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 ABSTRACT  

 
Title of Document:  Convergence-Directed, Semantic Model for Integrating Large- 

Scale, Dynamic, and Heterogeneous Databases 
 
 John W. Hebeler 
 
Directed by:  Dr. Lina Zhou and Dr. Victoria Yoon 
 
 
Data abounds today.  The ability to properly employ large amounts of data for business 

decisions and opportunities is critical to business success.  Rarely does a single data 

source or database prove sufficient for a dynamic, unfolding business action.  Business 

decision-making requires integrating data quickly and efficiently. However, the inherent 

differences between databases make it both time-consuming and costly to achieve a 

useful integration.  More importantly, the storage of much of today’s data has migrated 

away from the traditional, relational database technology and switched to NoSQL 

database technology.  The latter provides a new set of challenges for data integration. 

 

To address the above challenges, the semantic integration model offers a path to simplify 

integration across different NoSQL databases.  It achieves this through an iterative, 

incremental integration that directly involves the non-technical business user – the key to 

exploiting the business opportunity.  The model contrasts current integration methods and 

is evaluated against a prototype that implements and tests the model with appropriate data 

participants.  The model demonstrates an easier method to quickly review potential data 

integration candidates, integrate selected candidates, and maintain the alignment of the 

data integration with the evolving NoSQL technologies and the business opportunity 

itself.  
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1 Chapter	
  1:	
  Introduction	
  

1.1 Problem	
  Context	
  

Business opportunities abound.  Today’s assembly of massive data offers to reveal and 

aid the advancement of a business opportunity.  “Data are to this century what oil was to 

the last one: a driver of growth and change” (Economist, 2017).  This data often resides 

in NoSQL databases – databases especially designed to ingest, store, and retrieve massive 

quantities of data.  NoSQL represents a new category of database technology that focus 

on efficiently managing large data sets at the expense of some capabilities offered by 

relational databases.  The NoSQL Market is expected to garner $4.2 billion by 2020 

(Allied Market Research, 2015).  However, the massive data stored with NoSQL 

technologies unintentionally creates a maze that challenges a business user to properly 

integrate the data for a given opportunity within the necessary timeframe and cost.   The 

business user must turn to rare, technically skilled NoSQL resources that, themselves, 

struggle to keep up with the rapid and proprietary advancements within each NoSQL 

database including a non-standard method to dynamically extend the structure throughout 

the database.  NoSQL data integration requires many translations between the business 

requirements and the technical implementations, which may further impede the use of 

data.  These integration challenges lead to less use of the available data and thus deprive 

business decisions of a more, data-enriched view.  A model and method that can close the 

gap between the opportunity and the relevant data for business users via minimizing the 

required technical skill and time would lead to more informed and timely business 

decisions. 
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Figure 1 outlines the data integration challenge.  A business user familiar with a given 

business domain and associated potential opportunities seeks information to refine their 

business actions.  This information typically resides in various databases.  With extensive 

technical assistance, the business user must gather, integrate, query, and determine 

completeness of the data to aid their actions.  Each step requires a translation between the 

business domain and the technical requirements.  Additionally, information builds on 

each other. This requires multiple passes through the integration process.  Due to the 

technical demands, the business user has to await the final integration outcome without 

the ability to provide any input during the actual integration.  This all leads to a 

protracted, expensive integration process that can easily miss the integration of valuable 

information. 

 

Figure 1: Data Rich Decision Convergence 

Given the above business context, what methods help accelerate the process of turning a 

data-rich opportunity into action, especially in the era of big data? 
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Data integration is generally defined as the process of combining data residing in 

different locations and technologies into a unified, useful form able to increase the value 

of the data previously in isolation (Lenzerini M. , 2002). This process includes data 

access, resolution of data structural differences, and data conflict resolution (Ziegler & 

Dittrich, 2004).   The ability to combine large data sets covering several domains can 

increase the value of data owing directly to the integration.  Effective integration enables 

a business user to consider all of its customers, suppliers, expenses etc. to provide a clear 

picture of the overall business or a specific area, such as how customers in one location 

differ from those in another location.  The integration of existing data is becoming ever 

more indispensable in order to meet the business and customer needs (Ziegler & Dittrich, 

2004). 

Data integration galvanizes disparate data into more useful business artifacts - an artifact 

that increases the value of the data, and in turn the corporate value. Corporations invest 

heavily in data integration.  Investment runs approximately 40% of a typical Information 

Technology budget.  Additionally, the market for tools that support integration runs in 

excess of $6.44 billion in 2017 and is estimated to grow to $12.24 Billion by 2022 

(Markets, 2017).  This level of effort and investment provides strong evidence for the 

need of the modern enterprise to effectively and efficiently integrate data. Rationales for 

integration fall into three main categories: revenue increase, increasing customer 

satisfaction, and costs savings due to process improvement (Gold-Bernstein & Ruth, 

2004). 
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Data continues to amass, which has brought about the big data era. Big data enables 

expansive reaches into virtually all domains.  However, its value often depends on the 

ability to evaluate and integrate related data across multiple databases to form a high 

resolution, comprehensive picture of a given domain of interest (Brodie, 2010).  Data 

integration always faces tough mismatches and heterogeneity problems across different 

interfaces, technologies, structures, formats and semantics.  Big data not only faces 

challenges similar to challenges those found in traditional relational database integration, 

but also extends them with new challenges including sheer scale, dynamic structures, and 

a growing number of accessible NoSQL databases - many of which are outside of the 

user’s control.  This requires new ways to quickly integrate potential database candidates.  

Without such advances, many NoSQL data sources may remain unused and isolated, 

losing the potential value of integrating them into a larger knowledge base. 

There are numerous real-world examples of data integration to create business value. For 

instance, a company can combine its marketing database, which contains details 

regarding multiple marketing campaigns with a customer-ordering database to determine 

the effectiveness and efficiencies of a specific marketing campaign.   Medical companies 

could use integration to combine drug research findings with electronic patient records to 

determine the efficacy of a drug treatment program.  Some values of integration may not 

be realized until the integration takes place and valuable information is discovered. 

Effective data integration creates value and leverages the growing richness of accessible 

data or information.  However, traditional integration methods remain labor intensive, 
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time consuming, costly, highly specialized, and error prone.  This underlies many failed 

integration efforts which are often caused by inherent complexity, delays, and costs. 

Even after successful data integration, businesses struggle to focus the integrated 

information on the specific domains of interest.  The sheer magnitude of the unified data 

can actually obfuscate the integrated value.  Extraction of information from big data 

requires another level of complexity.  Additionally, it is difficult to deal with ad hoc or 

serendipitous data discoveries – most go overlooked and are buried under the data mass.  

The traditional integration approach focuses attention on the integration effort itself, 

while missing many potential discoveries after the integration is completed.  Data scale, 

semantics, and specific data needs quickly overwhelm traditional integration methods, 

which is typified as data overload. 

The advent of big data with its associated NoSQL stores provides a new foundation for 

useful, powerful data integration.  NoSQL stores bring not only new business 

opportunities but also new technical challenges to effectively integrate data across 

different NoSQL stores.  NoSQL stores allow unprecedented data storage and retrieval.  

However, these technologies are mired in proprietary interfaces, decentralized and 

dynamic data structures, and evolving rapidly – all of which make data integration more 

difficult. 

1.2 Research	
  Issues	
  

The increase of data sources, technologies, and business dynamics opens up new 

possibilities for data integration.  Research that advances data integration increases the 
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value of existing data and the corresponding business value.   Data integration begins 

with a data review by answering the following questions:  What is in the data?  Is it worth 

integrating the data into a larger data picture?  In order to review a data source for 

integration, one must first understand what it contains and the potential role it plays in a 

business opportunity.  Proper review of a data source helps collect the requirements of an 

actual integration and minimizes the time and resources needed.  Similarly, after data is 

integrated, does the integrated database meet the data needs of an opportunity? What 

makes data integration so difficult?  In order to better understand the key issues regarding 

data integration, an ideal integration model outlines the essential data integration 

requirements. 

1.2.1 Ideal	
  Integration	
  Model	
  

Figure 2 outlines the ideal integration model that covers the critical facets of data 

integration (Ziegler & Dittrich, 2004).   All data integration efforts attend to each of the 

areas to some extent. The diagram decomposes the integration into five major areas: 

transformation, representation, unification, alignment, and adaptability.  Transformation 

extracts the native database data and structure into a normalized common form. 

Transformation coverts the data across four levels – foundation that represents the 

underlying operating environment (e.g Mac OS), the technology that represents the actual 

database technology (e.g. MongoDB), the format that represents the arrangement or 

structure of the data (e.g. JSON), and finally, semantics that represent the meaning or 

purpose of the data.  Representation forms the data into a common, understandable form, 

independent of specific database technologies nomenclature.  Therefore, representation 
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properly represents all the information and its context across the various database 

technologies.   Unification normalizes the common formatted data.  This requires 

identification, correlation, cleansing, and summarization.  Unification creates a useful 

combined data source.  Alignment produces purposeful information from the integrated 

store based on user and/or system needs. Alignment focuses the information on the 

intended domain of interest requested by a system or user.  

 

Figure 2: Ideal Functional Data Integration Model 

A final consideration of the ideal model is the time and cost to produce the integration 

including changes that may occur to various data sources and business opportunity 

domains.  Integration that is more costly than the perceived integration value and/or takes 

longer than the opportunity permits is simply not pursued.  Therefore, it is critical to 

consider the time and cost factors.  Additionally, the integration faces likely change 

events such as modified data structures, upgraded technologies, and changes in the 

business opportunity domain.  Each area can introduce dynamics or changes to the 

integration solution.  Therefore, the ideal solution considers the time and cost not only for 
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the initial integration solution but also for maintaining that solution over time.  The 

combination of the initial and dynamic factors into a final ideal model introduces 

adaptability.  The solution satisfies the initial conditions and then continuously aligns to 

changes and/or dynamics in the evolving business opportunity. 

Thus, the ideal model summarizes data integration into five integration themes: 

transformation, representations, unification, alignment, and adaptability.  This ideal 

model assembled from various research efforts allows comparisons among various 

integration methods to highlight the capabilities, priorities, and limitations of each 

approach.  The model helps to reveal the strengths and weaknesses of various data 

integration approaches. 

Finally, it important to note the role of the business user - the non-technical user, driving 

the integration.  They maintain the critical insights as to the value of the integrated data.  

Their involvement at the various phases often determines the ultimate value of the 

integrated data.  If their involvement is limited, there is an increased likelihood that the 

integrated data will not meet their needs.  This leads to additional integration efforts that 

delay and increase the costs of the proposed business opportunity. 

1.2.2 Traditional	
  Data	
  Integration	
  Model	
  

The traditional data integration model emphasizes the technical transformation of data 

from a source system to the integrated system in a controlled sequence.  Traditional 

integration considers low level details and offers either a point-to-point integration or a 

form of data centralization such as data warehousing.  Integration occurring at this 
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technical level focuses on syntax, formats, and technologies without regard to semantics.  

Integration typically takes two routes – various Extract, Transform, and Load (ETL) 

approaches that transform and move the data to a central store (or warehouse) and a 

federated query approach that first decomposes the query to integrate the requested data 

source subsets and then unifies the results from multiple queries.  Both focus on the 

technical levels, bypassing much of the inherent knowledge and information behind the 

data that often remains left behind in the source application. Data integration systems 

actively combine the data primarily from two perspectives: Global as View (GAV) and 

Local as View (LAV).    While GAV places the integration complexity on the mediation 

between source and unified schema or domain, LAV places the integration complexity on 

the mediated queries.  GAV works best with changing domains whereas LAV works best 

for changing integrated data sources (Bennet & Bayrak, 2011). The new application 

incorporating the integrated data takes on much of the knowledge responsibilities within 

its processing steps outside of the integrated data.  This further diffuses the knowledge 

value of the data. 

Traditional data integration methods address data integration with an a priori 

understanding of the data and its purpose (Cure, Lamolle, & Le Duc, 2013). Due to 

inherent technology hurdles, technologists perform the integration tasks somewhat 

isolated from the business needs.  This can result in data marts and data warehouses that 

do not align with the business requirements.  This problem is not uncovered until the 

integration process is completed.  Big data/NoSQL integration needs to go beyond these 

methods due to its dynamics, size, and lack of control.  Big data often forms a massive 

and dynamic picture of the data. Scale and time demands prohibit copying the data to 
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another source, thus preventing the construction of data warehouses with their inherent 

latency. Dynamics enable fundamental structural additions at any time and location 

within big data making it better reflect the current domain while keeping the user of the 

data aligned with these changes. These big data integration challenges quickly 

overwhelm traditional integration approaches leaving many integration possibilities out 

of reach (Dong & Srivastava, 2013). 

Figure 3 captures the essence of the traditional approaches into an integration model that 

highlights the five integration themes from the ideal model.  

 

Figure 3: Traditional Integration Model 

The traditional model transforms and unifies the data based on the technologies below the 

semantics.  The transformation, representation, and unification approaches are typically 
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highly coupled.  The fundamental differences between the various traditional integration 

approaches is when the extract, transform, and load operations occur.  In a centralized 

data warehouse, they occur prior to any requests or queries.  In a federated query, the 

ETL occurs in response to a query.  These differences impact performance and resource 

needs.  Finally, the WAV and LAV approaches design various mapping strategies to map 

the data from original source to the integrated data source. Note in all cases, the data 

interacts directly with the database bypassing the application.  This forces the model to 

deal with low-level details contained in the database and the integration model loses the 

data context contained in the source application.  Applications often initiate complex 

efforts to enhance and relate the data contained in the data source.  This creates the 

necessity to build another application to provide such context for the integrated domain 

data.  This reflects the reality of most data systems being application-centric rather than 

data-centric.  The latter would consider uses of the data beyond the application and could 

actually assist in the integration. 

Data integration for NoSQL stores remains in its infancy.  The scale often prohibits the 

ETL transformations allowed in smaller stores due to the inability to perform a timely 

data transfer and creates inherent latencies.  Additionally, the NoSQL stores handle data 

structure in a non-centralized, dynamic fashion.  NoSQL stores do not offer a standard, 

description of the data structure because the structure can be defined anywhere within the 

store and is dynamic.  Consequently, many traditional integration approaches would fail 

due to their sheer scale and/or structural dynamics. 
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1.2.3 Traditional	
  Integration	
  Model	
  Limitations	
  

The traditional model based on an application-centric view with limited semantics results 

in significant limitations for integration efforts.  The following details the key limitations 

organized in the five themes presented in the ideal integration model. 

• Transformation Limitations 

o Limited Data Expressiveness:  The model lacks an expressive data format 

that fully captures the richness of the data.  This requires the diffusion of 

this expressiveness throughout the integration application and often pushes 

low-level integration issues onto the user. (Date, 2005) (W3C S. , 2008)  

o Application-centric data resources: The current model must consume data 

resources that are application-centric rather than data-centric.  This buries 

the data in a complex application context that makes it very difficult to 

extract the data minus the encumbrance of the application context.  In 

general, data systems are not designed for integration (Ziegler & Dittrich, 

2004). 

o Syntax, Format, and Technology Integration:  The traditional model 

integrates at a level that incurs a high degree of complexity and must deal 

with the major differences across the many existent syntax, formats, and 

technologies that store and manage data. (Ramler & Wolfmaier, 2008).  

The lack of semantics forces technicians to perform the integration rather 

than the actual users.  
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o Big Data Scale:  The sheer scale of big data often disallows transforming 

the data.  The NoSQL database, Cassandra, holds data for Apple 

Computers and Netflix.  The Apple database contains over 75,000 nodes 

storing 10 Petabytes.  The Netflix database contains 2,500 nodes, 420 TB 

and over 1 trillion read requests per day (Cassandra, 2016). 

o Big Data Structural Dynamics:  NoSQL databases do not offer a standard 

method to extract the structure of stored data. The NoSQL model does not 

require a data structure upfront. Data personnel do not have to design the 

structure in advance of the data ingest.  (Wayner, 2012). 

• Representation Limitations 

o Single Domain View:  The unified information need to fit into one domain 

view.  This causes integration difficulties when there is a lack of 

agreement across various meanings of the labels and terms due to different 

perspectives found in different databases. Merging these different 

perspectives encumbers the integration process and limits domain 

specialization in retrieving information from the integrated database, 

which obfuscates the benefits of integrated information (Lukovic & Mogin, 

1996). 

• Unification Limitations 

o Limited ability to deal with dirty data:  Dirty data includes missing 

information, conflicting information, and incorrect information present 

when bringing multiple data sources together.  It presents a huge burden to 

corporations with over $600 billion spent on data quality issues (Lucas, 
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2010).  Traditional methods deal with them a priori to the actual 

integration.  This creates high risk because it is difficult to identify and fix 

all the dirty data problems prior to the integration.  This often leads to high 

cost due to last minute efforts that can also induce additional errors.  This 

limitation significantly inhibits large-scale integration since dirty data is 

constantly present and it is virtually impossible to remove all of it (Fan & 

Gui, 2007) (Kim, Choi, Hong, Kim, & Lee, 2003). Additionally, NoSQL 

stores assume that dirty data always exists and their sheer size prohibits 

efficient cleanup efforts. 

o Complex Relationships Among the Data:  This requires a complex 

technical understanding of the data such as foreign keys, triggers, field 

constraints and so on, creating data models that require a strong expertise 

to understand, evaluate, and integrate.  Names of various artifacts to 

accommodate these complex structures come at the expense of clear, easy-

to-understand semantic labels. 

• Alignment Limitations 

o Failure to Evaluate each Data Candidate Early:  The business user does 

not see a database’s integration contribution until the integration is 

complete.  This can lead to incorporating unnecessary data and delays the 

addition of useful data (Dayal, Castellanos, Simitsis, & Wilkinson, 2009). 

o Limited Support for Domain Extraction:  The ultimate goal of data 

integration is to extract useful information.  The actual integration effort 

merely puts all the data into a single unified accessible form.  It does little 
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to establish specific domains of interest to help identify and extract desired 

results.  The specific domains must compromise themselves into the one 

unified view and handle unique data considerations outside the main 

integration store (Lukovic & Mogin, 1996).  

o Limited Integration Standards:  Traditional integration lacks well-accepted 

integration standards, making it difficult to extract key information and 

share integration approaches.  The inability of integration solutions to 

build on one another results in increased costs, protracted delays, and 

higher risks. 

o Limited Reasoning:  Traditional methods lack logical reasoning that can 

assist the integration in handling error correction, removing duplicates, 

replacing missing information, and resolving conflicts.  Reasoning can 

also supply independent alignments of the data allowing focused 

independent domains. 

• Adaptability Limitations 

o Closed World Model: Traditional efforts close the data model making 

future changes difficult.  For example, a closed model assumes that it has 

complete information.  If a customer’s name is not present in the database 

than they are not a customer.  This closed assumption makes integration 

with another customer database fraught with possible conflicts.  

Unexpected data changes create havoc with the integration causing the 

project major maintenance costs and/or the inability to adapt to the change.  
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This includes inabilities to properly deal with discovered poor data quality 

and future data integration candidates. 

o Highly labor intensive and Error Prone:  The many manual steps in 

integrating the various technical, format, and syntax complexities invite 

errors and are time consuming. 

o Isolated Integration Efforts:  Due to the lack of framework that can help 

simplify integration, each integration effort is unique and isolated.  

Different efforts are unable to share data structures and terms.  Thus, every 

effort starts from scratch and is unable to build on previous integration 

efforts. 

o Point-to-Point Integration of Databases:  Integration is often forced to 

uniquely connect one data source with another one in a point-to-point 

fashion or create an accepted standard database that integrates the data.  

The former creates the classic N2 dilemma and its associated inefficiencies.  

The latter creates data warehouses that demand a common, accepted data 

model.  Either approach can work on small, fully controlled data sources 

but quickly fails with many data sources and/or multiple, complex data 

perspectives that make common models infeasible. 

o Brittle, Non-Adaptive Integration Solutions:  The complex integration 

wiring and transformation working at the low levels forms a very brittle 

solution that inhibits change.  Brittle solutions break or fail with even 

minor changes.  This often results in paralyzing the various data sources 

and associated applications involved in the integration.  They in turn lack 
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the ability to adapt to changing business demands.  As a result, new 

demands may require entirely new data sources (new data silos) or large 

maintenance efforts on the existing integration solution (Bennet & Bayrak, 

2011). 

o Extensive Duplication:  Traditional efforts often rely on a centralized data 

approach that requires the movement and duplication of the integrated data.  

This incurs the expense of moving and duplicating the data and also 

creates data latency.  The latency causes the actual data and the copied 

data to possibly be out of sync with the original data source, which can 

produce data inaccuracies and anomalies.  This limitation grows more 

serious as the demand for real-time, dynamic data increases.   

These limitations result in negative business impacts for data integration that include high 

cost, protracted time lines, and potential errors.  It also requires high technical expertise 

and incurs a large delay with iterations throughout the integration process due to learning 

and/or changes. Hence some of the value of the data and the business opportunity is lost. 

1.2.4 Integration	
  Trends	
  

Current technology and data trends drive additional demand for integration while placing 

new requirements on integration solutions.  The trends move towards easily accessible 

and dynamic data.   
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• Plunging Cost of Infrastructure: Data requires movement, processing, and storage.  

In accordance with Moore’s law and others, costs continue a precipitous plunge 

with increasing data availability.   

• New Data Structure/Storage Options:  Many new forms of data storage (e.g. 

NoSQL) and their associated diverse structures have emerged in cloud computing, 

Internet storage, and the like. Consider HBase, Cassandra, Neo4J, along with the 

movement to make large data sources available to the public (Government U. S., 

2011) to name but a few.  Many are rapidly evolving. 

• Growing Participation in Producing Data:  More parties including individuals, 

corporations, and governments contribute to producing the data.  Many are quite 

new to these contributions.  Worldwide Internet participation has grown over 

500% in the last ten years.  The United States has over an 84% penetration rate 

with many countries over 90% (Internet World Stats, 2017). 

