

APPROVAL SHEET

Title of Dissertation: Convergence-Directed, Semantic Model for Integrating Large-Scale,
Dynamic, and Heterogeneous Databases

Name of Candidate: John W Hebeler
 Doctor of Philosophy, 2017

Dissertation and Abstract Approved: per Approval Form

Dr. Zhou
Professor
Department of Information Systems

Date Approved: 7/27/2017

 ABSTRACT

Title of Document: Convergence-Directed, Semantic Model for Integrating Large-

Scale, Dynamic, and Heterogeneous Databases

 John W. Hebeler

Directed by: Dr. Lina Zhou and Dr. Victoria Yoon

Data abounds today. The ability to properly employ large amounts of data for business

decisions and opportunities is critical to business success. Rarely does a single data

source or database prove sufficient for a dynamic, unfolding business action. Business

decision-making requires integrating data quickly and efficiently. However, the inherent

differences between databases make it both time-consuming and costly to achieve a

useful integration. More importantly, the storage of much of today’s data has migrated

away from the traditional, relational database technology and switched to NoSQL

database technology. The latter provides a new set of challenges for data integration.

To address the above challenges, the semantic integration model offers a path to simplify

integration across different NoSQL databases. It achieves this through an iterative,

incremental integration that directly involves the non-technical business user – the key to

exploiting the business opportunity. The model contrasts current integration methods and

is evaluated against a prototype that implements and tests the model with appropriate data

participants. The model demonstrates an easier method to quickly review potential data

integration candidates, integrate selected candidates, and maintain the alignment of the

data integration with the evolving NoSQL technologies and the business opportunity

itself.

Convergence-Directed, Semantic Model for Integrating Large-Scale, Dynamic, and
Heterogeneous Databases

	

By	
 John	
 W.	
 Hebeler	

	

	

	

Dissertation	
 submitted	
 to	
 the	
 Faculty	
 of	
 the	
 Graduate	
 School	
 of	
 the	
 University	
 of	

Maryland,	
 Baltimore	
 County,	
 in	
 partial	
 fulfillment	
 of	
 the	
 requirements	
 for	
 the	
 degree	

of	
 Doctor	
 of	
 Philosophy	
 	

2017	

	
 	

	

	

	

	

©	
 Copyright	
 by	
 John	
 W.	
 Hebeler	
 2017	

	
 	

	

	

 ii

Table	
 of	
 Contents	

1	
 Chapter 1: Introduction ... 1	

1.1	
 Problem Context ... 1	

1.2	
 Research Issues .. 5	

1.3	
 Research Questions .. 23	

1.4	
 Research Objectives ... 24	

1.5	
 Research Significance .. 33	

1.6	
 Organization of Dissertation .. 35	

2	
 Chapter 2: Related Work ... 36	

2.1	
 Research Areas Overview .. 36	

2.2	
 Data Integration Model .. 38	

2.3	
 Traditional Data Integration ... 42	

2.4	
 Semantic Integration .. 45	

2.5	
 Emerging Data Sources and Semantic Integration ... 53	

2.6	
 NoSQL Data Integration .. 59	

2.7	
 Summary .. 60	

3	
 Chapter 3: Method .. 62	

3.1	
 Semantic Integration Model ... 62	

3.2	
 Structural Analysis of NoSQL databases ... 64	

3.3	
 Conceptual Architecture ... 70	

3.4	
 Technical Architecture and Process Flow .. 78	

3.5	
 Semantic Integration Model Implementation ... 99	

3.6	
 Design Science Research Method .. 113	

4	
 Chapter 4: Evaluation .. 115	

4.1	
 Evaluation Methods .. 119	

4.2	
 Qualitative Approach: Interview .. 120	

4.3	
 Quantitative Approach ... 127	

4.4	
 Discussion .. 145	

5	
 Chapter 5: Discussion and Conclusion ... 148	

5.1	
 Contributions .. 149	

5.2	
 Method Alignment with Trends ... 156	

5.3	
 Limitations ... 158	

5.4	
 Future Research Extensions ... 160	

6	
 Bibliography .. 163	

 	

 1

1 Chapter	
 1:	
 Introduction	

1.1 Problem	
 Context	

Business opportunities abound. Today’s assembly of massive data offers to reveal and

aid the advancement of a business opportunity. “Data are to this century what oil was to

the last one: a driver of growth and change” (Economist, 2017). This data often resides

in NoSQL databases – databases especially designed to ingest, store, and retrieve massive

quantities of data. NoSQL represents a new category of database technology that focus

on efficiently managing large data sets at the expense of some capabilities offered by

relational databases. The NoSQL Market is expected to garner $4.2 billion by 2020

(Allied Market Research, 2015). However, the massive data stored with NoSQL

technologies unintentionally creates a maze that challenges a business user to properly

integrate the data for a given opportunity within the necessary timeframe and cost. The

business user must turn to rare, technically skilled NoSQL resources that, themselves,

struggle to keep up with the rapid and proprietary advancements within each NoSQL

database including a non-standard method to dynamically extend the structure throughout

the database. NoSQL data integration requires many translations between the business

requirements and the technical implementations, which may further impede the use of

data. These integration challenges lead to less use of the available data and thus deprive

business decisions of a more, data-enriched view. A model and method that can close the

gap between the opportunity and the relevant data for business users via minimizing the

required technical skill and time would lead to more informed and timely business

decisions.

 2

Figure 1 outlines the data integration challenge. A business user familiar with a given

business domain and associated potential opportunities seeks information to refine their

business actions. This information typically resides in various databases. With extensive

technical assistance, the business user must gather, integrate, query, and determine

completeness of the data to aid their actions. Each step requires a translation between the

business domain and the technical requirements. Additionally, information builds on

each other. This requires multiple passes through the integration process. Due to the

technical demands, the business user has to await the final integration outcome without

the ability to provide any input during the actual integration. This all leads to a

protracted, expensive integration process that can easily miss the integration of valuable

information.

Figure 1: Data Rich Decision Convergence

Given the above business context, what methods help accelerate the process of turning a

data-rich opportunity into action, especially in the era of big data?

 3

Data integration is generally defined as the process of combining data residing in

different locations and technologies into a unified, useful form able to increase the value

of the data previously in isolation (Lenzerini M. , 2002). This process includes data

access, resolution of data structural differences, and data conflict resolution (Ziegler &

Dittrich, 2004). The ability to combine large data sets covering several domains can

increase the value of data owing directly to the integration. Effective integration enables

a business user to consider all of its customers, suppliers, expenses etc. to provide a clear

picture of the overall business or a specific area, such as how customers in one location

differ from those in another location. The integration of existing data is becoming ever

more indispensable in order to meet the business and customer needs (Ziegler & Dittrich,

2004).

Data integration galvanizes disparate data into more useful business artifacts - an artifact

that increases the value of the data, and in turn the corporate value. Corporations invest

heavily in data integration. Investment runs approximately 40% of a typical Information

Technology budget. Additionally, the market for tools that support integration runs in

excess of $6.44 billion in 2017 and is estimated to grow to $12.24 Billion by 2022

(Markets, 2017). This level of effort and investment provides strong evidence for the

need of the modern enterprise to effectively and efficiently integrate data. Rationales for

integration fall into three main categories: revenue increase, increasing customer

satisfaction, and costs savings due to process improvement (Gold-Bernstein & Ruth,

2004).

 4

Data continues to amass, which has brought about the big data era. Big data enables

expansive reaches into virtually all domains. However, its value often depends on the

ability to evaluate and integrate related data across multiple databases to form a high

resolution, comprehensive picture of a given domain of interest (Brodie, 2010). Data

integration always faces tough mismatches and heterogeneity problems across different

interfaces, technologies, structures, formats and semantics. Big data not only faces

challenges similar to challenges those found in traditional relational database integration,

but also extends them with new challenges including sheer scale, dynamic structures, and

a growing number of accessible NoSQL databases - many of which are outside of the

user’s control. This requires new ways to quickly integrate potential database candidates.

Without such advances, many NoSQL data sources may remain unused and isolated,

losing the potential value of integrating them into a larger knowledge base.

There are numerous real-world examples of data integration to create business value. For

instance, a company can combine its marketing database, which contains details

regarding multiple marketing campaigns with a customer-ordering database to determine

the effectiveness and efficiencies of a specific marketing campaign. Medical companies

could use integration to combine drug research findings with electronic patient records to

determine the efficacy of a drug treatment program. Some values of integration may not

be realized until the integration takes place and valuable information is discovered.

Effective data integration creates value and leverages the growing richness of accessible

data or information. However, traditional integration methods remain labor intensive,

 5

time consuming, costly, highly specialized, and error prone. This underlies many failed

integration efforts which are often caused by inherent complexity, delays, and costs.

Even after successful data integration, businesses struggle to focus the integrated

information on the specific domains of interest. The sheer magnitude of the unified data

can actually obfuscate the integrated value. Extraction of information from big data

requires another level of complexity. Additionally, it is difficult to deal with ad hoc or

serendipitous data discoveries – most go overlooked and are buried under the data mass.

The traditional integration approach focuses attention on the integration effort itself,

while missing many potential discoveries after the integration is completed. Data scale,

semantics, and specific data needs quickly overwhelm traditional integration methods,

which is typified as data overload.

The advent of big data with its associated NoSQL stores provides a new foundation for

useful, powerful data integration. NoSQL stores bring not only new business

opportunities but also new technical challenges to effectively integrate data across

different NoSQL stores. NoSQL stores allow unprecedented data storage and retrieval.

However, these technologies are mired in proprietary interfaces, decentralized and

dynamic data structures, and evolving rapidly – all of which make data integration more

difficult.

1.2 Research	
 Issues	

The increase of data sources, technologies, and business dynamics opens up new

possibilities for data integration. Research that advances data integration increases the

 6

value of existing data and the corresponding business value. Data integration begins

with a data review by answering the following questions: What is in the data? Is it worth

integrating the data into a larger data picture? In order to review a data source for

integration, one must first understand what it contains and the potential role it plays in a

business opportunity. Proper review of a data source helps collect the requirements of an

actual integration and minimizes the time and resources needed. Similarly, after data is

integrated, does the integrated database meet the data needs of an opportunity? What

makes data integration so difficult? In order to better understand the key issues regarding

data integration, an ideal integration model outlines the essential data integration

requirements.

1.2.1 Ideal	
 Integration	
 Model	

Figure 2 outlines the ideal integration model that covers the critical facets of data

integration (Ziegler & Dittrich, 2004). All data integration efforts attend to each of the

areas to some extent. The diagram decomposes the integration into five major areas:

transformation, representation, unification, alignment, and adaptability. Transformation

extracts the native database data and structure into a normalized common form.

Transformation coverts the data across four levels – foundation that represents the

underlying operating environment (e.g Mac OS), the technology that represents the actual

database technology (e.g. MongoDB), the format that represents the arrangement or

structure of the data (e.g. JSON), and finally, semantics that represent the meaning or

purpose of the data. Representation forms the data into a common, understandable form,

independent of specific database technologies nomenclature. Therefore, representation

 7

properly represents all the information and its context across the various database

technologies. Unification normalizes the common formatted data. This requires

identification, correlation, cleansing, and summarization. Unification creates a useful

combined data source. Alignment produces purposeful information from the integrated

store based on user and/or system needs. Alignment focuses the information on the

intended domain of interest requested by a system or user.

Figure 2: Ideal Functional Data Integration Model

A final consideration of the ideal model is the time and cost to produce the integration

including changes that may occur to various data sources and business opportunity

domains. Integration that is more costly than the perceived integration value and/or takes

longer than the opportunity permits is simply not pursued. Therefore, it is critical to

consider the time and cost factors. Additionally, the integration faces likely change

events such as modified data structures, upgraded technologies, and changes in the

business opportunity domain. Each area can introduce dynamics or changes to the

integration solution. Therefore, the ideal solution considers the time and cost not only for

 8

the initial integration solution but also for maintaining that solution over time. The

combination of the initial and dynamic factors into a final ideal model introduces

adaptability. The solution satisfies the initial conditions and then continuously aligns to

changes and/or dynamics in the evolving business opportunity.

Thus, the ideal model summarizes data integration into five integration themes:

transformation, representations, unification, alignment, and adaptability. This ideal

model assembled from various research efforts allows comparisons among various

integration methods to highlight the capabilities, priorities, and limitations of each

approach. The model helps to reveal the strengths and weaknesses of various data

integration approaches.

Finally, it important to note the role of the business user - the non-technical user, driving

the integration. They maintain the critical insights as to the value of the integrated data.

Their involvement at the various phases often determines the ultimate value of the

integrated data. If their involvement is limited, there is an increased likelihood that the

integrated data will not meet their needs. This leads to additional integration efforts that

delay and increase the costs of the proposed business opportunity.

1.2.2 Traditional	
 Data	
 Integration	
 Model	

The traditional data integration model emphasizes the technical transformation of data

from a source system to the integrated system in a controlled sequence. Traditional

integration considers low level details and offers either a point-to-point integration or a

form of data centralization such as data warehousing. Integration occurring at this

 9

technical level focuses on syntax, formats, and technologies without regard to semantics.

Integration typically takes two routes – various Extract, Transform, and Load (ETL)

approaches that transform and move the data to a central store (or warehouse) and a

federated query approach that first decomposes the query to integrate the requested data

source subsets and then unifies the results from multiple queries. Both focus on the

technical levels, bypassing much of the inherent knowledge and information behind the

data that often remains left behind in the source application. Data integration systems

actively combine the data primarily from two perspectives: Global as View (GAV) and

Local as View (LAV). While GAV places the integration complexity on the mediation

between source and unified schema or domain, LAV places the integration complexity on

the mediated queries. GAV works best with changing domains whereas LAV works best

for changing integrated data sources (Bennet & Bayrak, 2011). The new application

incorporating the integrated data takes on much of the knowledge responsibilities within

its processing steps outside of the integrated data. This further diffuses the knowledge

value of the data.

Traditional data integration methods address data integration with an a priori

understanding of the data and its purpose (Cure, Lamolle, & Le Duc, 2013). Due to

inherent technology hurdles, technologists perform the integration tasks somewhat

isolated from the business needs. This can result in data marts and data warehouses that

do not align with the business requirements. This problem is not uncovered until the

integration process is completed. Big data/NoSQL integration needs to go beyond these

methods due to its dynamics, size, and lack of control. Big data often forms a massive

and dynamic picture of the data. Scale and time demands prohibit copying the data to

 10

another source, thus preventing the construction of data warehouses with their inherent

latency. Dynamics enable fundamental structural additions at any time and location

within big data making it better reflect the current domain while keeping the user of the

data aligned with these changes. These big data integration challenges quickly

overwhelm traditional integration approaches leaving many integration possibilities out

of reach (Dong & Srivastava, 2013).

Figure 3 captures the essence of the traditional approaches into an integration model that

highlights the five integration themes from the ideal model.

Figure 3: Traditional Integration Model

The traditional model transforms and unifies the data based on the technologies below the

semantics. The transformation, representation, and unification approaches are typically

 11

highly coupled. The fundamental differences between the various traditional integration

approaches is when the extract, transform, and load operations occur. In a centralized

data warehouse, they occur prior to any requests or queries. In a federated query, the

ETL occurs in response to a query. These differences impact performance and resource

needs. Finally, the WAV and LAV approaches design various mapping strategies to map

the data from original source to the integrated data source. Note in all cases, the data

interacts directly with the database bypassing the application. This forces the model to

deal with low-level details contained in the database and the integration model loses the

data context contained in the source application. Applications often initiate complex

efforts to enhance and relate the data contained in the data source. This creates the

necessity to build another application to provide such context for the integrated domain

data. This reflects the reality of most data systems being application-centric rather than

data-centric. The latter would consider uses of the data beyond the application and could

actually assist in the integration.

Data integration for NoSQL stores remains in its infancy. The scale often prohibits the

ETL transformations allowed in smaller stores due to the inability to perform a timely

data transfer and creates inherent latencies. Additionally, the NoSQL stores handle data

structure in a non-centralized, dynamic fashion. NoSQL stores do not offer a standard,

description of the data structure because the structure can be defined anywhere within the

store and is dynamic. Consequently, many traditional integration approaches would fail

due to their sheer scale and/or structural dynamics.

 12

1.2.3 Traditional	
 Integration	
 Model	
 Limitations	

The traditional model based on an application-centric view with limited semantics results

in significant limitations for integration efforts. The following details the key limitations

organized in the five themes presented in the ideal integration model.

• Transformation Limitations

o Limited Data Expressiveness: The model lacks an expressive data format

that fully captures the richness of the data. This requires the diffusion of

this expressiveness throughout the integration application and often pushes

low-level integration issues onto the user. (Date, 2005) (W3C S. , 2008)

o Application-centric data resources: The current model must consume data

resources that are application-centric rather than data-centric. This buries

the data in a complex application context that makes it very difficult to

extract the data minus the encumbrance of the application context. In

general, data systems are not designed for integration (Ziegler & Dittrich,

2004).

o Syntax, Format, and Technology Integration: The traditional model

integrates at a level that incurs a high degree of complexity and must deal

with the major differences across the many existent syntax, formats, and

technologies that store and manage data. (Ramler & Wolfmaier, 2008).

The lack of semantics forces technicians to perform the integration rather

than the actual users.

 13

o Big Data Scale: The sheer scale of big data often disallows transforming

the data. The NoSQL database, Cassandra, holds data for Apple

Computers and Netflix. The Apple database contains over 75,000 nodes

storing 10 Petabytes. The Netflix database contains 2,500 nodes, 420 TB

and over 1 trillion read requests per day (Cassandra, 2016).

o Big Data Structural Dynamics: NoSQL databases do not offer a standard

method to extract the structure of stored data. The NoSQL model does not

require a data structure upfront. Data personnel do not have to design the

structure in advance of the data ingest. (Wayner, 2012).

• Representation Limitations

o Single Domain View: The unified information need to fit into one domain

view. This causes integration difficulties when there is a lack of

agreement across various meanings of the labels and terms due to different

perspectives found in different databases. Merging these different

perspectives encumbers the integration process and limits domain

specialization in retrieving information from the integrated database,

which obfuscates the benefits of integrated information (Lukovic & Mogin,

1996).

• Unification Limitations

o Limited ability to deal with dirty data: Dirty data includes missing

information, conflicting information, and incorrect information present

when bringing multiple data sources together. It presents a huge burden to

corporations with over $600 billion spent on data quality issues (Lucas,

 14

2010). Traditional methods deal with them a priori to the actual

integration. This creates high risk because it is difficult to identify and fix

all the dirty data problems prior to the integration. This often leads to high

cost due to last minute efforts that can also induce additional errors. This

limitation significantly inhibits large-scale integration since dirty data is

constantly present and it is virtually impossible to remove all of it (Fan &

Gui, 2007) (Kim, Choi, Hong, Kim, & Lee, 2003). Additionally, NoSQL

stores assume that dirty data always exists and their sheer size prohibits

efficient cleanup efforts.

o Complex Relationships Among the Data: This requires a complex

technical understanding of the data such as foreign keys, triggers, field

constraints and so on, creating data models that require a strong expertise

to understand, evaluate, and integrate. Names of various artifacts to

accommodate these complex structures come at the expense of clear, easy-

to-understand semantic labels.

• Alignment Limitations

o Failure to Evaluate each Data Candidate Early: The business user does

not see a database’s integration contribution until the integration is

complete. This can lead to incorporating unnecessary data and delays the

addition of useful data (Dayal, Castellanos, Simitsis, & Wilkinson, 2009).

o Limited Support for Domain Extraction: The ultimate goal of data

integration is to extract useful information. The actual integration effort

merely puts all the data into a single unified accessible form. It does little

 15

to establish specific domains of interest to help identify and extract desired

results. The specific domains must compromise themselves into the one

unified view and handle unique data considerations outside the main

integration store (Lukovic & Mogin, 1996).

o Limited Integration Standards: Traditional integration lacks well-accepted

integration standards, making it difficult to extract key information and

share integration approaches. The inability of integration solutions to

build on one another results in increased costs, protracted delays, and

higher risks.

o Limited Reasoning: Traditional methods lack logical reasoning that can

assist the integration in handling error correction, removing duplicates,

replacing missing information, and resolving conflicts. Reasoning can

also supply independent alignments of the data allowing focused

independent domains.

• Adaptability Limitations

o Closed World Model: Traditional efforts close the data model making

future changes difficult. For example, a closed model assumes that it has

complete information. If a customer’s name is not present in the database

than they are not a customer. This closed assumption makes integration

with another customer database fraught with possible conflicts.

Unexpected data changes create havoc with the integration causing the

project major maintenance costs and/or the inability to adapt to the change.

 16

This includes inabilities to properly deal with discovered poor data quality

and future data integration candidates.

o Highly labor intensive and Error Prone: The many manual steps in

integrating the various technical, format, and syntax complexities invite

errors and are time consuming.

o Isolated Integration Efforts: Due to the lack of framework that can help

simplify integration, each integration effort is unique and isolated.

Different efforts are unable to share data structures and terms. Thus, every

effort starts from scratch and is unable to build on previous integration

efforts.

o Point-to-Point Integration of Databases: Integration is often forced to

uniquely connect one data source with another one in a point-to-point

fashion or create an accepted standard database that integrates the data.

The former creates the classic N2 dilemma and its associated inefficiencies.

The latter creates data warehouses that demand a common, accepted data

model. Either approach can work on small, fully controlled data sources

but quickly fails with many data sources and/or multiple, complex data

perspectives that make common models infeasible.

o Brittle, Non-Adaptive Integration Solutions: The complex integration

wiring and transformation working at the low levels forms a very brittle

solution that inhibits change. Brittle solutions break or fail with even

minor changes. This often results in paralyzing the various data sources

and associated applications involved in the integration. They in turn lack

 17

the ability to adapt to changing business demands. As a result, new

demands may require entirely new data sources (new data silos) or large

maintenance efforts on the existing integration solution (Bennet & Bayrak,

2011).

o Extensive Duplication: Traditional efforts often rely on a centralized data

approach that requires the movement and duplication of the integrated data.

This incurs the expense of moving and duplicating the data and also

creates data latency. The latency causes the actual data and the copied

data to possibly be out of sync with the original data source, which can

produce data inaccuracies and anomalies. This limitation grows more

serious as the demand for real-time, dynamic data increases.

These limitations result in negative business impacts for data integration that include high

cost, protracted time lines, and potential errors. It also requires high technical expertise

and incurs a large delay with iterations throughout the integration process due to learning

and/or changes. Hence some of the value of the data and the business opportunity is lost.

1.2.4 Integration	
 Trends	

Current technology and data trends drive additional demand for integration while placing

new requirements on integration solutions. The trends move towards easily accessible

and dynamic data.

 18

• Plunging Cost of Infrastructure: Data requires movement, processing, and storage.

In accordance with Moore’s law and others, costs continue a precipitous plunge

with increasing data availability.

• New Data Structure/Storage Options: Many new forms of data storage (e.g.

NoSQL) and their associated diverse structures have emerged in cloud computing,

Internet storage, and the like. Consider HBase, Cassandra, Neo4J, along with the

movement to make large data sources available to the public (Government U. S.,

2011) to name but a few. Many are rapidly evolving.

