, such that q is a natural number near the minima of the
convex curves, and s is a power of 2 (for hardware-friendly implementation), and the selection of
both of which do not over-utilize the FPGA resources.

5 COMPARISON TO THE RELATED WORK

Compared to the literature, as summarized in Table 1, using the same VGG-like CNN architecture,
our selected optimal CNN configurations, VGG〈q=3, s=1/2〉 and VGG〈q=3, s=1/4〉, deployed to the
tiny low-cost low-power Xilinx FPGA from the ZedBoard results in accuracy levels higher or on par
with those of the related work, while giving the least power dissipation and the highest inference/J.
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6 CONCLUSION
We proposed QS-NAS: a regression-based approach to explore the optimal quantization (q) and scal-
ing (s) of a NN for the least energy consumption on FPGAs. Having designed a scalable hardware,
we empirically approximate both accuracy and energy per inference of NN 〈q, s〉 with polynomi-
als. Given the two approximators, we obtain a pair of 〈q, s〉 that minimizes the energy on hardware
for a targeted accuracy. Our methodology is fast, simple, and scalable and has no commitment to a
specific quantization, but rather takes quantization (in tandem with scaling) as a variable to optimize.
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