• New Data Technologies:  New technologies from cheap cloud data storage to 

simple-to-use blogs, wikis, and short message technologies encourage the creation 

and accumulation of data from many parties including technology novices. 

• Development of the Semantic Web:  The Semantic Web, now over a decade old, 

has matured to include a wide array of tools, technologies, and semantic data 

sources.  As of 2010, Linked Data contains a web of over 26 billion statements 

with over 400 million cross-data set links (Bizer & al, State of the LOD Cloud, 

2011) (Yamaguchi & al, 2011).  The Semantic Web continues to evolve and grow 

to drive greater use of data and easier integration.  Additionally, the Semantic 
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Web contains strongly supported standards for knowledge representation 

including logic and reasoning. 

• Real Time, Dynamic Data and Associated Structures:  This changing data often 

demands dynamic changes in its storage structure, thus evolving the schema that 

stores the data.  Twitter serves as an example of new types of real time data – data 

that forms powerful insights into what is happening in real time (Yamaguchi & al, 

2011). 

• Increasing Dirtiness of Data:  With data emerging from multiple sources many of 

which lack coordination, certification, and/or the same perspective causes a 

growing list of data conflicts, errors, and missing data for an integration effort.  

• Growing Base of Structured Data:  Data is quickly moving from unstructured, 

human-consumable forms to structured forms capable of improved system 

interrogation and integration.  This is seen in several efforts to provide access to 

machine-readable information such as Linked Data (Heath, 2011). 

• Increasing Distribution of Data:  Data with its large resource needs and various 

localities continues to be more fragmented and distributed across the various 

geographies and topic domains. 

• Growing diversity of the data type:  Data is no longer merely strings and numbers.  

Critical data also exists as videos, pictures, maps, and audio. 

• Increasing Value of Just-in-Time integration:  The need for rapid integration of 

data to reveal value, if any, will be a significant factor (Zhu, 2008).  There is no 

way to know the value before-hand, in many cases.  This makes it impossible to 
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make a traditional business case regarding integration since the value cannot 

always be predetermined. 

• Growth of Proprietary Integration Tools:  Many new integration tools are 

emerging to serve the many integration opportunities.  However, they lack 

standards, require translation into a proprietary format, and are often very 

expensive (SAS, 2011). This approach can lead to isolated, expensive integration 

solutions. 

• Growth of data outside of a business’s and user’s direct control:  This requires 

careful inspection and review for possible integration. 

These trends offer new challenges and benefits for integrating the data. 

1.2.5 Specific	
  NoSQL	
  Issues	
  

Big data finds storage in non-traditional technologies known as NoSQL storage.  NoSQL 

is designed around the benefits of big data.  First and foremost, the NoSQL technologies 

scale data storage across many physical devices allowing massive data storage.  NoSQL 

technologies also offer a dynamic structure as opposed to the rigid structure imposed by 

traditional relational databases.  This allows the database to remain relevant as it adapts 

to new structural requirements without the need to discard or update the massive amount 

of existing data already present in the NoSQL database.  These two forces create unique 

features for data integration that are critical for integration success. 
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1. Scale: The sheer size of big databases prevents the easy movement and creation of 

separate databases as employed in data warehouses and data marts.  The time and 

resources required often eliminate this as a possibility. 

2. Structure: The sheer volume of data often simplifies the structures to allow for 

efficient introspection.  They rarely have deep, complex relationships within the 

data elements, as this creates large inefficiencies with reading and writing 

operations.  Additionally, the simplicity of the structure lends itself to be 

semantically rich with meaningful, useful named data labels throughout while 

avoiding complex interrelationships between the data and the associated complex 

names. 

3. Dynamic Structure: Structure definitions can exist anywhere within the store.  

Frequently, no single method exists to extract the structure.  This allows updating 

the structure and creating new structural elements at any time and at any place 

within the store.  Conversely, it makes the actual structure or structures difficult to 

obtain.  Structure is the key to understanding the contents of the NoSQL store. 

4. Evolving NoSQL Technology:  Technology continues to evolve to meet the 

growing understanding of big data needs, creating a challenge for data integration 

methods that attempt to integrate while technical changes occur. 

5. Proprietary Technology:  Each NoSQL technology is proprietary and there are no 

current efforts to standardize the technologies to allow easier integration. 

6. Big Data Ownership:  Due to the size and scope of big data, integration efforts 

may require integration with an external data source that is outside of the effort’s 

control.  Therefore it could change significantly without any warning. 
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7. Outdated Documentation:  Due to the scale, dynamics, and exigencies of NoSQL 

databases, documentation often lags behind the NoSQL store or doesn’t exist at 

all. 

8. Scarce expertise: NoSQL demands new technical skills that are very different 

from traditional database skills.  The need for these skills far outstrips the demand, 

placing further burdens and costs on integration efforts. 

1.2.6 Issue	
  Summary	
  

The inefficiencies and ineffectiveness of the traditional integration model result from its 

low level, technical-oriented approach, extensive manual intervention, and the high level 

of integration customization required for each effort.  The traditional integration model 

may fail to reap much of the value from existing data sources and is poorly positioned to 

serve the rapidly evolving integration opportunities with NoSQL databases. 

The traditional integration model restricts integration to its technical components and 

pushes the semantics or meaning of the data to outside application and/or the users.   This 

delays not only the integration but also, more importantly, the review of the data’s role in 

a business opportunity.  So, while users require useful semantics, the integration effort is 

moribund in technical challenges and jargon.  The challenges extends as big data plays a 

larger role.  NoSQL stores are simply too large to move, do not easily reveal the 

contained data’s structure, and continue to evolve in non-standard ways.  Yet the large 

stores of data can offer benefits to many business opportunities. 
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The trends clearly lead to more data, in more diverse formats, at more locations with 

more participants.   More and more of this data will be machine consumable in ways that 

potentially ease the complexities and delays surrounding integration.  Integrating this 

growing amount of data potentially leads to improvements in the quality and timeliness 

of opportunities that benefit from the data. 

1.3 Research	
  Questions	
  

Big data stored in NoSQL requires integration approaches that evolve to better capture 

the value of the opportunities for large-scale, dynamic data distributed in many formats 

and technologies across many domains.  This research examines methods to improve 

integration and better position data to unleash its potential.  The fundamental challenge is 

how to enable a business user to quickly integrate multiple big databases to aid a 

business decision. 

The research develops a data integration method based on early, continuous, and direct 

interaction of the non-technical business user with the databases by revealing the 

meaning, or semantics of the data from a business perspective rather than requiring a 

technical translation.   Semantics references the meaning of the data.  This allows 

integration to occur at a business level to potentially reduce cost, increase timelines, and 

effectively deal with the multitude of dynamic, diverse data sources.   Semantics hit at the 

heart of the value of the integrated data – its meaning.  Early semantic transformation 

enables the user to quickly review the data prior to the technical integration.  This review 

includes specific tables and fields in the data, critical in forming integration with large 
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databases.  As the integrated database grows, the user can then continually review it to 

see if it meets their needs.  This allows an iterative process that continuously enriches the 

data integration until the user is satisfied.  It also allows the user to add data later to the 

integrated database as the business opportunity arises. 

The overall research question is this: How can data semantics be used for integrating 

large scale, diverse, and dynamic NoSQL data sources? To answer, the following specific 

questions must be addressed: 

1. How can semantic transformation/representation provide a useful view of the 

underlying database for integration? 

2. How can semantic unification integrate various NoSQL databases? 

3. How can semantic alignment focus the unified semantics on a specific domain of 

interest? 

4. How can semantic adaptability using convergence-directed integration produce 

an efficient approach to NoSQL data integration? 

1.4 Research	
  Objectives	
  	
  

1.4.1 Overall	
  Objective	
  

The research focuses on integration solutions based on semantics.  The research will 

advance the current integration model in two key areas: incorporating semantics to 

advance integrated data and integrating the data on the rapidly emerging big data stores 

found in NoSQL databases.  Five major steps are required to advance NoSQL integration 
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– transformation, representation, unification, and alignment toward a given domain of 

interest and adaptability.  Finally, the research employs multiple methods to validate the 

generalization of the semantic approach to ensure proven integration advancement. 

Integration using semantic technologies is not a new topic.  Existing research has touched 

on this and identified it as the key issue in data integration.  Semantic integration falls 

into three categories: programmatic semantics, schema-based integration, and declarative 

approaches (Zhou, 2010).   

Recent advances in the Semantic Web enable advances in semantic integration.  The 

Semantic Web offers a supported standard for data representation, logic, rules, and 

remote/local access (Organization, Semantic Web Standards, 2001).  These standards 

have produced two valuable results – a multitude of tools and a vast array of available 

Semantic data.  The data includes sharable structures and easily integrated data, allowing 

integration efforts to work in collaboration with a wide array of tools and information.   

The Semantic Web advances combined with the current trends open an opportunity to 

advance and implement a proposed semantic integration model through the integration 

and development of various Semantic Web tools and available Semantic Web 

information to produce useful business information from large-scale, dynamic data 

integration. 

The research will produce a working model based on existing Semantic Web tools (and 

by developing additional tools and sources where necessary) that validate an adaptive, 
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cost-effective model and method to integrate large-scale, dynamic information sources 

based on semantics. 

1.4.2 Transformation	
  and	
  Semantic	
  Representation	
  

Semantics integration begins with a transformation of NoSQL databases into a 

representation based on a semantic view of the contained information.  This process takes 

the basic data and enriches it with discovered semantics.  It takes three steps – 

determination of the specific NoSQL technology, for each NoSQL technology maintains 

different interface protocols; the extraction of the information necessary to describe the 

NoSQL database; and the transformation into a common semantic form.   

The semantic integration method contains the protocol information for each supported 

NoSQL technology.  The method then probes the candidate database for a match to the 

protocol. Once a match occurs, the method interrogates the candidate database for 

descriptive information such as the structure, size, and technical parameters.  NoSQL 

data sources hold structural information in each record.  Each record could potentially 

contain a different structure.  NoSQL technologies do not offer a standard method to 

extract the structural information, as do relational databases.  Therefore, existing research 

methods employ an exhaustive read of every record.  This approach does not scale to the 

potential size of a NoSQL database, which could reach many petabytes.  The semantic 

integration method employs a statistical sampling of the database records rather than an 

exhaustive read of the records.  This avoids the time and processing delays that result 

when a candidate data source scales to its potential, which could reach many petabytes.  
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Finally, once the structural information is uncovered, it is combined with data examples 

for each structure so as to reinforce and expand the meaning behind the structural terms.  

Additionally, the technical integration information such as the login, network location, 

query parameters, and NoSQL technology type is recorded.  All of this information is 

transformed into a semantic ontology.  The ontology describes the NoSQL database and 

contains all the information necessary to obtain information for the integration of a 

candidate database. 

This semantic richness of the ontology varies depending on the level of semantics 

available in the underlying technology through the naming of the various data artifacts 

tables and fields.  Secondly, the semantics can be enriched and expanded through a 

variety of semantic analytics and manual assistance, many of which are available and 

becoming standardized (Euzenat J. , 2008), such as using reasoners and/or adding 

enrichment ontologies.  Lastly, the ontology holds meta-information regarding the 

NoSQL database to enable the location and extraction of information using its native 

methods such as the technical location, login information, and query parameters.   This 

allows the actual data to reside in the native store with the semantic meta-layer 

controlling the meaning and access methods, thus eliminates the need to copy and 

synchronize the data to a central integration database.  The ontology serves as a proxy to 

each of the integrated native NoSQL databases. 



 

 28 

1.4.3 Semantic	
  Unification	
  

Once an enriched semantic ontology is established from a database, the ontologies 

combine at the semantic level to form unified data integration. There is no need to 

combine the actual data until requested.  Ontologies easily combine and avoid conflicts 

found in traditional relational databases.  Once combined, semantic analytics perform 

conflict resolution, duplication removal, correlation, and the like.  Unification normalizes 

the integrated data.  These steps can continually reach out to ontological resources to 

refine, focus, and maintain relevancy over changing data sources and domains of interest. 

1.4.4 Semantic	
  Alignment	
  

Semantic alignment focuses the integration effort for a given domain of interest.  

Semantic alignment occurs in two phases: during unification and when providing results 

in a domain of interest.  Given the focused domain of interest expressed via semantics, 

the domain offers powerful techniques to extract desired information and patterns.   

Semantics offers a triad of extraction techniques that can be used together or in isolation 

depending on the information needs.   This includes search, navigation, and query.   

Search enables basic Boolean search based on keywords without semantics providing a 

simple way to find focus data areas for an information quest.  Navigation follows 

Semantic links that enables semantic results to follow a related path to additional 

information.   Semantic filters can clear away superfluous information and highlight 

paths related to the request.  Finally, when a path becomes one of interest or a path is 

known a priori, the request can be captured in a formal query via a query language.  
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The interactions can actually change the domain of interest, which would work with the 

other two areas above to continually adjust the domain and its associated data sources to 

align with the requestor’s needs. 

The four steps outlined above - transformation, representation, unification and alignment 

- all take advantage of the flexibility inherent in the semantic integration model.  This 

includes organic assembly of an initial integration, automatic enrichment, and flexible 

formation of semantic data extraction, allowing the semantic integration model to form 

quickly and maintain alignment with both the data sources and the domain of interest. 

1.4.5 Adaptability	
  

A modern data integration system must be adaptive.  Adaptability enables a quick start, 

maintains alignment, and protects the investment in an integration effort. 

1. Adaptability enables a quick jump-start for the integration effort, allowing a rapid 

review to determine the value of the integration effort.  Many integration efforts 

may not see the end value until the integration occurs.  Thus, without a quick easy 

start, many integration efforts will not go forward. 

2. Adaptability aligns the integration effort with the data and domain dynamics.  

This is key in any large-scale effort since the likelihood of change increases as the 

size and number of integration databases increase.  This is also compounded when 

data sources are out of the control of the integration effort. 
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3. Adaptability preserves the investment in the data and integration by maintaining 

an up-to-date view of the data and allowing the data requirements to change 

without major efforts.    

Adaptability employs convergence-based integration that occurs throughout the 

integration development process.  Traditional solutions that lack adaptability often fail to 

meet the business needs and fail to incorporate business learning along the integration 

steps. 

Adaptability throughout the process overcomes these limitations.  Semantics reveal 

underlying data meanings to the user allowing a degree of convergence to occur at early 

stages including the initial review of the data.  The user can direct the integration effort as 

the semantic revelation uncovers both pertinent and non-pertinent data.  This allows some 

degree of requirements, development, and extraction to occur simultaneously by the user 

who is interested in the actual meaning or semantics of the results. Additionally, the 

technical underpinnings of the Semantic Web can also help the convergence through 

extensive reasoning and logic.  The convergence is thus able to incorporate learning 

directly into the integration development. 

Figure 4 highlights the key differences between a traditional integration method and the 

semantic integration method. 
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Figure 4: Integration Method Comparison 

The traditional model takes longer to produce useful results and there is no opportunity 

for incremental results to influence the end state.  The convergence-directed Semantic 

Integration approach produces limited results quickly.  These results can then help direct 

the remaining development efforts, allowing the solution to not only produce useful 

results quickly but also adapt, as the integration and business opportunity is better 

understood.  Whereas the traditional approach mimics a waterfall development method, 

the semantic approach follows an agile development approach that uses incremental and 

iterative methods.  The convergence model is also more likely to efficiently and 

effectively produce useful information since both relevant and irrelevant databases are 

identified early during the integration process. 
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1.4.6 Method	
  –	
  Design	
  Science	
  Research	
  Method	
  

The design science methodology focuses on the creation of new and innovative artifacts - 

artifacts that address a significant problem.  The artifact proves itself through a robust 

review that clearly demonstrates its significance in addressing the problem (Hevner & al, 

2004).  Additionally, the artifacts undergo refinement through an empirical review period 

that further advances its benefits. 

The earlier section detailed the relevance of advancing the methods of data integration 

especially in light of the multiple trends that increase the relevancy.   

The research will produce several pertinent and reinforcing artifacts. 

1. A Semantic integration model that advances the overall integration of NoSQL 

databases. 

2. Semantic analytic methods that transform, represent, unify, align, and adapt the 

data.   

3. A Semantic implementation that illustrates and demonstrates the key constructs of 

the Semantic Integration model. 

These artifacts will go through an evaluation to demonstrate the advancement using 

various means to triangulate the research results.   

The method to address each research objective centers on the creation and 

implementation of a working semantic integration model as an advancement to the 

current integration mode.  The working implementation of the model employs the 
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Semantic Web as a specific implementation technology using a set of exemplar data 

sources, semantic integration techniques, and semantic extraction techniques.   

The working model exposes the semantic integration model to an empirical examination 

through a user trial task using the semantic integration model in comparison to the 

traditional integration model.  This provides both quantitative and qualitative views on 

the model. 

Due to the large scope of the effort several limitations are recognized.  The model will 

operate in a read-only fashion and thus not deal with the complexities of transactions and 

updates.  The implementation and study will assume relatively clean data and therefore 

not focus efforts on data quality or enrichment issues. 

1.5 Research	
  Significance	
  

Businesses, governments, and individuals make enormous investments in evaluating and 

integrating data.  However, most efforts are expensive and limited.  Current trends point 

to more integration opportunities.  Advancement in data integration offers a lower cost 

and faster turn-around enabling new integration opportunities and producing new value 

from existing data. 

The semantic integration model enables more information to truly produce a higher 

fidelity view of the domain of interest.  This should lead to better, more informed 

decisions that incorporate more pertinent and timely information.  Additionally, the 



 

 34 

semantic integration model promises to lower the cost of integration.  This will open up 

many new integration opportunities. 

Advancements in data integration produce value from existing assets – accessible 

information.  These advancements would allow insights to new medical treatments, new 

financial vehicles, and improved customer service, among others.  Simply put, better 

integration provides a higher fidelity decision framework leading to improved decisions. 

1.5.1 Key	
  Contributions	
  

1. Improved integration of useful data extraction methods based on semantics for 

NoSQL databases. This includes uncovering the structural information contained 

in a dynamic NoSQL store in a timely fashion. 

2. Applicability of Semantic Web standards, tools, and Semantic Web sources to aid 

semantic data integration. 

3. A Semantics-based integration structure and methods to advance integration 

efforts. 

4. Applicability of convergence methods to incrementally and iteratively advance 

data integration. 

5. Advanced evaluation methods through the comparing and contrasting of various 

traditional and semantic integration methods. 
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1.6 Organization	
  of	
  Dissertation	
  	
  

Chapter 1 provides an overview of the research.  It introduces the fundamental 

background that frames the research, the research questions, and an overview of the 

research methods. 

Chapter 2 provides the background information that lays the foundation of this 

investigation.  This includes studies on data integration methods.  It highlights the 

research by using semantics to advance integration in various domains including the 

specific use of the Semantic Web.  

Chapter 3 describes the research model, methods, and implementation in detail.  This 

includes a detailed set of methods and key coding constructs of the implementation.  

Chapter 4 describes the model evaluation methods that include executive interviews, 

survey instruments, and a data integration task.  It reports and summarizes the evaluation 

results. The task is based on artifacts produced by the implementation of the semantic 

integration model and associated methods. 

Chapter 5 outlines the contributions, limitations, and future research directions.   
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2 Chapter	
  2:	
  Related	
  Work	
  

2.1 Research	
  Areas	
  Overview	
  

The difficulties and challenges in data integration represent large costs and lost 

opportunities for business, governments, and even individuals.  The challenge doesn’t 

abate but worsens, even years after the inception of data integration. The ability to make 

coordinated, organization-wide responses to today’s business problems is thwarted by the 

lack of data integration (Goodhue, Wybo, & Kirsch, 1992).  It continues into this century: 

“Data integration becomes mission critical” was noted in the 10 marketing trends to 

watch in 2011 (Blunt, 2011). 

Database technology was introduced in the late 1960s to support various business 

applications.  As the computing platform grew to include multiple applications and data 

sources, the need for integrating data became apparent (Ziegler & Dittrich, 2004).  The 

initial solutions depended on a small global database schema.  This produced challenges 

in dealing with the various ways of expressing the data both technically and semantically.  

Zoom forward to today, and the challenge continues but at a scale, in both amounts and 

timelines, unthinkable just a few years ago.   

Traditional integration solutions and their corresponding models depended on factors 

absent in many of today’s information sources.  These include control and 

comprehension.  Formally, data sources and associated data integration efforts were kept 

behind corporate walls.  Here the corporation controlled the data source entirely and fully 

understood it (for the corporation typically created and maintained the data source).  This 
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made integration achievable as well as maintainable.  Today’s information and data 

environment finds almost the opposite.  Although many opportunities still exist behind 

corporate walls, they have been swept up by the same wave of data creation and new 

technologies – creating a microcosm of the larger data environment.  The larger data 

environment, fed by the Internet and its associated innovative applications, has produced 

massive amounts of information in a multitude of forms and locations.  The sheer ease of 

information creation has produced a new timelines and associated urgency to the data.  

For example, Twitter produces 250 million short messages a day (Nakano, 2011).   Users 

can search these messages on keyword, topic, creator, and more.  On the other end, big 

data or cloud computing will approach 100 - 160 billion dollars of investment in 2014 

(Hickey, 2010) (Williams, 2009).  Small companies and even individuals are involved 

with major cloud technologies through several major product offerings from Apple 

(Apple, 2012), Amazon, and Google. 

The lack of control and comprehension coupled with the dynamics and massive amount 

of data seriously challenge traditional integration methods (Mohan, 2013).  Fortunately, 

new technologies offer capabilities to create an adaptive, and efficient environment to 

leverage the growing mass of information scattered amongst the many technologies and 

formats.  Additionally, the growing mass of information itself provides insight and 

assistance with data integration.  These integration efforts, themselves, can be shared and 

built upon.  Finally, the current data landscape shows no sign of stabilization.  New 

technologies, formats, and data-producing applications will continue to emerge and 

advance.  Data integration advancements must adapt to this continuously changing data 

landscape to produce additional value from this large data investment. 
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The key to success is moving from a technological perspective to a semantic one.  This 

idea is not new.  Semantic integration has been explored for almost a decade. Semantic 

technologies are usually considered a key factor in dealing with the huge amount of data 

available today (Verter, 2010).   