• Growing Participation in Producing Data: More parties including individuals,

corporations, and governments contribute to producing the data. Many are quite

new to these contributions. Worldwide Internet participation has grown over

500% in the last ten years. The United States has over an 84% penetration rate

with many countries over 90% (Internet World Stats, 2017).

• New Data Technologies: New technologies from cheap cloud data storage to

simple-to-use blogs, wikis, and short message technologies encourage the creation

and accumulation of data from many parties including technology novices.

• Development of the Semantic Web: The Semantic Web, now over a decade old,

has matured to include a wide array of tools, technologies, and semantic data

sources. As of 2010, Linked Data contains a web of over 26 billion statements

with over 400 million cross-data set links (Bizer & al, State of the LOD Cloud,

2011) (Yamaguchi & al, 2011). The Semantic Web continues to evolve and grow

to drive greater use of data and easier integration. Additionally, the Semantic

 19

Web contains strongly supported standards for knowledge representation

including logic and reasoning.

• Real Time, Dynamic Data and Associated Structures: This changing data often

demands dynamic changes in its storage structure, thus evolving the schema that

stores the data. Twitter serves as an example of new types of real time data – data

that forms powerful insights into what is happening in real time (Yamaguchi & al,

2011).

• Increasing Dirtiness of Data: With data emerging from multiple sources many of

which lack coordination, certification, and/or the same perspective causes a

growing list of data conflicts, errors, and missing data for an integration effort.

• Growing Base of Structured Data: Data is quickly moving from unstructured,

human-consumable forms to structured forms capable of improved system

interrogation and integration. This is seen in several efforts to provide access to

machine-readable information such as Linked Data (Heath, 2011).

• Increasing Distribution of Data: Data with its large resource needs and various

localities continues to be more fragmented and distributed across the various

geographies and topic domains.

• Growing diversity of the data type: Data is no longer merely strings and numbers.

Critical data also exists as videos, pictures, maps, and audio.

• Increasing Value of Just-in-Time integration: The need for rapid integration of

data to reveal value, if any, will be a significant factor (Zhu, 2008). There is no

way to know the value before-hand, in many cases. This makes it impossible to

 20

make a traditional business case regarding integration since the value cannot

always be predetermined.

• Growth of Proprietary Integration Tools: Many new integration tools are

emerging to serve the many integration opportunities. However, they lack

standards, require translation into a proprietary format, and are often very

expensive (SAS, 2011). This approach can lead to isolated, expensive integration

solutions.

• Growth of data outside of a business’s and user’s direct control: This requires

careful inspection and review for possible integration.

These trends offer new challenges and benefits for integrating the data.

1.2.5 Specific	
 NoSQL	
 Issues	

Big data finds storage in non-traditional technologies known as NoSQL storage. NoSQL

is designed around the benefits of big data. First and foremost, the NoSQL technologies

scale data storage across many physical devices allowing massive data storage. NoSQL

technologies also offer a dynamic structure as opposed to the rigid structure imposed by

traditional relational databases. This allows the database to remain relevant as it adapts

to new structural requirements without the need to discard or update the massive amount

of existing data already present in the NoSQL database. These two forces create unique

features for data integration that are critical for integration success.

 21

1. Scale: The sheer size of big databases prevents the easy movement and creation of

separate databases as employed in data warehouses and data marts. The time and

resources required often eliminate this as a possibility.

2. Structure: The sheer volume of data often simplifies the structures to allow for

efficient introspection. They rarely have deep, complex relationships within the

data elements, as this creates large inefficiencies with reading and writing

operations. Additionally, the simplicity of the structure lends itself to be

semantically rich with meaningful, useful named data labels throughout while

avoiding complex interrelationships between the data and the associated complex

names.

3. Dynamic Structure: Structure definitions can exist anywhere within the store.

Frequently, no single method exists to extract the structure. This allows updating

the structure and creating new structural elements at any time and at any place

within the store. Conversely, it makes the actual structure or structures difficult to

obtain. Structure is the key to understanding the contents of the NoSQL store.

4. Evolving NoSQL Technology: Technology continues to evolve to meet the

growing understanding of big data needs, creating a challenge for data integration

methods that attempt to integrate while technical changes occur.

5. Proprietary Technology: Each NoSQL technology is proprietary and there are no

current efforts to standardize the technologies to allow easier integration.

6. Big Data Ownership: Due to the size and scope of big data, integration efforts

may require integration with an external data source that is outside of the effort’s

control. Therefore it could change significantly without any warning.

 22

7. Outdated Documentation: Due to the scale, dynamics, and exigencies of NoSQL

databases, documentation often lags behind the NoSQL store or doesn’t exist at

all.

8. Scarce expertise: NoSQL demands new technical skills that are very different

from traditional database skills. The need for these skills far outstrips the demand,

placing further burdens and costs on integration efforts.

1.2.6 Issue	
 Summary	

The inefficiencies and ineffectiveness of the traditional integration model result from its

low level, technical-oriented approach, extensive manual intervention, and the high level

of integration customization required for each effort. The traditional integration model

may fail to reap much of the value from existing data sources and is poorly positioned to

serve the rapidly evolving integration opportunities with NoSQL databases.

The traditional integration model restricts integration to its technical components and

pushes the semantics or meaning of the data to outside application and/or the users. This

delays not only the integration but also, more importantly, the review of the data’s role in

a business opportunity. So, while users require useful semantics, the integration effort is

moribund in technical challenges and jargon. The challenges extends as big data plays a

larger role. NoSQL stores are simply too large to move, do not easily reveal the

contained data’s structure, and continue to evolve in non-standard ways. Yet the large

stores of data can offer benefits to many business opportunities.

 23

The trends clearly lead to more data, in more diverse formats, at more locations with

more participants. More and more of this data will be machine consumable in ways that

potentially ease the complexities and delays surrounding integration. Integrating this

growing amount of data potentially leads to improvements in the quality and timeliness

of opportunities that benefit from the data.

1.3 Research	
 Questions	

Big data stored in NoSQL requires integration approaches that evolve to better capture

the value of the opportunities for large-scale, dynamic data distributed in many formats

and technologies across many domains. This research examines methods to improve

integration and better position data to unleash its potential. The fundamental challenge is

how to enable a business user to quickly integrate multiple big databases to aid a

business decision.

The research develops a data integration method based on early, continuous, and direct

interaction of the non-technical business user with the databases by revealing the

meaning, or semantics of the data from a business perspective rather than requiring a

technical translation. Semantics references the meaning of the data. This allows

integration to occur at a business level to potentially reduce cost, increase timelines, and

effectively deal with the multitude of dynamic, diverse data sources. Semantics hit at the

heart of the value of the integrated data – its meaning. Early semantic transformation

enables the user to quickly review the data prior to the technical integration. This review

includes specific tables and fields in the data, critical in forming integration with large

 24

databases. As the integrated database grows, the user can then continually review it to

see if it meets their needs. This allows an iterative process that continuously enriches the

data integration until the user is satisfied. It also allows the user to add data later to the

integrated database as the business opportunity arises.

The overall research question is this: How can data semantics be used for integrating

large scale, diverse, and dynamic NoSQL data sources? To answer, the following specific

questions must be addressed:

1. How can semantic transformation/representation provide a useful view of the

underlying database for integration?

2. How can semantic unification integrate various NoSQL databases?

3. How can semantic alignment focus the unified semantics on a specific domain of

interest?

4. How can semantic adaptability using convergence-directed integration produce

an efficient approach to NoSQL data integration?

1.4 Research	
 Objectives	
 	

1.4.1 Overall	
 Objective	

The research focuses on integration solutions based on semantics. The research will

advance the current integration model in two key areas: incorporating semantics to

advance integrated data and integrating the data on the rapidly emerging big data stores

found in NoSQL databases. Five major steps are required to advance NoSQL integration

 25

– transformation, representation, unification, and alignment toward a given domain of

interest and adaptability. Finally, the research employs multiple methods to validate the

generalization of the semantic approach to ensure proven integration advancement.

Integration using semantic technologies is not a new topic. Existing research has touched

on this and identified it as the key issue in data integration. Semantic integration falls

into three categories: programmatic semantics, schema-based integration, and declarative

approaches (Zhou, 2010).

Recent advances in the Semantic Web enable advances in semantic integration. The

Semantic Web offers a supported standard for data representation, logic, rules, and

remote/local access (Organization, Semantic Web Standards, 2001). These standards

have produced two valuable results – a multitude of tools and a vast array of available

Semantic data. The data includes sharable structures and easily integrated data, allowing

integration efforts to work in collaboration with a wide array of tools and information.

The Semantic Web advances combined with the current trends open an opportunity to

advance and implement a proposed semantic integration model through the integration

and development of various Semantic Web tools and available Semantic Web

information to produce useful business information from large-scale, dynamic data

integration.

The research will produce a working model based on existing Semantic Web tools (and

by developing additional tools and sources where necessary) that validate an adaptive,

 26

cost-effective model and method to integrate large-scale, dynamic information sources

based on semantics.

1.4.2 Transformation	
 and	
 Semantic	
 Representation	

Semantics integration begins with a transformation of NoSQL databases into a

representation based on a semantic view of the contained information. This process takes

the basic data and enriches it with discovered semantics. It takes three steps –

determination of the specific NoSQL technology, for each NoSQL technology maintains

different interface protocols; the extraction of the information necessary to describe the

NoSQL database; and the transformation into a common semantic form.

The semantic integration method contains the protocol information for each supported

NoSQL technology. The method then probes the candidate database for a match to the

protocol. Once a match occurs, the method interrogates the candidate database for

descriptive information such as the structure, size, and technical parameters. NoSQL

data sources hold structural information in each record. Each record could potentially

contain a different structure. NoSQL technologies do not offer a standard method to

extract the structural information, as do relational databases. Therefore, existing research

methods employ an exhaustive read of every record. This approach does not scale to the

potential size of a NoSQL database, which could reach many petabytes. The semantic

integration method employs a statistical sampling of the database records rather than an

exhaustive read of the records. This avoids the time and processing delays that result

when a candidate data source scales to its potential, which could reach many petabytes.

 27

Finally, once the structural information is uncovered, it is combined with data examples

for each structure so as to reinforce and expand the meaning behind the structural terms.

Additionally, the technical integration information such as the login, network location,

query parameters, and NoSQL technology type is recorded. All of this information is

transformed into a semantic ontology. The ontology describes the NoSQL database and

contains all the information necessary to obtain information for the integration of a

candidate database.

This semantic richness of the ontology varies depending on the level of semantics

available in the underlying technology through the naming of the various data artifacts

tables and fields. Secondly, the semantics can be enriched and expanded through a

variety of semantic analytics and manual assistance, many of which are available and

becoming standardized (Euzenat J. , 2008), such as using reasoners and/or adding

enrichment ontologies. Lastly, the ontology holds meta-information regarding the

NoSQL database to enable the location and extraction of information using its native

methods such as the technical location, login information, and query parameters. This

allows the actual data to reside in the native store with the semantic meta-layer

controlling the meaning and access methods, thus eliminates the need to copy and

synchronize the data to a central integration database. The ontology serves as a proxy to

each of the integrated native NoSQL databases.

 28

1.4.3 Semantic	
 Unification	

Once an enriched semantic ontology is established from a database, the ontologies

combine at the semantic level to form unified data integration. There is no need to

combine the actual data until requested. Ontologies easily combine and avoid conflicts

found in traditional relational databases. Once combined, semantic analytics perform

conflict resolution, duplication removal, correlation, and the like. Unification normalizes

the integrated data. These steps can continually reach out to ontological resources to

refine, focus, and maintain relevancy over changing data sources and domains of interest.

1.4.4 Semantic	
 Alignment	

Semantic alignment focuses the integration effort for a given domain of interest.

Semantic alignment occurs in two phases: during unification and when providing results

in a domain of interest. Given the focused domain of interest expressed via semantics,

the domain offers powerful techniques to extract desired information and patterns.

Semantics offers a triad of extraction techniques that can be used together or in isolation

depending on the information needs. This includes search, navigation, and query.

Search enables basic Boolean search based on keywords without semantics providing a

simple way to find focus data areas for an information quest. Navigation follows

Semantic links that enables semantic results to follow a related path to additional

information. Semantic filters can clear away superfluous information and highlight

paths related to the request. Finally, when a path becomes one of interest or a path is

known a priori, the request can be captured in a formal query via a query language.

 29

The interactions can actually change the domain of interest, which would work with the

other two areas above to continually adjust the domain and its associated data sources to

align with the requestor’s needs.

The four steps outlined above - transformation, representation, unification and alignment

- all take advantage of the flexibility inherent in the semantic integration model. This

includes organic assembly of an initial integration, automatic enrichment, and flexible

formation of semantic data extraction, allowing the semantic integration model to form

quickly and maintain alignment with both the data sources and the domain of interest.

1.4.5 Adaptability	

A modern data integration system must be adaptive. Adaptability enables a quick start,

maintains alignment, and protects the investment in an integration effort.

1. Adaptability enables a quick jump-start for the integration effort, allowing a rapid

review to determine the value of the integration effort. Many integration efforts

may not see the end value until the integration occurs. Thus, without a quick easy

start, many integration efforts will not go forward.

2. Adaptability aligns the integration effort with the data and domain dynamics.

This is key in any large-scale effort since the likelihood of change increases as the

size and number of integration databases increase. This is also compounded when

data sources are out of the control of the integration effort.

 30

3. Adaptability preserves the investment in the data and integration by maintaining

an up-to-date view of the data and allowing the data requirements to change

without major efforts.

Adaptability employs convergence-based integration that occurs throughout the

integration development process. Traditional solutions that lack adaptability often fail to

meet the business needs and fail to incorporate business learning along the integration

steps.

Adaptability throughout the process overcomes these limitations. Semantics reveal

underlying data meanings to the user allowing a degree of convergence to occur at early

stages including the initial review of the data. The user can direct the integration effort as

the semantic revelation uncovers both pertinent and non-pertinent data. This allows some

degree of requirements, development, and extraction to occur simultaneously by the user

who is interested in the actual meaning or semantics of the results. Additionally, the

technical underpinnings of the Semantic Web can also help the convergence through

extensive reasoning and logic. The convergence is thus able to incorporate learning

directly into the integration development.

Figure 4 highlights the key differences between a traditional integration method and the

semantic integration method.

 31

Figure 4: Integration Method Comparison

The traditional model takes longer to produce useful results and there is no opportunity

for incremental results to influence the end state. The convergence-directed Semantic

Integration approach produces limited results quickly. These results can then help direct

the remaining development efforts, allowing the solution to not only produce useful

results quickly but also adapt, as the integration and business opportunity is better

understood. Whereas the traditional approach mimics a waterfall development method,

the semantic approach follows an agile development approach that uses incremental and

iterative methods. The convergence model is also more likely to efficiently and

effectively produce useful information since both relevant and irrelevant databases are

identified early during the integration process.

 32

1.4.6 Method	
 –	
 Design	
 Science	
 Research	
 Method	

The design science methodology focuses on the creation of new and innovative artifacts -

artifacts that address a significant problem. The artifact proves itself through a robust

review that clearly demonstrates its significance in addressing the problem (Hevner & al,

2004). Additionally, the artifacts undergo refinement through an empirical review period

that further advances its benefits.

The earlier section detailed the relevance of advancing the methods of data integration

especially in light of the multiple trends that increase the relevancy.

The research will produce several pertinent and reinforcing artifacts.

1. A Semantic integration model that advances the overall integration of NoSQL

databases.

2. Semantic analytic methods that transform, represent, unify, align, and adapt the

data.

3. A Semantic implementation that illustrates and demonstrates the key constructs of

the Semantic Integration model.

These artifacts will go through an evaluation to demonstrate the advancement using

various means to triangulate the research results.

The method to address each research objective centers on the creation and

implementation of a working semantic integration model as an advancement to the

current integration mode. The working implementation of the model employs the

 33

Semantic Web as a specific implementation technology using a set of exemplar data

sources, semantic integration techniques, and semantic extraction techniques.

The working model exposes the semantic integration model to an empirical examination

through a user trial task using the semantic integration model in comparison to the

traditional integration model. This provides both quantitative and qualitative views on

the model.

Due to the large scope of the effort several limitations are recognized. The model will

operate in a read-only fashion and thus not deal with the complexities of transactions and

updates. The implementation and study will assume relatively clean data and therefore

not focus efforts on data quality or enrichment issues.

1.5 Research	
 Significance	

Businesses, governments, and individuals make enormous investments in evaluating and

integrating data. However, most efforts are expensive and limited. Current trends point

to more integration opportunities. Advancement in data integration offers a lower cost

and faster turn-around enabling new integration opportunities and producing new value

from existing data.

The semantic integration model enables more information to truly produce a higher

fidelity view of the domain of interest. This should lead to better, more informed

decisions that incorporate more pertinent and timely information. Additionally, the

 34

semantic integration model promises to lower the cost of integration. This will open up

many new integration opportunities.

Advancements in data integration produce value from existing assets – accessible

information. These advancements would allow insights to new medical treatments, new

financial vehicles, and improved customer service, among others. Simply put, better

integration provides a higher fidelity decision framework leading to improved decisions.

1.5.1 Key	
 Contributions	

1. Improved integration of useful data extraction methods based on semantics for

NoSQL databases. This includes uncovering the structural information contained

in a dynamic NoSQL store in a timely fashion.

2. Applicability of Semantic Web standards, tools, and Semantic Web sources to aid

semantic data integration.

3. A Semantics-based integration structure and methods to advance integration

efforts.

4. Applicability of convergence methods to incrementally and iteratively advance

data integration.

5. Advanced evaluation methods through the comparing and contrasting of various

traditional and semantic integration methods.

 35

1.6 Organization	
 of	
 Dissertation	
 	

Chapter 1 provides an overview of the research. It introduces the fundamental

background that frames the research, the research questions, and an overview of the

research methods.

Chapter 2 provides the background information that lays the foundation of this

investigation. This includes studies on data integration methods. It highlights the

research by using semantics to advance integration in various domains including the

specific use of the Semantic Web.

Chapter 3 describes the research model, methods, and implementation in detail. This

includes a detailed set of methods and key coding constructs of the implementation.

Chapter 4 describes the model evaluation methods that include executive interviews,

survey instruments, and a data integration task. It reports and summarizes the evaluation

results. The task is based on artifacts produced by the implementation of the semantic

integration model and associated methods.

Chapter 5 outlines the contributions, limitations, and future research directions.

 36

2 Chapter	
 2:	
 Related	
 Work	

2.1 Research	
 Areas	
 Overview	

The difficulties and challenges in data integration represent large costs and lost

opportunities for business, governments, and even individuals. The challenge doesn’t

abate but worsens, even years after the inception of data integration. The ability to make

coordinated, organization-wide responses to today’s business problems is thwarted by the

lack of data integration (Goodhue, Wybo, & Kirsch, 1992). It continues into this century:

“Data integration becomes mission critical” was noted in the 10 marketing trends to

watch in 2011 (Blunt, 2011).

Database technology was introduced in the late 1960s to support various business

applications. As the computing platform grew to include multiple applications and data

sources, the need for integrating data became apparent (Ziegler & Dittrich, 2004). The

initial solutions depended on a small global database schema. This produced challenges

in dealing with the various ways of expressing the data both technically and semantically.

Zoom forward to today, and the challenge continues but at a scale, in both amounts and

timelines, unthinkable just a few years ago.

Traditional integration solutions and their corresponding models depended on factors

absent in many of today’s information sources. These include control and

comprehension. Formally, data sources and associated data integration efforts were kept

behind corporate walls. Here the corporation controlled the data source entirely and fully

understood it (for the corporation typically created and maintained the data source). This

 37

made integration achievable as well as maintainable. Today’s information and data

environment finds almost the opposite. Although many opportunities still exist behind

corporate walls, they have been swept up by the same wave of data creation and new

technologies – creating a microcosm of the larger data environment. The larger data

environment, fed by the Internet and its associated innovative applications, has produced

massive amounts of information in a multitude of forms and locations. The sheer ease of

information creation has produced a new timelines and associated urgency to the data.

For example, Twitter produces 250 million short messages a day (Nakano, 2011). Users

can search these messages on keyword, topic, creator, and more. On the other end, big

data or cloud computing will approach 100 - 160 billion dollars of investment in 2014

(Hickey, 2010) (Williams, 2009). Small companies and even individuals are involved

with major cloud technologies through several major product offerings from Apple

(Apple, 2012), Amazon, and Google.

The lack of control and comprehension coupled with the dynamics and massive amount

of data seriously challenge traditional integration methods (Mohan, 2013). Fortunately,

new technologies offer capabilities to create an adaptive, and efficient environment to

leverage the growing mass of information scattered amongst the many technologies and

formats. Additionally, the growing mass of information itself provides insight and

assistance with data integration. These integration efforts, themselves, can be shared and

built upon. Finally, the current data landscape shows no sign of stabilization. New

technologies, formats, and data-producing applications will continue to emerge and

advance. Data integration advancements must adapt to this continuously changing data

landscape to produce additional value from this large data investment.

 38

The key to success is moving from a technological perspective to a semantic one. This

idea is not new. Semantic integration has been explored for almost a decade. Semantic

technologies are usually considered a key factor in dealing with the huge amount of data

available today (Verter, 2010).

The Semantic Web, outlined by Tim Berners Lee in early 2001 (Berners-Lee, Hendler, &

Lisssila, 2001) has continued to grow through a collection of standard knowledge

representation technologies, compatible tools, and a growing foundation of semantically

structured information. This combines with several new information visualizations based

on semantically-rich contextual information, automated reasoning, and manual semantic

guidance.

Two dimensions help determine the value of the data and its integration with related data:

business metrics and data metrics. Business metrics examine the improved benefits for

the bottom line on investment time and cost. Data metrics uncover the data quality and

associated data advantages that contribute to improving the business bottom line (Martin,

Poulovassilis, & Wang, 2014).

2.2 Data	
 Integration	
 Model	

Data integration requires distinct interfaces to each data source and corresponding

processing workflows. In order to best compare and contrast various data integration

methods, a data integration model is formed.

 39

Data integration can occur at different levels of architecture (Ziegler & Dittrich, 2004)

from the low-level data storage to a user interface. Integration establishes the technical

interface that points to extracting, transforming, unifying, and aligning data. Moving up

the stack, the integration reveals different levels of semantics or meanings along with

different technologies. The following provides a more abstract view of the conceptual

decomposition of the architecture levels.

• Foundation: It represents the integration of the underlying computing

infrastructure such as the operating system. Regardless of a higher-level

integration steps, the various operating environments should interact with one

another. For the most part, higher software levels such as the integration

application handle this level.

• Technology: This represents the multitude of technologies that store and/or

interact with data. These include database technologies, file storage, technology

formats such as XML and RDF, and so on.

• Format: It represents the actual format of the data. For example, dates and

locations often exist in a multitude of formats.

• Semantic: This represents the meaning of the data. Data may have multiple

meanings and the actual interpretation may depend on its context.

Additionally, data integration requires the following processes and staging steps

(Giordano, 2010) (Fan & Gui, 2007).

1. Data extraction

 40

2. Data cleansing

3. Transformation into common form

4. Combining into integrated data form

These steps form a workflow that moves data from one data application and purpose to

another data application and purpose.