The Semantic Web, outlined by Tim Berners Lee in early 2001 (Berners-Lee, Hendler, & 

Lisssila, 2001) has continued to grow through a collection of standard knowledge 

representation technologies, compatible tools, and a growing foundation of semantically 

structured information.  This combines with several new information visualizations based 

on semantically-rich contextual information, automated reasoning, and manual semantic 

guidance. 

Two dimensions help determine the value of the data and its integration with related data: 

business metrics and data metrics.  Business metrics examine the improved benefits for 

the bottom line on investment time and cost.  Data metrics uncover the data quality and 

associated data advantages that contribute to improving the business bottom line (Martin, 

Poulovassilis, & Wang, 2014). 

2.2 Data	
  Integration	
  Model	
  

Data integration requires distinct interfaces to each data source and corresponding 

processing workflows.  In order to best compare and contrast various data integration 

methods, a data integration model is formed.   
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Data integration can occur at different levels of architecture (Ziegler & Dittrich, 2004) 

from the low-level data storage to a user interface. Integration establishes the technical 

interface that points to extracting, transforming, unifying, and aligning data.  Moving up 

the stack, the integration reveals different levels of semantics or meanings along with 

different technologies.   The following provides a more abstract view of the conceptual 

decomposition of the architecture levels. 

• Foundation: It represents the integration of the underlying computing 

infrastructure such as the operating system. Regardless of a higher-level 

integration steps, the various operating environments should interact with one 

another.  For the most part, higher software levels such as the integration 

application handle this level. 

• Technology: This represents the multitude of technologies that store and/or 

interact with data.  These include database technologies, file storage, technology 

formats such as XML and RDF, and so on. 

• Format: It represents the actual format of the data. For example, dates and 

locations often exist in a multitude of formats. 

• Semantic: This represents the meaning of the data.  Data may have multiple 

meanings and the actual interpretation may depend on its context. 

Additionally, data integration requires the following processes and staging steps 

(Giordano, 2010) (Fan & Gui, 2007).   

1. Data extraction 
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2. Data cleansing  

3. Transformation into common form 

4. Combining into integrated data form 

These steps form a workflow that moves data from one data application and purpose to 

another data application and purpose. 

This can be further conceptualized by examination of the various stages: transformation, 

representation, unification, and alignment. Transformation handles the extraction and 

isolated cleansing, representation forms the data into a standardized form, unification 

combines data from multiple sites and performs the necessary processing, and alignment 

advances the data to form a useful purpose. 

Two additional steps complete the workflow.  The integrated data requires some form of 

access/extraction to its subscribing clients and the data must expose itself in a useful 

visualization.  Many visualizations of integrated data exist. (van den Heuvel & Rayward, 

2011) (Tufte, 2001) 

Two other considerations complete a full description of data integration: integration 

breadth and integration timeliness.  Data integration breadth represents its scope or reach 

to disparate data and associated technologies along with the amount of data.  Two 

dimensions can describe the timeliness: the time it takes to integrate the data including 

integration development time and the time when actual data transfer takes place.  

Timeliness must also consider its adaptation to changes in the integration effort from new 
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data structures to new uses of the integrated data.  Adaptation becomes critical when 

technologies and business opportunities evolve quickly. 

Putting together the various factors of integration architectural levels, data integration 

workflow, breadth, and timeliness forms a data integration model, as shown in Figure 5. 

 

Figure 5: Data Integration Model 

The data integration model highlights the movement from isolated, existing data sources 

through transformation at the various architectural levels, unification to bind multiple 

data sources, and finally through to extraction and exposure to the integration domain.  

Additionally, the model handles timeliness through adaptability to represent the initial 

and subsequent efforts due to the underlying data and/or data use dynamics. 
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2.3 Traditional	
  Data	
  Integration	
  

Traditional data integration focuses on the technical framework formed by relational 

databases.  Relational databases typically exist to serve specific applications and are 

tightly bound to the associated application.   In general, information systems are simply 

not designed for integration (Ziegler & Dittrich, 2004). 

Traditional data integration must deal with the limited semantics within the data 

structures and often its narrow scope within the originating data application. 

Traditional data integration focuses on relational databases, which prior to the Internet 

contain the majority of structured data.   This took two different courses – Local as View 

(LAV) and Global as View (GAV) (Lenzerini, 2002).   

The LAV approach presents the content of each data source in terms of a view over a 

global schema.  This requires an enterprise data model.  Each data source must provide a 

mapping between the local schema and the global schema.  Adding a new source simply 

requires an additional map to the existing global schema.  LAV variations exist that 

highlight the similarities between the mappings and the global schema (Lenzerini, 2002). 

The GAV approach presents each global element as a characterization of the data source 

element.  The approach depends on a stable source systems and a federated query.  The 

global view forms a lens that brings each source into focus.   
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GAV models the global schema as a set of views over the source systems whereas LAV 

models the source database as a set of views over the global schema (Wikipedia, Data 

Integration, 2011).   

The global schema can be virtual or physical.  The former creates an on-demand 

federated query.  The latter results in a data warehouse approach that avoids multiple, 

coordinated queries but requires larger data movements and the inherent latency evolved 

in transforming and copying the data to the data warehouse (Bennett & Bayrak, 2011).   

Figure 6 summarizes traditional data integration.  Transformation occurs dynamically 

when responding to a federated query or in a batch mode when transferring to a data 

warehouse.  The key difference is demonstrated when the data movement and 

transformation take place, either while responding to a query or in a batch operation. 
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Figure 6: Traditional Data Integration 

Figure 6 highlights the middleware that transforms and unifies the data.  This is 

traditionally referred to as Extract, Transform, and Load (ETL) and is typically a custom 

solution that is not shareable.  Alignment occurs in the virtual (federated queries) or 

physical data warehouse through query methods that combine with the integration 

application.  One limitation of a query language is that it typically requires application 

cooperation to extract and display useful information from the integration. 

Traditional integration suffers from significant limitations.  The many manual and custom 

tasks required for data integration exert a high toll in time and cost.  This directly leads to 

poor scalability and poor adaptability.  Additionally, the level of customization precludes 

sharing of the integration approach.  Most data integration efforts start from scratch.  The 

scale in terms of the number of data sources and source heterogeneity further increase the 
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difficultly (Goodhue, Wybo, & Kirsch, 1992).  This indicates that challenges for 

traditional integration will significantly rise due to the sheer increase in both number of 

sources and their diversity. 

The physical integration of data misses the semantics.  This results in developers hard 

coding much of the meaning that represents the data.  This approach produces brittle 

systems with little flexibility that are expensive to maintain.  Most commercial 

integration systems are limited in this way (Uschold & Gruninger, 2004).  Relational 

databases require tables to provide the relationship information.  In addition, these tables 

and field names define the relationships but not the semantic meaning behind the 

relationships.  As a result, it is difficult, if not impossible, to retrieve semantics directly 

from the names. 

Although these methods support controlled relational database integration, they exhibit 

serious limitations when challenged with more advanced Internet technologies such as 

big data storage in NoSQL databases.  These databases are highly dynamic and massive 

in scale.  The large scale and data dynamics do not easily permit the extensive data 

movement required in traditional database integration. 

2.4 Semantic	
  Integration	
  

Semantic heterogeneity has long been recognized as a key challenge for data integration 

(Buccella, Cechich, & Brisaboa, 2005) (Doan & Halevy, 2005).    Information exists at 

many levels from meaningless data bits to actionable knowledge.  Semantics refers to an 

explanation of the data in terms of the real world – the meaning (Zhou, 2010). Semantic 
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solutions are typically based on an ontology that contains classes and relationships 

between the classes (Noy, 2004).  The ontology provides a formal description of a given 

domain.  Ontologies may also offer the benefit of reasoning.  Semantic technologies are a 

key factor for dealing with the huge amounts of data available today.  Semantics map 

expressions in a given technical format with things or facts in a given world (Vetere, 

2010). 

Without citing particular technologies, there exist three main ways to achieve semantic 

integration.  The distinguishing factor is where the integration takes place: in a 

programming language; schema mapping using syntax; or through declarative techniques.  

Additionally, the semantic integration can incorporate into a global semantic schema, 

individual pairing, or some hybrid form. Although global schemas offer a direct clear 

method for enterprise data integration, it falters with scale.  The P2P method becomes 

adaptive to larger scale data sources despite its initial startup costs (Zhou, 2010).  

Effective methods employ a combination of the two.   

Fundamentally, semantic integration techniques are similar to traditional techniques.  The 

key difference is where the integration takes place.  Traditional methods integrate at the 

technical level but not the semantic level. 

Semantic integration typically integrates at the ontology level and involves ontology 

mapping where the semantics are aligned between the data sources.  Several methods 

exist to align ontologies; a shared (or global) ontology where each source maps to the 

shared ontology, heuristics, and machine learning.  Shared ontologies map individual data 

sources to an agreed upon ontology.  There are several published ontologies helpful to 
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shared ontologies such as DOLCE and SUMO (Noy, 2004).    Heuristics take advantage 

of various semantic algorithms using lexical and structural components to form an 

alignment between two ontologies.  Machine learning techniques cover various 

procedures that associate terms with various methods that can include heuristics and/or 

training.  Noy further notes that declaration-based semantic integration improves the 

description, explanation, conjunction, integration, and reasoning contained in the 

information (Noy, 2004). 

Formal ontology provides clear and definite semantic descriptions and offers a good 

basis for enterprise information integration and semantic interoperability (Noy, 

Semantic Integration: A Survey of Ontology-Based Approaches, 2004). 

Multiple research efforts are focused on ontology mapping methods (Buccella, Cechich, 

& Brisaboa, 2005), (Kalfoglou & Schorlemmer, 2003), (Kaza & Chen, 2008).  These 

techniques discussed automated methods, which have made great strides but still fall 

short of comprehensive, understandable mappings.  In contrast, manually supported 

techniques are effective in offering visual interactions with a user. (Granitzer M. , Sabol, 

Onn, Lukose, & Tochtemann, 2010).  Other techniques emphasize adaptively employing 

multiple strategies (Idrissi & Vachon, 2009).  Additionally, there have been various 

methods employed to evaluate the mapping effectiveness (OAEI, 2011), (Euzenat, 

Meilicke, Stuckenschmidt, Shvaiko, & Trojahn, 2011).  

Several types of mapping challenges exist between ontologies (Klein, 2001); language 

level mismatches, ontology level mismatches, explication mismatches, and encoding 

mismatches.  Language level mismatches can be addressed somewhat through language 



 

 48 

translations.  Ontology level mismatches include using the same concept term with a 

different meaning - conceptualization mismatches.  Explication mismatches result from 

paradigm differences such as using different top-level ontology.  Encoding mismatches 

are caused by using different formats for measurements, time, and the like.  Formally, 

these mapping challenges are typically addressed by manual mapping (Noy & Musen, 

2000). 

Recent advancements in algorithms move the mapping from the individual names and 

labels to the rich relationships found in the data context level.  Context mapping takes 

advantage of the relationships in addition to the term or symbol.  Several methods exist to 

provide some level of automated mapping (YongTao, FengJuan, & HuiJuan, 2010) 

(Comito, Patarin, & Talia, 2006) (Doan & Halevy, 2005).  Some methods focus on the 

terms and use related information resources such as WordNet (W3C, Wordnet in RDF, 

2011). Other forms leverage the context or relationships that surround the term.  Both 

types of solutions depend on a wide range of available semantic data to allow for 

comparisons and enrichments. 

The results of these mapping algorithms, despite being promising, do not fully merge the 

ontologies successfully (Buccella, Cechich, & Brisaboa, 2005).   Semantics is ultimately 

a human invention requiring some level of human interaction. 

Semantic integration can exist as a top down integration approach using a top-level 

ontology or direct integration using a P2P model.  The former depends on reaching an 

agreement on the top-level ontology.  Although possible in controlled groups, this is not 

possible in large-scale integration effort that employ a large number of data sources with 
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different owners.  P2P technologies and architectures provide more scalability and 

flexibility in addressing integration (Moujane, Chiadmi, Benhlima, & Wadjinny, 2009). 

Extensive groundwork has been established for semantic integration in the last two 

decades.  For much of that time, there was a lack of a focused technology platform to 

allow collaboration in creating, managing, and using semantic data.  This has resulted in 

isolated semantic solutions that contain potentially useful data, tools, and integration 

approaches. 

2.4.1 Semantic	
  Integration	
  Platform	
  –	
  The	
  Semantic	
  Web	
  

The emergence and evolution of the Semantic Web provides a common platform to 

address the semantic issues.  Previously, the diversity of plausible semantic solutions 

impeded progress (Kalfoglou & Schorlemmer, 2003).  The Semantic Web provides a 

common, standard expression of semantics (Herman, 2011).  The various Semantic Web 

standards result in a platform that contains ontology and data languages, reasoning 

constructs, various tools, and a growing body of available data and associated ontologies.  

Contributions come from all major sectors including government (Government U. , 2010), 

open source community (Bizer & al, State of the LOD Cloud, 2011), commercial 

(MacManus, 2010) (Sindice, 2012), and many individual efforts (Foaf, 2010).  

Additionally, mapping sites exist that expose mapping algorithms (Euzenat J. , 2008), 

transformation methods, (Bizer, 2010) and semantic equivalence (sameAs, 2012) along 

with many forums and conferences that share experience and skills. 
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This extensive combination of standards, tools, semantic data, and shared experience 

found in the Semantic Web offer a path to fulfill the promise of semantic integration 

(Langegger, Wolfram, & Martin, 2008). 

Semantic Web standards provide a common, accepted way to create, manage, and query 

Semantic Web data.  The key standards include: 

Knowledge and Data Representation: Resource Description Framework (RDF) 

provides a data structure, RDF Schema provides basic structure including classes 

and properties, and OWL Web Ontology Language provides additional logical 

expressions such as cardinally, equivalence, and class restrictions. These 

representations operate under the open world assumption.  This is conducive to 

data integration due to its lack of non-asserted assumptions and openness to new 

assertions including structural assertions. 

Semantic Web Query Language: SPARQL offers a flexible and powerful method 

to provide query semantic data (W3C, Prud'hommeaux, & Seaborne, 2008).  

Additionally SPARQL offers a method (e.g. CONSTRUCT query) to add to the 

data given underlying conditions in the semantic data.  This can be used to form 

subsets or add data in the form of a rule.  SPARQL offers a web service standard 

– SPARQL protocol for RDF (Clark, Feigenbaum, & Torres, 2008) to allow a 

web service SPARQL interface.  This combines with SPARQL 1.1 (Harris & 

Seaborne, 2012) to allow federated queries. 
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Rule Languages and Standards:  Rules assist underlying logical ontology 

constructs. They also allow fine grain control.  Rules provide custom expansion of 

the expressivity of the data representation.  There are several rule standards, such 

as Semantic Web Rule Language (SWRL) (Horrocks, Patel-Schneider, & Boley, 

2004), Jena Rules (Jena, 2010), and SPARQL Inference Notation (SPIN) 

(Knublauch, Idehen, & Hendler, 2011).   Rule Interchange Format (RIF) provides 

an overarching standard to provide a common rule exchange. (Kifer & Boley, 

2010) 

The standards allow for interoperable tools.  The key tools include:  

Reasoners:  Reasoners provide inference to the ontology constructs.  The RIF 

standard categorizes the different capabilities of the available reasoners.  

Currently, there exists a multitude of open source and commercial reasoners 

compatible with the Semantic Web (Wikipedia, Semantic Reasoner, 2011). 

Triple Stores:  Triple stores provide storage for the semantic data.  They also offer 

various services such as a SPARQL query interface.  A multitude of open source 

and commercial triple stores are available (Wikipedia, Triplestore, 2012). 

Programming Frameworks: Programming frameworks allow programmatic 

interaction with Semantic data.  The preferred framework is Jena (Apache, 2011).  

Jena provides extensive methods to create, manage, and query Semantic Web data 

and constructs. 
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Ontology Integrated Development Environments (IDE):  IDEs construct and 

validate ontologies.  There are several open source (e.g. (protege, 2011)) and 

commercial versions of IDEs.  

As previously mentioned, there are extensive amounts of Semantic Web data available 

including rich domain ontologies and data.  Correspondingly, there is a multitude of 

transformation and alignment technologies and standards. 

Large scale, high quality ontologies depend on effective and useable methodologies that 

produce ontologies (De Nicola, Missikoff, & Navigli, 2009).  Ontology engineering 

provides formal methods to create and validate an ontology – “To provide a basis of 

building models of all things in which computer science is interested in” (Mizoguchi, 

1998).  Creating an effective Semantic Web ontology benefits from ontology engineering 

practices of formally defining the domain and associated semantics through logic 

expressions captured in the ontology. Semantic tools such as Protégé allow these 

expressions to be visualized and verified (Pouchard, Ivezic, & Schlenoff, 2000).   

Ontology engineering outlines formal methods to design an ontology (Mizoguchi, 1998).   

These include requirements to ensure the ontology is intelligible to both end users and 

computers, allow combinations of ontological elements to form larger concepts, contain 

both a conceptual layer and symbolic elements, and ensure the ontology can interact with 

an object oriented computing language to fully exploit its potential.   

The existing tools and the design of the semantic integration model adheres to these 

requirements.  The Semantic Web using OWL/RDF can hold complex concepts that can 
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exist alone or as combinations of multiple concepts.  Additionally, tools can extract the 

concepts for user consumption contained in the ontology above the symbolic format 

expressed in OWL and RDF. Thus, the semantic web can be both understandable by a 

user while also being processed by software in a computer.  The Semantic Web enables 

adherence to the practices promoted in ontology engineering. 

2.5 Emerging	
  Data	
  Sources	
  and	
  Semantic	
  Integration	
  

NoSQL databases contain structured and semi-structured data but lack semantics and few 

standards.  They exist as isolated databases that contain highly useful and timely 

information.  Thus, although the NoSQL database contains the richness of massive data, 

they lack the standards and semantics to easily integrate this rapidly growing set of data 

sources.  

There is not a single definition of cloud computing and their associated databases 

(Grossman & Gu, 2009).  One clear division of cloud databases is between SQL and 

NoSQL databases.  The former contain traditional relational databases hosted in a virtual 

environment as virtual appliances. This simply places the same technologies into a new, 

more flexible virtual environment.  The latter, (NoSQL databases) take advantage of 

cloud dynamics for data and employ a simpler schema.  The NoSQL approaches quickly 

scale beyond relational databases. There is a clear need to investigate how different 

NoSQL sources interoperate (or integrate). (Grossman & Gu, 2009) 

Big Data databases can be segmented along several key data dimensions: consistency, 

availability, and partition tolerance as detailed in Figure 7.  
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Figure 7: Key Dimensions of Cloud Databases (Hurst, 2010) 

Consistency ensures the same view of the data (Brewer, 2012).  Thus the data source 

doesn’t return different answers for the same question asked by different clients.  

Availability ensures that the data source returns an answer.  Partition tolerance ensures 

that the data source can expand and distribute across multiple physical storage devices.  

The three categories help to distinguish between the various data source offerings in the 

cloud.  This also points out the limitation since achieving high levels in one area may 

prove detrimental to another.  For example, a cloud database that maintains high 

availability may suffer in consistency since the various nodes in a cloud may not always 

be in sync.  Correspondingly, a database that wants to provide high consistency may 

lower availability to ensure all nodes are in sync.  There is a multitude of types of NoSQL 

databases and they continue to evolve.  This is likely to continue as data requirements 

evolve and grow. 
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A multitude of data exists that is publically accessible via various NoSQL databases.  

Amazon offers dozens of large data sets accessible via their cloud technology (Amazon, 

Public Data Sets on AWS, 2012).   

NoSQL databases focus on performance due to the scale demands.  Three primary forms 

of NoSQL databases exist: column, document, and graph NoSQL databases.  These 

databases are very different from traditional relational databases and focus on 

reading/writing quickly, supporting mass storage, allowing for ease of expansion, and 

low cost (Han, Haihong, & Du, 2011).  Additionally, the databases incorporate a 

flexibility not found in SQL databases because structural information can be added at any 

time and may reside at any location within the database.   

All three types of NoSQL stores operate on the basic principle of a key that ties together 

common data to form a data record.  For example, a column based store contains a row 

that holds a unique key in one column followed by a column name such as “Department 

Name” followed by a third column with the actual department name.  The next row (or a 

row anywhere else) holds the same key but the column name is different such as 

“Department City” with the third column holding the city name.  A document-based store 

also maintains a key but the key binds to a document.  Here a document does not refer to 

a traditional MSWord document but rather a structure format in XML or JSON.  Finally, 

a graph NoSQL store holds a key that binds to many relationships such as Department 

Name.  The NoSQL graph database connects relationships at only one level (Neo4J, 

2107).  In other words, they are not full graphs that implement the concept of inheritance 

(such as “human” inherits relationships associated with “living thing”).  This constraint 
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allows the same relationship processing as the other two types: column and document in 

the semantic integration model. 

All NoSQL databases embed the structure information within each record.  This allows 

each record to share the same structure, use a slightly altered structure such as adding a 

new field like the email address, or use a completely different structure.  There is no 

enforcement on common structural elements.  This flexibility provides a highly dynamic 

store that quickly adapts to new, updated storage needs while preserving the existing data.   

A structural change only impacts the newly added data.  The existing data stays 

connected to its original structure.  Thus, structural information is spread throughout the 

database.  As the database grows, so do the challenges of finding the structural 

information and keeping documentation of the database up-to-date. 

2.5.1 Semantic	
  Cloud	
  Research	
  

Devising a semantic integration model for existing NoSQL data distributed throughout a 

cloud is a key focus area.   Cloud data integration incurs in two types of heterogeneities – 

vertical and horizontal.  Vertical represents heterogeneities within a single cloud.  This 

can be addressed with some level of standardization.  Horizontal heterogeneity refers to 

differences across multiple clouds.  These heterogeneities prompt the use of semantic 

integration models for integration (Sheth & Ranabahu, 2010).  Related semantic 

integration models that are based upon similarity link network (SLN) and association link 

network (ALN) support cloud data integration (Liu, Lou, & Liang, 2009).  
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Research in Semantic computing, which is a field associated with the Semantic Web, 

combines various elements of semantics, natural language processing and data mining 

(Wikipedia, Semantic Computing, 2011).  Semantic computing attempts to extend the 

Semantic Web’s breadth and depth through integration of the various cloud enabled 

components from user interfaces to pervasive computing. (Sheu, Wang, Wang, & Paul, 

2009).  This forms a semantic computing architecture.  Figure 8 illustrates the 

architecture. 

 

Figure 8: Architecture of Semantic Computing (Sheu, Wang, Wang, & Paul, 2009) 

The Semantic integration agents in the figure transform and unify the underlying data 

sources.  In order to move this model into cloud resources, it has to overcome several 

hurdles.  Sheu notes that cloud providers have no standards, open protocols, or 

discovered mechanisms.  There is no global index that searches across clouds.  They 



 

 58 

propose a Semantic Search Engine and note the compatibility of semantic computing and 

cloud computing.  A semantic search engine is analogous to a typical search engine 

except that it considers the semantics behind the search such as context information.  A 

semantic search engine could employ custom algorithms, natural language extensions 

and/or portions of the Semantic Web.  It stores semantic information about Web 

resources to allow for complex web searches through a semantic match rather than a 

syntax match or other (Kassim & Rahmany, 2009).  Semantic search engines offer a 

flexible way to integrate various cloud stores. 

Several research efforts aim to establish an ontology to describe cloud data resources 

(Youseff, Butrico, & Da Silva, 2009).   This could contribute to the simplification of the 

overall data integration through an understanding of the various cloud components and 

their relationships. 

Several research efforts have attempted to put semantic data directly into the NoSQL 

stores,  employing the scalability of the NoSQL and enabling its ability to process large 

amounts of data to run semantic reasoning (Zeyliger, 2010).  This also allows SPARQL 

query processing to integrate cloud stores through a query complier (Husain, McGlothlin, 

Khan, & Thuraisingham).  These solutions depend on the cloud data already having the 

Semantic Web data, which is not typically the case. 

NoSQL data management creates several challenges for integration of any kind.  NoSQL 

data is elastic only up to the point that it can be decomposed and parallelized.  No data 

standards exist within any NoSQL technology.  NoSQL databases continue to evolve and 

could change in incompatible ways.  The data is often replicated across great distances 
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incurring hidden latency.  The databases were not initially designed as a complete end-to-

end analysis system (Abadi, 2009). 

2.6 NoSQL	
  Data	
  Integration	
  	
  

Several methods have been proposed to integrate NoSQL databases using semantics 

(Livenson & Laure, 2011), (Gagnon, 2007), (Cure, Kerdjoudj, Faye, Le Duc, & Lamollo, 

2012), (Cure, Lamolle, & Le Duc, 2013).  They each require an exhaustive analysis to 

uncover structural information due to the NoSQL ability to hold structural information 

throughout the entire store.  Their solutions read every record in the NoSQL database to 

determine the complete structural information.  This is slow at best and intractable at 

worst.  Additionally, they do not take convergence on a topic domain into consideration. 

Both limitations increase costs and time requirements, thus limiting the ability to explore 

additional databases.  

These methods take a traditional view of data integration and assume an exhaustive 

approach will work, even at the large scale of a typical NoSQL store.  Additionally, they 

fail to note that the structures and relationships between the data are much simpler and 

easier to use directly than the structure found in a relational database.  The empirical 

results presented in the papers cited above employed a small scale NoSQL database, and 

only investigated small databases.  Further, they did not consider the creation of an end-

to-end integration using ontologies as a proxy for the native data store, but only 

transformed the database structure to an ontology. 
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2.7 Summary	
  

Data integration should consider an end-to-end approach that includes transformation, 

representation, unification, and alignment performed in methods that maintain the 

alignment with the data sources and user objectives.  Such a collection of various steps 

and techniques resulted in an ideal integration model.  This serves to compare and 

contrast the various integration solutions.  

Traditional integration methods suffer from extensive customization that results in brittle, 

time consuming solutions that fail to maintain alignment with dynamic data sources and 

user information goals.   They also neglect to address the many data failures increasingly 

evident in large data integration efforts such as conflicts, duplication, missing 

information, and errors.  Traditional integration remains constrained to its initial scope – 

a few well-controlled data sources of moderate size and typically in relational database 

formats and technologies.  Traditional methods bind syntax and formats without regard to 

semantics.  The semantics are contained in the enveloping application and/or the actual 

user. 

Semantics integration offers a credible method to enable integration across a broad set of 

diverse data contained within multiple technologies because semantics pushes the 

integration point above the technology complexities.  Formally, most of the useful data is 

not in a semantic form and contains little semantics.  NoSQL stores, given their inherent 

simplicity, offer at least basic semantics - semantics useful enough to expose to a 

business user. Even if the semantics exist in a standard ontology, ontology alignment 
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techniques used for integration have failed to completely unify the various ontological 

structures through automation.  This forces manual mapping to overcome impeded, large-

scale integration.   Several attempts have combined visual techniques with automated 

techniques to advance integration. However, many semantic attempts have been held 

back by the lack of standards and tools.  This resulted in isolated solutions. 

Semantics have now evolved into the Semantic Web that maintains widely supported 

standards in RDF, OWL, and SPARQL to name a few.  This has spurred the development 

of an effective platform to build, store, reason, and query semantic data.  Such a platform 

results in a multitude of semantic data and associated ontologies.  This provides an 

opportunity to use this semantic platform and its associated data to further advance data 

integration. Additionally, reasoning and ontology enrichment can further advance the 

inherent basic semantics found in the NoSQL data source. Visualizations have also been 

developed to reveal the underlying semantic patterns allowing the non-technical user to 

assist and guide an integration effort rather than just a group of technical experts.  This 

allows the data integration to evolve to the business needs more precisely and more 

rapidly. 

Finally, the current methods are further challenged by the increasing business dependence 

on NoSQL databases.  Their sheer scale precludes many integration approaches due to 

time and size constraints.  But they also fail to deal with the dynamic structures and 

evolving proprietary NoSQL technologies or benefit from the simpler, more direct 

artifact names found in NoSQL databases. Fortunately, NoSQL databases offer basic 

semantics and minimize or eliminate complex relationships.  
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3 Chapter	
  3:	
  Method	
  

3.1 Semantic	
  Integration	
  Model	
  

The semantic integration model advances the current integration approach by moving the 

integration focus from the technological underpinnings of data to the semantics of data.  

The shift improves the creation and adaptability of integration solutions for the rapidly 

emerging NoSQL databases. This semantic integration perspective becomes achievable 

as a result of the advances in the Semantic Web and associated user interfaces, which 

offer standards, tools, and knowledge sources to realistically enable semantic integration 

along with the complementary profile of NoSQL technologies. 

The model recognizes the strategic role of the user, especially the non-technical user, 

through creating an integration framework that allows continual user guidance to focus 

and direct the integration.  This allows disparate data source extractions to dynamically 

adapt and unify to meet the specific user’s needs.  The user plays an active role 

throughout the process of collecting useful results.  This is a key success differentiator 

because semantics are ultimately a human artifact.  This exposure of semantics rather 

than technologies allows the user to contribute to the integration itself.  User self-

direction allows the effort to converge on the user-intended solution rather than depend 

on a removed set of technologists and the time delay associated with such an effort. 

The model also recognizes the strategic (and rather obvious) role of data sources and the 

dynamics of changing contents and structure.  Data sources come and go.  Data structures 

change.  The model offers adaptability to recognize and incorporate these changes 
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without catastrophic hurdles throughout the integration process.  The semantic integration 

model creates a decoupling between the semantics and the various data sources allowing 

data sources to join and separate seamlessly.   

These two key aspects - user role and data source adaptability of the Semantic Integration 

model - gracefully permit both user and data source dynamics, a key in large-scale 

integration across diverse interests and technologies. 

The model is explored in three levels: conceptual, logical, and application.  The 

conceptual model ties the various components to the ideal model for transformation, 

representation, unification, alignment, and adaptability.  The logical model ties the 

logical concepts to specific technical components, standards, and data sources through 

defined methods.  The application model ties the model and methods to an actual 

implementation suitable for a rigorous evaluation.   

The evaluation of the model uses two approaches to provide appropriate triangulation.  

The first interviews executives with business responsibilities involving data.  The second 

uses an actual implementation of the model to enable users to interact with its visual 

artifacts to accomplish a defined task.  Finally, participants from both approaches provide 

feedback on the method in terms of usability and ease of use when compared to existing 

alternatives.   

Overall, this approach maps to the design science method that demands artifacts, problem 

relevance, rigorous evaluation, and the incorporation of existing aids.  
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3.2 Structural	
  Analysis	
  of	
  NoSQL	
  databases	
  

Extracting useful structural artifacts from a NoSQL store forms a major assumption of 

the method.  Relational models offer standard structure extraction with complex tools 

such as the Erwin modeler to dissect and picture the complex structure.  However, 

relational databases have very complex models with many indirections of the data based 

on the various relationships.  NoSQL models lack the benefit of easily identifying the 

structures contained in the database.  An important deduction in support of the method is 

the validation of this assumption. 

Relational databases are constructed of tables and relationships among the tables.  Each 

relational table has one defined structure and all records in the table strictly adhere to that 

defined structure (Date C. , 2005).  NoSQL databases have the notion of tables but allow 

for multiple structures within the table.  The fields contained within each structure may 

vary significantly.  For NoSQL databases, a table is merely a collection or grouping of 

records where each record within the table defines its structure.  The same structure 

might be repeated throughout the table, or many different structures may exist within the 

same table.  The structural flexibility of NoSQL databases allows the table to evolve and 

grow rather than have to be reconstructed when any change in structure occurs.  To this 

point, the NoSQL databases have different names for this structure. Cassandra 

(Cassandra, 2016), calls it a column family while MongoDB (MongoDB, 2017) calls this 

structure a collection, and Neo4J (Neo4J, 2107) calls it a node.  Each adheres to the 

concept of a collection of records heretofore referred to as a table.  Focusing on the 

performance and scale rather than data integrity, transactions, and complex relationships, 
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this table delineation in NoSQL tables achieves some logical or performance-related 

partitioning. However, the structural flexibility disallows a simple extraction of the 

structural information contained in a NoSQL table, requiring advanced technical skills to 

retrieve the native data.  The semantic integration method aims to identify the structures 

of each table to assist business users, with limited technical skills, in retrieving and 

integrating data from NoSQL databases.   

After reviewing the various documents of several relational and NoSQL databases 

(Oracle, 2017) (MongoDB, 2017) (Accumulo, 2017), Table 1 outlines the key differences 

and their impacts for NoSQL databases.  It can be concluded that NoSQL technologies 

support the creation of a simpler, non-normalized structure without complex relationships 

to other tables within the database.  However, the structural information is stored 

throughout the database and supported by a harder-to-find technical skill base.  A detailed 

discussion follows the table. 

Table 1: NoSQL databases compared with Relational Databases 

Capability Relational DB NoSQL DB NoSQL Impact 

Atomicity Transaction Row, Column, 

Document 

Discourages cross-table 

relationships 

Consistency Transaction Eventual May reflect different 

answers to the same query. 

Isolation Transaction Row, Document Discourages cross-table 

relationships 
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Durability Full Audit Trail Not Assured Redundancy protects the 

data 

Data Size Limited Practically 

Unlimited 

Limits data movement 

Distribution Limited Practically 

Unlimited 

Rapid expansion, scale as 

needed 

Structure Relational Column, graph, 

document 

No standard structure 

Structure 

Information 

Centralized 

retrieved with call 

Decentralized 

across the entire 

store, part of every 

record 

Flexible structure stored 

throughout the database 

Structure 

Semantics 

Often attempt to 

reflect complex 

relationships 

through the 

structure  

Simple 

straightforward 

structure due to 

external use and 

lack of representing 

complex data 

elements 

Simple, non-normalized 

structure 

Structure 

Complexity 

Relational 

complex with 

many cross 

Minimal cross 

references – 

strongly 

More straightforward 

structures, limited cross 

references 
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references discouraged 

Normalization Encouraged and 

supported 

Not encouraged Repeated information 

throughout, avoids need for 

cross references 

Skill Base Established and 

plentiful including 

certifications 

Rare with spotty, 

proprietary 

certifications 

Difficult to acquire the 

technical staff necessary to 

extract value 

Maturity Mature Rapidly Evolving Difficult to form any 

standard, constant 

expansion of capabilities 

Emphasis Consistent 

Information 

Massive 

information ingest 

and retrieval 

Speed/Scale over data 

protection 

 

The first four rows deal with the ACID qualities – atomicity, consistency, isolation, and 

durability.  NoSQL databases focus on flexibility and lack of coordinated transactions.  

This limits reading and writing atomically related information in multiple locations with 

assured consistency.  Consistency beyond basic atomicity enforced at single record levels 

provided by NoSQL databases require complex external controls – this strongly 

discourages rich relationships outside of the limited atomicity.  Since it is not possible to 

maintain full consistency, NoSQL stores minimize or lack complex relationships that 

cross many tables. Hence structural analysis need not focus on extracting rich 
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relationships.  Additionally the durability feature is swept away by the sheer scale 

limiting useful extractions used in traditional data warehouses and data marts. 

The next section in the table focuses on scale.  It is not surprising that NoSQL databases 

focus on scale – initial scale and the ability to scale as demand increases, whenever that 

occurs.  This requires spreading out the data to multiple servers, fostering inconsistency 

across the data since there is no physical way that an update can propagate to all the 

NoSQL servers simultaneously.  The only way to accomplish consistency would be to 

lock all the relevant areas until all areas are updated – this would simply take too much 

time and is usually avoided.  In contrast, the NoSQL stores employ non-normalized data 

and freely repeat information throughout the store.  Therefore, NoSQL databases cannot 

guarantee consistency but are only designed for eventual consistency.  This also extends 

to structural information and no simple access method can retrieve the entire structural 

information.  Additionally, the size requires dynamic structural information because it is 

unfeasible to discard the database and start over due to an updated structure.  NoSQL 

structure, unlike the strict control found in a relational database, allows changes in 

structure at any time, stored at any location within the store.  Fortunately, the structure is 

tightly bound to the contents, which repeat the structural association.  Therefore, the most 

employed structures are repeated the most, and vice versa.  The NoSQL structures tend to 

be simpler with fewer relationships than those found in relational databases and are 

distributed throughout a larger store.  Popular structures repeat throughout and thus can 

be found more easily. 
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Finally, while relational databases are well established with standards, NoSQL are 

rapidly evolving.  The latter currently offers no standards.  NoSQL database evolution 

continues to offer new features, including features that create incompatibilities with 

previous releases.  This evolving target pushes standards even further out and 

standardization is unlikely to appear in the near future.  The evolution, lack of standards, 

and newness of NoSQL databases creates a skill shortage and requires custom work to 

extract data from each NoSQL database.   Thus, technical skills are a constraint on the 

value of NoSQL data due to their scarcity and the common requirement to access the data 

via custom technical work. 

In conclusions NoSQL data models reflect a simpler data model that often contains 

straightforward semantic information.  Relationships are replaced with non-normalized 

repeated data and structure.  The structure is stored throughout the database and is tightly 

bound to individual data records.  NoSQL methods that read and write data are still 

evolving and currently offer no standard methods.   This directly benefits the model in 

multiple ways: complete structural information can be found throughout the store; the 

model is straightforward with few, if any, relationships to other models; and the 

technology continues to evolve creating challenges for the technical staff.   The semantic 

integration model is beneficial in extracting key information from NoSQL databases 

without technical skills and the extracted information offers useful descriptions of the 

data.  This allows a non-technical user to quickly review multiple NoSQL sources and 

provide direct, useful information for NoSQL integration as well as reviewing the 

integrated database for completeness. 
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Relational databases hold many types of relationships such as one-to-many, many-to -one, 

and many-to-many. These relationships form constraints as well aid in data normalization.  

Tables are required to maintain many of these relationships and the table and column 

names reflect these relationships such as ‘Person2Organization’ and ‘Postition2Role’.  

These names obfuscate the semantic meaning and present difficulties in extracting useful 

semantics directly from the labels and names used to describe the tables and fields within 

a database.  Although relational databases could fit into the overall method, this 

complexity excludes them from consideration.  Additionally, many tools exist to examine 

and interact with the relational data model but they still require extensive technical 

expertise to understand the complex relationships.   

3.3 Conceptual	
  Architecture	
  

The conceptual architecture contains the key integration steps in producing useful 

integration results as shown in Figure 9. This aligns with Figure 2: Ideal Functional Data 

Integration Model.  Transformation and representation convert data sources to their 

semantic form.  Unification establishes a unified data model.  Alignment creates and 

maintains the focus of the integration on the desired results and integrated data sources.  

These steps collectively move data from its various technologies, formats, and individual 

semantics to a form useful for the user.  Adaptability allows the user to update integration 

due to new data sources, updated data sources, and/or new business opportunities. 
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3.3.1 Overview.	
  

 

Figure 9: Conceptual Architecture 

Rather than a static and batch approach typically employed by traditional methods, the 

semantic integration model continuously adapts through a progression of user-initiated 

and system automated methods.  This iterative, adaptive approach allows on-demand 

integration rather than a priori integration.  This allows the integration to converge on the 

complete integration solution and form it as one learns about the data and the business 

opportunity throughout the process.  Semantic integration properly incorporates changes 

in the data sources and/or in the user focus.  This approach enables rapid composition in 

the early stages of the integration effort and conveys early, up-front value to the 

integration while helping guide further investment in the integration effort. 
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The sections below provide additional details on the various conceptual components, 

their interaction, and relevance to producing useful information for the non-technical 

business user.   

3.3.1 User-­‐Driven	
  Dynamic	
  Semantic	
  Dialog	
  to	
  enable	
  Integration	
  

Convergence	
  

Data integration ultimately serves a data user.  Integration provides a useful meaning to 

the underlying databases that serve that user.  The interpretation of meaning is subjective.  

Therefore, semantics starts with the person who can best provide the meaning behind the 

integration pursuit – the business user.   

The semantic integration model absorbs this user meaning in an iterative manner through 

a semantic dialog.   The semantic dialog provides the initial semantic seeds to start the 

integration and the semantic guidance to fine tune and refine the semantic integration.  

The dialog forms a partnership with the user in creating the integration solution – the user 

provides their semantics while the integration offers continually refined semantic data.  

The conversation continues until the user converges on the required information derived 

from the on-going Semantic integration.  The conversation starts with examining data 

candidates for possible inclusion and proceeds until the business user is satisfied with the 

integrated data from the various data candidates. 

The Semantic Web enriches this dialog through the many existing semantic data sources 

and methods.  The user and the Semantic Web partner in developing and refining a path 

to the desired integrated information from multiple NoSQL databases.  
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3.3.2 Transformation	
  

Transformation identifies the structure and contents of the database.  Transformation 

handles the impedance mismatch between the underlying data technologies and the 

semantics useful to the Semantic Web.  It is an iterative approach.  Each newly 

uncovered structure is included.   Transformation eventually converges on a complete set 

of structural information, which is key to identifying the contents.   In addition to the key 

structural elements and associated data, transformation also identifies technology 

specifics.  The latter provides the technical information necessary for the actual 

integration. 

3.3.3 Representation	
  

The identified structural elements in the common format received from Transformation 

are then converted to the Semantic Web using OWL and RDF conversion.  This creates 

an ontology with associated instance data.  

Standard Semantic Web tools such as reasoners and visualizers can use the resulting 

ontology.  The richness of semantics web technologies enables a more complete capture 

of the underlying data concepts and their associated relationships, for the expressiveness 

of the Semantic Web far exceeds that of NoSQL databases.  

The representation maintains information to obtain underlying data from its native source 

and format when requested.  Thus, a Semantic Web query via SPARQL is converted to 

other various native data commands, as required by the underlying technology.  For 
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example, the SPARQL call is converted to a proprietary NoSQL query.  This has the 

added benefit of not requiring data duplication and its associated data movement latency. 

Finally, many tools offer a powerful, interactive visualization of the ontology.  This 

allows business users to inspect the structure and associated data for possible inclusion 

into an integrated knowledgebase as well as reviewing the integrated data for 

completeness for the given task.  This is key to the iterative, convergence-based 

integration driven by a non-technical business user. 

3.3.4 Unification	
  

Semantic Unification combines and unifies the various semantic transformations.  This 

further enriches and reduces the integrated data. 

Unification consists of two distinct areas that work together: methods to recognize 

semantic similarities and data conflicts combined with semantic enrichment via external 

Semantic Web data sources.  

The Semantic Web offers several advantages to unification.  The Semantic Web 

standards require the same format and uniqueness for all Semantic Web data resources.  

Thus, Semantic Web data exposed via semantic transformation can easily be combined 

due to the uniqueness of every data element.  The uniqueness is made possible due to the 

Unique Resource Identifier (URI) contained in every Semantic Web data element.  

Additionally the Semantic Web provides constructs that allow merges between the data 

elements without destroying the original data.  Logic statements assert the equivalence of 
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both data classes (e.g. Person equals Human) and data instances (e.g. Joe H equals Joe 

Hanover).   Upon the removal of these statements, the data reverts to the original 

differences.  This allows for corrections and updates. 

Additionally, the many available semantic analytic tools and reasoners can process the 

combined semantic integration.  The analytic tools correlate information and repair errors.  