This can be further conceptualized by examination of the various stages: transformation,

representation, unification, and alignment. Transformation handles the extraction and

isolated cleansing, representation forms the data into a standardized form, unification

combines data from multiple sites and performs the necessary processing, and alignment

advances the data to form a useful purpose.

Two additional steps complete the workflow. The integrated data requires some form of

access/extraction to its subscribing clients and the data must expose itself in a useful

visualization. Many visualizations of integrated data exist. (van den Heuvel & Rayward,

2011) (Tufte, 2001)

Two other considerations complete a full description of data integration: integration

breadth and integration timeliness. Data integration breadth represents its scope or reach

to disparate data and associated technologies along with the amount of data. Two

dimensions can describe the timeliness: the time it takes to integrate the data including

integration development time and the time when actual data transfer takes place.

Timeliness must also consider its adaptation to changes in the integration effort from new

 41

data structures to new uses of the integrated data. Adaptation becomes critical when

technologies and business opportunities evolve quickly.

Putting together the various factors of integration architectural levels, data integration

workflow, breadth, and timeliness forms a data integration model, as shown in Figure 5.

Figure 5: Data Integration Model

The data integration model highlights the movement from isolated, existing data sources

through transformation at the various architectural levels, unification to bind multiple

data sources, and finally through to extraction and exposure to the integration domain.

Additionally, the model handles timeliness through adaptability to represent the initial

and subsequent efforts due to the underlying data and/or data use dynamics.

 42

2.3 Traditional	
 Data	
 Integration	

Traditional data integration focuses on the technical framework formed by relational

databases. Relational databases typically exist to serve specific applications and are

tightly bound to the associated application. In general, information systems are simply

not designed for integration (Ziegler & Dittrich, 2004).

Traditional data integration must deal with the limited semantics within the data

structures and often its narrow scope within the originating data application.

Traditional data integration focuses on relational databases, which prior to the Internet

contain the majority of structured data. This took two different courses – Local as View

(LAV) and Global as View (GAV) (Lenzerini, 2002).

The LAV approach presents the content of each data source in terms of a view over a

global schema. This requires an enterprise data model. Each data source must provide a

mapping between the local schema and the global schema. Adding a new source simply

requires an additional map to the existing global schema. LAV variations exist that

highlight the similarities between the mappings and the global schema (Lenzerini, 2002).

The GAV approach presents each global element as a characterization of the data source

element. The approach depends on a stable source systems and a federated query. The

global view forms a lens that brings each source into focus.

 43

GAV models the global schema as a set of views over the source systems whereas LAV

models the source database as a set of views over the global schema (Wikipedia, Data

Integration, 2011).

The global schema can be virtual or physical. The former creates an on-demand

federated query. The latter results in a data warehouse approach that avoids multiple,

coordinated queries but requires larger data movements and the inherent latency evolved

in transforming and copying the data to the data warehouse (Bennett & Bayrak, 2011).

Figure 6 summarizes traditional data integration. Transformation occurs dynamically

when responding to a federated query or in a batch mode when transferring to a data

warehouse. The key difference is demonstrated when the data movement and

transformation take place, either while responding to a query or in a batch operation.

 44

Figure 6: Traditional Data Integration

Figure 6 highlights the middleware that transforms and unifies the data. This is

traditionally referred to as Extract, Transform, and Load (ETL) and is typically a custom

solution that is not shareable. Alignment occurs in the virtual (federated queries) or

physical data warehouse through query methods that combine with the integration

application. One limitation of a query language is that it typically requires application

cooperation to extract and display useful information from the integration.

Traditional integration suffers from significant limitations. The many manual and custom

tasks required for data integration exert a high toll in time and cost. This directly leads to

poor scalability and poor adaptability. Additionally, the level of customization precludes

sharing of the integration approach. Most data integration efforts start from scratch. The

scale in terms of the number of data sources and source heterogeneity further increase the

 45

difficultly (Goodhue, Wybo, & Kirsch, 1992). This indicates that challenges for

traditional integration will significantly rise due to the sheer increase in both number of

sources and their diversity.

The physical integration of data misses the semantics. This results in developers hard

coding much of the meaning that represents the data. This approach produces brittle

systems with little flexibility that are expensive to maintain. Most commercial

integration systems are limited in this way (Uschold & Gruninger, 2004). Relational

databases require tables to provide the relationship information. In addition, these tables

and field names define the relationships but not the semantic meaning behind the

relationships. As a result, it is difficult, if not impossible, to retrieve semantics directly

from the names.

Although these methods support controlled relational database integration, they exhibit

serious limitations when challenged with more advanced Internet technologies such as

big data storage in NoSQL databases. These databases are highly dynamic and massive

in scale. The large scale and data dynamics do not easily permit the extensive data

movement required in traditional database integration.

2.4 Semantic	
 Integration	

Semantic heterogeneity has long been recognized as a key challenge for data integration

(Buccella, Cechich, & Brisaboa, 2005) (Doan & Halevy, 2005). Information exists at

many levels from meaningless data bits to actionable knowledge. Semantics refers to an

explanation of the data in terms of the real world – the meaning (Zhou, 2010). Semantic

 46

solutions are typically based on an ontology that contains classes and relationships

between the classes (Noy, 2004). The ontology provides a formal description of a given

domain. Ontologies may also offer the benefit of reasoning. Semantic technologies are a

key factor for dealing with the huge amounts of data available today. Semantics map

expressions in a given technical format with things or facts in a given world (Vetere,

2010).

Without citing particular technologies, there exist three main ways to achieve semantic

integration. The distinguishing factor is where the integration takes place: in a

programming language; schema mapping using syntax; or through declarative techniques.

Additionally, the semantic integration can incorporate into a global semantic schema,

individual pairing, or some hybrid form. Although global schemas offer a direct clear

method for enterprise data integration, it falters with scale. The P2P method becomes

adaptive to larger scale data sources despite its initial startup costs (Zhou, 2010).

Effective methods employ a combination of the two.

Fundamentally, semantic integration techniques are similar to traditional techniques. The

key difference is where the integration takes place. Traditional methods integrate at the

technical level but not the semantic level.

Semantic integration typically integrates at the ontology level and involves ontology

mapping where the semantics are aligned between the data sources. Several methods

exist to align ontologies; a shared (or global) ontology where each source maps to the

shared ontology, heuristics, and machine learning. Shared ontologies map individual data

sources to an agreed upon ontology. There are several published ontologies helpful to

 47

shared ontologies such as DOLCE and SUMO (Noy, 2004). Heuristics take advantage

of various semantic algorithms using lexical and structural components to form an

alignment between two ontologies. Machine learning techniques cover various

procedures that associate terms with various methods that can include heuristics and/or

training. Noy further notes that declaration-based semantic integration improves the

description, explanation, conjunction, integration, and reasoning contained in the

information (Noy, 2004).

Formal ontology provides clear and definite semantic descriptions and offers a good

basis for enterprise information integration and semantic interoperability (Noy,

Semantic Integration: A Survey of Ontology-Based Approaches, 2004).

Multiple research efforts are focused on ontology mapping methods (Buccella, Cechich,

& Brisaboa, 2005), (Kalfoglou & Schorlemmer, 2003), (Kaza & Chen, 2008). These

techniques discussed automated methods, which have made great strides but still fall

short of comprehensive, understandable mappings. In contrast, manually supported

techniques are effective in offering visual interactions with a user. (Granitzer M. , Sabol,

Onn, Lukose, & Tochtemann, 2010). Other techniques emphasize adaptively employing

multiple strategies (Idrissi & Vachon, 2009). Additionally, there have been various

methods employed to evaluate the mapping effectiveness (OAEI, 2011), (Euzenat,

Meilicke, Stuckenschmidt, Shvaiko, & Trojahn, 2011).

Several types of mapping challenges exist between ontologies (Klein, 2001); language

level mismatches, ontology level mismatches, explication mismatches, and encoding

mismatches. Language level mismatches can be addressed somewhat through language

 48

translations. Ontology level mismatches include using the same concept term with a

different meaning - conceptualization mismatches. Explication mismatches result from

paradigm differences such as using different top-level ontology. Encoding mismatches

are caused by using different formats for measurements, time, and the like. Formally,

these mapping challenges are typically addressed by manual mapping (Noy & Musen,

2000).

Recent advancements in algorithms move the mapping from the individual names and

labels to the rich relationships found in the data context level. Context mapping takes

advantage of the relationships in addition to the term or symbol. Several methods exist to

provide some level of automated mapping (YongTao, FengJuan, & HuiJuan, 2010)

(Comito, Patarin, & Talia, 2006) (Doan & Halevy, 2005). Some methods focus on the

terms and use related information resources such as WordNet (W3C, Wordnet in RDF,

2011). Other forms leverage the context or relationships that surround the term. Both

types of solutions depend on a wide range of available semantic data to allow for

comparisons and enrichments.

The results of these mapping algorithms, despite being promising, do not fully merge the

ontologies successfully (Buccella, Cechich, & Brisaboa, 2005). Semantics is ultimately

a human invention requiring some level of human interaction.

Semantic integration can exist as a top down integration approach using a top-level

ontology or direct integration using a P2P model. The former depends on reaching an

agreement on the top-level ontology. Although possible in controlled groups, this is not

possible in large-scale integration effort that employ a large number of data sources with

 49

different owners. P2P technologies and architectures provide more scalability and

flexibility in addressing integration (Moujane, Chiadmi, Benhlima, & Wadjinny, 2009).

Extensive groundwork has been established for semantic integration in the last two

decades. For much of that time, there was a lack of a focused technology platform to

allow collaboration in creating, managing, and using semantic data. This has resulted in

isolated semantic solutions that contain potentially useful data, tools, and integration

approaches.

2.4.1 Semantic	
 Integration	
 Platform	
 –	
 The	
 Semantic	
 Web	

The emergence and evolution of the Semantic Web provides a common platform to

address the semantic issues. Previously, the diversity of plausible semantic solutions

impeded progress (Kalfoglou & Schorlemmer, 2003). The Semantic Web provides a

common, standard expression of semantics (Herman, 2011). The various Semantic Web

standards result in a platform that contains ontology and data languages, reasoning

constructs, various tools, and a growing body of available data and associated ontologies.

Contributions come from all major sectors including government (Government U. , 2010),

open source community (Bizer & al, State of the LOD Cloud, 2011), commercial

(MacManus, 2010) (Sindice, 2012), and many individual efforts (Foaf, 2010).

Additionally, mapping sites exist that expose mapping algorithms (Euzenat J. , 2008),

transformation methods, (Bizer, 2010) and semantic equivalence (sameAs, 2012) along

with many forums and conferences that share experience and skills.

 50

This extensive combination of standards, tools, semantic data, and shared experience

found in the Semantic Web offer a path to fulfill the promise of semantic integration

(Langegger, Wolfram, & Martin, 2008).

Semantic Web standards provide a common, accepted way to create, manage, and query

Semantic Web data. The key standards include:

Knowledge and Data Representation: Resource Description Framework (RDF)

provides a data structure, RDF Schema provides basic structure including classes

and properties, and OWL Web Ontology Language provides additional logical

expressions such as cardinally, equivalence, and class restrictions. These

representations operate under the open world assumption. This is conducive to

data integration due to its lack of non-asserted assumptions and openness to new

assertions including structural assertions.

Semantic Web Query Language: SPARQL offers a flexible and powerful method

to provide query semantic data (W3C, Prud'hommeaux, & Seaborne, 2008).

Additionally SPARQL offers a method (e.g. CONSTRUCT query) to add to the

data given underlying conditions in the semantic data. This can be used to form

subsets or add data in the form of a rule. SPARQL offers a web service standard

– SPARQL protocol for RDF (Clark, Feigenbaum, & Torres, 2008) to allow a

web service SPARQL interface. This combines with SPARQL 1.1 (Harris &

Seaborne, 2012) to allow federated queries.

 51

Rule Languages and Standards: Rules assist underlying logical ontology

constructs. They also allow fine grain control. Rules provide custom expansion of

the expressivity of the data representation. There are several rule standards, such

as Semantic Web Rule Language (SWRL) (Horrocks, Patel-Schneider, & Boley,

2004), Jena Rules (Jena, 2010), and SPARQL Inference Notation (SPIN)

(Knublauch, Idehen, & Hendler, 2011). Rule Interchange Format (RIF) provides

an overarching standard to provide a common rule exchange. (Kifer & Boley,

2010)

The standards allow for interoperable tools. The key tools include:

Reasoners: Reasoners provide inference to the ontology constructs. The RIF

standard categorizes the different capabilities of the available reasoners.

Currently, there exists a multitude of open source and commercial reasoners

compatible with the Semantic Web (Wikipedia, Semantic Reasoner, 2011).

Triple Stores: Triple stores provide storage for the semantic data. They also offer

various services such as a SPARQL query interface. A multitude of open source

and commercial triple stores are available (Wikipedia, Triplestore, 2012).

Programming Frameworks: Programming frameworks allow programmatic

interaction with Semantic data. The preferred framework is Jena (Apache, 2011).

Jena provides extensive methods to create, manage, and query Semantic Web data

and constructs.

 52

Ontology Integrated Development Environments (IDE): IDEs construct and

validate ontologies. There are several open source (e.g. (protege, 2011)) and

commercial versions of IDEs.

As previously mentioned, there are extensive amounts of Semantic Web data available

including rich domain ontologies and data. Correspondingly, there is a multitude of

transformation and alignment technologies and standards.

Large scale, high quality ontologies depend on effective and useable methodologies that

produce ontologies (De Nicola, Missikoff, & Navigli, 2009). Ontology engineering

provides formal methods to create and validate an ontology – “To provide a basis of

building models of all things in which computer science is interested in” (Mizoguchi,

1998). Creating an effective Semantic Web ontology benefits from ontology engineering

practices of formally defining the domain and associated semantics through logic

expressions captured in the ontology. Semantic tools such as Protégé allow these

expressions to be visualized and verified (Pouchard, Ivezic, & Schlenoff, 2000).

Ontology engineering outlines formal methods to design an ontology (Mizoguchi, 1998).

These include requirements to ensure the ontology is intelligible to both end users and

computers, allow combinations of ontological elements to form larger concepts, contain

both a conceptual layer and symbolic elements, and ensure the ontology can interact with

an object oriented computing language to fully exploit its potential.

The existing tools and the design of the semantic integration model adheres to these

requirements. The Semantic Web using OWL/RDF can hold complex concepts that can

 53

exist alone or as combinations of multiple concepts. Additionally, tools can extract the

concepts for user consumption contained in the ontology above the symbolic format

expressed in OWL and RDF. Thus, the semantic web can be both understandable by a

user while also being processed by software in a computer. The Semantic Web enables

adherence to the practices promoted in ontology engineering.

2.5 Emerging	
 Data	
 Sources	
 and	
 Semantic	
 Integration	

NoSQL databases contain structured and semi-structured data but lack semantics and few

standards. They exist as isolated databases that contain highly useful and timely

information. Thus, although the NoSQL database contains the richness of massive data,

they lack the standards and semantics to easily integrate this rapidly growing set of data

sources.

There is not a single definition of cloud computing and their associated databases

(Grossman & Gu, 2009). One clear division of cloud databases is between SQL and

NoSQL databases. The former contain traditional relational databases hosted in a virtual

environment as virtual appliances. This simply places the same technologies into a new,

more flexible virtual environment. The latter, (NoSQL databases) take advantage of

cloud dynamics for data and employ a simpler schema. The NoSQL approaches quickly

scale beyond relational databases. There is a clear need to investigate how different

NoSQL sources interoperate (or integrate). (Grossman & Gu, 2009)

Big Data databases can be segmented along several key data dimensions: consistency,

availability, and partition tolerance as detailed in Figure 7.

 54

Figure 7: Key Dimensions of Cloud Databases (Hurst, 2010)

Consistency ensures the same view of the data (Brewer, 2012). Thus the data source

doesn’t return different answers for the same question asked by different clients.

Availability ensures that the data source returns an answer. Partition tolerance ensures

that the data source can expand and distribute across multiple physical storage devices.

The three categories help to distinguish between the various data source offerings in the

cloud. This also points out the limitation since achieving high levels in one area may

prove detrimental to another. For example, a cloud database that maintains high

availability may suffer in consistency since the various nodes in a cloud may not always

be in sync. Correspondingly, a database that wants to provide high consistency may

lower availability to ensure all nodes are in sync. There is a multitude of types of NoSQL

databases and they continue to evolve. This is likely to continue as data requirements

evolve and grow.

 55

A multitude of data exists that is publically accessible via various NoSQL databases.

Amazon offers dozens of large data sets accessible via their cloud technology (Amazon,

Public Data Sets on AWS, 2012).

NoSQL databases focus on performance due to the scale demands. Three primary forms

of NoSQL databases exist: column, document, and graph NoSQL databases. These

databases are very different from traditional relational databases and focus on

reading/writing quickly, supporting mass storage, allowing for ease of expansion, and

low cost (Han, Haihong, & Du, 2011). Additionally, the databases incorporate a

flexibility not found in SQL databases because structural information can be added at any

time and may reside at any location within the database.

All three types of NoSQL stores operate on the basic principle of a key that ties together

common data to form a data record. For example, a column based store contains a row

that holds a unique key in one column followed by a column name such as “Department

Name” followed by a third column with the actual department name. The next row (or a

row anywhere else) holds the same key but the column name is different such as

“Department City” with the third column holding the city name. A document-based store

also maintains a key but the key binds to a document. Here a document does not refer to

a traditional MSWord document but rather a structure format in XML or JSON. Finally,

a graph NoSQL store holds a key that binds to many relationships such as Department

Name. The NoSQL graph database connects relationships at only one level (Neo4J,

2107). In other words, they are not full graphs that implement the concept of inheritance

(such as “human” inherits relationships associated with “living thing”). This constraint

 56

allows the same relationship processing as the other two types: column and document in

the semantic integration model.

All NoSQL databases embed the structure information within each record. This allows

each record to share the same structure, use a slightly altered structure such as adding a

new field like the email address, or use a completely different structure. There is no

enforcement on common structural elements. This flexibility provides a highly dynamic

store that quickly adapts to new, updated storage needs while preserving the existing data.

A structural change only impacts the newly added data. The existing data stays

connected to its original structure. Thus, structural information is spread throughout the

database. As the database grows, so do the challenges of finding the structural

information and keeping documentation of the database up-to-date.

2.5.1 Semantic	
 Cloud	
 Research	

Devising a semantic integration model for existing NoSQL data distributed throughout a

cloud is a key focus area. Cloud data integration incurs in two types of heterogeneities –

vertical and horizontal. Vertical represents heterogeneities within a single cloud. This

can be addressed with some level of standardization. Horizontal heterogeneity refers to

differences across multiple clouds. These heterogeneities prompt the use of semantic

integration models for integration (Sheth & Ranabahu, 2010). Related semantic

integration models that are based upon similarity link network (SLN) and association link

network (ALN) support cloud data integration (Liu, Lou, & Liang, 2009).

 57

Research in Semantic computing, which is a field associated with the Semantic Web,

combines various elements of semantics, natural language processing and data mining

(Wikipedia, Semantic Computing, 2011). Semantic computing attempts to extend the

Semantic Web’s breadth and depth through integration of the various cloud enabled

components from user interfaces to pervasive computing. (Sheu, Wang, Wang, & Paul,

2009). This forms a semantic computing architecture. Figure 8 illustrates the

architecture.

Figure 8: Architecture of Semantic Computing (Sheu, Wang, Wang, & Paul, 2009)

The Semantic integration agents in the figure transform and unify the underlying data

sources. In order to move this model into cloud resources, it has to overcome several

hurdles. Sheu notes that cloud providers have no standards, open protocols, or

discovered mechanisms. There is no global index that searches across clouds. They

 58

propose a Semantic Search Engine and note the compatibility of semantic computing and

cloud computing. A semantic search engine is analogous to a typical search engine

except that it considers the semantics behind the search such as context information. A

semantic search engine could employ custom algorithms, natural language extensions

and/or portions of the Semantic Web. It stores semantic information about Web

resources to allow for complex web searches through a semantic match rather than a

syntax match or other (Kassim & Rahmany, 2009). Semantic search engines offer a

flexible way to integrate various cloud stores.

Several research efforts aim to establish an ontology to describe cloud data resources

(Youseff, Butrico, & Da Silva, 2009). This could contribute to the simplification of the

overall data integration through an understanding of the various cloud components and

their relationships.

Several research efforts have attempted to put semantic data directly into the NoSQL

stores, employing the scalability of the NoSQL and enabling its ability to process large

amounts of data to run semantic reasoning (Zeyliger, 2010). This also allows SPARQL

query processing to integrate cloud stores through a query complier (Husain, McGlothlin,

Khan, & Thuraisingham). These solutions depend on the cloud data already having the

Semantic Web data, which is not typically the case.

NoSQL data management creates several challenges for integration of any kind. NoSQL

data is elastic only up to the point that it can be decomposed and parallelized. No data

standards exist within any NoSQL technology. NoSQL databases continue to evolve and

could change in incompatible ways. The data is often replicated across great distances

 59

incurring hidden latency. The databases were not initially designed as a complete end-to-

end analysis system (Abadi, 2009).

2.6 NoSQL	
 Data	
 Integration	
 	

Several methods have been proposed to integrate NoSQL databases using semantics

(Livenson & Laure, 2011), (Gagnon, 2007), (Cure, Kerdjoudj, Faye, Le Duc, & Lamollo,

2012), (Cure, Lamolle, & Le Duc, 2013). They each require an exhaustive analysis to

uncover structural information due to the NoSQL ability to hold structural information

throughout the entire store. Their solutions read every record in the NoSQL database to

determine the complete structural information. This is slow at best and intractable at

worst. Additionally, they do not take convergence on a topic domain into consideration.

Both limitations increase costs and time requirements, thus limiting the ability to explore

additional databases.

These methods take a traditional view of data integration and assume an exhaustive

approach will work, even at the large scale of a typical NoSQL store. Additionally, they

fail to note that the structures and relationships between the data are much simpler and

easier to use directly than the structure found in a relational database. The empirical

results presented in the papers cited above employed a small scale NoSQL database, and

only investigated small databases. Further, they did not consider the creation of an end-

to-end integration using ontologies as a proxy for the native data store, but only

transformed the database structure to an ontology.

 60

2.7 Summary	

Data integration should consider an end-to-end approach that includes transformation,

representation, unification, and alignment performed in methods that maintain the

alignment with the data sources and user objectives. Such a collection of various steps

and techniques resulted in an ideal integration model. This serves to compare and

contrast the various integration solutions.

Traditional integration methods suffer from extensive customization that results in brittle,

time consuming solutions that fail to maintain alignment with dynamic data sources and

user information goals. They also neglect to address the many data failures increasingly

evident in large data integration efforts such as conflicts, duplication, missing

information, and errors. Traditional integration remains constrained to its initial scope –

a few well-controlled data sources of moderate size and typically in relational database

formats and technologies. Traditional methods bind syntax and formats without regard to

semantics. The semantics are contained in the enveloping application and/or the actual

user.

Semantics integration offers a credible method to enable integration across a broad set of

diverse data contained within multiple technologies because semantics pushes the

integration point above the technology complexities. Formally, most of the useful data is

not in a semantic form and contains little semantics. NoSQL stores, given their inherent

simplicity, offer at least basic semantics - semantics useful enough to expose to a

business user. Even if the semantics exist in a standard ontology, ontology alignment

 61

techniques used for integration have failed to completely unify the various ontological

structures through automation. This forces manual mapping to overcome impeded, large-

scale integration. Several attempts have combined visual techniques with automated

techniques to advance integration. However, many semantic attempts have been held

back by the lack of standards and tools. This resulted in isolated solutions.

Semantics have now evolved into the Semantic Web that maintains widely supported

standards in RDF, OWL, and SPARQL to name a few. This has spurred the development

of an effective platform to build, store, reason, and query semantic data. Such a platform

results in a multitude of semantic data and associated ontologies. This provides an

opportunity to use this semantic platform and its associated data to further advance data

integration. Additionally, reasoning and ontology enrichment can further advance the

inherent basic semantics found in the NoSQL data source. Visualizations have also been

developed to reveal the underlying semantic patterns allowing the non-technical user to

assist and guide an integration effort rather than just a group of technical experts. This

allows the data integration to evolve to the business needs more precisely and more

rapidly.

Finally, the current methods are further challenged by the increasing business dependence

on NoSQL databases. Their sheer scale precludes many integration approaches due to

time and size constraints. But they also fail to deal with the dynamic structures and

evolving proprietary NoSQL technologies or benefit from the simpler, more direct

artifact names found in NoSQL databases. Fortunately, NoSQL databases offer basic

semantics and minimize or eliminate complex relationships.

 62

3 Chapter	
 3:	
 Method	

3.1 Semantic	
 Integration	
 Model	

The semantic integration model advances the current integration approach by moving the

integration focus from the technological underpinnings of data to the semantics of data.

The shift improves the creation and adaptability of integration solutions for the rapidly

emerging NoSQL databases. This semantic integration perspective becomes achievable

as a result of the advances in the Semantic Web and associated user interfaces, which

offer standards, tools, and knowledge sources to realistically enable semantic integration

along with the complementary profile of NoSQL technologies.

The model recognizes the strategic role of the user, especially the non-technical user,

through creating an integration framework that allows continual user guidance to focus

and direct the integration. This allows disparate data source extractions to dynamically

adapt and unify to meet the specific user’s needs. The user plays an active role

throughout the process of collecting useful results. This is a key success differentiator

because semantics are ultimately a human artifact. This exposure of semantics rather

than technologies allows the user to contribute to the integration itself. User self-

direction allows the effort to converge on the user-intended solution rather than depend

on a removed set of technologists and the time delay associated with such an effort.

The model also recognizes the strategic (and rather obvious) role of data sources and the

dynamics of changing contents and structure. Data sources come and go. Data structures

change. The model offers adaptability to recognize and incorporate these changes

 63

without catastrophic hurdles throughout the integration process. The semantic integration

model creates a decoupling between the semantics and the various data sources allowing

data sources to join and separate seamlessly.

These two key aspects - user role and data source adaptability of the Semantic Integration

model - gracefully permit both user and data source dynamics, a key in large-scale

integration across diverse interests and technologies.

The model is explored in three levels: conceptual, logical, and application. The

conceptual model ties the various components to the ideal model for transformation,

representation, unification, alignment, and adaptability. The logical model ties the

logical concepts to specific technical components, standards, and data sources through

defined methods. The application model ties the model and methods to an actual

implementation suitable for a rigorous evaluation.

The evaluation of the model uses two approaches to provide appropriate triangulation.

The first interviews executives with business responsibilities involving data. The second

uses an actual implementation of the model to enable users to interact with its visual

artifacts to accomplish a defined task. Finally, participants from both approaches provide

feedback on the method in terms of usability and ease of use when compared to existing

alternatives.

Overall, this approach maps to the design science method that demands artifacts, problem

relevance, rigorous evaluation, and the incorporation of existing aids.

 64

3.2 Structural	
 Analysis	
 of	
 NoSQL	
 databases	

Extracting useful structural artifacts from a NoSQL store forms a major assumption of

the method. Relational models offer standard structure extraction with complex tools

such as the Erwin modeler to dissect and picture the complex structure. However,

relational databases have very complex models with many indirections of the data based

on the various relationships. NoSQL models lack the benefit of easily identifying the

structures contained in the database. An important deduction in support of the method is

the validation of this assumption.

Relational databases are constructed of tables and relationships among the tables. Each

relational table has one defined structure and all records in the table strictly adhere to that

defined structure (Date C. , 2005). NoSQL databases have the notion of tables but allow

for multiple structures within the table. The fields contained within each structure may

vary significantly. For NoSQL databases, a table is merely a collection or grouping of

records where each record within the table defines its structure. The same structure

might be repeated throughout the table, or many different structures may exist within the

same table. The structural flexibility of NoSQL databases allows the table to evolve and

grow rather than have to be reconstructed when any change in structure occurs. To this

point, the NoSQL databases have different names for this structure. Cassandra

(Cassandra, 2016), calls it a column family while MongoDB (MongoDB, 2017) calls this

structure a collection, and Neo4J (Neo4J, 2107) calls it a node. Each adheres to the

concept of a collection of records heretofore referred to as a table. Focusing on the

performance and scale rather than data integrity, transactions, and complex relationships,

 65

this table delineation in NoSQL tables achieves some logical or performance-related

partitioning. However, the structural flexibility disallows a simple extraction of the

structural information contained in a NoSQL table, requiring advanced technical skills to

retrieve the native data. The semantic integration method aims to identify the structures

of each table to assist business users, with limited technical skills, in retrieving and

integrating data from NoSQL databases.

After reviewing the various documents of several relational and NoSQL databases

(Oracle, 2017) (MongoDB, 2017) (Accumulo, 2017), Table 1 outlines the key differences

and their impacts for NoSQL databases. It can be concluded that NoSQL technologies

support the creation of a simpler, non-normalized structure without complex relationships

to other tables within the database. However, the structural information is stored

throughout the database and supported by a harder-to-find technical skill base. A detailed

discussion follows the table.

Table 1: NoSQL databases compared with Relational Databases

Capability Relational DB NoSQL DB NoSQL Impact

Atomicity Transaction Row, Column,

Document

Discourages cross-table

relationships

Consistency Transaction Eventual May reflect different

answers to the same query.

Isolation Transaction Row, Document Discourages cross-table

relationships

 66

Durability Full Audit Trail Not Assured Redundancy protects the

data

Data Size Limited Practically

Unlimited

Limits data movement

Distribution Limited Practically

Unlimited

Rapid expansion, scale as

needed

Structure Relational Column, graph,

document

No standard structure

Structure

Information

Centralized

retrieved with call

Decentralized

across the entire

store, part of every

record

Flexible structure stored

throughout the database

Structure

Semantics

Often attempt to

reflect complex

relationships

through the

structure

Simple

straightforward

structure due to

external use and

lack of representing

complex data

elements

Simple, non-normalized

structure

Structure

Complexity

Relational

complex with

many cross

Minimal cross

references –

strongly

More straightforward

structures, limited cross

references

 67

references discouraged

Normalization Encouraged and

supported

Not encouraged Repeated information

throughout, avoids need for

cross references

Skill Base Established and

plentiful including

certifications

Rare with spotty,

proprietary

certifications

Difficult to acquire the

technical staff necessary to

extract value

Maturity Mature Rapidly Evolving Difficult to form any

standard, constant

expansion of capabilities

Emphasis Consistent

Information

Massive

information ingest

and retrieval

Speed/Scale over data

protection

The first four rows deal with the ACID qualities – atomicity, consistency, isolation, and

durability. NoSQL databases focus on flexibility and lack of coordinated transactions.

This limits reading and writing atomically related information in multiple locations with

assured consistency. Consistency beyond basic atomicity enforced at single record levels

provided by NoSQL databases require complex external controls – this strongly

discourages rich relationships outside of the limited atomicity. Since it is not possible to

maintain full consistency, NoSQL stores minimize or lack complex relationships that

cross many tables. Hence structural analysis need not focus on extracting rich

 68

relationships. Additionally the durability feature is swept away by the sheer scale

limiting useful extractions used in traditional data warehouses and data marts.

The next section in the table focuses on scale. It is not surprising that NoSQL databases

focus on scale – initial scale and the ability to scale as demand increases, whenever that

occurs. This requires spreading out the data to multiple servers, fostering inconsistency

across the data since there is no physical way that an update can propagate to all the

NoSQL servers simultaneously. The only way to accomplish consistency would be to

lock all the relevant areas until all areas are updated – this would simply take too much

time and is usually avoided. In contrast, the NoSQL stores employ non-normalized data

and freely repeat information throughout the store. Therefore, NoSQL databases cannot

guarantee consistency but are only designed for eventual consistency. This also extends

to structural information and no simple access method can retrieve the entire structural

information. Additionally, the size requires dynamic structural information because it is

unfeasible to discard the database and start over due to an updated structure. NoSQL

structure, unlike the strict control found in a relational database, allows changes in

structure at any time, stored at any location within the store. Fortunately, the structure is

tightly bound to the contents, which repeat the structural association. Therefore, the most

employed structures are repeated the most, and vice versa. The NoSQL structures tend to

be simpler with fewer relationships than those found in relational databases and are

distributed throughout a larger store. Popular structures repeat throughout and thus can

be found more easily.

 69

Finally, while relational databases are well established with standards, NoSQL are

rapidly evolving. The latter currently offers no standards. NoSQL database evolution

continues to offer new features, including features that create incompatibilities with

previous releases. This evolving target pushes standards even further out and

standardization is unlikely to appear in the near future. The evolution, lack of standards,

and newness of NoSQL databases creates a skill shortage and requires custom work to

extract data from each NoSQL database. Thus, technical skills are a constraint on the

value of NoSQL data due to their scarcity and the common requirement to access the data

via custom technical work.

In conclusions NoSQL data models reflect a simpler data model that often contains

straightforward semantic information. Relationships are replaced with non-normalized

repeated data and structure. The structure is stored throughout the database and is tightly

bound to individual data records. NoSQL methods that read and write data are still

evolving and currently offer no standard methods. This directly benefits the model in

multiple ways: complete structural information can be found throughout the store; the

model is straightforward with few, if any, relationships to other models; and the

technology continues to evolve creating challenges for the technical staff. The semantic

integration model is beneficial in extracting key information from NoSQL databases

without technical skills and the extracted information offers useful descriptions of the

data. This allows a non-technical user to quickly review multiple NoSQL sources and

provide direct, useful information for NoSQL integration as well as reviewing the

integrated database for completeness.

 70

Relational databases hold many types of relationships such as one-to-many, many-to -one,

and many-to-many. These relationships form constraints as well aid in data normalization.

Tables are required to maintain many of these relationships and the table and column

names reflect these relationships such as ‘Person2Organization’ and ‘Postition2Role’.

These names obfuscate the semantic meaning and present difficulties in extracting useful

semantics directly from the labels and names used to describe the tables and fields within

a database. Although relational databases could fit into the overall method, this

complexity excludes them from consideration. Additionally, many tools exist to examine

and interact with the relational data model but they still require extensive technical

expertise to understand the complex relationships.

3.3 Conceptual	
 Architecture	

The conceptual architecture contains the key integration steps in producing useful

integration results as shown in Figure 9. This aligns with Figure 2: Ideal Functional Data

Integration Model. Transformation and representation convert data sources to their

semantic form. Unification establishes a unified data model. Alignment creates and

maintains the focus of the integration on the desired results and integrated data sources.

These steps collectively move data from its various technologies, formats, and individual

semantics to a form useful for the user. Adaptability allows the user to update integration

due to new data sources, updated data sources, and/or new business opportunities.

 71

3.3.1 Overview.	

Figure 9: Conceptual Architecture

Rather than a static and batch approach typically employed by traditional methods, the

semantic integration model continuously adapts through a progression of user-initiated

and system automated methods. This iterative, adaptive approach allows on-demand

integration rather than a priori integration. This allows the integration to converge on the

complete integration solution and form it as one learns about the data and the business

opportunity throughout the process. Semantic integration properly incorporates changes

in the data sources and/or in the user focus. This approach enables rapid composition in

the early stages of the integration effort and conveys early, up-front value to the

integration while helping guide further investment in the integration effort.

 72

The sections below provide additional details on the various conceptual components,

their interaction, and relevance to producing useful information for the non-technical

business user.

3.3.1 User-­‐Driven	
 Dynamic	
 Semantic	
 Dialog	
 to	
 enable	
 Integration	

Convergence	

Data integration ultimately serves a data user. Integration provides a useful meaning to

the underlying databases that serve that user. The interpretation of meaning is subjective.

Therefore, semantics starts with the person who can best provide the meaning behind the

integration pursuit – the business user.

The semantic integration model absorbs this user meaning in an iterative manner through

a semantic dialog. The semantic dialog provides the initial semantic seeds to start the

integration and the semantic guidance to fine tune and refine the semantic integration.

The dialog forms a partnership with the user in creating the integration solution – the user

provides their semantics while the integration offers continually refined semantic data.

The conversation continues until the user converges on the required information derived

from the on-going Semantic integration. The conversation starts with examining data

candidates for possible inclusion and proceeds until the business user is satisfied with the

integrated data from the various data candidates.

The Semantic Web enriches this dialog through the many existing semantic data sources

and methods. The user and the Semantic Web partner in developing and refining a path

to the desired integrated information from multiple NoSQL databases.

 73

3.3.2 Transformation	

Transformation identifies the structure and contents of the database. Transformation

handles the impedance mismatch between the underlying data technologies and the

semantics useful to the Semantic Web. It is an iterative approach. Each newly

uncovered structure is included. Transformation eventually converges on a complete set

of structural information, which is key to identifying the contents. In addition to the key

structural elements and associated data, transformation also identifies technology

specifics. The latter provides the technical information necessary for the actual

integration.

3.3.3 Representation	

The identified structural elements in the common format received from Transformation

are then converted to the Semantic Web using OWL and RDF conversion. This creates

an ontology with associated instance data.

Standard Semantic Web tools such as reasoners and visualizers can use the resulting

ontology. The richness of semantics web technologies enables a more complete capture

of the underlying data concepts and their associated relationships, for the expressiveness

of the Semantic Web far exceeds that of NoSQL databases.

The representation maintains information to obtain underlying data from its native source

and format when requested. Thus, a Semantic Web query via SPARQL is converted to

other various native data commands, as required by the underlying technology. For

 74

example, the SPARQL call is converted to a proprietary NoSQL query. This has the

added benefit of not requiring data duplication and its associated data movement latency.

Finally, many tools offer a powerful, interactive visualization of the ontology. This

allows business users to inspect the structure and associated data for possible inclusion

into an integrated knowledgebase as well as reviewing the integrated data for

completeness for the given task. This is key to the iterative, convergence-based

integration driven by a non-technical business user.

3.3.4 Unification	

Semantic Unification combines and unifies the various semantic transformations. This

further enriches and reduces the integrated data.

Unification consists of two distinct areas that work together: methods to recognize

semantic similarities and data conflicts combined with semantic enrichment via external

Semantic Web data sources.

The Semantic Web offers several advantages to unification. The Semantic Web

standards require the same format and uniqueness for all Semantic Web data resources.

Thus, Semantic Web data exposed via semantic transformation can easily be combined

due to the uniqueness of every data element. The uniqueness is made possible due to the

Unique Resource Identifier (URI) contained in every Semantic Web data element.

Additionally the Semantic Web provides constructs that allow merges between the data

elements without destroying the original data. Logic statements assert the equivalence of

 75

both data classes (e.g. Person equals Human) and data instances (e.g. Joe H equals Joe

Hanover). Upon the removal of these statements, the data reverts to the original

differences. This allows for corrections and updates.

Additionally, the many available semantic analytic tools and reasoners can process the

combined semantic integration. The analytic tools correlate information and repair errors.

This can be done iteratively (and even be removed on discovering an incorrect unification

step). The unification structures can be built upon and analyzed for future efforts.

External semantic sources can provide additional semantic context to determine

similarities/disjointedness and deal with data errors such as missing data, conflicting data,

and errors. The external sources complement the primary data sources.

3.3.5 Alignment	

Alignment is the process that allies the complete integrated data with the business user’s

needs for data. Alignment is a continual process for the user may need to include

additional data, the underlying integrated data may change, and the business opportunity

itself may change. The semantic integration methods stay aligned with these changes.

Several areas within the semantic integration method assist alignment: initial review,

updated review, integrated data review, and selective query. These alignment review

areas require the rapid analysis provided by the semantic integration method. The user

can quickly review a NoSQL database candidate, review an include NoSQL database for

any change, review the complete integrated NoSQL database, and selectively provide a

query that provides detailed integration results.

 76

The Semantic Web offers key assistance in alignment for the semantic integration method.

The Semantic Web standards provide guidance and a powerful query language. The

relationships between data are themselves semantic, enabling a meaningful traversal

through the data. Additionally, many Semantic Web sources exist to help define and

focus a particular area of interest. Finally, various alignments can co-exist with the same

integrated data. This allows multiple perspectives and does not force a common view.

These perspectives can conflict with one another, build on one another, or simply be

completely independent.

3.3.6 Adaptability	

Similar to alignment, adaptability exists throughout the various components. Adaptability

continuously adjusts to changes and refinements driven by the Semantic dialog with the

user, as well as changes to the data sources. Data source can changes vary from the

addition of entirely new data sources to data structural changes to data changes.

The Semantic Web and its inherent semantics offer several ways of dealing with changes.

The first level is the open world principle adhered to by the Semantic Web. This allows

the addition of new data and structures without conflicts. Thus, the semantic structure of

the integrated data can form to a structure that adapts and forms over time. There is no

need to “get it right” the first time. The structure can take shape over time. Additionally,

the ability to provide logical constructs allows a reasoner to adjust to changes by

providing the logic to recognize and reorganize when change occurs.

 77

Adaptability is the key that drives the overall integration effort. The user starts with a

basic integration request that builds over time based on what the system incorporates and

what the user learns. This allows the incorporation of learning from the user as the user

explores the available data. The user need not know the final form of information

required but rather just a starting point. This adaptability not only maintains alignment

but also builds the initial alignment. The integration self-forms over time given the

available data and the guidance of the user.

Adaptability employs convergence to incrementally and iteratively form the integrated

data. Convergence maintains a know nothing approach to integration that learns over

time. This is completely opposite from traditional integration which maintains an a

priori view towards the data model and associated integration. Thus, the data is

assembled as needed without any prior knowledge. Each data source is added until the

business user is satisfied that it would address the business opportunity.

3.3.7 A	
 Conceptual	
 Example	
 	

An example helps to illustrate how different components from the conceptual architecture

work together to build a useful integration from multiple data sources.

The user, having a specific business use case, requires relevant data. The user identifies a

set of potential candidate NoSQL databases. The method allows the user to quickly

review the contents of each database candidate. The review allows the user to select the

entire data candidate or just certain tables and fields. Once selected, the meta-data

regarding the NoSQL technology and associated structure is stored in an integrated

 78

ontology. This process continues through each candidate. As each candidate is evaluated,

the user studies the integrated ontology for suitability. If the user finds the integrated

ontology complete, the user can then request the integrated data. The semantic

integration method then uses the meta-data stored in the ontology to retrieve the data

from the native NoSQL sources and present the results. Even at this point, the user is

free to add additional NoSQL sources if the results are not sufficient to aid the

opportunity or if the opportunity has changed.

3.4 Technical	
 Architecture	
 and	
 Process	
 Flow	

The technical architecture follows the constructs of the conceptual architecture. Figure

10 provides an illustration of the technical architecture and associated process flow. The

method provides an iterative, user-driven approach to evaluating and integrating

databases focusing on NoSQL databases. The method consists of six phases, as outlined

in Figure 10. There are two main branches represented by the two columns in the figure.

The left column determines the inclusion of a specific database candidate of one of the

three forms of NoSQL: document, column, or graph. Its goal is to provide useful

structural information of the candidate store for review. The right column incorporates

accepted integration candidates to form an integrated data domain of interest to a specific

user pursuit. The two columns work together to iteratively and incrementally form a

useful domain of data. In fact, the two columns are fundamentally the same but employ

different levels of databases. The left column integrates an actual NoSQL database,

whereas the right column integrates the selected databases to form the integrated database

domain useful for the non-technical business user’s opportunity.

 79

Figure 10: Technical Architecture

3.4.1 Data	
 Sources	

Integration depends on the data from databases. Semantic integration enables the

inclusion of NoSQL data. The technical architecture selects several different examples of

NoSQL technologies to best illustrate its abilities to handle and integrate data from

various data technologies and sources. NoSQL stores exist in three major forms: graph

 80

(e.g. Neo4J), document (e.g. MongoDB), and column (e.g. Cassandra). The method

allows re-inspection of a given data source if changes occur or are suspected.

3.4.2 Transformation	

The first step in processing information from a data source is transformation. This

translates the various platform, technology, and formats found in a common data

structure that includes the domain of the data and the technology factors required to

integrate and query the data.

Semantic transformation consists of two steps: Native Probe and Content Analysis. The

Native Probe uncovers the type of NoSQL technology by attempting to interact with the

various communication ports and NoSQL protocols. This assumes standard ports, which

is the typical case, while also allowing these values to be overridden. Figure 11 outlines

the major steps.

Each NoSQL technology uses standard, defined ports and protocols. Thus, the native

probe assembles a NoSQL technology characteristics list that includes the standard ports

protocols, and programming interface for each supported NoSQL database. The probe

selects the first set in the list and uses that information to attempt a connection to the

identified candidate. If the selection is successful, the transformation continues to

content analysis. If not, the probe moves to the next entry in the list. This continues

until a connection succeeds or the probe exhausts the list. The latter case indicates that

the probe was unsuccessful in identifying the candidate.

 81

Figure 11: Native Probe Process Flow

Figure 12 outlines the Content Analysis process flow. The first step calculates the length

and random location of the record request based on the type of store, table size, and

resolution factor. The method then retrieves a random sample of NoSQL records.

Figure 12: Content Analysis Process Flow

The method employs the sequential sampling method. This requires a sampling plan that

outlines the sample size of records within a given table and the number of attempts to

 82

ensure an effective review of possible structures within the table (Wald, 1945). These

parameters can be adjusted as needed. Initially, the method uses the table size to

determine the sample size and number of attempts. Basic field trials determine a useful

sample size and convergence attempts without uncovering any new structural information.

This sampling method could indeed miss some structural information. Given that the

structural information is repeated for each record, dominant structures would almost

assuredly be identified with raw structures possibility being missed. The user is free to

tune the parameters according to their needs to identify all structures (takes more time) or

just the main, popular structures (takes less time).

The received records are analyzed for structural information. For each new sample, the

Content Analysis determines if the new records contain new structural information. The

structures are compared using string matching for each structural member. The method

would recognize similar but different structures as different, leading to some unnecessary

duplication for the business user. However, these subtle differences are required for the

actual integration with another database.

New structural information is added to the source description. The method continues

requesting additional random records until the method reaches a steady state (hence, no

new structural information is added after a defined number of trials). This results in a

rapid review of the structural information without the need of exhaustive examination.

Of course, using the sampling method may lead to missing a key structure (and hence

data element) but structures in NoSQL repeat with each record. This provides a

statistical view that may miss only a small amount of structural information, if any at all.