This can be done iteratively (and even be removed on discovering an incorrect unification 

step).  The unification structures can be built upon and analyzed for future efforts.    

External semantic sources can provide additional semantic context to determine 

similarities/disjointedness and deal with data errors such as missing data, conflicting data, 

and errors.  The external sources complement the primary data sources.  

3.3.5 Alignment	
  

Alignment is the process that allies the complete integrated data with the business user’s 

needs for data.  Alignment is a continual process for the user may need to include 

additional data, the underlying integrated data may change, and the business opportunity 

itself may change.  The semantic integration methods stay aligned with these changes.  

Several areas within the semantic integration method assist alignment: initial review, 

updated review, integrated data review, and selective query.  These alignment review 

areas require the rapid analysis provided by the semantic integration method.  The user 

can quickly review a NoSQL database candidate, review an include NoSQL database for 

any change, review the complete integrated NoSQL database, and selectively provide a 

query that provides detailed integration results.  
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The Semantic Web offers key assistance in alignment for the semantic integration method.  

The Semantic Web standards provide guidance and a powerful query language.  The 

relationships between data are themselves semantic, enabling a meaningful traversal 

through the data.  Additionally, many Semantic Web sources exist to help define and 

focus a particular area of interest.  Finally, various alignments can co-exist with the same 

integrated data.  This allows multiple perspectives and does not force a common view.  

These perspectives can conflict with one another, build on one another, or simply be 

completely independent. 

3.3.6 Adaptability	
  

Similar to alignment, adaptability exists throughout the various components. Adaptability 

continuously adjusts to changes and refinements driven by the Semantic dialog with the 

user, as well as changes to the data sources.  Data source can changes vary from the 

addition of entirely new data sources to data structural changes to data changes. 

The Semantic Web and its inherent semantics offer several ways of dealing with changes.  

The first level is the open world principle adhered to by the Semantic Web.  This allows 

the addition of new data and structures without conflicts.  Thus, the semantic structure of 

the integrated data can form to a structure that adapts and forms over time.  There is no 

need to “get it right” the first time.  The structure can take shape over time.  Additionally, 

the ability to provide logical constructs allows a reasoner to adjust to changes by 

providing the logic to recognize and reorganize when change occurs. 
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Adaptability is the key that drives the overall integration effort.  The user starts with a 

basic integration request that builds over time based on what the system incorporates and 

what the user learns.  This allows the incorporation of learning from the user as the user 

explores the available data.  The user need not know the final form of information 

required but rather just a starting point.  This adaptability not only maintains alignment 

but also builds the initial alignment.  The integration self-forms over time given the 

available data and the guidance of the user. 

Adaptability employs convergence to incrementally and iteratively form the integrated 

data.   Convergence maintains a know nothing approach to integration that learns over 

time.  This is completely opposite from traditional integration which maintains an a 

priori view towards the data model and associated integration. Thus, the data is 

assembled as needed without any prior knowledge.  Each data source is added until the 

business user is satisfied that it would address the business opportunity.  

3.3.7 A	
  Conceptual	
  Example	
  	
  

An example helps to illustrate how different components from the conceptual architecture 

work together to build a useful integration from multiple data sources. 

The user, having a specific business use case, requires relevant data.  The user identifies a 

set of potential candidate NoSQL databases.  The method allows the user to quickly 

review the contents of each database candidate.  The review allows the user to select the 

entire data candidate or just certain tables and fields.  Once selected, the meta-data 

regarding the NoSQL technology and associated structure is stored in an integrated 
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ontology.  This process continues through each candidate.  As each candidate is evaluated, 

the user studies the integrated ontology for suitability.  If the user finds the integrated 

ontology complete, the user can then request the integrated data.  The semantic 

integration method then uses the meta-data stored in the ontology to retrieve the data 

from the native NoSQL sources and present the results.  Even at this point, the user is 

free to add additional NoSQL sources if the results are not sufficient to aid the 

opportunity or if the opportunity has changed. 

3.4 Technical	
  Architecture	
  and	
  Process	
  Flow	
  

The technical architecture follows the constructs of the conceptual architecture.  Figure 

10 provides an illustration of the technical architecture and associated process flow.  The 

method provides an iterative, user-driven approach to evaluating and integrating 

databases focusing on NoSQL databases. The method consists of six phases, as outlined 

in Figure 10. There are two main branches represented by the two columns in the figure. 

The left column determines the inclusion of a specific database candidate of one of the 

three forms of NoSQL: document, column, or graph. Its goal is to provide useful 

structural information of the candidate store for review. The right column incorporates 

accepted integration candidates to form an integrated data domain of interest to a specific 

user pursuit. The two columns work together to iteratively and incrementally form a 

useful domain of data.  In fact, the two columns are fundamentally the same but employ 

different levels of databases.  The left column integrates an actual NoSQL database, 

whereas the right column integrates the selected databases to form the integrated database 

domain useful for the non-technical business user’s opportunity. 
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Figure 10: Technical Architecture 

3.4.1 Data	
  Sources	
  

Integration depends on the data from databases.  Semantic integration enables the 

inclusion of NoSQL data.  The technical architecture selects several different examples of 

NoSQL technologies to best illustrate its abilities to handle and integrate data from 

various data technologies and sources.  NoSQL stores exist in three major forms: graph 
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(e.g. Neo4J), document (e.g. MongoDB), and column (e.g. Cassandra).  The method 

allows re-inspection of a given data source if changes occur or are suspected. 

3.4.2 Transformation	
  

The first step in processing information from a data source is transformation.  This 

translates the various platform, technology, and formats found in a common data 

structure that includes the domain of the data and the technology factors required to 

integrate and query the data.   

Semantic transformation consists of two steps: Native Probe and Content Analysis.  The 

Native Probe uncovers the type of NoSQL technology by attempting to interact with the 

various communication ports and NoSQL protocols.  This assumes standard ports, which 

is the typical case, while also allowing these values to be overridden.   Figure 11 outlines 

the major steps.   

Each NoSQL technology uses standard, defined ports and protocols.  Thus, the native 

probe assembles a NoSQL technology characteristics list that includes the standard ports 

protocols, and programming interface for each supported NoSQL database. The probe 

selects the first set in the list and uses that information to attempt a connection to the 

identified candidate.  If the selection is successful, the transformation continues to 

content analysis.  If not, the probe moves to the next entry in the list.   This continues 

until a connection succeeds or the probe exhausts the list.  The latter case indicates that 

the probe was unsuccessful in identifying the candidate.  
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Figure 11: Native Probe Process Flow 

Figure 12 outlines the Content Analysis process flow.  The first step calculates the length 

and random location of the record request based on the type of store, table size, and 

resolution factor.  The method then retrieves a random sample of NoSQL records.   

 

Figure 12: Content Analysis Process Flow 

The method employs the sequential sampling method.  This requires a sampling plan that 

outlines the sample size of records within a given table and the number of attempts to 
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ensure an effective review of possible structures within the table (Wald, 1945).   These 

parameters can be adjusted as needed.  Initially, the method uses the table size to 

determine the sample size and number of attempts.  Basic field trials determine a useful 

sample size and convergence attempts without uncovering any new structural information.  

This sampling method could indeed miss some structural information.  Given that the 

structural information is repeated for each record, dominant structures would almost 

assuredly be identified with raw structures possibility being missed.  The user is free to 

tune the parameters according to their needs to identify all structures (takes more time) or 

just the main, popular structures (takes less time). 

The received records are analyzed for structural information. For each new sample, the 

Content Analysis determines if the new records contain new structural information.   The 

structures are compared using string matching for each structural member.  The method 

would recognize similar but different structures as different, leading to some unnecessary 

duplication for the business user.  However, these subtle differences are required for the 

actual integration with another database.   

New structural information is added to the source description.  The method continues 

requesting additional random records until the method reaches a steady state (hence, no 

new structural information is added after a defined number of trials).  This results in a 

rapid review of the structural information without the need of exhaustive examination.  

Of course, using the sampling method may lead to missing a key structure (and hence 

data element) but structures in NoSQL repeat with each record.  This provides a 

statistical view that may miss only a small amount of structural information, if any at all.  
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The factors can be adjusted to accommodate different needs as to the capture of the 

structural information.  The speed of this approach allows fast rapid updates.  In a sense, 

this approach integrates a comprehensive structural view across the single store.  This is 

actually a form of integration since structural information in a NoSQL store can be quite 

diverse. 

The Content Analysis could use simple or sophisticated comparisons to determine new 

structural elements.  Given the relative simplicity of NoSQL stores, simple string 

comparisons may be sufficient.  However, extensions using semantic logic and word 

similarities can extend this capability, if required.  This could be accomplished iteratively 

if, as one uncovers the structure, additional semantic methods could help better reveal it. 

Content Analysis completes with a set of structures extracted from the sampling process.  

The structures contain the databases, tables, and column elements with an example value 

for each structural element to aid comprehension.   

3.4.3 Representation	
  

Representation contains three steps: normalization, semantic conversion, and 

visualization.   

Representation converts the structural information received from Content Analysis to a 

Semantic Web Ontology in OWL and RDF.  This establishes classes for the database, 

database table, and class attributes for each column name, along with example values for 
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each data element.  Relationships are also created to represent the containership of the 

database and tables.   

Representation takes advantage of the various advances in ontology mapping and 

ontology alignment.  The alignment API (Euzenat J. , 2008) allows a flexible way of 

mapping and sequencing multiple alignment analytics to unify the analytics results.  This 

includes alignment confidence where the user can set the level of precision and recall, 

based on acceptable levels of false positives and false negatives. 

Representation can leverage the many existing ontologies found across the Internet (Pride, 

2010).  Semantic Unification can use this service and others to find and integrate a 

compatible ontology.  The ontology contains logic and context to enrich the integrated 

data while also correcting it. 

Figure 13 details the transformation. 
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Figure 13: Semantic Conversion: From NoSQL to an Ontology 

The left most boxes reflect the generalized nature of a NoSQL database containing 

databases, tables, and records.  Each technology may employ different expressions, but 

they essentially are the generalized form of a NoSQL database.  The database and table 

names typically provide semantic information as the above example demonstrates.  

NoSQL structures are simple and thus often rely on common, everyday words.  They lack 

the need to construct complex relationships found in relational databases.  The simplicity 

of NoSQL allows a simple capture of this structural information directly.  Thus, the 

database and table names often provide useful structural semantic information.  The 

middle column of the figure illustrates the three types of NoSQL stores.  Starting from 

the top, they include column, document, and graph.  These usually also contain useful 
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semantic information.  This example shows the same record information in the three 

different formats.   

The conversion takes structural information from both key areas: database and table name, 

as well as the record information, to form the ontology.  This enables two dimensions 

within the ontology – a structural approach based on the technical structure and the 

domain structure.  The technical structure allows navigation through the structure based 

on databases and tables names (including the size and technology type), which is 

essential to actual data integration.  The domain structure allows the non-technical user to 

view the structure example data and determine its usefulness for a given business area 

divorced from the technical underpinnings.  The record information also contains an 

example of the actual instance such as the Name being John.  This allows an additional 

level of introspection on the structure if the record name is unclear.  For example, if the 

column name was simply ss but the instance data was 123-45-8976.  The user could 

correctly conclude that the ss column represents the social security number.  The 

ontology also includes both the technical descriptions necessary to perform an actual 

technical integration such as the technology, database name, table name, and query string. 

Given multiple structures within a table in NoSQL databases, a new table instance for 

each structure is created in the ontology as a new structure is uncovered.  Therefore, a 

given table would contain several instances each containing different fields and different 

query information.  The user is free to select any number of structures from the table.  

Additionally, a count of records mapped to that structure is included in the table, 

reflecting a magnitude of that particular structure. 



 

 87 

Representation results in an RDF/OWL ontology that captures the structural information, 

the technical information required for integration, and actual parameters to extract the 

data if the candidate is selected. Figure 14 outlines the ontology structure used to describe 

the NoSQL database. 

 

Figure 14: Foundation Ontology 

The unshaded rounded rectangles represent classes.  The shaded rectangles represent 

actual instances found in the database.  The ontology enables two distinct paths through 

the structure.  The technical path identifies the database and tables.  The domain path just 

goes right to the tables.  A table typically contains semantics regarding the contents and 

thus starts the domain.  The table contains records or fields with each having a 

representative actual value.  This allows the user to examine not only the table and field 
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names but also the values contained within the field.  The values fall into two categories: 

domain or technical.  The former contain the actual business information. For example, if 

the record name is “stock price” the value would be the actual price, such as $50. The 

latter contains technical integration information.  A record count is included to indicate 

the amount of the information contained in the table.   

This ontology provides a rich semantic context that includes the database name, the table 

name, the field name, and a sample field value. Together they provide a semantic 

understanding of the contents.  Any one value by itself, may not be sufficient to 

determine the contents and certainly not enough to set up an actual technical integration.  

For example, just knowing the title of the database would typically not be enough to 

determine its value for a given business opportunity.  

The table instance also contains the technical information to allow for integration such as 

the URL, port number, login information, and query parameters.  The query parameters 

allow the integration to retrieve the table elements when needed directly from the native 

NoSQL source.  Thus actual data movement is not required until requested by an 

alignment request.  The data stays in place in the native NoSQL database.  The integrated 

data is up-to-date. 

The ontology is constructed by recursively exploring the structure data returned from the 

probe phase.  The exploration starts with each database contained in the NoSQL 

technology.  For each database, the tables are identified.  For each table, the structures are 

recorded with example values for each field.  Each record is connected to a table and 

each table connected to a database.  Each table contains all of the technical information 
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required to retrieve data when needed.  The various NoSQL technologies do not always 

use the same terms as databases and tables but the concept remains true across the wide 

range examined for this research. 

Representation can also employ semantic reasoning and logic to further compress and 

enrich the ontology.  For example, using WorkNet’s ontology (University, 2013), the 

structure could compress similar words.  A simple enrichment with a geographical 

ontology/database could expand MD to Maryland.  Semantic reasoners could recognize 

similar patterns and add relationships.  Additionally, machine learning or similar 

analytics could eliminate superfluous characters to clarify the actual meaning of the 

semantic word. 

Ontology visualization displays the structure to a business user for their consideration.  

Ontologies offer many standard tools to visualize the structure and instance data.  This 

allows a non-technical user to examine the structure, in semantic terms and relationships, 

for consideration in building a large integrated database.  The ontology visualization can 

be driven by the SPARQL query language that focuses on the domain, the technical 

structure, or a given area through standard SPARQL calls, thus reducing the complexity 

of a large structure.  Figure 15 provides an example of an ontology visualization. 
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Figure 15: Structural Visualization Example 

The ontology visualization example includes both the technical structure and the domain 

contents.   The latter is key to evaluating its business use for integration of the data.   The 

former is key to actually perform the technical data integration.  In Figure 15, the 

database is called stockinfo, which contains a table called ibm.  The table holds a record 

containing multiple fields such as High, Date, Open, and Ticker.  One record is displayed 

with values to provide additional context to each field name.  So ‘hasValue’ can be 

interpreted as the stock price.  Additionally, the table provides technical information such 

as the host name, connection port, and technology type – all essential in performing an 

actual integration.  The visualizations employed the open source ontology tool Protégé, 

which also validates the ontology constructs. 
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3.4.1 Unification	
  

Unification consists of two stages: Candidate Integration and Normalization.  The latter 

stage employs many of the same methods used in Representation since both data sets are 

in the standard ontology form of OLW/RDF.  

Candidate Integration with the Semantic Web is a simple aggregation.  Since each data 

source employed a unique descriptor (URI) in the ontology, the combined data sets do 

not contain any conflicts.  All the statements simply combine.  

Although there are no conflicts due to the uniqueness of the URI, the newly aggregated 

database could contain duplications at two levels – concept duplication (e.g., each 

integrated database contains a table statement that is the same concept in all the 

integrated stores), and instance duplication because both could contain the IBM 

Corporation.   Despite the same information and/or the same concept, each contains 

different URIs reflecting their different databases origins.  This not only prevents any 

conflicts but also obfuscates the same data artifact as two distinct items.  

Unification identifies duplicated concepts through the same identification process used in 

the candidate normalization but limited to the last field in the URI.  On recognition of 

duplication, unification uses OWL:equivalentClass for merging concepts and 

OWL:sameAs for merging instances.  This treats two or more different records as 

logically equivalent.  Thus, the OWL:sameAs applied to these two table URIs referred to 

as URI1 - http://nosql1/stocktransaction and URI 2- http://nosql2/stocktransactions 

merges them as completely equivalent.  A query that used the first or second URI would 
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return both.  If indeed they contain duplicated information, adding the unique keyword to 

the query would eliminate the duplication.  If the duplication strains storage, a semantic 

rule could be applied to delete the redundant information.  The flexibility extends to 

corrections.  One only eliminates the OWL:sameAs statement to separate the concepts 

back into the two original different concepts. 

Figure 16 illustrates an ontology normalization example. The original knowledge base 

contains a table, ibm, that contains stock information.  The illustration presents two 

candidates to the right.  Both could be integrated using OWL:sameAs.  The upper right 

augments the table entry of ibm with office information.  The lower right augments with 

additional stock information.  The user can examine specific values to see if this database 

merely repeats the information or adds information from different dates. 

If the user requested a query that referenced either the ibm table in candidate 1 or the ibm 

table in candidate 2, the aggregated results would return from the query.  Thus, the query 

would return not only the stock price information from candidate 2 but also the office 

information from candidate 1. 
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Figure 16: OWL sameAs Semantic Equivalence 

A sample query is as follows: 

Select * where { 

<Candidate1 URL>/ibm ?relationship ?value. 

} 

Code Constructs 1: Integration SPARQL Query  

The SPARQL query in Code Constructs 1 lists Candidate 1.  The processing would 

expand the list to Candidate 2.  This would then retrieve both tables from the different 

NoSQL databases.  Each table contains the necessary information including the NoSQL 

database type and interfacing information, such as URL location, login information, and 

the native query command.  In turn, each native table is queried with the results 

converted into an ontology. Unlike before, where only the structural information was 
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converted, the integration converts the entire results of the query representing all the 

pertinent data.  This ontology is then integrated into the knowledge base simply by 

adding all the statements in it.  The knowledge base already contains the equivalence 

statements and thus drives the normalization.  Once complete, the entire query is rerun 

with the contained information now in the integrated database and provided to the user. 

The integrated knowledge base remains an ontology that contains the logic fields with the 

Semantic Web equivalence statements used to normalize the ontology.   

The actual data integration employs the technical fields contained in the ontology to 

extract the data requested for the integration.  This includes the address or URL, the port 

configuration, login information, and query parameters.  This can be accomplished in two 

ways – forward or backward integration.  Forward integration pulls in the data at the time 

of the integration.  Backward integration pulls the data when the user requests the data 

from a query.  Forward integration allows fast retrieval of the data by the user, as the data 

is already present but may require more space to fill all the data – much of which might 

never be requested.  It also quickly gets out of sync with the native store. Backward 

integration maintains the latest data since it is coming directly from the source.  

Backward integration is the preferred method since it doesn’t duplicate information and 

always has the most current information.  With proper architecture, the retrieval of 

information from multiple stores can offer high performance since the operations can 

happen in parallel. 
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3.4.2 Semantic	
  Alignment	
  

Semantic alignment uses the visualization of the integrated database to determine if the 

database is complete.  Semantic alignment uses the same standard ontology viewing tools 

as the Representation stage does.  Nevertheless, the visualization contains the integrated 

database not just the candidate. 

The ontology visualization tools allow selection and filtering of the integrated store.  

Additionally, a query using SPARQL can further focus the visualization on the area of 

concern. 

Semantic Alignment maintains the focus of the integrated data on the user’s domain of 

interest.  The alignment can offer multiple steps to allow the user to converge and focus 

the domain data on the intended integrated business data results.  Additionally, SPARQL 

and corresponding ontologies provide a rich framework to capture the intended area of 

interest.  The results from SPARQL queries allow the visualization to adapt to the user 

needs.  For instance, the user might just want to see the top-level structures or drill down 

to one specific lower-level structure and examine its members.  This allows the user to 

navigate through complex structures.  

The actual integration of the native data happens in direct response to a user query.  The 

query is based on the tables and fields exposed in the ontology.  However, the ontology 

contains only the metadata describing the integrated structure and associated technical 

information for each native NoSQL database.  The ontology is useful in determining the 

completeness of the integrated data.  When the user executes a query to retrieve the 
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integrated information, the ontology information is used to query the native NoSQL 

database.  Figure 17 details the process to retrieve actual integrated data from the native 

NoSQL database.  

 

Figure 17: Integrated Data Processing  

The user initiates a query against the ontology containing the structural and technical 

information of the various integrated databases.  The reasoner extends the query to 

include equivalent instances listed in the query reacting to the OWL:sameAS statements.  

The query then retrieves the requested tables.  Each table in the ontology, as outlined 

earlier, contains the technical information to interact with the native NoSQL database.  

This includes the database type.  This type is matched up against the set of database 

characteristics that provide the actual access commands.  After matching the correct one, 

the native commands execute the query contained in the table to retrieve its actual 

contents.  This data in the native format is then converted as the previous step into an 
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ontology.  This time, all of the data is converted, not just the structural information.   This 

ontology is then added to the integrated database.  In a nutshell, the integration is adding 

ontology statements to the integrated database.  Normalization occurs due to any existing 

equivalent statements.  After each table is queried, the query is re-run against the newly 

populated knowledge base and the integrated results are returned to the user. 