 83

The factors can be adjusted to accommodate different needs as to the capture of the

structural information. The speed of this approach allows fast rapid updates. In a sense,

this approach integrates a comprehensive structural view across the single store. This is

actually a form of integration since structural information in a NoSQL store can be quite

diverse.

The Content Analysis could use simple or sophisticated comparisons to determine new

structural elements. Given the relative simplicity of NoSQL stores, simple string

comparisons may be sufficient. However, extensions using semantic logic and word

similarities can extend this capability, if required. This could be accomplished iteratively

if, as one uncovers the structure, additional semantic methods could help better reveal it.

Content Analysis completes with a set of structures extracted from the sampling process.

The structures contain the databases, tables, and column elements with an example value

for each structural element to aid comprehension.

3.4.3 Representation	

Representation contains three steps: normalization, semantic conversion, and

visualization.

Representation converts the structural information received from Content Analysis to a

Semantic Web Ontology in OWL and RDF. This establishes classes for the database,

database table, and class attributes for each column name, along with example values for

 84

each data element. Relationships are also created to represent the containership of the

database and tables.

Representation takes advantage of the various advances in ontology mapping and

ontology alignment. The alignment API (Euzenat J. , 2008) allows a flexible way of

mapping and sequencing multiple alignment analytics to unify the analytics results. This

includes alignment confidence where the user can set the level of precision and recall,

based on acceptable levels of false positives and false negatives.

Representation can leverage the many existing ontologies found across the Internet (Pride,

2010). Semantic Unification can use this service and others to find and integrate a

compatible ontology. The ontology contains logic and context to enrich the integrated

data while also correcting it.

Figure 13 details the transformation.

 85

Figure 13: Semantic Conversion: From NoSQL to an Ontology

The left most boxes reflect the generalized nature of a NoSQL database containing

databases, tables, and records. Each technology may employ different expressions, but

they essentially are the generalized form of a NoSQL database. The database and table

names typically provide semantic information as the above example demonstrates.

NoSQL structures are simple and thus often rely on common, everyday words. They lack

the need to construct complex relationships found in relational databases. The simplicity

of NoSQL allows a simple capture of this structural information directly. Thus, the

database and table names often provide useful structural semantic information. The

middle column of the figure illustrates the three types of NoSQL stores. Starting from

the top, they include column, document, and graph. These usually also contain useful

 86

semantic information. This example shows the same record information in the three

different formats.

The conversion takes structural information from both key areas: database and table name,

as well as the record information, to form the ontology. This enables two dimensions

within the ontology – a structural approach based on the technical structure and the

domain structure. The technical structure allows navigation through the structure based

on databases and tables names (including the size and technology type), which is

essential to actual data integration. The domain structure allows the non-technical user to

view the structure example data and determine its usefulness for a given business area

divorced from the technical underpinnings. The record information also contains an

example of the actual instance such as the Name being John. This allows an additional

level of introspection on the structure if the record name is unclear. For example, if the

column name was simply ss but the instance data was 123-45-8976. The user could

correctly conclude that the ss column represents the social security number. The

ontology also includes both the technical descriptions necessary to perform an actual

technical integration such as the technology, database name, table name, and query string.

Given multiple structures within a table in NoSQL databases, a new table instance for

each structure is created in the ontology as a new structure is uncovered. Therefore, a

given table would contain several instances each containing different fields and different

query information. The user is free to select any number of structures from the table.

Additionally, a count of records mapped to that structure is included in the table,

reflecting a magnitude of that particular structure.

 87

Representation results in an RDF/OWL ontology that captures the structural information,

the technical information required for integration, and actual parameters to extract the

data if the candidate is selected. Figure 14 outlines the ontology structure used to describe

the NoSQL database.

Figure 14: Foundation Ontology

The unshaded rounded rectangles represent classes. The shaded rectangles represent

actual instances found in the database. The ontology enables two distinct paths through

the structure. The technical path identifies the database and tables. The domain path just

goes right to the tables. A table typically contains semantics regarding the contents and

thus starts the domain. The table contains records or fields with each having a

representative actual value. This allows the user to examine not only the table and field

 88

names but also the values contained within the field. The values fall into two categories:

domain or technical. The former contain the actual business information. For example, if

the record name is “stock price” the value would be the actual price, such as $50. The

latter contains technical integration information. A record count is included to indicate

the amount of the information contained in the table.

This ontology provides a rich semantic context that includes the database name, the table

name, the field name, and a sample field value. Together they provide a semantic

understanding of the contents. Any one value by itself, may not be sufficient to

determine the contents and certainly not enough to set up an actual technical integration.

For example, just knowing the title of the database would typically not be enough to

determine its value for a given business opportunity.

The table instance also contains the technical information to allow for integration such as

the URL, port number, login information, and query parameters. The query parameters

allow the integration to retrieve the table elements when needed directly from the native

NoSQL source. Thus actual data movement is not required until requested by an

alignment request. The data stays in place in the native NoSQL database. The integrated

data is up-to-date.

The ontology is constructed by recursively exploring the structure data returned from the

probe phase. The exploration starts with each database contained in the NoSQL

technology. For each database, the tables are identified. For each table, the structures are

recorded with example values for each field. Each record is connected to a table and

each table connected to a database. Each table contains all of the technical information

 89

required to retrieve data when needed. The various NoSQL technologies do not always

use the same terms as databases and tables but the concept remains true across the wide

range examined for this research.

Representation can also employ semantic reasoning and logic to further compress and

enrich the ontology. For example, using WorkNet’s ontology (University, 2013), the

structure could compress similar words. A simple enrichment with a geographical

ontology/database could expand MD to Maryland. Semantic reasoners could recognize

similar patterns and add relationships. Additionally, machine learning or similar

analytics could eliminate superfluous characters to clarify the actual meaning of the

semantic word.

Ontology visualization displays the structure to a business user for their consideration.

Ontologies offer many standard tools to visualize the structure and instance data. This

allows a non-technical user to examine the structure, in semantic terms and relationships,

for consideration in building a large integrated database. The ontology visualization can

be driven by the SPARQL query language that focuses on the domain, the technical

structure, or a given area through standard SPARQL calls, thus reducing the complexity

of a large structure. Figure 15 provides an example of an ontology visualization.

 90

Figure 15: Structural Visualization Example

The ontology visualization example includes both the technical structure and the domain

contents. The latter is key to evaluating its business use for integration of the data. The

former is key to actually perform the technical data integration. In Figure 15, the

database is called stockinfo, which contains a table called ibm. The table holds a record

containing multiple fields such as High, Date, Open, and Ticker. One record is displayed

with values to provide additional context to each field name. So ‘hasValue’ can be

interpreted as the stock price. Additionally, the table provides technical information such

as the host name, connection port, and technology type – all essential in performing an

actual integration. The visualizations employed the open source ontology tool Protégé,

which also validates the ontology constructs.

 91

3.4.1 Unification	

Unification consists of two stages: Candidate Integration and Normalization. The latter

stage employs many of the same methods used in Representation since both data sets are

in the standard ontology form of OLW/RDF.

Candidate Integration with the Semantic Web is a simple aggregation. Since each data

source employed a unique descriptor (URI) in the ontology, the combined data sets do

not contain any conflicts. All the statements simply combine.

Although there are no conflicts due to the uniqueness of the URI, the newly aggregated

database could contain duplications at two levels – concept duplication (e.g., each

integrated database contains a table statement that is the same concept in all the

integrated stores), and instance duplication because both could contain the IBM

Corporation. Despite the same information and/or the same concept, each contains

different URIs reflecting their different databases origins. This not only prevents any

conflicts but also obfuscates the same data artifact as two distinct items.

Unification identifies duplicated concepts through the same identification process used in

the candidate normalization but limited to the last field in the URI. On recognition of

duplication, unification uses OWL:equivalentClass for merging concepts and

OWL:sameAs for merging instances. This treats two or more different records as

logically equivalent. Thus, the OWL:sameAs applied to these two table URIs referred to

as URI1 - http://nosql1/stocktransaction and URI 2- http://nosql2/stocktransactions

merges them as completely equivalent. A query that used the first or second URI would

 92

return both. If indeed they contain duplicated information, adding the unique keyword to

the query would eliminate the duplication. If the duplication strains storage, a semantic

rule could be applied to delete the redundant information. The flexibility extends to

corrections. One only eliminates the OWL:sameAs statement to separate the concepts

back into the two original different concepts.

Figure 16 illustrates an ontology normalization example. The original knowledge base

contains a table, ibm, that contains stock information. The illustration presents two

candidates to the right. Both could be integrated using OWL:sameAs. The upper right

augments the table entry of ibm with office information. The lower right augments with

additional stock information. The user can examine specific values to see if this database

merely repeats the information or adds information from different dates.

If the user requested a query that referenced either the ibm table in candidate 1 or the ibm

table in candidate 2, the aggregated results would return from the query. Thus, the query

would return not only the stock price information from candidate 2 but also the office

information from candidate 1.

 93

Figure 16: OWL sameAs Semantic Equivalence

A sample query is as follows:

Select * where {

<Candidate1 URL>/ibm ?relationship ?value.

}

Code Constructs 1: Integration SPARQL Query

The SPARQL query in Code Constructs 1 lists Candidate 1. The processing would

expand the list to Candidate 2. This would then retrieve both tables from the different

NoSQL databases. Each table contains the necessary information including the NoSQL

database type and interfacing information, such as URL location, login information, and

the native query command. In turn, each native table is queried with the results

converted into an ontology. Unlike before, where only the structural information was

 94

converted, the integration converts the entire results of the query representing all the

pertinent data. This ontology is then integrated into the knowledge base simply by

adding all the statements in it. The knowledge base already contains the equivalence

statements and thus drives the normalization. Once complete, the entire query is rerun

with the contained information now in the integrated database and provided to the user.

The integrated knowledge base remains an ontology that contains the logic fields with the

Semantic Web equivalence statements used to normalize the ontology.

The actual data integration employs the technical fields contained in the ontology to

extract the data requested for the integration. This includes the address or URL, the port

configuration, login information, and query parameters. This can be accomplished in two

ways – forward or backward integration. Forward integration pulls in the data at the time

of the integration. Backward integration pulls the data when the user requests the data

from a query. Forward integration allows fast retrieval of the data by the user, as the data

is already present but may require more space to fill all the data – much of which might

never be requested. It also quickly gets out of sync with the native store. Backward

integration maintains the latest data since it is coming directly from the source.

Backward integration is the preferred method since it doesn’t duplicate information and

always has the most current information. With proper architecture, the retrieval of

information from multiple stores can offer high performance since the operations can

happen in parallel.

 95

3.4.2 Semantic	
 Alignment	

Semantic alignment uses the visualization of the integrated database to determine if the

database is complete. Semantic alignment uses the same standard ontology viewing tools

as the Representation stage does. Nevertheless, the visualization contains the integrated

database not just the candidate.

The ontology visualization tools allow selection and filtering of the integrated store.

Additionally, a query using SPARQL can further focus the visualization on the area of

concern.

Semantic Alignment maintains the focus of the integrated data on the user’s domain of

interest. The alignment can offer multiple steps to allow the user to converge and focus

the domain data on the intended integrated business data results. Additionally, SPARQL

and corresponding ontologies provide a rich framework to capture the intended area of

interest. The results from SPARQL queries allow the visualization to adapt to the user

needs. For instance, the user might just want to see the top-level structures or drill down

to one specific lower-level structure and examine its members. This allows the user to

navigate through complex structures.

The actual integration of the native data happens in direct response to a user query. The

query is based on the tables and fields exposed in the ontology. However, the ontology

contains only the metadata describing the integrated structure and associated technical

information for each native NoSQL database. The ontology is useful in determining the

completeness of the integrated data. When the user executes a query to retrieve the

 96

integrated information, the ontology information is used to query the native NoSQL

database. Figure 17 details the process to retrieve actual integrated data from the native

NoSQL database.

Figure 17: Integrated Data Processing

The user initiates a query against the ontology containing the structural and technical

information of the various integrated databases. The reasoner extends the query to

include equivalent instances listed in the query reacting to the OWL:sameAS statements.

The query then retrieves the requested tables. Each table in the ontology, as outlined

earlier, contains the technical information to interact with the native NoSQL database.

This includes the database type. This type is matched up against the set of database

characteristics that provide the actual access commands. After matching the correct one,

the native commands execute the query contained in the table to retrieve its actual

contents. This data in the native format is then converted as the previous step into an

 97

ontology. This time, all of the data is converted, not just the structural information. This

ontology is then added to the integrated database. In a nutshell, the integration is adding

ontology statements to the integrated database. Normalization occurs due to any existing

equivalent statements. After each table is queried, the query is re-run against the newly

populated knowledge base and the integrated results are returned to the user.

In summary, Table 2 outlines the stage, input, output, and verification of semantic data

integration. This provides the inputs and outputs of each step in the method along with

the verification method. Additionally, it notes whether the step is automated or not. The

non-automated steps form the convergent dialog with the user. Each step contains a

validation process to ensure that the data complies with syntax rules. Once the

information is converted into an ontology in the later steps, verification of the soundness

of the ontology can leverage existing ontological reasoning tools.

 98

Table 2: Integration Method Details

Stage Activity Automated? Input Output Validation
Transformation Native Probe Yes NoSQL

database
Record
Samples

Valid NoSQL
Response

 Content
Analysis

Yes Record
Samples

Record
Structures

Structure Validation

Representation Structure
Normalization

Yes Record
Structures

Unique
Structure Set

Duplication
Validation

 Semantic
Conversion

Yes Unique
Structure Set

RDF/OWL
Ontology

Ontology
Verification

 Candidate
Ontology
Visualization

No RDF/OWL
Ontology

Visualization
of Ontology

User Acceptance or
Rejection

Unification Candidate
Integration

Yes RDF/OWL
Candidate
Ontology

RDF/OWL
Aggregated
Ontology

Ontology
Verification

 Ontology
Normalization

Yes RDF/OWL
Aggregated
Ontology

Normalized
RDF/OWL
Aggregated
Ontology

Ontology
Verification

 Integrated
Ontology
Visualization

No RDF/OWL
Ontology

Visualization
of Ontology

User Acceptance or
Rejection

Alignment Query No Integrated
Ontology

Requested
Data

User Acceptance or
Rejection

Adaptation Change in
opportunity

No New
Database

Requested
Data

User Acceptance or
Rejection

3.4.3 Model	
 Implementation	
 Application	

Several key technologies support the implementation of the various components as noted

above.

• OWL2: W3C standard Ontology and Instance Language. It supports description

logic and many standard technical representations including an XML and JSON

format.

 99

• SPARQL1.1: W3C standard Semantic Web query language. SPARQL endpoints

represent a complementary W3C standard that provides a RESTful service that

allows remote, federated SPARQL queries.

• Reasoners: Various implementations carry out inference across assertions within

a Semantic Web ontology. The reasoners allow various logic coverage options to

allow performance tuning.

• Rule Languages: Rule languages form extensions to the logic expressed in the

ontology. They allow operations outside of description logic. They include Jena

rules, SWRL, and SPIN.

• Triple Stores: Multiple implementations provide storage and access to the triple

store contained in a Semantic Web data resource. Triple stores also provide

transformation tools and may perform reasoning.

• Jena: Semantic Web Programming Framework that allows connections to storage,

SPARQL interpretation, ontology and instance formation, and reasoning coupling.

• Visualization: Tools include Protégé among others.

3.5 Semantic	
 Integration	
 Model	
 Implementation	

The implementation requires a set of appropriate data candidates that contribute to a

useful domain while also exercising various NoSQL technologies. This forms a useful

integration implementation that simultaneously validates the approach using different

NoSQL technologies. The candidates are then integrated into the Semantic Web

application that allows a convergence, working with the user, to the desired integrated

results.

 100

The identified data source candidates are developed into a semantic integration

implementation that properly represents and integrates the unified information. The

development effort adheres to the technical architecture (see Figure 10: Technical

Architecture). This includes transformation, representation, unification, alignment, and

adaptability. Each development step contrasts with traditional integration methods as

outlined in Figure 2.

3.5.1 Use	
 Case	
 –	
 Building	
 a	
 diversified	
 financial	
 portfolio	

The implementation employs a use case that requires data integration of several different

NoSQL databases. A business user, who has no technical skills, needs to identify stocks

that outperformed several major financial market indexes over the last five years for

assembly into a financial portfolio. This use case requires data from multiple financial

data sources holding investment data including specific stock transaction histories and

multiple stock exchange histories.

The desired stock information is publicly available in multiple databases, all of which are

out of the individual’s control. The user depends on the up-to-date documentation, if it

exists, to determine its contents. The semantic integration model allows the non-

technical user to examine and review the various databases, without documentation, and

be assured that the information is current. The model produces an ontology representing

the database and visualizes the ontology to allow the user to inspect the database. The

user reviews the visualized ontology, which contains the data structures. If the user

determines that the data would be useful, the ontology is aggregated into the integrated

 101

ontology. The integrated ontology contains all the data structures and technical data

required for integrating the user-selected data. The user can continue to review additional

sources and, if warranted, integrate them. With each integration, the user examines the

integrated ontology to see if the integrated data would be sufficient to address the

requirements for building the portfolio. This allows an incremental and iterative

approach to integration with the non-technical user driving the integration effort. It also

allows learning through better understanding of the data possibilities. Once completed,

the user can request a query of the desired data. The query uses the technical data in the

ontology to retrieve the data directly from the native source. If the returned data is

deemed insufficient, the user can continue the process by integrating additional NoSQL

databases.

Figure 18 outlines the workflow for employing the method.

Figure 18: Financial Use Case for building a stock portfolio

 102

3.5.2 Semantic	
 Integration	
 Model	
 Implementation	

The semantic integration model implementation realizes this use case. Several NoSQL

data sources are selected with each using different NoSQL technologies. The semantic

integration method starts with the transformation phase, which is initiated with the native

probe to attempt to connect to the data source. The native probe attempts to connect

using the list of parameters for each of supported NoSQL databases. Code Constructs 2

covers the specific interface required for the probe. The probe contains a method

structure for the key operations to interface with each NoSQL database. Each supported

NoSQL database creates a Class that instantiates each of these methods. Using this

generalized approach allows for more conceptual operations across different NoSQL

databases and minimizes NoSQL specific software. This provides polymorphism that

isolates the specific details for each of supported NoSQL databases – this allows fast

incorporation and updating of evolving NoSQL technologies.

public interface Probe {

 int MAXSAMPLES = 40;

 int BATCHSIZE = 100;

 public boolean connect(String host, int port, String user, String pw);

 public int extractStructures();

 public Model convert2RDF();

 public boolean sameAs (Object first, Object second);

 public boolean populate();

}

Code Constructs 2: NoSQL Probe Interface Methods

 103

The probe code maintains a set of Classes that each implement the probe interface

outlined in Code Constructs 2 for the different NoSQL technologies. The probe steps

through each entry starting with the connect method. If it succeeds, the connect method

returns a true value and the probe continues to extract the structural information noted in

Code Constructs 3 for each of the traversed tables. Note that this includes the technical

information as well as the elements contained in the array. Code Constructs 3 notes the

technical information listing the structural elements uncovered.

public class DBStructure {

 public enum DatabaseType {mongo, accumulo, neo4j, cassandra};

 private String dbName = null;

 private DatabaseType databaseType = DatabaseType.mongo;

 private String tableName = null;

 private String query = null;

 private long rowCount = 0;

 private String hostName = "localhost"; // default host

 private int portNumber = 27017; // default port

 private String userName = null;

 private String password = null;

 private ArrayList<Object> structures = new ArrayList<Object>();

Code Constructs 3: Structure Extract Information

Once the connection is established, queries are performed in accordance with the random

sample method detailed earlier. Each record is examined for structural information. In

the content analysis portion of transformation, the structure information is compared to

the structural information collected so far. If the structural information is new, it adds to

the collection until no further new information is found.

 104

The content analysis starts with a listing of databases for NoSQL database, which can

actually contain multiple databases. The probe recursively searches each database, then

each contained table, and finally a specific sample record from each table. Code

Constructs 4 outlines the methods used to extract table and technical information.

// Next see if table is new

 if(!Objects.equals(currentTable, table)){

 // Create table object

 tableInstance = m.createResource(URIdb

+ currentTable);

 m.add(tableInstance, isType, tableClass);

 table = currentTable;

 // Associate with database

 m.add(databaseInstance, hasTable, tableInstance);

 Resource counterInstance = m.createResource(URIdb +

currentTable+ "counter");

 m.add(counterInstance, isType, counter);

 m.add(counterInstance, hasValue,

Long.toString(dbs.getRowCount()));

 m.add(tableInstance, hasHost, dbs.getHostName());

 m.add(tableInstance, hasPort,

Integer.toString(dbs.getPortNumber()));

 m.add(tableInstance, hasUser, dbs.getUserName());

 m.add(tableInstance, hasPassword,

dbs.getPassword());

 m.add(tableInstance, hasDBType,

dbs.getDatabaseType().toString());

 m.add(tableInstance, hasQuery, dbs.getQuery());

 m.add(tableInstance, hasCount,

Long.toString(dbs.getRowCount()));

 // Also set the table up as a class with instances

for each row

 domainInstance = m.createResource(URIdomain +

 105

currentTable);

 m.add(domainInstance, isType, domainClass);

 }

Code Constructs 4: Probe Table and Technical Information Retrieval

For each table traversed, all technical information is recorded including the query

parameters. This provides the technical information required for data integration of this

native database when requested. The ontology acts only as a proxy so as to maintain the

most up-to-date structural and technical data and forgo the need for additional storage.

This technical information provides a path back to the native NoSQL database.

Lastly, the probe collects record information, as shown in Code Constructs 5.

while(saveObjIt.hasNext()){

 // Allocate one record structure for each

element databaseObj = m.createResource(URI+ tableName);

 recordInstance =

m.createResource(URIdb+ saveObjIt.next().toString());

 //Resource databaseClass =

m.getResource(URIdb);

 m.add(recordInstance, isType, recordClass);

 //m.add(recordInstance, isType,

domainInstance);

 // Connect each record to the specific table

 m.add(tableInstance,hasRecord,

recordInstance);

 // Connect each record to the specific

domain

 m.add(recordInstance, isType, domainClass);

 106

 m.add(domainInstance, hasMember,

recordInstance);

Code Constructs 5: Probe Record Retrieval

Representation is the next processing step. The first part is normalization to eliminate

duplication. This is done by determining whether or not to add the structural information

via a comparison method. This is outlined in Code Constructs 6. It steps through

existing structural elements and compares them to the new structure. A structure could

contain many elements so each element needs to be compared. Since a slightly updated

structure does not match any of the existing structures, it is added to the structure list.

This approach allows the user to compare the usefulness of the two similar structures.