In summary, Table 2 outlines the stage, input, output, and verification of semantic data 

integration.  This provides the inputs and outputs of each step in the method along with 

the verification method.  Additionally, it notes whether the step is automated or not.  The 

non-automated steps form the convergent dialog with the user.  Each step contains a 

validation process to ensure that the data complies with syntax rules.  Once the 

information is converted into an ontology in the later steps, verification of the soundness 

of the ontology can leverage existing ontological reasoning tools. 
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Table 2: Integration Method Details 

Stage Activity Automated? Input Output Validation 
Transformation Native Probe Yes NoSQL 

database 
Record 
Samples 

Valid NoSQL 
Response 

 Content 
Analysis 

Yes Record 
Samples 

Record 
Structures 

Structure Validation 

Representation Structure 
Normalization 

Yes Record 
Structures 

Unique 
Structure Set 

Duplication 
Validation 

 Semantic 
Conversion 

Yes Unique 
Structure Set 

RDF/OWL 
Ontology 

Ontology 
Verification 

 Candidate 
Ontology 
Visualization 

No RDF/OWL 
Ontology 

Visualization 
of Ontology 

User Acceptance or 
Rejection 

Unification Candidate 
Integration 

Yes RDF/OWL 
Candidate 
Ontology 

RDF/OWL 
Aggregated 
Ontology 

Ontology 
Verification 

 Ontology 
Normalization 

Yes RDF/OWL 
Aggregated 
Ontology 

Normalized 
RDF/OWL 
Aggregated 
Ontology 

Ontology 
Verification 

 Integrated 
Ontology 
Visualization 

No RDF/OWL 
Ontology 

Visualization 
of Ontology 

User Acceptance or 
Rejection 

Alignment Query No Integrated 
Ontology 

Requested 
Data 

User Acceptance or 
Rejection 

Adaptation Change in 
opportunity 

No New 
Database 

Requested 
Data 

User Acceptance or 
Rejection 

 

3.4.3 Model	
  Implementation	
  Application	
  

Several key technologies support the implementation of the various components as noted 

above.   

• OWL2: W3C standard Ontology and Instance Language.  It supports description 

logic and many standard technical representations including an XML and JSON 

format. 
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• SPARQL1.1: W3C standard Semantic Web query language. SPARQL endpoints 

represent a complementary W3C standard that provides a RESTful service that 

allows remote, federated SPARQL queries. 

• Reasoners:  Various implementations carry out inference across assertions within 

a Semantic Web ontology.  The reasoners allow various logic coverage options to 

allow performance tuning. 

• Rule Languages:  Rule languages form extensions to the logic expressed in the 

ontology.  They allow operations outside of description logic.  They include Jena 

rules, SWRL, and SPIN. 

• Triple Stores:  Multiple implementations provide storage and access to the triple 

store contained in a Semantic Web data resource.  Triple stores also provide 

transformation tools and may perform reasoning. 

• Jena:  Semantic Web Programming Framework that allows connections to storage, 

SPARQL interpretation, ontology and instance formation, and reasoning coupling. 

• Visualization: Tools include Protégé among others.  

3.5 Semantic	
  Integration	
  Model	
  Implementation	
  

The implementation requires a set of appropriate data candidates that contribute to a 

useful domain while also exercising various NoSQL technologies.  This forms a useful 

integration implementation that simultaneously validates the approach using different 

NoSQL technologies.  The candidates are then integrated into the Semantic Web 

application that allows a convergence, working with the user, to the desired integrated 

results.   
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The identified data source candidates are developed into a semantic integration 

implementation that properly represents and integrates the unified information. The 

development effort adheres to the technical architecture (see Figure 10: Technical 

Architecture).  This includes transformation, representation, unification, alignment, and 

adaptability.  Each development step contrasts with traditional integration methods as 

outlined in Figure 2. 

3.5.1 Use	
  Case	
  –	
  Building	
  a	
  diversified	
  financial	
  portfolio	
  

The implementation employs a use case that requires data integration of several different 

NoSQL databases.  A business user, who has no technical skills, needs to identify stocks 

that outperformed several major financial market indexes over the last five years for 

assembly into a financial portfolio.  This use case requires data from multiple financial 

data sources holding investment data including specific stock transaction histories and 

multiple stock exchange histories.   

The desired stock information is publicly available in multiple databases, all of which are 

out of the individual’s control.  The user depends on the up-to-date documentation, if it 

exists, to determine its contents.  The semantic integration model allows the non-

technical user to examine and review the various databases, without documentation, and 

be assured that the information is current.  The model produces an ontology representing 

the database and visualizes the ontology to allow the user to inspect the database.  The 

user reviews the visualized ontology, which contains the data structures.  If the user 

determines that the data would be useful, the ontology is aggregated into the integrated 
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ontology.  The integrated ontology contains all the data structures and technical data 

required for integrating the user-selected data.  The user can continue to review additional 

sources and, if warranted, integrate them.  With each integration, the user examines the 

integrated ontology to see if the integrated data would be sufficient to address the 

requirements for building the portfolio.  This allows an incremental and iterative 

approach to integration with the non-technical user driving the integration effort.  It also 

allows learning through better understanding of the data possibilities.  Once completed, 

the user can request a query of the desired data.  The query uses the technical data in the 

ontology to retrieve the data directly from the native source.  If the returned data is 

deemed insufficient, the user can continue the process by integrating additional NoSQL 

databases. 

Figure 18 outlines the workflow for employing the method.  

 

Figure 18: Financial Use Case for building a stock portfolio 
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3.5.2 Semantic	
  Integration	
  Model	
  Implementation	
  

The semantic integration model implementation realizes this use case.  Several NoSQL 

data sources are selected with each using different NoSQL technologies.  The semantic 

integration method starts with the transformation phase, which is initiated with the native 

probe to attempt to connect to the data source.  The native probe attempts to connect 

using the list of parameters for each of supported NoSQL databases.  Code Constructs 2 

covers the specific interface required for the probe.  The probe contains a method 

structure for the key operations to interface with each NoSQL database. Each supported 

NoSQL database creates a Class that instantiates each of these methods.  Using this 

generalized approach allows for more conceptual operations across different NoSQL 

databases and minimizes NoSQL specific software.  This provides polymorphism that 

isolates the specific details for each of supported NoSQL databases – this allows fast 

incorporation and updating of evolving NoSQL technologies. 

public interface Probe { 

   int MAXSAMPLES = 40; 

   int BATCHSIZE = 100; 

   public boolean connect(String host, int port, String user, String pw); 

   public int extractStructures(); 

   public Model convert2RDF(); 

   public boolean sameAs (Object first, Object second); 

   public boolean populate(); 

} 

Code Constructs 2: NoSQL Probe Interface Methods 



 

 103 

The probe code maintains a set of Classes that each implement the probe interface 

outlined in Code Constructs 2 for the different NoSQL technologies.  The probe steps 

through each entry starting with the connect method.  If it succeeds, the connect method 

returns a true value and the probe continues to extract the structural information noted in 

Code Constructs 3 for each of the traversed tables.  Note that this includes the technical 

information as well as the elements contained in the array.  Code Constructs 3 notes the 

technical information listing the structural elements uncovered. 

public class DBStructure { 

 public enum DatabaseType  {mongo, accumulo, neo4j, cassandra}; 

 private String dbName = null; 

 private DatabaseType databaseType = DatabaseType.mongo; 

 private String tableName = null; 

 private String query = null; 

 private long rowCount = 0; 

 private String hostName = "localhost";  // default host 

 private int portNumber = 27017;  // default port 

 private String userName = null; 

 private String password = null; 

 private ArrayList<Object> structures = new ArrayList<Object>(); 

Code Constructs 3: Structure Extract Information 

Once the connection is established, queries are performed in accordance with the random 

sample method detailed earlier.  Each record is examined for structural information.  In 

the content analysis portion of transformation, the structure information is compared to 

the structural information collected so far.  If the structural information is new, it adds to 

the collection until no further new information is found.  
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The content analysis starts with a listing of databases for NoSQL database, which can 

actually contain multiple databases.  The probe recursively searches each database, then 

each contained table, and finally a specific sample record from each table.  Code 

Constructs 4 outlines the methods used to extract table and technical information. 

// Next see if table is new 

   if(!Objects.equals(currentTable, table)){ 

    // Create table object 

    tableInstance = m.createResource(URIdb 

+  currentTable);   

    m.add(tableInstance, isType, tableClass); 

    table = currentTable; 

    // Associate with database 

    m.add(databaseInstance, hasTable, tableInstance); 

    Resource counterInstance = m.createResource(URIdb + 

currentTable+ "counter"); 

    m.add(counterInstance, isType, counter); 

    m.add(counterInstance, hasValue, 

Long.toString(dbs.getRowCount())); 

    m.add(tableInstance, hasHost, dbs.getHostName()); 

    m.add(tableInstance, hasPort, 

Integer.toString(dbs.getPortNumber())); 

    m.add(tableInstance, hasUser, dbs.getUserName()); 

    m.add(tableInstance, hasPassword, 

dbs.getPassword()); 

    m.add(tableInstance, hasDBType, 

dbs.getDatabaseType().toString()); 

    m.add(tableInstance, hasQuery, dbs.getQuery()); 

    m.add(tableInstance, hasCount, 

Long.toString(dbs.getRowCount())); 

  

    // Also set the table up as a class with instances 

for each row 

    domainInstance = m.createResource(URIdomain + 
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currentTable); 

    m.add(domainInstance, isType, domainClass); 

    

   } 

Code Constructs 4: Probe Table and Technical Information Retrieval 

For each table traversed, all technical information is recorded including the query 

parameters.  This provides the technical information required for data integration of this 

native database when requested.  The ontology acts only as a proxy so as to maintain the 

most up-to-date structural and technical data and forgo the need for additional storage.  

This technical information provides a path back to the native NoSQL database. 

Lastly, the probe collects record information, as shown in Code Constructs 5. 

while(saveObjIt.hasNext()){ 

     // Allocate one record structure for each 

element    databaseObj = m.createResource(URI+  tableName);   

     recordInstance = 

m.createResource(URIdb+  saveObjIt.next().toString());   

     //Resource databaseClass = 

m.getResource(URIdb); 

     m.add(recordInstance, isType, recordClass); 

     //m.add(recordInstance, isType, 

domainInstance); 

     // Connect each record to the specific table 

     m.add(tableInstance,hasRecord, 

recordInstance ); 

     // Connect each record to the specific 

domain 

     m.add(recordInstance, isType, domainClass); 
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     m.add(domainInstance, hasMember, 

recordInstance); 

Code Constructs 5: Probe Record Retrieval 

Representation is the next processing step.  The first part is normalization to eliminate 

duplication.  This is done by determining whether or not to add the structural information 

via a comparison method.  This is outlined in Code Constructs 6.  It steps through 

existing structural elements and compares them to the new structure.  A structure could 

contain many elements so each element needs to be compared.  Since a slightly updated 

structure does not match any of the existing structures, it is added to the structure list.  

This approach allows the user to compare the usefulness of the two similar structures.  

The user might see a need for both, one, or neither. 

public boolean sameAs(Object saveObj, Object obj) { 

      DBObject one = (DBObject) saveObj; 

      DBObject two = (DBObject) obj; 

   boolean different = true; 

    

   Map saveObjMap = one.toMap(); 

   Set saveObjSet = saveObjMap.keySet(); 

   Iterator saveObjIt = saveObjSet.iterator(); 

    

   Map objMap = two.toMap(); 

   Set objSet = objMap.keySet(); 

   if( objSet.isEmpty() ){ 

    return true; 

   } 

   Iterator objIt = objSet.iterator(); 

    

   while(saveObjIt.hasNext()){ 

    String compareKey = saveObjIt.next().toString(); 
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    if(!two.containsField(compareKey)){ 

     different = false; 

     System.out.println("KEY NOT FOUND"); 

     break; 

    } 

   } 

      

   return different;  

 } 

Code Constructs 6: Normalization 

Representation continues after the normalization to convert to a Semantic Web ontology 

in OWL and RDF.  This requires the creation of OWL Classes for the main database 

artifacts such as table and instances of those classes.  Additionally, the relationships with 

the database are maintained.  Tables contain records and records contain fields.  Fields 

contain the actual data.  The technical information is also associated with each table.  The 

reference model implementation contains the following methods in Code Constructs 7 to 

form the conversion to OWL/RDF for the table information and Code Constructs 8 

handles the record information, which includes actual instances to aid the semantics of 

the field name and table name. 

for(DBStructure dbs:structures){ 

    

   currentDatabase = dbs.getDbName(); 

   currentTable = dbs.getTableName(); 

   System.out.println("CURRENT TABLE: " + currentTable); 

    

    

   // Set database object if new 

   if(!Objects.equals(currentDatabase, database)){ 

    // Create database object 
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    databaseInstance = 

m.createResource(URIdb+  currentDatabase); 

    m.add(databaseInstance, isType, databaseClass); 

    // Set this up so we don't repeat above 

    database = currentDatabase; 

   } 

    

   // Next see if table is new 

   if(!Objects.equals(currentTable, table)){ 

    // Create table object 

    tableInstance = m.createResource(URIdb 

+  currentTable);   

    m.add(tableInstance, isType, tableClass); 

    table = currentTable; 

    // Associate with database 

    m.add(databaseInstance, hasTable, tableInstance); 

    Resource counterInstance = m.createResource(URIdb + 

currentTable+ "counter"); 

    m.add(counterInstance, isType, counter); 

    m.add(counterInstance, hasValue, 

Long.toString(dbs.getRowCount())); 

    m.add(tableInstance, hasHost, dbs.getHostName()); 

    m.add(tableInstance, hasPort, 

Integer.toString(dbs.getPortNumber())); 

    m.add(tableInstance, hasUser, dbs.getUserName()); 

    m.add(tableInstance, hasPassword, 

dbs.getPassword()); 

    m.add(tableInstance, hasDBType, 

dbs.getDatabaseType().toString()); 

    m.add(tableInstance, hasQuery, dbs.getQuery()); 

    m.add(tableInstance, hasCount, 

Long.toString(dbs.getRowCount())); 

  

    // Also set the table up as a class with instances 

for each row 

    domainInstance = m.createResource(URIdomain + 
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currentTable); 

    m.add(domainInstance, isType, domainClass); 

    

   } 

Code Constructs 7: Ontology Creation from Table Information 

Code Constructs 8 shows the code for creating the record and field ontology. 

for(Object d: dbs.getStructures()){ 

       DBObject dbo = (DBObject) d; 

    Map saveObjMap = dbo.toMap(); 

    Set saveObjSet = saveObjMap.keySet(); 

    Iterator saveObjIt = saveObjSet.iterator(); 

    Collection instances = saveObjMap.values(); 

    Iterator instanceInterator = instances.iterator(); 

    while(saveObjIt.hasNext()){ 

     // Allocate one record structure for each element 

   databaseObj = m.createResource(URI+  tableName);   

     recordInstance = 

m.createResource(URIdb+  saveObjIt.next().toString());   

     //Resource databaseClass = m.getResource(URIdb); 

     m.add(recordInstance, isType, recordClass); 

     //m.add(recordInstance, isType, domainInstance); 

     // Connect each record to the specific table 

     m.add(tableInstance,hasRecord, recordInstance ); 

     // Connect each record to the specific domain 

     m.add(recordInstance, isType, domainClass); 

     m.add(domainInstance, hasMember, recordInstance); 

Code Constructs 8: Ontology Creation from Record/Field Information 
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Once the ontology is created, the model implementation uses the ontology tool Protégé to 

validate and visualize the ontology for the user review.  Figure 19 shows the visualization 

of the stock portfolio ontology for review.  

 

Figure 19: Financial Visual of Candidate Database 

If the visualization of the ontology developed for the candidate database is not considered 

useful and relevant, the candidate ontology is discarded. 

If the user selects the database, they can further narrow the scope of the integration by 

selecting specific databases, tables, and even fields.  The user need not integrate the 

entire NoSQL database.   The selected database ontology artifacts are added to the 

integrated ontology store.  The first selected database forms the initial knowledge base.   
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Next the ontology is normalized to remove redundancies.  This takes advantage of 

various Semantic Web logical constructs.  Notably, OWL:sameAs and 

OWL:equivilentClass.  The former logically merges instances such as International 

Business Machines with IBM.  The latter merges classes such as URI1:table with 

URI2:table  This allows two or more different ontology elements to be considered the 

same from a logic perspective.  The logic can use both the field name and its value to 

determine if the two are actually the same.  Additionally, logic can make similar words 

equivalent.  The ontology still maintains the inherent differences by not changing the URI 

contained in each statement.  This enables the native origin to remain intact and available 

because each one represents data from a different database and must integrate data from 

that source. For example, the OWL:sameAs statement connects two instances logically 

but the original statements with their different URIs are untouched.  Thus, if the related 

OWL:sameAs statement is removed, the ontology reverts to the two being different.  This 

flexibility allows for corrections. Thus a virtual database is created from the integrated 

database, yet it still retains the underlying differences that are found in the URI.  The 

addition of these statements requires an ontology reasoner, of which there are many 

available, or the creation of an ontology rule.  Code Constructs 9 illustrates merging the 

ClosingPrice instance from one ontology to the Close instance in another ontology as 

well as merging two classes with the same name, Table, but in different ontologies with 

different URIs.  This requires a reasoner to properly extend the merge to the impacted 

statements.  The reasoning can occur at the query request (backward chaining) or at 

integration time (forward chaining).  The semantic integration method employs backward 

chaining to maintain the up-to-date data and therefore does not need additional storage. 
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<rdf:Description rdf:about="http://uri1/ClosingPrice"> 

  <owl:sameAs rdf:resource="http://uri2/Close"/> 

</rdf:Description> 

 

<owl:Class rdf:about="http://uri1/Table"> 

  <equivalentClass rdf:resource="#http://uri2/Table"/> 

</owl:Class> 

Code Constructs 9:  Semantic Equivalence 

The visualization contains the integrated ontology and equivalent semantic statements 

after activating a reasoner.  The user evaluates the integration knowledge base for 

completeness for their specific task.  If complete, the user initiates a query against the 

integrated database.  The integrated database contains the information necessary to 

retrieve data from the various original databases because each ontology table concept 

holds the connection information, login information, and query parameters.  If incomplete, 

the user needs to identify additional candidate NoSQL stores and repeat the above 

process.  

The visualization allows the user to determine alignment towards their particular goals. 

Adaptability can be driven by two sources of changes: change in user needs or change in 

the candidate NoSQL databases.  The user is thus free to drop portions of ontology that 

are no longer needed or investigate a new or possibly updated NoSQL store for inclusion.  

The efficiency of this step enables flexibility.  The user can examine the current state of 

the NoSQL database through the semantic integration method and, if necessary, replace 

the original ontology to reflect that data source. Thus, the user can quickly adapt to 

changes in their business direction or changes in the underlying NoSQL databases. 
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3.6 Design	
  Science	
  Research	
  Method	
  

Fundamentally, the research method for the semantic integration model is based on 

design science and its emphasis on proven artifacts (Hevner & al, 2004).   A semantic 

integration model represents the key artifact that is proven through actual implementation 

and evaluation.  

The design science method resulted in the following:  

1. A semantic integration model that advances the overall integration of NoSQL 

databases. 

2.  Semantic integration methods that transform, represent, unify, align, and adapt 

the data.   

3. Semantic integration model implementation that illustrates and demonstrates the 

key constructs of the semantic integration model. 

Design science represents seven key guidelines (Hevner & al, 2004).  Table 3 outlines the 

guidelines and research outcomes for the semantic integration model. 
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Table 3: Design Science Guidelines and Research Outcomes 
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4 Chapter	
  4:	
  Evaluation	
  

The goal of the semantic integration method is to assist a non-technical user who is 

addressing an opportunity that benefits from data integrated from multiple NoSQL 

databases.  The method allows the review and integration of multiple NoSQL databases 

with a minimum of technical assistance.  This brings the opportunity closer to the data 

than with traditional methods that require translations to technical personnel. The 

improved efficiency allows the inspection, review, and integration of more databases 

within the users’ timeframe leading to a more informed outcome. 

The evaluation centers on exercising the semantic method implementation through a 

defined task.  This includes a survey that enables the comparison of other integration 

actions and methods along with the ease-of-use and effectiveness of the semantic 

integration method. 

The semantic integration method contains many steps that are transparent to its actual 

user and represent the internal processing of the method.  These hidden steps include the 

identification of the NoSQL database technology, the extraction of the structural 

information, the conversion to an ontology, the integration of the various ontologies from 

the native NoSQL stores.  The method permits two key elements for inspection by the 

user, allowing the semantic dialog of data integration convergence: The first is the 

ontology that represents a candidate database and second is the newly created ontology 

that represents the current integrated data.  These two areas are highlighted in Figure 20.  

An ontology visualization of the candidate database, as shown in the top-left in Figure 20, 
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requires traversing all the proceeding steps from the native probe through the 

normalization.  A similar ontology visualization representing the integrated database, as 

shown in the top-right of Figure 20, requires the candidate integration through candidate 

normalization with the existing database.   

The evaluation of the method exposes these ontology visualizations to the user within a 

given context to determine the usefulness of the overall method.  The ontology 

visualizations provide a testable artifact that represents the underlying operations of the 

method. 
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Figure 20: Two Ontology Visualizations 

Rather than producing a conceptual version of the visualization, a model implementation 

was developed to produce ontologies from actual NoSQL databases.  The representation 

results in ontologies that are then visualized for the user.  The model implementation 

used several actual real-world databases with different NoSQL technologies and 

produced corresponding ontology visualizations without modifications to the underlying 

semantics contained in the various database artifacts, such as table names and field names.  
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This produced a ‘worst case scenario’ since no semantic enhancements were made to the 

database structure names, such as tables and fields.  This worst case scenario can be 

improved using ontology reasoners and related ontologies.  The user sees the same names 

used by the database technical creators - the names used in the database were the same 

names communicated via the ontology.  If necessary, the ontology semantics could be 

enriched with synonyms from the WordNet (Miller, 1995) (Fellbaum, 1998).  The review 

also tests whether this enrichment is necessary or the inherent terms used in the NoSQL 

database are sufficiently semantically rich to convey a meaning to the business user.  The 

model implementation contains code constructs written in Java containing the Jena 

semantic library for ontology construction and the various drivers that establish 

interactive connections with the NoSQL databases.  The model implementation code is 

available at the github repository (https://github.com/jhebelerDS/BigDataIntegration).  