The user might see a need for both, one, or neither.

public boolean sameAs(Object saveObj, Object obj) {

 DBObject one = (DBObject) saveObj;

 DBObject two = (DBObject) obj;

 boolean different = true;

 Map saveObjMap = one.toMap();

 Set saveObjSet = saveObjMap.keySet();

 Iterator saveObjIt = saveObjSet.iterator();

 Map objMap = two.toMap();

 Set objSet = objMap.keySet();

 if(objSet.isEmpty()){

 return true;

 }

 Iterator objIt = objSet.iterator();

 while(saveObjIt.hasNext()){

 String compareKey = saveObjIt.next().toString();

 107

 if(!two.containsField(compareKey)){

 different = false;

 System.out.println("KEY NOT FOUND");

 break;

 }

 }

 return different;

 }

Code Constructs 6: Normalization

Representation continues after the normalization to convert to a Semantic Web ontology

in OWL and RDF. This requires the creation of OWL Classes for the main database

artifacts such as table and instances of those classes. Additionally, the relationships with

the database are maintained. Tables contain records and records contain fields. Fields

contain the actual data. The technical information is also associated with each table. The

reference model implementation contains the following methods in Code Constructs 7 to

form the conversion to OWL/RDF for the table information and Code Constructs 8

handles the record information, which includes actual instances to aid the semantics of

the field name and table name.

for(DBStructure dbs:structures){

 currentDatabase = dbs.getDbName();

 currentTable = dbs.getTableName();

 System.out.println("CURRENT TABLE: " + currentTable);

 // Set database object if new

 if(!Objects.equals(currentDatabase, database)){

 // Create database object

 108

 databaseInstance =

m.createResource(URIdb+ currentDatabase);

 m.add(databaseInstance, isType, databaseClass);

 // Set this up so we don't repeat above

 database = currentDatabase;

 }

 // Next see if table is new

 if(!Objects.equals(currentTable, table)){

 // Create table object

 tableInstance = m.createResource(URIdb

+ currentTable);

 m.add(tableInstance, isType, tableClass);

 table = currentTable;

 // Associate with database

 m.add(databaseInstance, hasTable, tableInstance);

 Resource counterInstance = m.createResource(URIdb +

currentTable+ "counter");

 m.add(counterInstance, isType, counter);

 m.add(counterInstance, hasValue,

Long.toString(dbs.getRowCount()));

 m.add(tableInstance, hasHost, dbs.getHostName());

 m.add(tableInstance, hasPort,

Integer.toString(dbs.getPortNumber()));

 m.add(tableInstance, hasUser, dbs.getUserName());

 m.add(tableInstance, hasPassword,

dbs.getPassword());

 m.add(tableInstance, hasDBType,

dbs.getDatabaseType().toString());

 m.add(tableInstance, hasQuery, dbs.getQuery());

 m.add(tableInstance, hasCount,

Long.toString(dbs.getRowCount()));

 // Also set the table up as a class with instances

for each row

 domainInstance = m.createResource(URIdomain +

 109

currentTable);

 m.add(domainInstance, isType, domainClass);

 }

Code Constructs 7: Ontology Creation from Table Information

Code Constructs 8 shows the code for creating the record and field ontology.

for(Object d: dbs.getStructures()){

 DBObject dbo = (DBObject) d;

 Map saveObjMap = dbo.toMap();

 Set saveObjSet = saveObjMap.keySet();

 Iterator saveObjIt = saveObjSet.iterator();

 Collection instances = saveObjMap.values();

 Iterator instanceInterator = instances.iterator();

 while(saveObjIt.hasNext()){

 // Allocate one record structure for each element

 databaseObj = m.createResource(URI+ tableName);

 recordInstance =

m.createResource(URIdb+ saveObjIt.next().toString());

 //Resource databaseClass = m.getResource(URIdb);

 m.add(recordInstance, isType, recordClass);

 //m.add(recordInstance, isType, domainInstance);

 // Connect each record to the specific table

 m.add(tableInstance,hasRecord, recordInstance);

 // Connect each record to the specific domain

 m.add(recordInstance, isType, domainClass);

 m.add(domainInstance, hasMember, recordInstance);

Code Constructs 8: Ontology Creation from Record/Field Information

 110

Once the ontology is created, the model implementation uses the ontology tool Protégé to

validate and visualize the ontology for the user review. Figure 19 shows the visualization

of the stock portfolio ontology for review.

Figure 19: Financial Visual of Candidate Database

If the visualization of the ontology developed for the candidate database is not considered

useful and relevant, the candidate ontology is discarded.

If the user selects the database, they can further narrow the scope of the integration by

selecting specific databases, tables, and even fields. The user need not integrate the

entire NoSQL database. The selected database ontology artifacts are added to the

integrated ontology store. The first selected database forms the initial knowledge base.

 111

Next the ontology is normalized to remove redundancies. This takes advantage of

various Semantic Web logical constructs. Notably, OWL:sameAs and

OWL:equivilentClass. The former logically merges instances such as International

Business Machines with IBM. The latter merges classes such as URI1:table with

URI2:table This allows two or more different ontology elements to be considered the

same from a logic perspective. The logic can use both the field name and its value to

determine if the two are actually the same. Additionally, logic can make similar words

equivalent. The ontology still maintains the inherent differences by not changing the URI

contained in each statement. This enables the native origin to remain intact and available

because each one represents data from a different database and must integrate data from

that source. For example, the OWL:sameAs statement connects two instances logically

but the original statements with their different URIs are untouched. Thus, if the related

OWL:sameAs statement is removed, the ontology reverts to the two being different. This

flexibility allows for corrections. Thus a virtual database is created from the integrated

database, yet it still retains the underlying differences that are found in the URI. The

addition of these statements requires an ontology reasoner, of which there are many

available, or the creation of an ontology rule. Code Constructs 9 illustrates merging the

ClosingPrice instance from one ontology to the Close instance in another ontology as

well as merging two classes with the same name, Table, but in different ontologies with

different URIs. This requires a reasoner to properly extend the merge to the impacted

statements. The reasoning can occur at the query request (backward chaining) or at

integration time (forward chaining). The semantic integration method employs backward

chaining to maintain the up-to-date data and therefore does not need additional storage.

 112

<rdf:Description rdf:about="http://uri1/ClosingPrice">

 <owl:sameAs rdf:resource="http://uri2/Close"/>

</rdf:Description>

<owl:Class rdf:about="http://uri1/Table">

 <equivalentClass rdf:resource="#http://uri2/Table"/>

</owl:Class>

Code Constructs 9: Semantic Equivalence

The visualization contains the integrated ontology and equivalent semantic statements

after activating a reasoner. The user evaluates the integration knowledge base for

completeness for their specific task. If complete, the user initiates a query against the

integrated database. The integrated database contains the information necessary to

retrieve data from the various original databases because each ontology table concept

holds the connection information, login information, and query parameters. If incomplete,

the user needs to identify additional candidate NoSQL stores and repeat the above

process.

The visualization allows the user to determine alignment towards their particular goals.

Adaptability can be driven by two sources of changes: change in user needs or change in

the candidate NoSQL databases. The user is thus free to drop portions of ontology that

are no longer needed or investigate a new or possibly updated NoSQL store for inclusion.

The efficiency of this step enables flexibility. The user can examine the current state of

the NoSQL database through the semantic integration method and, if necessary, replace

the original ontology to reflect that data source. Thus, the user can quickly adapt to

changes in their business direction or changes in the underlying NoSQL databases.

 113

3.6 Design	
 Science	
 Research	
 Method	

Fundamentally, the research method for the semantic integration model is based on

design science and its emphasis on proven artifacts (Hevner & al, 2004). A semantic

integration model represents the key artifact that is proven through actual implementation

and evaluation.

The design science method resulted in the following:

1. A semantic integration model that advances the overall integration of NoSQL

databases.

2. Semantic integration methods that transform, represent, unify, align, and adapt

the data.

3. Semantic integration model implementation that illustrates and demonstrates the

key constructs of the semantic integration model.

Design science represents seven key guidelines (Hevner & al, 2004). Table 3 outlines the

guidelines and research outcomes for the semantic integration model.

 114

Table 3: Design Science Guidelines and Research Outcomes

	

 	

 115

4 Chapter	
 4:	
 Evaluation	

The goal of the semantic integration method is to assist a non-technical user who is

addressing an opportunity that benefits from data integrated from multiple NoSQL

databases. The method allows the review and integration of multiple NoSQL databases

with a minimum of technical assistance. This brings the opportunity closer to the data

than with traditional methods that require translations to technical personnel. The

improved efficiency allows the inspection, review, and integration of more databases

within the users’ timeframe leading to a more informed outcome.

The evaluation centers on exercising the semantic method implementation through a

defined task. This includes a survey that enables the comparison of other integration

actions and methods along with the ease-of-use and effectiveness of the semantic

integration method.

The semantic integration method contains many steps that are transparent to its actual

user and represent the internal processing of the method. These hidden steps include the

identification of the NoSQL database technology, the extraction of the structural

information, the conversion to an ontology, the integration of the various ontologies from

the native NoSQL stores. The method permits two key elements for inspection by the

user, allowing the semantic dialog of data integration convergence: The first is the

ontology that represents a candidate database and second is the newly created ontology

that represents the current integrated data. These two areas are highlighted in Figure 20.

An ontology visualization of the candidate database, as shown in the top-left in Figure 20,

 116

requires traversing all the proceeding steps from the native probe through the

normalization. A similar ontology visualization representing the integrated database, as

shown in the top-right of Figure 20, requires the candidate integration through candidate

normalization with the existing database.

The evaluation of the method exposes these ontology visualizations to the user within a

given context to determine the usefulness of the overall method. The ontology

visualizations provide a testable artifact that represents the underlying operations of the

method.

 117

Figure 20: Two Ontology Visualizations

Rather than producing a conceptual version of the visualization, a model implementation

was developed to produce ontologies from actual NoSQL databases. The representation

results in ontologies that are then visualized for the user. The model implementation

used several actual real-world databases with different NoSQL technologies and

produced corresponding ontology visualizations without modifications to the underlying

semantics contained in the various database artifacts, such as table names and field names.

 118

This produced a ‘worst case scenario’ since no semantic enhancements were made to the

database structure names, such as tables and fields. This worst case scenario can be

improved using ontology reasoners and related ontologies. The user sees the same names

used by the database technical creators - the names used in the database were the same

names communicated via the ontology. If necessary, the ontology semantics could be

enriched with synonyms from the WordNet (Miller, 1995) (Fellbaum, 1998). The review

also tests whether this enrichment is necessary or the inherent terms used in the NoSQL

database are sufficiently semantically rich to convey a meaning to the business user. The

model implementation contains code constructs written in Java containing the Jena

semantic library for ontology construction and the various drivers that establish

interactive connections with the NoSQL databases. The model implementation code is

available at the github repository (https://github.com/jhebelerDS/BigDataIntegration).

The major code constructs were detailed in the previous chapter.

The model implementation probes for various NoSQL technologies. Once a connection

is successful, it generates an RDF/OWL ontology that describes the given NoSQL

database, including its hierarchical structure, instance examples, and technical parameters,

such as the NoSQL technology, connected ports, and login information. The method then

uses Protégé to validate and visualize the ontology. These ontology visualizations then

become the artifacts produced to represent the model. It should also be noted that the

model implementation was tested against Accumulo, a column based NoSQL database

and MongoDB, a document based NoSQL database. The testing included known

databases that contained multiple structures within a given table throughout the database

store to test the underlying method’s suitability in extracting the entire structure of

 119

various NoSQL databases. The known databases were constructed for testing purposes

and deposited structures in various places throughout the database including at the

beginning of the storage area, the end of the storage area, and randomly mixed

throughout the storage area with other structures. In all cases, it successfully extracted

the structure. However, this is by no means exhaustive and further testing is required to

fully deploy the method.

The model implementation integrates the selected candidate NoSQL databases into a

unified ontology. There it performs ontology normalization by uncovering duplication

and using OWL:sameAs and OWL:equivalentClass statements to logically eliminate the

duplications. The original ontology technical information remains intact, allowing

queries back to the original source when required for the actual use of the data. This

provides the most up-to-date data without requiring any additional storage.

4.1 Evaluation	
 Methods	

The evaluation of the semantic integration method follows Hevner et al. (2004). The

evaluation answers the following questions: Does the proposed semantic integration

framework enable a non-technical user to quickly review the value of a candidate and the

integrated NoSQL database without any technical assistance and in minimum time? Can

the review list specific data elements to be integrated?

The main evaluation approaches are classified into qualitative and quantitative methods.

The qualitative approach is exemplified by case study and interview, and the quantitative

approach examines the artifact qualities by performing an assigned task. Both types of

 120

evaluation methods are employed to provide triangulation for validating the impacts of

the semantic integration method, as introduced in Section 3.4.3. In both approaches, the

participants are asked to contrast current integration methods with the semantic

integration method. The participants are not technical users of NoSQL databases, rather

they are users who recognize the value of data but are not familiar with the underlying

technologies and database concepts. The model implementation produces and visualizes

ontologies from several existing NoSQL databases. As discussed above, the visualized

ontology becomes the main evaluation instrument to assess the utility of the proposed

semantic integration model.

4.2 Qualitative	
 Approach:	
 Interview	

The goal of the qualitative evaluation approach is to obtain an executive view on the

value of the proposed approach for integrating NoSQL databases and insights as to how

their organization currently evaluates and integrates NoSQL databases. Interviews are a

key technique for IS case study research (Benbasat et al. (1987)). Providing rich data,

interviews are appropriate to evaluate the potential utility of design artifacts in a business

setting (Adomavicius et al. 2008).

Interview Process

The interview follows an interview script that was pretested through multiple reviews

with potential candidates to ensure the proper interpretation and understanding of each

question. The interviews cover questions on a participant’s background, views on

NoSQL/Big Data, their ability to perform the ontology tasks used in the survey, and asks

 121

them to contrast the semantic integration method with their current methods for NoSQL

integration.

Participants

The interview participants consisted of three executives from two major companies

(>100,000 employees with a global presence), all of whom are involved with NoSQL

databases. In addition, they represent several different business domains covering

information systems. They each have managed information systems projects, customers,

and employees for many years. They are familiar with the business value of NoSQL data

sources and associated big data challenges. However, they do not have technical hands-

on skills and are not directly involved in technical work. The companies are well known

for their technical acumen and accomplishments.

Findings

The interview was conducted in the office of each executive using a computer. Detailed

notes were taken because the companies forbade direct recording. Each interview took

approximately 1 hour.

The interview findings are summarized as the following:

1. What is your current role/position and number of years?

Three senior managers were interviewed and their years of experience were 7,25,

and 34 years.

 122

Each executive manages and leads a technical group of software developers,

system engineers, and project managers. They design, develop, and support

advanced information systems, many of which are highly data dependent. Their

work often employs NoSQL databases and relies on massive big data

architectures. All three handle a variety of business domains including financial,

health, and government agencies. Their current role is not technical and they do

not directly interact with the technologies.

2. How familiar are you with Data Management Technology? (Relational, Object,

NoSQL) Please describe your experience.

Each was familiar with the technologies from a business perspective but had no

hands-on experience. Their organizations have been involved with big data

technologies for over five years – “practically since their inception”.

“Primary experience has been with relational databases”

“Familiar with the concepts but do not use it directly”

“Been with the technology practically from its inception”

3. What is your role with respect to selecting and implementing data management

technologies used in your organization? (Relational, Object, NoSQL)?

None of them played in a role in directly selecting a data management technology.

This was the responsibility of a technical person on their staff.

 123

“I have direct responsibility and authority for approving data

management technologies”

4. How many years of experience do you have with data management technologies?

(Relational, NoSQL technologies) How do you currently use NoSQL databases in

your organization? Is use increasing or decreasing? What is the most significant

value of NoSQL technology in your organization?

Each executive maintained many projects and programs that included data

integration. NoSQL has emerged has a key technology along with relational

databases. NoSQL databases along with their associated processing are now in

many of the projects and are a key technology for their organization’s success.

“I was surprised how relational databases still offer benefits”.

“Data management technologies are a core offering of my business unit.

In particular, databases such as MongoDB are foundational to many of

our contracts, especially in support of efforts related to aggregation, e.g.,

MapReduce.”

5. What are the most significant challenges in leveraging NoSQL databases (review,

use, and integration, and analysis)?

The number one problem for all three participants is finding skilled employees to

leverage the NoSQL databases and the contained data. This demonstrates the

 124

rarity of such skills and highlights the leverage of data contained in the NoSQL

databases for the value is worthless without technical assistance.

“There is a high-demand/low-available candidate pool for staff with

[NoSQL] database skills/training.”

“Very difficult to get skilled folks. We have to come up with very creative

approaches”

“Finding the right folks”

6. What is the future of big data – direction, growth, and relevance to your role,

organization, and company?

All three indicated the huge growth and demand for big data and the associated

NoSQL databases. They each tied their organizational success to their success

with these technologies. Each company has major programs, customers, and

internal operations aimed at leveraging big data and its storage in NoSQL

databases.

“NoSQL is critical to my future.”

“Big data is critically-important to my business and the future of our

Corporation. We have been increasing our investments in this area,

including formal skills development and recruiting, academic and

commercial partnering, and development/integration into core products

and capabilities.”

 125

7. How do you see the availability and growth of big data skills? How critical is this

to your success?

Again, finding staff and proper skills was highlighted as extremely difficult. Each

company is currently looking into methods to grow and attract these skills.

“There is a critical shortage and “war for talent” in this high-demand

market. This demand will only continue to increase.”

8. Describe your current methods for evaluating and integrating the content of a

NoSQL database

All three executives would be unable, by themselves, to produce any insights into

the content and use of an unknown NoSQL database. They would all need to

immediately involve a skilled NoSQL database technician. Given that there are

many different NoSQL technologies, this could involve a search for technical

staff. This leads to further time delays and may even lead to dismissing the

database altogether.

“I would contact someone who could help me”.

“Hand it over to technical folks”

9. Would faster integration of NoSQL databases aid your critical decisions? If so,

how?

 126

All agreed that this would be helpful for their various projects and programs,

especially given the evolution in NoSQL technology and it proliferation in

industry.

“Absolutely! Many of our current staff are primarily experienced with

relational databases. Accelerating their adoption/transition to NoSQL

would offer significant business benefits in this critical growth area for us.”

The findings of the interviews not only confirm the importance and growth of NoSQL

technology but also demonstrate that it is held captive by technical employees. Employee

skills are the critical component. The executives did not mention the need for more data

or more computing resources – only the need to acquire skilled employees. The findings

show that a business executive who makes critical business decisions relies on technical

folks to communicate the value of a given NoSQL database. This creates two concerns:

reliance on an effective business-technical translation with regard to integration of

NoSQL databases and scarcity in technical skills to achieve that integration. These two

concerns would act to limit access to this powerful technology in response to business

opportunities. The limitation requires additional time and effort. Therefore, many

databases may go unexamined due to time and skill constraints. This limits the

information that is available for making a business decision or taking action.

Additionally, all three executives participated in the quantitative evaluation process

described in the next section. Each was provided with an overview of the ontology

visualization and was left to complete the task. All three completed the task with 100%

 127

accuracy. Each executive correctly selected the databases, tables, and fields necessary to

complete the task.

These interviews helped confirm the need and value of better business tools to exploit the

contents of NoSQL databases.

4.3 Quantitative	
 Approach	

The quantitative evaluation consists of four major parts: a pre-test, an overview of the

proposed method, semantic integration method task, and a post-test. The pre-test asks

participants’ about their demographics, their experience with NoSQL database

technologies, and their knowledge in evaluating and integrating NoSQL databases

through experience questions. It also asks what actions participants would take given an

unknown NoSQL database. The method overview section provides a brief description of

the integration method and presents a sample visualization to illustrate the key

mnemonics. The description includes definitions of the concepts of a database, table, and

records as well as technical connection information, such as technology type, ports, and

login information. These concepts are required to perform an actual integration. The

NoSQL review task is performed by viewing three different visualized ontologies that

represent a NoSQL database. From the visualization, the participant determines the

database’s effectiveness towards a business goal and lists the specific data artifacts

necessary to contribute to the goal. Finally, participants are asked to complete a post-test.

The following two sub-sections introduce the last two parts of the evaluation in detail.

 128

4.3.1. NoSQL Selection Task

Participants are asked to evaluate the usefulness of a given NoSQL database for the

creation of a portfolio of stocks that beat the five-year average for S&P 500, NASDAQ,

and the DOW. Figure 21 illustrates the process of the NoSQL Selection Task.

Figure 21: Selection Process of a Quantitative Approach

The implemented method generates an ontology from an actual NoSQL databases (shown

on the left as candidate a, b, and c) and then presents an ontology visualization to the

participants (shown in the middle). Participants are asked to assess the usefulness of each

NoSQL database by reviewing its visualized ontology in performing the assigned task –

building the stock portfolio. If the ontology is considered useful, the participants must

list the specific database(s), table(s), and fields that are useful to the task. The options

include the three visualized ontologies generated by the proposed method from three

actual NoSQL databases. (See Figure 23, Figure 24, and Figure 25). Two of the three

 129

NoSQL databases would be considered directly useful to the task, whereas one NoSQL

database is not useful. For each of the three visuals, participants are asked to answer five

questions, as shown in Table 4.

The user was provided a brief overview of the mnemonics and definitions, shown in

Figure 22.

 130

Figure 22: Introduction for Survey Participants

 131

The following is a sample task description provided for the survey participants:

Determine, from the visual, if this NoSQL data is useful in aiding in the creation

of a portfolio of stocks that beat the five-year average for the S&P 500, NASDAQ,

and DOW.

Table 4: Five Questions for NoSQL Selection Tasks

1. Would this data be useful toward the task?

2. If useful, list the names of the databases useful toward the task.

3. If useful, list the names of tables useful toward the task.

4. If useful, list the names of the fields useful toward the task.

5. List the NoSQL technology.

 132

Figure 23: Visualized Ontology 1

 133

Figure 24: Visualized Ontology 2

 134

Figure 25: Visualized Ontology 3

4.3.2	
 Post-­‐test	
 	

The post-test questions focused on the perceived usefulness, its perceived ease of use, the

participant’s intention to use the proposed method, and any suggestions for improvement.

This study employed the proven research instruments from the technology adoption

model (Davis, 1989), which has been adopted and validated from many studies. This

dissertation measures each questionnaire item using a 5-point Likert scale. The questions

compare the participant’s current data integration approach with the semantic integration

method for data integration from NoSQL databases:

 135

Please provide your agreement with the following statements with regard to using the

visuals for the tasks of evaluating/integrating data from NoSQL compared to the

current approach you would use.

1. Accomplish the task faster

2. Improve the task performance

3. Improve the productivity of the task

4. Enhance effectiveness of the task

5. More useful in the task

Please provide your agreement with the following statements with regard to the ease

of use of the visuals for NoSQL data evaluation/integration.

1. Easier to learn

2. Easier to manipulate

3. Clear/Better understandable interaction

4. More flexible to interact with

5. Easier to become skillful

6. Easier to use

4.3.3	
 Data	
 Collection	

Fifty-five people participated in this study. Participants were graduate students in

Business Schools as well as the three interviewed executives. Table 5 shows the

demographic information of participants. Age and gender offer a reasonable cross-

 136

section with a skew towards younger participants. Additionally, the individuals are

familiar with the value of data and databases in general but not technically skilled in

NoSQL.