The major code constructs were detailed in the previous chapter. 

The model implementation probes for various NoSQL technologies.  Once a connection 

is successful, it generates an RDF/OWL ontology that describes the given NoSQL 

database, including its hierarchical structure, instance examples, and technical parameters, 

such as the NoSQL technology, connected ports, and login information.  The method then 

uses Protégé to validate and visualize the ontology.  These ontology visualizations then 

become the artifacts produced to represent the model.  It should also be noted that the 

model implementation was tested against Accumulo, a column based NoSQL database 

and MongoDB, a document based NoSQL database.  The testing included known 

databases that contained multiple structures within a given table throughout the database 

store to test the underlying method’s suitability in extracting the entire structure of 
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various NoSQL databases.  The known databases were constructed for testing purposes 

and deposited structures in various places throughout the database including at the 

beginning of the storage area, the end of the storage area, and randomly mixed 

throughout the storage area with other structures.  In all cases, it successfully extracted 

the structure.  However, this is by no means exhaustive and further testing is required to 

fully deploy the method.   

The model implementation integrates the selected candidate NoSQL databases into a 

unified ontology.  There it performs ontology normalization by uncovering duplication 

and using OWL:sameAs and OWL:equivalentClass statements to logically eliminate the 

duplications.  The original ontology technical information remains intact, allowing 

queries back to the original source when required for the actual use of the data.  This 

provides the most up-to-date data without requiring any additional storage. 

4.1 Evaluation	
  Methods	
  

The evaluation of the semantic integration method follows Hevner et al. (2004). The 

evaluation answers the following questions: Does the proposed semantic integration 

framework enable a non-technical user to quickly review the value of a candidate and the 

integrated NoSQL database without any technical assistance and in minimum time? Can 

the review list specific data elements to be integrated?  

The main evaluation approaches are classified into qualitative and quantitative methods.  

The qualitative approach is exemplified by case study and interview, and the quantitative 

approach examines the artifact qualities by performing an assigned task.  Both types of 
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evaluation methods are employed to provide triangulation for validating the impacts of 

the semantic integration method, as introduced in Section 3.4.3.  In both approaches, the 

participants are asked to contrast current integration methods with the semantic 

integration method.  The participants are not technical users of NoSQL databases, rather 

they are users who recognize the value of data but are not familiar with the underlying 

technologies and database concepts. The model implementation produces and visualizes 

ontologies from several existing NoSQL databases. As discussed above, the visualized 

ontology becomes the main evaluation instrument to assess the utility of the proposed 

semantic integration model.   

4.2 Qualitative	
  Approach:	
  Interview	
  

The goal of the qualitative evaluation approach is to obtain an executive view on the 

value of the proposed approach for integrating NoSQL databases and insights as to how 

their organization currently evaluates and integrates NoSQL databases.  Interviews are a 

key technique for IS case study research (Benbasat et al. (1987)).  Providing rich data, 

interviews are appropriate to evaluate the potential utility of design artifacts in a business 

setting (Adomavicius et al. 2008). 

Interview Process 

The interview follows an interview script that was pretested through multiple reviews 

with potential candidates to ensure the proper interpretation and understanding of each 

question. The interviews cover questions on a participant’s background, views on 

NoSQL/Big Data, their ability to perform the ontology tasks used in the survey, and asks 
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them to contrast the semantic integration method with their current methods for NoSQL 

integration.  

Participants 

The interview participants consisted of three executives from two major companies 

(>100,000 employees with a global presence), all of whom are involved with NoSQL 

databases. In addition, they represent several different business domains covering 

information systems.  They each have managed information systems projects, customers, 

and employees for many years.  They are familiar with the business value of NoSQL data 

sources and associated big data challenges.  However, they do not have technical hands-

on skills and are not directly involved in technical work. The companies are well known 

for their technical acumen and accomplishments. 

Findings 

The interview was conducted in the office of each executive using a computer.  Detailed 

notes were taken because the companies forbade direct recording.  Each interview took 

approximately 1 hour. 

The interview findings are summarized as the following: 

1. What is your current role/position and number of years? 

Three senior managers were interviewed and their years of experience were 7,25, 

and 34 years. 
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Each executive manages and leads a technical group of software developers, 

system engineers, and project managers.  They design, develop, and support 

advanced information systems, many of which are highly data dependent.  Their 

work often employs NoSQL databases and relies on massive big data 

architectures.   All three handle a variety of business domains including financial, 

health, and government agencies.  Their current role is not technical and they do 

not directly interact with the technologies. 

2. How familiar are you with Data Management Technology? (Relational, Object, 

NoSQL) Please describe your experience. 

Each was familiar with the technologies from a business perspective but had no 

hands-on experience.  Their organizations have been involved with big data 

technologies for over five years – “practically since their inception”. 

“Primary experience has been with relational databases” 

“Familiar with the concepts but do not use it directly” 

“Been with the technology practically from its inception” 

3. What is your role with respect to selecting and implementing data management 

technologies used in your organization? (Relational, Object, NoSQL)? 

None of them played in a role in directly selecting a data management technology.  

This was the responsibility of a technical person on their staff. 
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“I have direct responsibility and authority for approving data 

management technologies” 

4. How many years of experience do you have with data management technologies? 

(Relational, NoSQL technologies) How do you currently use NoSQL databases in 

your organization? Is use increasing or decreasing? What is the most significant 

value of NoSQL technology in your organization? 

Each executive maintained many projects and programs that included data 

integration.  NoSQL has emerged has a key technology along with relational 

databases. NoSQL databases along with their associated processing are now in 

many of the projects and are a key technology for their organization’s success. 

“I was surprised how relational databases still offer benefits”.   

“Data management technologies are a core offering of my business unit. 

In particular, databases such as MongoDB are foundational to many of 

our contracts, especially in support of efforts related to aggregation, e.g., 

MapReduce.” 

5. What are the most significant challenges in leveraging NoSQL databases (review, 

use, and integration, and analysis)? 

The number one problem for all three participants is finding skilled employees to 

leverage the NoSQL databases and the contained data.  This demonstrates the 
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rarity of such skills and highlights the leverage of data contained in the NoSQL 

databases for the value is worthless without technical assistance. 

“There is a high-demand/low-available candidate pool for staff with 

[NoSQL] database skills/training.” 

“Very difficult to get skilled folks.  We have to come up with very creative 

approaches” 

“Finding the right folks” 

6. What is the future of big data – direction, growth, and relevance to your role, 

organization, and company? 

All three indicated the huge growth and demand for big data and the associated 

NoSQL databases.  They each tied their organizational success to their success 

with these technologies. Each company has major programs, customers, and 

internal operations aimed at leveraging big data and its storage in NoSQL 

databases. 

“NoSQL is critical to my future.” 

“Big data is critically-important to my business and the future of our 

Corporation. We have been increasing our investments in this area, 

including formal skills development and recruiting, academic and 

commercial partnering, and development/integration into core products 

and capabilities.” 
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7. How do you see the availability and growth of big data skills?  How critical is this 

to your success? 

Again, finding staff and proper skills was highlighted as extremely difficult.  Each 

company is currently looking into methods to grow and attract these skills.   

“There is a critical shortage and “war for talent” in this high-demand 

market. This demand will only continue to increase.” 

8. Describe your current methods for evaluating and integrating the content of a 

NoSQL database 

All three executives would be unable, by themselves, to produce any insights into 

the content and use of an unknown NoSQL database.  They would all need to 

immediately involve a skilled NoSQL database technician.  Given that there are 

many different NoSQL technologies, this could involve a search for technical 

staff.  This leads to further time delays and may even lead to dismissing the 

database altogether. 

“I would contact someone who could help me”. 

“Hand it over to technical folks” 

9. Would faster integration of NoSQL databases aid your critical decisions?  If so, 

how? 
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All agreed that this would be helpful for their various projects and programs, 

especially given the evolution in NoSQL technology and it proliferation in 

industry. 

“Absolutely! Many of our current staff are primarily experienced with 

relational databases. Accelerating their adoption/transition to NoSQL 

would offer significant business benefits in this critical growth area for us.” 

The findings of the interviews not only confirm the importance and growth of NoSQL 

technology but also demonstrate that it is held captive by technical employees.  Employee 

skills are the critical component.  The executives did not mention the need for more data 

or more computing resources – only the need to acquire skilled employees.  The findings 

show that a business executive who makes critical business decisions relies on technical 

folks to communicate the value of a given NoSQL database.  This creates two concerns: 

reliance on an effective business-technical translation with regard to integration of 

NoSQL databases and scarcity in technical skills to achieve that integration.  These two 

concerns would act to limit access to this powerful technology in response to business 

opportunities.  The limitation requires additional time and effort.  Therefore, many 

databases may go unexamined due to time and skill constraints.  This limits the 

information that is available for making a business decision or taking action. 

Additionally, all three executives participated in the quantitative evaluation process 

described in the next section.  Each was provided with an overview of the ontology 

visualization and was left to complete the task.  All three completed the task with 100% 
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accuracy.  Each executive correctly selected the databases, tables, and fields necessary to 

complete the task.   

These interviews helped confirm the need and value of better business tools to exploit the 

contents of NoSQL databases. 

4.3 Quantitative	
  Approach	
  

The quantitative evaluation consists of four major parts: a pre-test, an overview of the 

proposed method, semantic integration method task, and a post-test. The pre-test asks 

participants’ about their demographics, their experience with NoSQL database 

technologies, and their knowledge in evaluating and integrating NoSQL databases 

through experience questions.  It also asks what actions participants would take given an 

unknown NoSQL database.  The method overview section provides a brief description of 

the integration method and presents a sample visualization to illustrate the key 

mnemonics.  The description includes definitions of the concepts of a database, table, and 

records as well as technical connection information, such as technology type, ports, and 

login information.   These concepts are required to perform an actual integration. The 

NoSQL review task is performed by viewing three different visualized ontologies that 

represent a NoSQL database.  From the visualization, the participant determines the 

database’s effectiveness towards a business goal and lists the specific data artifacts 

necessary to contribute to the goal. Finally, participants are asked to complete a post-test.  

The following two sub-sections introduce the last two parts of the evaluation in detail. 
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4.3.1. NoSQL Selection Task 

Participants are asked to evaluate the usefulness of a given NoSQL database for the 

creation of a portfolio of stocks that beat the five-year average for S&P 500, NASDAQ, 

and the DOW.  Figure 21 illustrates the process of the NoSQL Selection Task.  

 

Figure 21: Selection Process of a Quantitative Approach 

The implemented method generates an ontology from an actual NoSQL databases (shown 

on the left as candidate a, b, and c) and then presents an ontology visualization to the 

participants (shown in the middle).  Participants are asked to assess the usefulness of each 

NoSQL database by reviewing its visualized ontology in performing the assigned task – 

building the stock portfolio.  If the ontology is considered useful, the participants must 

list the specific database(s), table(s), and fields that are useful to the task.  The options 

include the three visualized ontologies generated by the proposed method from three 

actual NoSQL databases.  (See Figure 23, Figure 24, and Figure 25). Two of the three 
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NoSQL databases would be considered directly useful to the task, whereas one NoSQL 

database is not useful. For each of the three visuals, participants are asked to answer five 

questions, as shown in Table 4.   

The user was provided a brief overview of the mnemonics and definitions, shown in 

Figure 22.  
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Figure 22: Introduction for Survey Participants 
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The following is a sample task description provided for the survey participants: 

Determine, from the visual, if this NoSQL data is useful in aiding in the creation 

of a portfolio of stocks that beat the five-year average for the S&P 500, NASDAQ, 

and DOW. 

Table 4: Five Questions for NoSQL Selection Tasks 

 

1. Would this data be useful toward the task? 

2. If useful, list the names of the databases useful toward the task. 

3. If useful, list the names of tables useful toward the task. 

4. If useful, list the names of the fields useful toward the task. 

5. List the NoSQL technology. 
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Figure 23: Visualized Ontology 1 
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Figure 24: Visualized Ontology 2 
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Figure 25: Visualized Ontology 3 

4.3.2	
  Post-­‐test	
  	
  

The post-test questions focused on the perceived usefulness, its perceived ease of use, the 

participant’s intention to use the proposed method, and any suggestions for improvement.  

This study employed the proven research instruments from the technology adoption 

model  (Davis, 1989), which has been adopted and validated from many studies. This 

dissertation measures each questionnaire item using a 5-point Likert scale. The questions 

compare the participant’s current data integration approach with the semantic integration 

method for data integration from NoSQL databases:   
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Please provide your agreement with the following statements with regard to using the 

visuals for the tasks of evaluating/integrating data from NoSQL compared to the 

current approach you would use. 

1. Accomplish the task faster 

2. Improve the task performance 

3. Improve the productivity of the task  

4. Enhance effectiveness of the task  

5. More useful in the task 

Please provide your agreement with the following statements with regard to the ease 

of use of the visuals for NoSQL data evaluation/integration. 

1. Easier to learn 

2. Easier to manipulate 

3. Clear/Better understandable interaction 

4. More flexible to interact with 

5. Easier to become skillful 

6. Easier to use 

4.3.3	
  Data	
  Collection	
  

Fifty-five people participated in this study.  Participants were graduate students in 

Business Schools as well as the three interviewed executives. Table 5 shows the 

demographic information of participants.  Age and gender offer a reasonable cross-
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section with a skew towards younger participants. Additionally, the individuals are 

familiar with the value of data and databases in general but not technically skilled in 

NoSQL. 

Table 5: Demographics of Participants 

Gender Male 33 (60%) 

Female 22 (40%) 

Age 21-34 36 (65%) 

35-50 13 (24%) 

51+ 6  (12%) 

Years of Business 

Experience 

0 Year 17 (32%) 

1-5 Years 19 (36%) 

6-10 Years 7  (13%) 

11-20 Years 8  (15%) 

21+ Years 2  (4%) 

 

Table 6 shows the participants’ experience with NoSQL technologies and their outlook 

on NoSQL technology.  Less than 10% of the participants had experience from either a 

business or technical perspective with regard to NoSQL technologies.  This is an 

important prerequisite to ensure limited exposure to the technical aspects of NoSQL 

technologies.  Interestingly, the majority found it a critical technology where skills are 

scarce but available information is plentiful.  This is typical of an emerging technology 

that evolves quickly and generates a strong demand for learning resources ranging from 
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on-line forums to published books.  In addition to the executives, the participants were 

Master’s degree candidates familiar with financial terminology but who have limited 

technical knowledge.  Similar to the executive interviewees, they did not have hands-on 

experience with NoSQL databases and relevant NoSQL data integration. 

Table 6: Participants Experience with NoSQL 

Question Strongly 

Disagree 

Disagree Neither Agree 

nor Disagree 

Agree Strongly 

Agree 

Average 

I have extensive business 

experience with NoSQL 

technologies 

22 (43%) 19 (37%) 6 (12%) 3 (6%) 1 (2%) 1.86 

I have extensive technical 

experience with NoSQL 

Technologies 

23 (45%) 19 (37%) 4 (8%) 4 (8%) 1 (2%) 1.84 

NoSQL data are critical to 

business success 

2 (4%) 2 (4%) 17 (33%) 24 (47%) 6 (12%) 3.59 

There is a scarcity of NoSQL 

Technical Skill 

0 (0%) 1 (2%) 25 (49%) 17 (33%) 8 (16%) 3.63 

There is a growing body of 

knowledge on NoSQL 

technologies such as books, 

articles, conferences, and 

training that offer useful 

information 

0 (0%) 1( 2%) 20 (40%) 25 (50%) 4 (8%) 3.64 

 

Participants were asked an open-ended question about the methods they currently use to 

evaluate a NoSQL database.  The answers varied but none of the participants were able to 

use a NoSQL database directly without receiving assistance from a technical source.  
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Some avoided it all together, reflecting the risks associated with using any Internet link.  

Below are some of their responses. 

“Seek advice from someone who had a good understanding of NoSQL and 

research the topic myself” 

“I would have to first spend extensive time Googling and reviewing 

documentation on how to retrieve, view and manipulate the data before going any 

further.” 

“Check with my IT area.” 

“I'm not sure. I have no experience with NoSQL.” 

In the method overview section, the participants were asked about their level of 

understanding after reading the overview. Among the participants, 50% indicated that 

they completely understood the overview, and 50% indicated that they somewhat 

understood.  No participant indicated that they did not understand the proposed method or 

its visualized ontology.   

4.3.1 Results	
  	
  

4.3.1.1 Results	
  of	
  NoSQL	
  Selection	
  Task	
  

Table 7 shows the results of a NoSQL selection task.  As demonstrated in the table, the 

vast majority correctly determined the usefulness of the database – a key value of the 

method.  This alone could accelerate the inclusion of useful data in an integration effort 

because the business user would not depend on a (rare) technical person to make that 

initial selection.  Additionally, clear majorities were able to determine key database 
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artifacts and associated technologies, which are required to actually perform a technical 

integration of the databases.  Finally, there seems to be an improvement in task 

performance as the participants gain experience with the visualizations. 

Table 7: A Summary of NoSQL Selection Results 

 NoSQL Database 1 NoSQL Database 2 NoSQL Database 3 

Correctly determined if the NoSQL 

database is useful for the task 

36 (71%) 42  (82%) 46 (89%) 

Correctly listed the database 29 (58%) N/A 32 (64%) 

Correctly listed the tables 25 (45%) N/A 38 (69%)* 

Correctly listed the fields 34 (62%) N/A 35 (64%) 

Correctly listed the NoSQL Technology 31 (56%) 31 (56%) 32 (64%) 

 

Table 8 summarizes the number of correct answers each participant provided for one or 

more of the three databases.  Virtually all participants evaluated at least one database 

correctly.  Over 90% evaluated at least two correctly, and over half identified all three 

correctly. 

Table 8: Percentage of Correct Selection by Participant 

Participant who provided an answer #(%) 

Correctly answered at least one out of three databases 52 (96%) 

 Correctly answered at least two out of three databases 50 (91%) 

Correctly answered all three databases 30 (55%) 
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Finally, the time to complete the survey indicates how quickly the participant could 

evaluate the database and extract useful database artifacts to answer the questions.  No 

time limit was imposed on the participant.  After eliminating incomplete surveys (3) and 

clear outliers where completion time exceeded 24 hours (2), the average time was 31 

minutes.  This demonstrates the efficiency for a non-technical user to evaluate a NoSQL 

database. 

4.3.1.2 Results	
  of	
  Post-­‐test	
  

Table 9 shows the participant’s overall assessment of the method’s usefulness.  The data 

shows that the overall results on perceived usefulness are positive.  However, as noted 

earlier, most of the participants did not have the necessary knowledge or skill to evaluate 

or integrate NoSQL data. 

Table 9: Participants’ Feedback on Usefulness of the Semantic Integration Method 

 Strongly 

Disagree 

 

Disagree 

Neither Agree 

Nor or 

Disagree 

Agree Strongly 

Agree 

Total Average 

Accomplish the task faster 0 (0%) 2 (4%) 20 (38%) 20 (38%) 11 (20%) 53 3.75 

Improve task performance 0 (0%) 2 (4%) 15 (29%) 28 (54%) 7 (13%) 52 3.77 

Improve task productivity 0 (0%) 1 (2%) 18  (35%) 25 (48%) 8 (15%) 52 3.77 

Enhance task effectiveness 0 (0%) 4 (8%) 17 (33%) 23 (44%) 8 (15%) 52 3.67 

More useful in task 0 (0%) 3 (6%) 19 (37%) 24 (46%) 6 (12%) 52 3.63 
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Table 10 shows the distribution percentage of the participants’ overall assessment of the 

method’s ease-of-use. The results show that the vast majority found the visualized 

ontology to be easy to use for the task. 

Table 10: The Ease of Use of the Visualized Ontology  

 Strongly 

Disagree 

 

Disagree 

Neither Agree 

Nor Disagree 

Agree Strongly 

Agree 

Total Average 

Easy to learn 1 (2%) 3 (6%) 13 (25%) 26 (49%) 10 (19%) 53 3.75 

Clear/Better Understandable 

interaction 

1 (2%) 2 (4%) 16 (31%) 24 (46%) 9 (17%) 52 3.73 

More flexible to interact with 1 (2%) 1 (2%) 22  (42%) 22 (42%) 6 (12%) 52 3.60 

Easy to become skillful 1 (2%) 1 (2%) 20 (38%) 25 (48%) 5 (10%) 52 3.62 

Easy to use 1 (2%) 0 (0%) 17 (33%) 27 (52%) 7 (13%) 52 3.75 
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Table 11 shows the distribution percentage of the intention to use the method.  The 

results show strong intentions of the participants using this proposed tool/method in this 

study. 
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Table 11: Intention to use the method 

 Strongly 

Disagree 

 

Disagree 

Neither Agree 

nor Disagree 

Agree Strongly 

Agree 

Total Average 

I would use these visuals for 

uncovering the structure and 

contents of an unknown NoSQL 

data. 

1 (2%) 0 (0%) 15 (28%) 24 (45%) 13 (25%) 53 3.91 

I would use these visuals for 

aiding the integration of an 

unknown NoSQL data 

0 (0%) 1 (2%) 13 (25%) 24 (47%) 13 (25%) 51 3.96 

 

The final section contains several open-ended questions regarding the usefulness, 

potential, and suggestions for improvement. Some of the participants’ responses are 

quoted below. 

Open-ended Question 1: Were the visualized ontology easy to use? 

“The visuals were good for helping me to understand the makeup of a nosql 

database and how records are stored.” 

“Hierarchy and labeling were easy to follow.” 

“The use of color and the legend for table versus database if my eye gets lost.” 

“Clear representation of columns and tables, databases” 

Overall, the visualization was sufficient to communicate the key elements of the database 

because a significant majority completed the tasks correctly. 
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Open-ended Question 2: What overall potential do you foresee for the visuals in 

evaluating and integrating NoSQL data? 

“More visual access can determine more understanding of the database. People 

new to NoSQL would be more comfortable using the visuals.” 

“easier to grasp the concepts” 

“Aiding non technical users to come up to speed in understanding the system and 

enable self service” 

“This has great benefits” 

Clearly, the visuals work for the intended audience of non-technical, business users.  This 

typical simplicity of NoSQL structures lends itself to a basic visual. 

Open-ended Question 3: Would you use these visuals to determine the value of a 

NoSQL database and to integrate its data?   

Out of the participants, 81% responded positively. 

“yes, I believe the visuals used here would be effective for helping someone 

understand an actual nosql database that they are working with and help them to 

integrate the data because it shows where to insert each record in  the fields 

section.” 

“I would. It seems simpler than the traditional style of writing NoSQL.” 

“Definitely but with a caution- One has to be careful to update the visuals and 

also make sure that the visual correctly represent the system as an error will have 

serious impacts”  One note on this comment  The visualization is produced 
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directly from the database.  Therefore, it can easily maintain the correct 

representation. 

Open-ended Question 4: What improvements would you recommend for the visuals?  

Below are some of the suggested improvements.  Most participants recommended clearer 

text and better use of colors and shapes.   Advancements to the visuals would include 

many of these suggestions, especially the idea of making it interactive.  The interactivity 

would allow the user to explore the key areas for them and it would effectively manage 

larger scale database structures. 

“Database and tables can be notified with a different symbol. Currently both are 

shaped diamond” 

“Instead of having separate boxes for database and table, perhaps it would be 

better to color code the boxes with the database/table names - for example, on the 

previous page, yellow for market and green for the FiveHundred box and the 

other 2 tables' boxes.” 

“Use more color and make them interactive.” 

4.4 Discussion	
  

NoSQL databases contribute to the foundation of Big Data opportunities, as they have the 

ability to scale and hold massive data.  Databases become useful when properly placed in 

a business context aimed at a business opportunity.  Unfortunately, the nature of NoSQL 

databases makes this challenging for the non-technical business user and requires a 

skilled technical person to assist in integration of NoSQL databases.  As noted in both the 
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interviews and surveys, a non-technical person must continually seek out a skilled 

technician to uncover the contents of a NoSQL database, and given the scarcity of 

technically skilled persons this is a critical business constraint.  This can limit the use of 

NoSQL databases and its data to address a business opportunity due to the scarcity of 

skilled labor, shrinking time frames of an unfolding business opportunity, and the 

translation necessary between a business user and a technician.  

The semantic integration method demonstrates through this evaluation that it can aid the 

process of evaluating and integrating NoSQL databases.  Non-technical business users 

can quickly evaluate a NoSQL candidate database and even select the key database 

artifacts, such as table names, to aid the integration effort.  Inappropriate databases are 

quickly discarded allowing more time to identify useful databases.  

The task of evaluating NoSQL databases itself, beyond the qualitative questions, 

demonstrated its usefulness since most participants successfully completed the task.  

More than half of the participants successfully evaluated all three databases and over 

90% evaluated two out of three correctly.  This came about with minimum training and 

without the ability to ask questions or for clarification.  Adding the opportunity for 

additional dialogue would likely improve the success rate.  Without the semantic 

integration method, the users, as they indicated, must reach out to additional resources.  

Simply put, they would not, by themselves, be able to complete the task without the aid 

of the semantic integration method.  Otherwise, only a skilled technical professional 

could have completed these tasks.  Many of the participants were not familiar with 
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NoSQL or even databases themselves, yet were still able to garner the substance and key 

elements of a NoSQL database.  The evaluations reach the following conclusions. 

1. The semantic integration method enables non-technical users to integrate a 

NoSQL database for a given business purpose through an examination of the 

produced ontology visualizations. 

2. The semantic integration method enables non-technical users to select specific 

key database artifacts, such as tables and fields required for integration.  Over half 

correctly identified all of the necessary elements.  This allows the method to 

directly integrate the identified data.  This iterative method allows a non-technical 

user to build an integrated NoSQL store. 

3. The semantic integration method enables rapid integration of NoSQL sources 

despite the lack of documentation and knowledge of changes allowing the ability 

to evaluate more NoSQL databases.  The average time to fulfill the task of 

evaluating three NoSQL databases and answering survey questions would, in 

many cases, allow for ample time to include the data in an unfolding business 

opportunity, as well as affording the time to examine additional databases to 

improve overall understanding of the business opportunity. 

The results assume a relative, semantically rich structure with few relationships in the 

NoSQL databases.  However, these assumptions are reasonable given the empirical study 

and the principals behind most NoSQL databases. The method does allow for dynamic 

and heterogeneous structures scattered throughout the database, decreasing the need for 

documentation maintenance. 	
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5 Chapter	
  5:	
  Discussion	
  and	
  Conclusion	
  	
  	
  

Data integration remains a tough challenge to aid in the formation of a business decision 

or action.  The rapid increase in data production combined with associated new 

technologies to capture and query this data further challenges data integration.  Without 

advancements in data integration methods, much data potential is lost. 

NoSQL technologies offer the ability to collect and interact with enormous amounts of 

data.  New integration methods offer to expand the value of this data. By doing so, it not 

only overcomes data overload but makes that data truly capable of aiding business 

decision makers.   

Traditional data integration depends on the translation of a business opportunity into 

protracted, complex technical steps. This incurs the many limitations formally outlined 

and discussed above, which increase both the cost and time required for the data 

integration.  A new model, the semantic integration model, joins the business user who 

directly interacts with the data and automation tools that integrate the data.  This method 

offers the capabilities to better leverage massive data across many large databases in a 

cost-effective manner.  

The semantic integration model addresses this massive data integration opportunity 

through three key features: 

1. The incorporation of artifact naming into NoSQL databases to create useful 

semantics. 



 

 149 

2. The incorporation of sequential statistical methods to capture and normalize 

distributed structural information not readily available. 

3. The incorporation of the Semantic Web ontologies such as RDF and OWL, to 

capture the structural information for ontology visualization for the business user 

and the technical information required for automating the actual data integration.  

The speed and coverage of these features allows the business user to review and 

integrate many databases, as well as to iterate through those databases based on various 

dynamics and learning that may occur during the integration process.  This results in a 

more informed, comprehensive view of a business opportunity leading to better business 

decisions and actions. 

5.1 Contributions	
  

The main contribution addressed by the semantic integration model is leveraging and 

integrating big data contained in the various NoSQL databases across various NoSQL 

technologies.  Big data is being continuously absorbed, stored, and indexed in the rapidly 

evolving NoSQL databases.  These new technologies serve scale first, allowing massive 

data storage, rapid ingest of data, and rapid query replies while the data is protected from 

change with dynamic structures.  The rapid evolution of these technologies thwarts 

standardization for each NoSQL technology that offers only proprietary interface 

methods.  Specialized technology paths are required to access each type of NoSQL 

technology requiring different technical skills.  A method that meets these challenges 
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expands the business potential contained in the various databases and their possible 

integration. 

The fundamental challenge is to allow a business user to leverage multiple big NoSQL 

databases to quickly reach a business decision or take a business action.   

This dissertation addresses the above challenge by answering the following research 

questions, which led to the development of the semantic integration model and related 

research contributions.   

1. How can semantic transformation reveal the semantics of technically complex 

and evolving data storage components found in various NoSQL databases and 

associated technologies?  

The proposed semantic transformation uses a statistical approach to quickly converge 

on the structural contents regardless of the structural information placement in the 

large big data NoSQL database.  NoSQL databases repeat structural information 

throughout the store and the statistical approach ensures the capture of the structural 

information that would otherwise require an exhaustive search through all records.  

As each structure is uncovered, it is compared to the current set of extracted 

structures.  Duplicated structures are not incorporated into the set. This helps 

normalize the structural information, and allows for rapid analysis of the structure 

regardless of size. 

2. How can semantic representation adequately provide a useful capture of the 

underlying NoSQL database for technical integration?  
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The Semantic Web offers a common format that is expressive enough to represent the 

structure and technical details of NoSQL databases.  The expressiveness of the 

Semantic Web, as implemented in this study, goes beyond the basic expressiveness of 

NoSQL offerings by adding the ability of logic inference to further enrich the 

structural and technical information.  The semantic representation also supports 

formal validation. 

3. How can semantic unification integrate various data sources revealed through 

semantic transformation? 

The semantic integration model takes advantage of the logic with the Semantic Web 

technologies and thus provides simple integration via aggregation.  Due to the 

uniqueness of the semantic data artifacts, there are no technical conflicts.  Conceptual 

normalization is achieved through logical equivalence statements that do not affect 

the actual data.  This allows for corrections to and recovery of the original data.  

Furthermore, by using logic, similar terms and concepts can also be merged. 

4. How can semantic alignment focus the unified semantics on a specific domain of 

interest? 

The visualization of the ontology and its relationships provides a view into the data 

that enables the user to determine its alignment towards the user’s requirements.  This 

includes both visualizations: the candidate database review and the integrated 

database.  The former determines the useful addition of a potential database candidate.  
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The latter determines whether the integration effort is complete for a given business 

opportunity. 

5. How can semantic adaptability using convergence-directed integration produce a 

more flexible and automated approach to integration? 

The efficiency of the method allows new databases or updated ones to be quickly 

revaluated for a given business purpose.  Accordingly, it supports rapid adaptation to 

changing business directions.  This also allows the business user to learn from each 

database candidate’s integration and then redirect the effort within the integration. 

Simply put, the method allows a non-technical, business user to evaluate and integrate 

NoSQL databases. Specifically, this research makes the following key contributions. 

1. Improved integration of relevant data based on the semantics and relationships 

contained within the NoSQL database. 

2. Incorporation of Semantic Web standards and tools to aid semantic data 

integration.  This allows the leverage of tools, ontologies, and data available via 

the Semantic Web. 

3. Improved integration of new, emerging databases that are characterized by scale 

and structural dynamics, including uncovering the structural information from a 

dynamic NoSQL store. 

4. Applicability of convergence methods to incrementally and iteratively evolve data 

integration to the user’s requirements. 
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Since the data is evaluated and integrated faster via user interactions rather than waiting 

for the full technical integration – the speed of data, similar to the speed of money, 

increases its overall value.  The data can be used to address more business situations and 

therefore is more valuable.  

The contributions can be further decomposed based upon individual steps of the 

integration model, such as the following. 

• Transformation 

o Improves Data Access: The ability to quickly determine the NoSQL 

technology type and the contained structures aids the ability to actually 

use the NoSQL database.  This doesn’t depend on documentation and is 

completely up-to-date which is especially important since structural 

additions and modifications can be added at any time. 

o Adapts to new NoSQL technologies and their rapid evolution: The method 

separates and isolates the proprietary code thus allowing a minimal change 

when a new NoSQL technology or update occurs.  The method quickly 

adapts to NoSQL changes. 

o Handles Big Data Scale: The method uses statistical sampling to extract 

the structural information since most NoSQL stores do not offer a direct 

way of obtaining the structural information.  This allows the method to 

quickly converge on the structure without the need to exhaustively 

examine every record in the NoSQL database, which could be prohibitive 

in extremely large NoSQL stores. 
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• Representation 

o The method represents key information regarding the NoSQL store via a 

Semantic Web Ontology.  This is a standard method of expressing an 

ontology and offers many extensions and tools.  A Semantic Web 

ontology captures the underlying structure, structure relationships, and 

technical metadata to enable automatic data integration. 

o The representation eases conflicts and duplications through the use of the 

OWL constructs that can perform logic to filter errors, populate missing 

data, eliminate duplications, and merge equivalent database elements. 

• Unification 

o Multiple Views: The flexibility of an ontology allows for multiple 

perspectives to examine the data.  This is demonstrated by allowing the 

selection of various perspectives such as domain relevant structures to 

technical structures that include databases and tables. 

o Enhanced ability to deal with Dirty Data: Integrating data into an ontology 

is as simple as adding in the statements from the candidate ontology.  

Once integrated in the complete ontology, logic and rules can be applied 

to filter out the data.  This filtering can be done permanently (physical 

removal) or virtually where the logic excludes or merges certain 

statements.  This allows conflicts to be studied from one perspective while 

allowing another perspective to not contain the suspect data.   

o Complex Relationships Across the Data:  The Semantic Web via OWL 

enables complex relationships.  The initial implementation took advantage 
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of only a few, such as the equivalence statements.  Even if the NoSQL 

structures contain richer, more complex relationships, the OWL ontology 

would still be able to correctly represent them. 

• Alignment 

o Ability to Evaluate each Data Candidate within the integration process: 

The semantic integration method enables early review so as to avoid 

integrating unnecessary information, while also quickly advancing a 

useful candidate, and learning what is available.  The latter may help 

evolve the business opportunity itself. 

o Enhanced Support for Domain Extraction: Due to the ability of queries 

and the flexibility of the underlying ontology, multiple domains of interest 

either technical or business can be correctly reflected within a given 

integrated database. This not only takes into account multiple perspectives 

but also allows the user to change their perspective. 

o Extended Integration Methods: The semantic integration method makes 

integration straightforward.  All of the ontology statements aggregate 

together then logic separates the domains and unifies equivalences 

resulting in a non-destructive normalization for the ontology that still 

holds the required information to perform a query on the original NoSQL 

database. 

o Improved Reasoning: The ontology offers a rich set of reasoning and rules 

to enable filtering, error correction, equivalence, and so on.  
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• Adaptability: 

o Open World Model:  The method employs the ontology to reflect an open 

world model allowing rapid integration without conflicts at any point since 

no assumptions are built into a given integration.  This is especially 

important to NoSQL stores that maintain dynamic structures with 

asynchronous updates. 

o Simplified Integration: The method allows a common integration process 

that avoids N2 connections between databases, simplifying the integration. 

o Adaptive Integration Solutions: The method supports iterative, 

incremental integration of data sources from multiple technologies.  This 

feature improves adaptability and ease of use of the integration method.  

o Minimum Duplication: The method relies on retrieving the actual data 

from the native source when requested.  There is no need to copy the data 

and accordingly, no need to maintain data synchronization. 

These contributions ease data integration across valuable, yet evolving NoSQL databases.  

The method enables fast integration with minimum technical assistance thus allowing 

more data to support a given business opportunity.  

5.2 Method	
  Alignment	
  with	
  Trends	
  

The Semantic Integration Method aligns with trends in business and technology. 

• Plunging cost of Infrastructure: The method scales to handle the larger storage 

capabilities. 
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• New Data Storage Options: The method isolates the direct interactions with a 

native NoSQL storage and thus, minimizes the efforts required to evaluate and 

integrate from a new or updated NoSQL technology.  

• Growing participation in Producing Data: Again, the method scales to handle new 

sources and with its quick review, allows a user to peruse many more data sources 

than currently possible.  Thus, the method takes advantage of growing 

participation. 

• Development of the Semantic Web: The advances in the Semantic Web via new 

reasoners, display options, and the like would quickly advance this method since 

its foundation is in the Semantic Web. 

• Real-Time, Dynamic Data and Associated Structures: Since the method does not 

copy data but merely provides a path to the actual data, a business user gets the 

latest information.  Additionally, as streaming data becomes more useful, the data 

source integration could enable a similar interface like that used by the NoSQL 

stores, thereby allowing streaming data to be another data candidate.  They 

maintain similar challenges in that the structure is dynamic and contained within 

each record. 

• Increasing Dirtiness of Data: As data sources grow and a business taps into 

external databases outside of their control, the dirtiness of the data will likely 

increase.  The ontology’s foundation allows many ways to correct this with 

minimal impact to the actual operations.  It also follows that the dirtiness is 

subjective to the given domain and query, allowing multiple perspectives on the 

dirtiness determination. 
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The semantic integration method is well aligned with future trends and is able to 

quickly take advantage of these advancements. 

5.3 Limitations	
  

The limitations of the method lie in seven areas: disruption to integration workflows, 

complex structures, non-semantic structures, maintaining up-to-date interfaces to each 

NoSQL technology, awareness of new NoSQL technologies, overall data cleanup and 

preprocessing, and obtaining and evolving necessary technical skills. 

The introduction of a new workflow clearly disrupts the current procedure.  This change 

incurs cost and risks.  This is especially true with business critical actions and decisions.  

A major change in the ways the business uses data is critical.  It requires an incremental 

and iterative approach to integrating the method into current business practices.  The 

method can be introduced through the selection of a minor business opportunity and its 

associated data sources.  Incorporating the method in this way proves its value and allows 

the various users and supporters time to acclimate themselves. As confidence and use 

practices grow, the method can expand to other opportunities.  Current operations can 

continue in parallel and may continue indefinitely for certain situations.  The method is 

not mutually exclusive and allows other methods to operate simultaneously. 

Complex structures consist of entities that maintain relationships with many other fields 

in one to many, many to one, and many to many relationships.  The method would indeed 

be challenged by such structures.  However, antidotal reviews have found that NoSQL 

databases do not maintain such relationships and additionally the technology and its 
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priorities do not encourage such relationships.  This is a limitation and future research is 

required to see if those conclusions are indeed substantiated across expanded use of 

NoSQL databases. 

Non-semantic structure names consist of human-meaningless database names, table 

names, and field names.  The NoSQL technologies allow this but again, this goes against 

the typical use of these database artifacts.  The method also allows semantics to be 

derived by providing field values to allow the user or enrichment ontologies to aid in 

building the semantics.  For example, a table name of simply ‘ss’ offers little semantics.  

However, if the user is also provided an instance example such as ‘134-45-6789’, they 

may infer that ss represents social security numbers.  Of course this is not possible in all 

cases.  There is little reason for building a data model with meaningless semantic artifacts 

unless the intention is to purposely disguise the data.  This is unlikely since the data is 

intended to be used and shared. 

Maintaining the method requires updating the interfaces as they evolve.  This requires 

technical skills and alertness across the NoSQL technologies.  Additionally, depending 

on the changes, the method may need to obtain multiple interfaces to the same 

technology for each major version.  All of this is doable but requires investment and 

resources.  This extends to recognizing and incorporating new NoSQL technologies. 

Data cleanup and preprocessing tasks can grow large and time consuming.  The method 

can incorporate additional rules, logic from the ontologies, and additional enrichment 

ontologies.  This, again, requires skills and investment.  Using ontologies to clean up and 
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enrich data should improve efficiency so the cleanup would work across all the NoSQL 

technologies.  There is no need to do a separate cleanup for each NoSQL technology. 

Finally, the method does require technical skills to maintain and evolve.  These skills are 

currently hard to obtain.  Fortunately, the method minimizes those needs over current 

practices. 

5.4 	
  Future	
  Research	
  Extensions	
  

The method provides research paths to several useful extensions including field study and 

recommendations; improved, interactive visualizations; enrichment of ontologies and 

associated logic; data preprocessing logic; adding alerting on databases changes; and 

extensions to structured data outside of NoSQL. 

An empirical field study requires access to real world business situations and measuring 

the performance of given use cases, varying the size of the databases, the structures, the 

technologies, and so on.  The findings of the study would provide recommendations for 

the actual implementation architecture.  This requires hardening of the prototype to make 

it easy to deploy and monitor, as well as extensive testing.  Field experiments will 

highlight areas for improvement in visualization, capture of the various NoSQL structures, 

and data integration performance.  Methodological limitations of such an approach must 

also be considered. 

The interactive ontology visualizations can be extended in several ways.  For instance, it 

can support more complex structures.  Additionally, alternative visual representation 
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beyond a graph, tree, or other structure may be explored for certain structure types.  Some 

of the NoSQL technologies offer their own visualizations of the data.  These 

visualizations may suggest effective techniques that could be incorporated into the 

ontology visualization used in the semantic integration method.  However, these 

visualizations would not serve as a substitute for the ontology visualization because each 

is unique to its particular NoSQL technology.  These different visualizations would likely 

be confusing to the user and would unnecessarily make them aware of the particular 

NoSQL technology.   Additionally, this is orthogonal to the goal of one common view of 

the data regardless of the underlying NoSQL technology.   One common view must be 

generated to present the integrated database visualization across multiple NoSQL 

technologies. 

Enrichment of ontologies and associated logic would allow for expressing rich semantics.  

The logic could look for word and phrase similarities across the database terms and, 

when appropriate, make them equivalent.  Additionally, the ontologies could actually 

enrich the integrated data itself by adding supporting information.  LinkedData 

(LinkedData, 2017) offers many useful ontologies that describe a myriad of terms and 

relationships.  These could be reviewed and integrated along with the NoSQL databases.  

Additionally, reviewing ontology engineering with regard to various domains would 

align the ontology with larger research efforts aimed at improving ontology development.  

The model’s development of the ontology would be further enriched by following the 

state-of-the-art in ontology advancements. 
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Relational databases also hold rich data.   However, the complex relationships that bind 

one table to another bring challenges of uncovering their semantics or meaning and 

properly exposing this to a non-technical user.  Overcoming these challenges would aid 

business evaluation of integrated relational databases since many of the commercially 

available database visualizations do not simplify the extensive relationships.  Future 

efforts in the advancement of the semantic integration model should explore the inclusion 

of relational databases and work through methods to simplify the complex relationships 

and extract the business semantics behind those relationships.  This would allow the 

integration of large amounts of existing, valuable data. 

Currently, the semantic integration model is a pull system where the user requests a 

structure analysis for possible integration.   The method could advance to a push system 

where the structural analysis runs automatically and compares results.  It could then 

provide an alert when a change to the structure is made.  This would employ the existing 

structural comparator in the normalization of a candidate.  Identification of a new 

structure would also initiate an alert.  The automatic updates could provide data to 

understand changes in the structure over time, providing views to indicate the volatility of 

the data and its timeline. 

Finally, the method could extend to integrate structured data beyond NoSQL databases 

such as streaming data, expressed in formats like XML or JSON.  As with NoSQL data 

sources, the method can sample the stream to determine the structure, then convert to an 

ontology that maintains the interface information, and provide a visualization to the user.   
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