Table 5: Demographics of Participants

Gender Male 33 (60%)

Female 22 (40%)

Age 21-34 36 (65%)

35-50 13 (24%)

51+ 6 (12%)

Years of Business

Experience

0 Year 17 (32%)

1-5 Years 19 (36%)

6-10 Years 7 (13%)

11-20 Years 8 (15%)

21+ Years 2 (4%)

Table 6 shows the participants’ experience with NoSQL technologies and their outlook

on NoSQL technology. Less than 10% of the participants had experience from either a

business or technical perspective with regard to NoSQL technologies. This is an

important prerequisite to ensure limited exposure to the technical aspects of NoSQL

technologies. Interestingly, the majority found it a critical technology where skills are

scarce but available information is plentiful. This is typical of an emerging technology

that evolves quickly and generates a strong demand for learning resources ranging from

 137

on-line forums to published books. In addition to the executives, the participants were

Master’s degree candidates familiar with financial terminology but who have limited

technical knowledge. Similar to the executive interviewees, they did not have hands-on

experience with NoSQL databases and relevant NoSQL data integration.

Table 6: Participants Experience with NoSQL

Question Strongly

Disagree

Disagree Neither Agree

nor Disagree

Agree Strongly

Agree

Average

I have extensive business

experience with NoSQL

technologies

22 (43%) 19 (37%) 6 (12%) 3 (6%) 1 (2%) 1.86

I have extensive technical

experience with NoSQL

Technologies

23 (45%) 19 (37%) 4 (8%) 4 (8%) 1 (2%) 1.84

NoSQL data are critical to

business success

2 (4%) 2 (4%) 17 (33%) 24 (47%) 6 (12%) 3.59

There is a scarcity of NoSQL

Technical Skill

0 (0%) 1 (2%) 25 (49%) 17 (33%) 8 (16%) 3.63

There is a growing body of

knowledge on NoSQL

technologies such as books,

articles, conferences, and

training that offer useful

information

0 (0%) 1(2%) 20 (40%) 25 (50%) 4 (8%) 3.64

Participants were asked an open-ended question about the methods they currently use to

evaluate a NoSQL database. The answers varied but none of the participants were able to

use a NoSQL database directly without receiving assistance from a technical source.

 138

Some avoided it all together, reflecting the risks associated with using any Internet link.

Below are some of their responses.

“Seek advice from someone who had a good understanding of NoSQL and

research the topic myself”

“I would have to first spend extensive time Googling and reviewing

documentation on how to retrieve, view and manipulate the data before going any

further.”

“Check with my IT area.”

“I'm not sure. I have no experience with NoSQL.”

In the method overview section, the participants were asked about their level of

understanding after reading the overview. Among the participants, 50% indicated that

they completely understood the overview, and 50% indicated that they somewhat

understood. No participant indicated that they did not understand the proposed method or

its visualized ontology.

4.3.1 Results	
 	

4.3.1.1 Results	
 of	
 NoSQL	
 Selection	
 Task	

Table 7 shows the results of a NoSQL selection task. As demonstrated in the table, the

vast majority correctly determined the usefulness of the database – a key value of the

method. This alone could accelerate the inclusion of useful data in an integration effort

because the business user would not depend on a (rare) technical person to make that

initial selection. Additionally, clear majorities were able to determine key database

 139

artifacts and associated technologies, which are required to actually perform a technical

integration of the databases. Finally, there seems to be an improvement in task

performance as the participants gain experience with the visualizations.

Table 7: A Summary of NoSQL Selection Results

 NoSQL Database 1 NoSQL Database 2 NoSQL Database 3

Correctly determined if the NoSQL

database is useful for the task

36 (71%) 42 (82%) 46 (89%)

Correctly listed the database 29 (58%) N/A 32 (64%)

Correctly listed the tables 25 (45%) N/A 38 (69%)*

Correctly listed the fields 34 (62%) N/A 35 (64%)

Correctly listed the NoSQL Technology 31 (56%) 31 (56%) 32 (64%)

Table 8 summarizes the number of correct answers each participant provided for one or

more of the three databases. Virtually all participants evaluated at least one database

correctly. Over 90% evaluated at least two correctly, and over half identified all three

correctly.

Table 8: Percentage of Correct Selection by Participant

Participant who provided an answer #(%)

Correctly answered at least one out of three databases 52 (96%)

 Correctly answered at least two out of three databases 50 (91%)

Correctly answered all three databases 30 (55%)

 140

Finally, the time to complete the survey indicates how quickly the participant could

evaluate the database and extract useful database artifacts to answer the questions. No

time limit was imposed on the participant. After eliminating incomplete surveys (3) and

clear outliers where completion time exceeded 24 hours (2), the average time was 31

minutes. This demonstrates the efficiency for a non-technical user to evaluate a NoSQL

database.

4.3.1.2 Results	
 of	
 Post-­‐test	

Table 9 shows the participant’s overall assessment of the method’s usefulness. The data

shows that the overall results on perceived usefulness are positive. However, as noted

earlier, most of the participants did not have the necessary knowledge or skill to evaluate

or integrate NoSQL data.

Table 9: Participants’ Feedback on Usefulness of the Semantic Integration Method

 Strongly

Disagree

Disagree

Neither Agree

Nor or

Disagree

Agree Strongly

Agree

Total Average

Accomplish the task faster 0 (0%) 2 (4%) 20 (38%) 20 (38%) 11 (20%) 53 3.75

Improve task performance 0 (0%) 2 (4%) 15 (29%) 28 (54%) 7 (13%) 52 3.77

Improve task productivity 0 (0%) 1 (2%) 18 (35%) 25 (48%) 8 (15%) 52 3.77

Enhance task effectiveness 0 (0%) 4 (8%) 17 (33%) 23 (44%) 8 (15%) 52 3.67

More useful in task 0 (0%) 3 (6%) 19 (37%) 24 (46%) 6 (12%) 52 3.63

 141

Table 10 shows the distribution percentage of the participants’ overall assessment of the

method’s ease-of-use. The results show that the vast majority found the visualized

ontology to be easy to use for the task.

Table 10: The Ease of Use of the Visualized Ontology

 Strongly

Disagree

Disagree

Neither Agree

Nor Disagree

Agree Strongly

Agree

Total Average

Easy to learn 1 (2%) 3 (6%) 13 (25%) 26 (49%) 10 (19%) 53 3.75

Clear/Better Understandable

interaction

1 (2%) 2 (4%) 16 (31%) 24 (46%) 9 (17%) 52 3.73

More flexible to interact with 1 (2%) 1 (2%) 22 (42%) 22 (42%) 6 (12%) 52 3.60

Easy to become skillful 1 (2%) 1 (2%) 20 (38%) 25 (48%) 5 (10%) 52 3.62

Easy to use 1 (2%) 0 (0%) 17 (33%) 27 (52%) 7 (13%) 52 3.75

 142

Table 11 shows the distribution percentage of the intention to use the method. The

results show strong intentions of the participants using this proposed tool/method in this

study.

 143

Table 11: Intention to use the method

 Strongly

Disagree

Disagree

Neither Agree

nor Disagree

Agree Strongly

Agree

Total Average

I would use these visuals for

uncovering the structure and

contents of an unknown NoSQL

data.

1 (2%) 0 (0%) 15 (28%) 24 (45%) 13 (25%) 53 3.91

I would use these visuals for

aiding the integration of an

unknown NoSQL data

0 (0%) 1 (2%) 13 (25%) 24 (47%) 13 (25%) 51 3.96

The final section contains several open-ended questions regarding the usefulness,

potential, and suggestions for improvement. Some of the participants’ responses are

quoted below.

Open-ended Question 1: Were the visualized ontology easy to use?

“The visuals were good for helping me to understand the makeup of a nosql

database and how records are stored.”

“Hierarchy and labeling were easy to follow.”

“The use of color and the legend for table versus database if my eye gets lost.”

“Clear representation of columns and tables, databases”

Overall, the visualization was sufficient to communicate the key elements of the database

because a significant majority completed the tasks correctly.

 144

Open-ended Question 2: What overall potential do you foresee for the visuals in

evaluating and integrating NoSQL data?

“More visual access can determine more understanding of the database. People

new to NoSQL would be more comfortable using the visuals.”

“easier to grasp the concepts”

“Aiding non technical users to come up to speed in understanding the system and

enable self service”

“This has great benefits”

Clearly, the visuals work for the intended audience of non-technical, business users. This

typical simplicity of NoSQL structures lends itself to a basic visual.

Open-ended Question 3: Would you use these visuals to determine the value of a

NoSQL database and to integrate its data?

Out of the participants, 81% responded positively.

“yes, I believe the visuals used here would be effective for helping someone

understand an actual nosql database that they are working with and help them to

integrate the data because it shows where to insert each record in the fields

section.”

“I would. It seems simpler than the traditional style of writing NoSQL.”

“Definitely but with a caution- One has to be careful to update the visuals and

also make sure that the visual correctly represent the system as an error will have

serious impacts” One note on this comment The visualization is produced

 145

directly from the database. Therefore, it can easily maintain the correct

representation.

Open-ended Question 4: What improvements would you recommend for the visuals?

Below are some of the suggested improvements. Most participants recommended clearer

text and better use of colors and shapes. Advancements to the visuals would include

many of these suggestions, especially the idea of making it interactive. The interactivity

would allow the user to explore the key areas for them and it would effectively manage

larger scale database structures.

“Database and tables can be notified with a different symbol. Currently both are

shaped diamond”

“Instead of having separate boxes for database and table, perhaps it would be

better to color code the boxes with the database/table names - for example, on the

previous page, yellow for market and green for the FiveHundred box and the

other 2 tables' boxes.”

“Use more color and make them interactive.”

4.4 Discussion	

NoSQL databases contribute to the foundation of Big Data opportunities, as they have the

ability to scale and hold massive data. Databases become useful when properly placed in

a business context aimed at a business opportunity. Unfortunately, the nature of NoSQL

databases makes this challenging for the non-technical business user and requires a

skilled technical person to assist in integration of NoSQL databases. As noted in both the

 146

interviews and surveys, a non-technical person must continually seek out a skilled

technician to uncover the contents of a NoSQL database, and given the scarcity of

technically skilled persons this is a critical business constraint. This can limit the use of

NoSQL databases and its data to address a business opportunity due to the scarcity of

skilled labor, shrinking time frames of an unfolding business opportunity, and the

translation necessary between a business user and a technician.

The semantic integration method demonstrates through this evaluation that it can aid the

process of evaluating and integrating NoSQL databases. Non-technical business users

can quickly evaluate a NoSQL candidate database and even select the key database

artifacts, such as table names, to aid the integration effort. Inappropriate databases are

quickly discarded allowing more time to identify useful databases.

The task of evaluating NoSQL databases itself, beyond the qualitative questions,

demonstrated its usefulness since most participants successfully completed the task.

More than half of the participants successfully evaluated all three databases and over

90% evaluated two out of three correctly. This came about with minimum training and

without the ability to ask questions or for clarification. Adding the opportunity for

additional dialogue would likely improve the success rate. Without the semantic

integration method, the users, as they indicated, must reach out to additional resources.

Simply put, they would not, by themselves, be able to complete the task without the aid

of the semantic integration method. Otherwise, only a skilled technical professional

could have completed these tasks. Many of the participants were not familiar with

 147

NoSQL or even databases themselves, yet were still able to garner the substance and key

elements of a NoSQL database. The evaluations reach the following conclusions.

1. The semantic integration method enables non-technical users to integrate a

NoSQL database for a given business purpose through an examination of the

produced ontology visualizations.

2. The semantic integration method enables non-technical users to select specific

key database artifacts, such as tables and fields required for integration. Over half

correctly identified all of the necessary elements. This allows the method to

directly integrate the identified data. This iterative method allows a non-technical

user to build an integrated NoSQL store.

3. The semantic integration method enables rapid integration of NoSQL sources

despite the lack of documentation and knowledge of changes allowing the ability

to evaluate more NoSQL databases. The average time to fulfill the task of

evaluating three NoSQL databases and answering survey questions would, in

many cases, allow for ample time to include the data in an unfolding business

opportunity, as well as affording the time to examine additional databases to

improve overall understanding of the business opportunity.

The results assume a relative, semantically rich structure with few relationships in the

NoSQL databases. However, these assumptions are reasonable given the empirical study

and the principals behind most NoSQL databases. The method does allow for dynamic

and heterogeneous structures scattered throughout the database, decreasing the need for

documentation maintenance. 	

 148

5 Chapter	
 5:	
 Discussion	
 and	
 Conclusion	
 	
 	

Data integration remains a tough challenge to aid in the formation of a business decision

or action. The rapid increase in data production combined with associated new

technologies to capture and query this data further challenges data integration. Without

advancements in data integration methods, much data potential is lost.

NoSQL technologies offer the ability to collect and interact with enormous amounts of

data. New integration methods offer to expand the value of this data. By doing so, it not

only overcomes data overload but makes that data truly capable of aiding business

decision makers.

Traditional data integration depends on the translation of a business opportunity into

protracted, complex technical steps. This incurs the many limitations formally outlined

and discussed above, which increase both the cost and time required for the data

integration. A new model, the semantic integration model, joins the business user who

directly interacts with the data and automation tools that integrate the data. This method

offers the capabilities to better leverage massive data across many large databases in a

cost-effective manner.

The semantic integration model addresses this massive data integration opportunity

through three key features:

1. The incorporation of artifact naming into NoSQL databases to create useful

semantics.

 149

2. The incorporation of sequential statistical methods to capture and normalize

distributed structural information not readily available.

3. The incorporation of the Semantic Web ontologies such as RDF and OWL, to

capture the structural information for ontology visualization for the business user

and the technical information required for automating the actual data integration.

The speed and coverage of these features allows the business user to review and

integrate many databases, as well as to iterate through those databases based on various

dynamics and learning that may occur during the integration process. This results in a

more informed, comprehensive view of a business opportunity leading to better business

decisions and actions.

5.1 Contributions	

The main contribution addressed by the semantic integration model is leveraging and

integrating big data contained in the various NoSQL databases across various NoSQL

technologies. Big data is being continuously absorbed, stored, and indexed in the rapidly

evolving NoSQL databases. These new technologies serve scale first, allowing massive

data storage, rapid ingest of data, and rapid query replies while the data is protected from

change with dynamic structures. The rapid evolution of these technologies thwarts

standardization for each NoSQL technology that offers only proprietary interface

methods. Specialized technology paths are required to access each type of NoSQL

technology requiring different technical skills. A method that meets these challenges

 150

expands the business potential contained in the various databases and their possible

integration.

The fundamental challenge is to allow a business user to leverage multiple big NoSQL

databases to quickly reach a business decision or take a business action.

This dissertation addresses the above challenge by answering the following research

questions, which led to the development of the semantic integration model and related

research contributions.

1. How can semantic transformation reveal the semantics of technically complex

and evolving data storage components found in various NoSQL databases and

associated technologies?

The proposed semantic transformation uses a statistical approach to quickly converge

on the structural contents regardless of the structural information placement in the

large big data NoSQL database. NoSQL databases repeat structural information

throughout the store and the statistical approach ensures the capture of the structural

information that would otherwise require an exhaustive search through all records.

As each structure is uncovered, it is compared to the current set of extracted

structures. Duplicated structures are not incorporated into the set. This helps

normalize the structural information, and allows for rapid analysis of the structure

regardless of size.

2. How can semantic representation adequately provide a useful capture of the

underlying NoSQL database for technical integration?

 151

The Semantic Web offers a common format that is expressive enough to represent the

structure and technical details of NoSQL databases. The expressiveness of the

Semantic Web, as implemented in this study, goes beyond the basic expressiveness of

NoSQL offerings by adding the ability of logic inference to further enrich the

structural and technical information. The semantic representation also supports

formal validation.

3. How can semantic unification integrate various data sources revealed through

semantic transformation?

The semantic integration model takes advantage of the logic with the Semantic Web

technologies and thus provides simple integration via aggregation. Due to the

uniqueness of the semantic data artifacts, there are no technical conflicts. Conceptual

normalization is achieved through logical equivalence statements that do not affect

the actual data. This allows for corrections to and recovery of the original data.

Furthermore, by using logic, similar terms and concepts can also be merged.

4. How can semantic alignment focus the unified semantics on a specific domain of

interest?

The visualization of the ontology and its relationships provides a view into the data

that enables the user to determine its alignment towards the user’s requirements. This

includes both visualizations: the candidate database review and the integrated

database. The former determines the useful addition of a potential database candidate.

 152

The latter determines whether the integration effort is complete for a given business

opportunity.

5. How can semantic adaptability using convergence-directed integration produce a

more flexible and automated approach to integration?

The efficiency of the method allows new databases or updated ones to be quickly

revaluated for a given business purpose. Accordingly, it supports rapid adaptation to

changing business directions. This also allows the business user to learn from each

database candidate’s integration and then redirect the effort within the integration.

Simply put, the method allows a non-technical, business user to evaluate and integrate

NoSQL databases. Specifically, this research makes the following key contributions.

1. Improved integration of relevant data based on the semantics and relationships

contained within the NoSQL database.

2. Incorporation of Semantic Web standards and tools to aid semantic data

integration. This allows the leverage of tools, ontologies, and data available via

the Semantic Web.

3. Improved integration of new, emerging databases that are characterized by scale

and structural dynamics, including uncovering the structural information from a

dynamic NoSQL store.

4. Applicability of convergence methods to incrementally and iteratively evolve data

integration to the user’s requirements.

 153

Since the data is evaluated and integrated faster via user interactions rather than waiting

for the full technical integration – the speed of data, similar to the speed of money,

increases its overall value. The data can be used to address more business situations and

therefore is more valuable.

The contributions can be further decomposed based upon individual steps of the

integration model, such as the following.

• Transformation

o Improves Data Access: The ability to quickly determine the NoSQL

technology type and the contained structures aids the ability to actually

use the NoSQL database. This doesn’t depend on documentation and is

completely up-to-date which is especially important since structural

additions and modifications can be added at any time.

o Adapts to new NoSQL technologies and their rapid evolution: The method

separates and isolates the proprietary code thus allowing a minimal change

when a new NoSQL technology or update occurs. The method quickly

adapts to NoSQL changes.

o Handles Big Data Scale: The method uses statistical sampling to extract

the structural information since most NoSQL stores do not offer a direct

way of obtaining the structural information. This allows the method to

quickly converge on the structure without the need to exhaustively

examine every record in the NoSQL database, which could be prohibitive

in extremely large NoSQL stores.

 154

• Representation

o The method represents key information regarding the NoSQL store via a

Semantic Web Ontology. This is a standard method of expressing an

ontology and offers many extensions and tools. A Semantic Web

ontology captures the underlying structure, structure relationships, and

technical metadata to enable automatic data integration.

o The representation eases conflicts and duplications through the use of the

OWL constructs that can perform logic to filter errors, populate missing

data, eliminate duplications, and merge equivalent database elements.

• Unification

o Multiple Views: The flexibility of an ontology allows for multiple

perspectives to examine the data. This is demonstrated by allowing the

selection of various perspectives such as domain relevant structures to

technical structures that include databases and tables.

o Enhanced ability to deal with Dirty Data: Integrating data into an ontology

is as simple as adding in the statements from the candidate ontology.

Once integrated in the complete ontology, logic and rules can be applied

to filter out the data. This filtering can be done permanently (physical

removal) or virtually where the logic excludes or merges certain

statements. This allows conflicts to be studied from one perspective while

allowing another perspective to not contain the suspect data.

o Complex Relationships Across the Data: The Semantic Web via OWL

enables complex relationships. The initial implementation took advantage

 155

of only a few, such as the equivalence statements. Even if the NoSQL

structures contain richer, more complex relationships, the OWL ontology

would still be able to correctly represent them.

• Alignment

o Ability to Evaluate each Data Candidate within the integration process:

The semantic integration method enables early review so as to avoid

integrating unnecessary information, while also quickly advancing a

useful candidate, and learning what is available. The latter may help

evolve the business opportunity itself.

o Enhanced Support for Domain Extraction: Due to the ability of queries

and the flexibility of the underlying ontology, multiple domains of interest

either technical or business can be correctly reflected within a given

integrated database. This not only takes into account multiple perspectives

but also allows the user to change their perspective.

o Extended Integration Methods: The semantic integration method makes

integration straightforward. All of the ontology statements aggregate

together then logic separates the domains and unifies equivalences

resulting in a non-destructive normalization for the ontology that still

holds the required information to perform a query on the original NoSQL

database.

o Improved Reasoning: The ontology offers a rich set of reasoning and rules

to enable filtering, error correction, equivalence, and so on.

 156

• Adaptability:

o Open World Model: The method employs the ontology to reflect an open

world model allowing rapid integration without conflicts at any point since

no assumptions are built into a given integration. This is especially

important to NoSQL stores that maintain dynamic structures with

asynchronous updates.

o Simplified Integration: The method allows a common integration process

that avoids N2 connections between databases, simplifying the integration.

o Adaptive Integration Solutions: The method supports iterative,

incremental integration of data sources from multiple technologies. This

feature improves adaptability and ease of use of the integration method.

o Minimum Duplication: The method relies on retrieving the actual data

from the native source when requested. There is no need to copy the data

and accordingly, no need to maintain data synchronization.

These contributions ease data integration across valuable, yet evolving NoSQL databases.

The method enables fast integration with minimum technical assistance thus allowing

more data to support a given business opportunity.

5.2 Method	
 Alignment	
 with	
 Trends	

The Semantic Integration Method aligns with trends in business and technology.

• Plunging cost of Infrastructure: The method scales to handle the larger storage

capabilities.

 157

• New Data Storage Options: The method isolates the direct interactions with a

native NoSQL storage and thus, minimizes the efforts required to evaluate and

integrate from a new or updated NoSQL technology.

• Growing participation in Producing Data: Again, the method scales to handle new

sources and with its quick review, allows a user to peruse many more data sources

than currently possible. Thus, the method takes advantage of growing

participation.

• Development of the Semantic Web: The advances in the Semantic Web via new

reasoners, display options, and the like would quickly advance this method since

its foundation is in the Semantic Web.

• Real-Time, Dynamic Data and Associated Structures: Since the method does not

copy data but merely provides a path to the actual data, a business user gets the

latest information. Additionally, as streaming data becomes more useful, the data

source integration could enable a similar interface like that used by the NoSQL

stores, thereby allowing streaming data to be another data candidate. They

maintain similar challenges in that the structure is dynamic and contained within

each record.

• Increasing Dirtiness of Data: As data sources grow and a business taps into

external databases outside of their control, the dirtiness of the data will likely

increase. The ontology’s foundation allows many ways to correct this with

minimal impact to the actual operations. It also follows that the dirtiness is

subjective to the given domain and query, allowing multiple perspectives on the

dirtiness determination.

 158

The semantic integration method is well aligned with future trends and is able to

quickly take advantage of these advancements.

5.3 Limitations	

The limitations of the method lie in seven areas: disruption to integration workflows,

complex structures, non-semantic structures, maintaining up-to-date interfaces to each

NoSQL technology, awareness of new NoSQL technologies, overall data cleanup and

preprocessing, and obtaining and evolving necessary technical skills.

The introduction of a new workflow clearly disrupts the current procedure. This change

incurs cost and risks. This is especially true with business critical actions and decisions.

A major change in the ways the business uses data is critical. It requires an incremental

and iterative approach to integrating the method into current business practices. The

method can be introduced through the selection of a minor business opportunity and its

associated data sources. Incorporating the method in this way proves its value and allows

the various users and supporters time to acclimate themselves. As confidence and use

practices grow, the method can expand to other opportunities. Current operations can

continue in parallel and may continue indefinitely for certain situations. The method is

not mutually exclusive and allows other methods to operate simultaneously.

Complex structures consist of entities that maintain relationships with many other fields

in one to many, many to one, and many to many relationships. The method would indeed

be challenged by such structures. However, antidotal reviews have found that NoSQL

databases do not maintain such relationships and additionally the technology and its

 159

priorities do not encourage such relationships. This is a limitation and future research is

required to see if those conclusions are indeed substantiated across expanded use of

NoSQL databases.

Non-semantic structure names consist of human-meaningless database names, table

names, and field names. The NoSQL technologies allow this but again, this goes against

the typical use of these database artifacts. The method also allows semantics to be

derived by providing field values to allow the user or enrichment ontologies to aid in

building the semantics. For example, a table name of simply ‘ss’ offers little semantics.

However, if the user is also provided an instance example such as ‘134-45-6789’, they

may infer that ss represents social security numbers. Of course this is not possible in all

cases. There is little reason for building a data model with meaningless semantic artifacts

unless the intention is to purposely disguise the data. This is unlikely since the data is

intended to be used and shared.

Maintaining the method requires updating the interfaces as they evolve. This requires

technical skills and alertness across the NoSQL technologies. Additionally, depending

on the changes, the method may need to obtain multiple interfaces to the same

technology for each major version. All of this is doable but requires investment and

resources. This extends to recognizing and incorporating new NoSQL technologies.

Data cleanup and preprocessing tasks can grow large and time consuming. The method

can incorporate additional rules, logic from the ontologies, and additional enrichment

ontologies. This, again, requires skills and investment. Using ontologies to clean up and

 160

enrich data should improve efficiency so the cleanup would work across all the NoSQL

technologies. There is no need to do a separate cleanup for each NoSQL technology.

Finally, the method does require technical skills to maintain and evolve. These skills are

currently hard to obtain. Fortunately, the method minimizes those needs over current

practices.

5.4 	
 Future	
 Research	
 Extensions	

The method provides research paths to several useful extensions including field study and

recommendations; improved, interactive visualizations; enrichment of ontologies and

associated logic; data preprocessing logic; adding alerting on databases changes; and

extensions to structured data outside of NoSQL.

An empirical field study requires access to real world business situations and measuring

the performance of given use cases, varying the size of the databases, the structures, the

technologies, and so on. The findings of the study would provide recommendations for

the actual implementation architecture. This requires hardening of the prototype to make

it easy to deploy and monitor, as well as extensive testing. Field experiments will

highlight areas for improvement in visualization, capture of the various NoSQL structures,

and data integration performance. Methodological limitations of such an approach must

also be considered.

The interactive ontology visualizations can be extended in several ways. For instance, it

can support more complex structures. Additionally, alternative visual representation

 161

beyond a graph, tree, or other structure may be explored for certain structure types. Some

of the NoSQL technologies offer their own visualizations of the data. These

visualizations may suggest effective techniques that could be incorporated into the

ontology visualization used in the semantic integration method. However, these

visualizations would not serve as a substitute for the ontology visualization because each

is unique to its particular NoSQL technology. These different visualizations would likely

be confusing to the user and would unnecessarily make them aware of the particular

NoSQL technology. Additionally, this is orthogonal to the goal of one common view of

the data regardless of the underlying NoSQL technology. One common view must be

generated to present the integrated database visualization across multiple NoSQL

technologies.

Enrichment of ontologies and associated logic would allow for expressing rich semantics.

The logic could look for word and phrase similarities across the database terms and,

when appropriate, make them equivalent. Additionally, the ontologies could actually

enrich the integrated data itself by adding supporting information. LinkedData

(LinkedData, 2017) offers many useful ontologies that describe a myriad of terms and

relationships. These could be reviewed and integrated along with the NoSQL databases.

Additionally, reviewing ontology engineering with regard to various domains would

align the ontology with larger research efforts aimed at improving ontology development.

The model’s development of the ontology would be further enriched by following the

state-of-the-art in ontology advancements.

 162

Relational databases also hold rich data. However, the complex relationships that bind

one table to another bring challenges of uncovering their semantics or meaning and

properly exposing this to a non-technical user. Overcoming these challenges would aid

business evaluation of integrated relational databases since many of the commercially

available database visualizations do not simplify the extensive relationships. Future

efforts in the advancement of the semantic integration model should explore the inclusion

of relational databases and work through methods to simplify the complex relationships

and extract the business semantics behind those relationships. This would allow the

integration of large amounts of existing, valuable data.

Currently, the semantic integration model is a pull system where the user requests a

structure analysis for possible integration. The method could advance to a push system

where the structural analysis runs automatically and compares results. It could then

provide an alert when a change to the structure is made. This would employ the existing

structural comparator in the normalization of a candidate. Identification of a new

structure would also initiate an alert. The automatic updates could provide data to

understand changes in the structure over time, providing views to indicate the volatility of

the data and its timeline.

Finally, the method could extend to integrate structured data beyond NoSQL databases

such as streaming data, expressed in formats like XML or JSON. As with NoSQL data

sources, the method can sample the stream to determine the structure, then convert to an

ontology that maintains the interface information, and provide a visualization to the user.

 163

6 Bibliography	

Abadi, D. (2009). Data Management in the Cloud: Limiations and Opportunties. Bulletin

of the IEEE Computer Society Technical Committee on Data Engineering .

Adomavicius, G., Bockstedt���, Jesse C. ,Gupta���, A., Kauffman���, R.J., Making Sense Of

Technology Trends In The Information Technology Landscape:���A Design Science

Approach, MIS Quarterly, Vol. 32 No. 4, December 2008, pp. 779-809.

Amazon. (2011, 11 8). Amazon Public Data Sets. Retrieved 11 8, 2011, from

http://aws.amazon.com/datasets/Encyclopedic?browse=1

Amazon. (2012, 1). Public Data Sets on AWS. Retrieved 1 22, 2012, from Amazon:

http://aws.amazon.com/publicdatasets/

Apache. (2011). Apache Jena. Retrieved 1 21, 2012, from apache:

http://incubator.apache.org/jena/

Apple. (2012). iCloud. Retrieved 1 7, 2012, from apple.com:

http://www.apple.com/icloud/

Benbasat, I., Goldstein, D. K., and Mead, M. 1987. “The Case Research Strategy in

Studies of Information Systems,” MIS Quarterly (11:3), September, pp. 369-386.

Bennet, T., & Bayrak, C. (2011). Bridging the Data Integration Gap: From Theory to

Implemenation. ACM SIGSOFT Engineering Notes , 36 (3).

 164

Bennett, T., & Bayrak, C. (2011). Bridging The Data Integration Gap: From Theory to

Implementation. ACM SIGSOFT Software Engineering Notes , 36 (3), 8.

Berners-Lee, T., Hendler, J., & Lisssila, O. (2001, 5). The Semantic Web. Scientific

America , 6.

Bizer, C. (2010, 11 29). The D2RQ Platform - Treating Non-RDF Databases as Virtual

RDF Graphs. Retrieved 11 16, 2011, from wiwiss: http://www4.wiwiss.fu-

berlin.de/bizer/d2rq

Bizer, C., & al, e. (2011, 9 19). State of the LOD Cloud. Retrieved 10 16, 2011, from

wiwiss: http://www4.wiwiss.fu-berlin.de/lodcloud/state/

Blunt, K. (2011, 1). 10 Marketing Trends to Watch in 2011. Expert Opinion .

Buccella, A., Cechich, A., & Brisaboa, N. (2005). Ontology-Based Data Integration

Methods: A Framework for Comparison. Revista Colombiana de Computación.

Clark, K., Feigenbaum, L., & Torres, E. (2008, 1 15). SPARQL Protocol for RDF.

Retrieved 1 21, 2012, from w3: http://www.w3.org/TR/rdf-sparql-protocol/

Comito, C., Patarin, S., & Talia, D. (2006). A Semantic Overlay Network for P2P

Schema-Based Data Integration. Proceedings for the 11th IEEE Symposium on

Computers and Communications (ISCC'06). IEEE.

Date, C. J. (2005). Database in Depth. Oreilly.

 165

Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS Quarterly , 13 (3), 319-340.

DBpedia. (2011, 10 23). DBpedia. Retrieved 10 23, 2011, from DBPedia:

http://dbpedia.neofonie.de/browse/rdf-type:Person/rdf-type:Athlete/

Doan, A., & Halevy, A. (2005). Semantic Integration Research in the Database

Community. AI Magazine , 26 (1).

Euzenat, J. (2008, 2 29). INRIA & LIG, February 29, 2008 Alignment API. Retrieved 10

16, 2011, from alignapi: http://alignapi.gforge.inria.fr/

Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., & Trojahn, C. (2011).

Ontology Alignment Evaluation Initiative: Six Years of Experience. Journal of Data

Semantics , 6720, 158-192.

Fan, H., & Gui, H. (2007). Study on Heterogeneous Data Integration Issues. IEEE .

Fellbaum, C. (2011, 6 21). WordNet - A lexial database for English. (P. University,

Producer) Retrieved 1 4, 2012, from WordNet: http://wordnet.princeton.edu/

Foaf. (2010). foaf project. Retrieved 1 21, 2012, from The Friend of the a Friend Project:

http://www.foaf-project.org/

Giordano, A. D. (2010). Data Integration Blueprint and Modeling: Techniques for a

Scalable and Sustainable Architecture. IBM Press.

 166

Gold-Bernstein, B., & Ruth, W. (2004). The Business Imperative for Enterprise

Integration. In W. R. Beth Gold-Bernstein, Enterprise Integration: The Essential Guide

to Integration Solutions (p. 432). Boston: Addison-Wesley Professional.

Gold-Bernstein, P., & Hass, L. (2008). Information Integration in the Enterprise.

Communication ACM , 72-79.

Goodhue, D., Wybo, M., & Kirsch, L. (1992, 9). The Impact of Data Integration on the

Costs and Benefits of Information Systems. MIS Quarterly , 293-311.

Government, U. (2010, 11 11). Data.gov Semantic. Retrieved 1 21, 2011, from data.gov:

http://www.data.gov/semantic/

Government, U. S. (2011, 11 4). Data.gov. Retrieved 11 4, 2011, from Data.gov:

http://www.data.gov/metric

Granitzer, M., Sabol, V., Onn, K., Lukose, D., & Tochtemann, K. (2010). Ontology

Alignment—A Survey with Focus on Visually Supported Semi-Automatic Techniques.

Future Internet , 2 (3), 238-258.

Granitzer, M., Sabol, V., Weng Onn, K., Lukose, D., & Tochtermann, K. (2010).

Ontology Alignment - A Survey with Focus on Visually Supported Semi-Automatic

Techniques. Future Internet , 2, 238-258.

Grossman, R., & Gu, Y. (2009). On the Varieties of Clouds for Data Intensive

Computing. Bulletin of the IEEE Computer Society Technical Committe on Data

Engineering , 7.

 167

Harris, S., & Seaborne, A. (2012, 1 5). SPARQL 1.1 Query Language. Retrieved 1 21,

2012, from w3: http://www.w3.org/TR/sparql11-query/

Heath, T. (n.d.). Linked Data - Connect Distibuted Data Across the Web . Retrieved 11

16, 2011, from linkeddata: http://linkeddata.org

Hebeler, J., Fisher, M., Blace, R., & Perez-Lopez, A. (2009). Semantic Web

Programming. Wiley Publishing.

Herman, I. (2011). Publications of the W3C Semantic Web Activity. Retrieved 1 21, 2012,

from w3: http://www.w3.org/2001/sw/Specs

Hevner, A., & al, e. (2004, 3). Design Science in Information System Research. MIS

Quarterly .

Hickey, A. R. (2010, 8 19). SMB Cloud Spending To Approach $100 Billion By 2014.

Retrieved 1 7, 2012, from crn.in: http://www.crn.in/Software-019Aug010-SMB-Cloud-

Spending-To-Approach-100-Billion-By-2014.aspx

Horrocks, I., Patel-Schneider, P., & Boley, H. (2004, 5 21). SWRL: A Semantic Web Rule

Language Combining OWL and RuleML. Retrieved 1 21, 2012, from w3:

http://www.w3.org/Submission/SWRL/

Hurst, N. (2010, 3 15). Visual Guide to NoSQL Systems. Retrieved 1 22, 2012, from

nahurst: http://blog.nahurst.com/visual-guide-to-nosql-systems

 168

Husain, M., McGlothlin, J., Khan, L., & Thuraisingham, B. Scalable Complex Query

Processing Over Large Semantic Web Data Using Cloud. 2011 IEEE 4th International

Conference on Cloud Computing (pp. 187-194). IEEE.

Idrissi, Y., & Vachon, J. (2009). An adaptive multi-strategy approach for semantic

mapping. C3S2E '09 Proceedings of the 2nd Canadian Conference on Computer Science

and Software Engineering (pp. 7-15). New York: ACM.

Internet Stats. (2011, 9 20). Retrieved 9 20, 2011, from Internet Stats:

http://www.internetworldstats.com/stats.htm

Jena. (2010, 3 28). Jena 2 Inference Support. Retrieved 1 21, 2012, from

jena.sourceforge: http://jena.sourceforge.net/inference/

Kalfoglou, Y., & Schorlemmer, M. (2003, 1). Ontology Mapping: the State of the Art.

Knowledge Engineering Review , 1-31.

Kalfoglou, Y., & Schorlemmer, M. (2003). Ontology Mapping: The State of the Art. The

Knowledge Engineering Review , 18 (1), 43.

Kalin, M. (2009). Java Web Services: Up and Running. O'Reilly Media Inc.

Kassim, J., & Rahmany, M. (2009). Introduction to Semantic Search Engine. 2009

International Conference on Electrical Engineering and Informatics (pp. 380-386).

Selangor: IEEE.

 169

Kaza, S., & Chen, H. (2008). Evaluating ontology mapping techniques: An experiment in

public safety information sharing. Decision Support Systems , 45 (4), 714-728.

Kifer, M., & Boley, H. (2010). Overview of Rule Interchange Format. Retrieved 1 21,

2012, from W3C: http://www.w3.org/2005/rules/wiki/Overview

Kim, W., Choi, B.-J., Hong, E.-K., Kim, S.-K., & Lee, D. (2003). A Taxonomy of Dirty

Data. Data Mining and Knowledge Discovery , 7, 81-99.

Kirilov, K. (2011, 4 26). Cloud Computing Market Will Top $241 Billion in 2020.

Retrieved 10 16, 2011, from http://www.cloudtweaks.com/2011/04/cloud-computing-

market-will-top-241-billion-in-2020/

Kitchenham, B., Linkman, S., & Law, D. (2002). DESMET: a methodology for

evaluating software engineering methods and tools. Computing & Control Engineering

Journal , 8 (3), 120-126.

Klein, M. (2001). Combining and relating ontologies: an analysis of problems and

solutions. The Knowledge Engineering Review , 18 (1), 53-62.

Knublauch, H., Idehen, K., & Hendler, J. (2011, 2 22). SPARQL Inferencing Notation

(SPIN). Retrieved 1 21, 2012, from w3: http://www.w3.org/Submission/2011/02/

Laboratory for Applied Ontology. (n.d.). Retrieved 1 4, 2012, from DOLCE:

http://www.loa.istc.cnr.it/DOLCE.html

 170

Langegger, A., Wolfram, W., & Martin, B. (2008). A Semantic Web middleware for

virtual data integration on the web. ESWC'08 Proceedings of the 5th European Semantic

Web conference on The Semantic Web: research and applications (p. 15). Berlin:

Springer-Verlag.

Lenzerini, M. (2002). Data Integration: A Theoritical Perspective. Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems (pp. 233-246). New York: ACM.

Liu, F., Lou, X., & Liang, G. (2009). Semantic Cloud based on SLN and ALN. 2009

Fifth International Conference on Semantics, Knowledge, and Grid (pp. 314-317). IEEE.

Lucas, A. (2010). Corporate Data Quality Management. 2010 5th Information Systems

and Technologies (CISTI). Iberia.

MacManus, R. (2010, 7 2). Facebook & the Semantic Web. ReadWriteWeb .

Maedche, A., & Staab, S. (2002). Measuring Similarity between Ontologies. Proceedings

of the European Conference on Knowledge Acquisition and Management (EKAW.

Moujane, A., Chiadmi, D., Benhlima, L., & Wadjinny, F. (2009). A study in the P2P data

integration process. Computer Systems and Applications, 2009. AICCSA 2009 (pp. 57-58).

IEEE/ACS .

Nakano, C. (2011, 10 18). New Twitter Statistics Reveal 100M Monthly Active Users &

250M Daily Tweets #w2s. Retrieved 1 7, 2012, from cmswire.com:

 171

http://www.cmswire.com/cms/social-business/new-twitter-statistics-reveal-100m-

monthly-active-users-250m-daily-tweets-w2s-013103.php

Noy, N. (2004). Semantic Integration: A Survey of Ontology-Based Approaches.

SIGMOD , 33 (4), 65-70.

Noy, N., & Musen, M. (2000). PROMPT: Algorithm and tool for automated ontology

merging and alignment. Proceedings of the Seventeenth National Conference on

Artificial Intelligence. Austin: AAAI/MIT Press.

OAEI. (2011). Ontology Alignment Evaluation Initiative. Retrieved 1 21, 2012, from

OAEI website: http://oaei.ontologymatching.org/2011/

Organization, W. S. (2008, 11 26). Extensible Markup Language (XML) 1.0 (Fifth

Edition). Retrieved 9 20, 2011, from W3C: http://www.w3.org/TR/2008/REC-xml-

20081126

Organization, W. S. (2001). Semantic Web Standards. Retrieved 9 20, 2011, from W3C:

http://www.w3.org/2001/sw

Pride. (2010, 9 29). Ontology Lookup Service. Retrieved 1 23, 2012, from ols:

http://www.ebi.ac.uk/ontology-lookup/

Programmableweb. (2012, 1 22). API Dashboard. Retrieved 1 22, 2012, from

programmable web: http://www.programmableweb.com/apis

 172

protege. (2011). protege. Retrieved 1 21, 2012, from standford:

http://protege.stanford.edu/

Ramler, R., & Wolfmaier, K. (2008, October 9). Issues and Effort in Integrating Data

from Heterogeneous Software Repositories and Corporate Databases. ESEM .

sameAs. (2012, 1). sameAs interlinking the Web of Data. Retrieved 1 21, 2012, from

samas: http://sameas.org/

SAS. (2011, 12 3). SAP Business Objects. Retrieved 12 3, 2011, from

http://www.sap.com/solutions/sapbusinessobjects/large/business-intelligence/index.epx

Sauser, B., & al, e. (2010). Integration Maturity Metrics: Development of an Integration

Readiness Level. Information Knowledge System Management , 9.

Sheth, A., & Ranabahu, A. (2010, 5). Semantic integration modeling for Cloud

Computing, Part 1. Internet Computing , 81-84.

Sheu, P., Wang, S., Wang, Q., & Paul, R. (2009). Semantic Computing, Cloud

Computing, and Semantic Search Engine. 2009 IEEE International Conference on

Semantic Computing. IEEE.

sindice. (2012). Indice The Semantic Web Index. (Deri, Producer) Retrieved 1 21, 2012,

from Sindice: http://www.sindice.com/

Tufte, E. (2001). The Visual Display of Quantitative Information. Graphics Pr.

 173

Uschold, M., & Gruninger, M. (2004). Ontologies and Semantics for Seamless

Connectivity. SIGMOD Record , 33 (4), 58-64.

van den Heuvel, C., & Rayward, W. (2011). Facing Interfaces: Paul Otlet's Visualization

of Data Integration. Journal of the American Society for Information Science and

Technology , 62 (12), 2313-26.

Verter, G. (2010). Semantics in the Age of the Data Deluge. In A. D'Atri (Ed.),

Information Systems: People, Organization, Institutions, and Technologies (pp. 415-421).

Physica-Verlag HD.

Vetere, G. (2010). Semantics in the Age of the Data Deluge. In D. Sacca, Information

Systems: People, Organizations, Insttitutions, and Technologies (pp. 415-421). Physica-

Verlag HD.

W3C. (2011, 11 8). Wordnet in RDF. Retrieved 11 8, 2011, from

http://www.w3.org/2006/03/wn/wn20/

W3C, Prud'hommeaux, E., & Seaborne, A. (2008, 1). SPARQL Query Language for RDF.

Retrieved 1 21, 2012, from W3C: http://www.w3.org/TR/rdf-sparql-query/

Wikipedia. (2012, 1 11). Cloud database. Retrieved 1 21, 2012, from Wikipedia:

http://en.wikipedia.org/wiki/Cloud_database

Wikipedia. (2011, September 20). Data Integration. Retrieved September 20, 2011, from

Wikipedia: http://en.wikipedia.org/wiki/Data_Integration

 174

Wikipedia. (2011, 5 11). Semantic Computing. Retrieved 1 21, 2012, from Wikipedia:

http://en.wikipedia.org/wiki/Semantic_computing

Wikipedia. (2011, 12 23). Semantic Reasoner. Retrieved 1 21, 2012, from wikipedia:

http://en.wikipedia.org/wiki/Semantic_reasoner

Wikipedia. (2012, 1 19). Triplestore. Retrieved 1 21, 2012, from wikipedia:

http://en.wikipedia.org/wiki/Triple_stores

Williams, A. (2009, 11 25). Merrill Lynch: Cloud Computing Market Will Reach $160

Billion...Really. Retrieved 1 7, 2012, from readwriteweb.com:

http://www.readwriteweb.com/enterprise/2009/11/merrill-lynch-cloud-computing.php

Yamaguchi, Y., & al, e. (2011). Tag-Based User Discovery using Twitter Lists. 2011

International Conferences on Advances in Social Networks Analysis and Mining.

YongTao, J., FengJuan, Q., & HuiJuan, W. (2010). Ontology-Based Research on

Heterogeneous Database Semantic Integration Strategies. 2010 Second International

Workshop on Education Technology and Computer Science. 10, pp. 477-479. IEEE.

Youseff, L., Butrico, M., & Da Silva, D. (2009). Toward a Unified Ontology of Cloud

Computing. Grid Computing Environments Workshop, 2008. GCE '08 , (pp. 1-10).

Austin.

Zeyliger, P. (2010, 3 22). How Raytheon BBN Technologies Researchers are Using

Hadoop to Build a Scalable, Distributed Triple Store. Retrieved 8 19, 2010, from

 175

Developer Center: http://www.cloudera.com/blog/2010/03/how-raytheon-researchers-are-

using-hadoop-to-build-a-scalable-distributed-triple-store/

Zhou, J. e. (2010). A Survey of Semantic Enterprise Information Integration. Information

Sciences and Interaction Sciences (ICIS).

Zhu, Y. e. (2008). Data Updating and Query in Real-Time Data Warehouse System. 2008

International Conference on Computer Science and Software Engineering.

Ziegler, P., & Dittrich, K. (2004). Three Decades of Data Integration - All Problems

Solved. 18th IFIP World Computer Congress - Building the Information Society , 12.

