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1. Introduction 

The use of digital technology in the teaching and learning of mathematics, a practice that 

has been discussed and promoted for decades as a fundamental principle of mathematics 

education (National Council of Teachers of Mathematics (NCTM), 1989, 2000, 2014), has 

resulted in a wide array of studies. The most common student outcome studied in relation to 

technology use is achievement, followed by orientation (i.e., the affective domain; Ronau et al., 

2014). Existing reviews have examined both outcomes in relation to particular technologies (e.g., 

calculators in Ellington, 2003; graphing calculators in Ellington, 2006; computer technology in 

Li & Ma, 2010). These meta-analyses did not account for clustering effects (e.g., students nested 

in teachers) and therefore likely over-estimated the true effects found in their primary studies 

(Hedges, 2007). Furthermore, while the meta-analyses examined both achievement and 

orientation, they examined the outcomes separately with different samples of studies. Their 

analyses were therefore unable to account for the relationship between the two outcomes 

(dependent variable correlation), which also potentially over-estimates effect sizes (Kalaian & 

Kasim, 2008). Finally, the potential for effect sizes to be inflated by publication bias, the 

tendency for statistically significant results to be published at higher rates than non-significant 

results (Rothstein, Sutton, & Borenstein, 2006), has not been consistently analyzed in 

mathematics education technology meta-analyses. Some meta-analyses (e.g., Ellington, 2000) do 

include grey literature (e.g., dissertations, theses, reports), which does help alleviate effect size 

inflation (Conn, Valentine, Cooper, & Rantz, 2003). Even with grey literature inclusion, the 

absence of a robust publication bias analysis opens the possibility that their reported effect sizes 

are higher than the true effects (Stanley, 2017).   
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A comprehensive examination of achievement and orientation across technologies can 

provide a clearer view of how technology has been used to improve the teaching of mathematics. 

Accounting for clustering, dependent variable relationships, and publication bias provides a more 

robust estimate of true effect sizes on student achievement and orientation.  

1.1 Focus of the Study 

The present study provides a meta-analysis of comprehensive technology use in 

mathematics education and the effects on student achievement and orientation. The analysis 

accounts for both clustering effects and multicollinearity between achievement and orientation, 

thereby yielding a more precise estimate of true effects.  

Seven different types of technology and six different uses of technology were identified. 

The combination of different technology types and uses in the analysis may limit some of the 

explanatory power on individual technologies, so the analyses of specific individual technologies 

and uses are also included. In addition to investigating the gross overall achievement and 

orientation effects, we analyzed the moderating effects of individual technologies, technology 

uses, student characteristics, study characteristics, and outcomes.  

The mathematics education field has long recognized that simply incorporating 

technology into classroom instruction will have no effect on learning by itself (Cohen & 

Hollebrands, 2011; Roschelle et al., 2000; Roschelle et al., 2010; Sickel, 2019). There is a 

general understanding that technology serves as a vehicle for implementing pedagogical changes 

(Clark, 1983; NCTM, 2014; Roschelle et al., 2010). Technology is generally considered effective 

to the degree it is used in a way that improves student conceptual understanding of mathematics 

and encourages mathematical reasoning and communication (NCTM, 2014). An analysis of 

conceptual emphasis in technology interventions was therefore included as an additional 
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dimension for understanding the way technology uses were coupled with pedagogy in the 

mathematics classroom. Because confounding influences are an ever-present reality in 

technology research (Clark, 1983, 1994), we remained cognizant of Sickel’s (2019) caution 

against overstating and overgeneralizing results. 

1.2 Research Questions 

The study investigated two questions. 

1. What are the effects on achievement and orientation, accounting for dependent 

variable correlation, clustering and publication bias? 

2. To what extent was conceptual understanding an emphasis of mathematics 

education technology research? 

2. Literature Review and Conceptual Framework  

The present study identified five factors that contribute to the nature of a mathematics 

education technology intervention study: technology type, technology use, conceptual emphasis, 

study characteristics, and student characteristics. The model for this study’s conceptual 

framework shows these five factors influencing the intervention, which in turn influences student 

achievement and orientation outcomes (Figure 1). 

 

Figure 1. Model of Study Conceptual Framework 
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The term mathematics education technology refers in the present study to digital 

technologies, which were organized into five categories: calculators, probeware, software, 

hardware, and Internet. Calculators consisted of four-function, scientific, graphing calculators, 

calculator programming and applications, computer algebra systems (CAS), dynamic geometry, 

simulation, networked-handheld devices, and statistics. Probeware consisted of data collection 

devices such as Calculator Based Laboratory (CBLTM), Computer Based Ranger (CBRTM), 

motion detectors, and other specialized sensors (e.g., temperature, pressure, velocity). Software 

consisted of dynamic geometry, graphing, algebra, statistics, statistics instruction, spreadsheet, 

presentation, applets, games/puzzles, testing, tutorial, student response systems, and interactive 

whiteboard. Hardware consisted of laptops, classroom computers, and computer labs. Internet 

technologies included online manipulatives and applets, distance learning, online games/puzzles, 

online testing, online tutorial, websites, WebQuests, Wiki spaces, social media (e.g., Facebook, 

Twitter), video conferencing, document or video sharing, and blogs. 

The value of technology lay less in the software or hardware and more on how it is 

integrated with pedagogy and curriculum (Dick & Hollebrands, 2011; Roschelle et al., 2010). 

Large scale studies of “technology effects” typically find null effects, for example Campuzano et 

al.’s (2009) examination of PLATO Achieve Now 6th grade mathematics, which engages 

students in independent practice and reinforcement of mathematics skills and Larson’s Pre-

Algebra 6th grade mathematics, which provides an online text to supplement the hard copy 

textbook with instruction, practice, and assessment. Although the type of technology does not 

directly affect student outcomes by itself, the characteristics of the technology provide an avenue 

for effectively enhancing pedagogy (NCTM, 2014). Given the crossover of characteristics 

between different technology types (e.g., online dynamic geometry software, graphing calculator 
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dynamic geometry applications, and desktop dynamic geometry programs), a breakdown by type 

of technology is unlikely to render strong inferences but is included in Online Supplement B for 

reference purposes. Technology use and conceptual emphasis offer two perspectives on how 

technology is integrated with pedagogy. 

2.2 Technology Use  

Technology use describes how technology is integrated into pedagogy. Six broad 

categories of technology use were identified in the literature: instruction enhancement, 

computation, support for active learning, tutorial, assessment, and technology-rich environments. 

Instruction enhancement consisted of a wide array of activities. Most common was using 

technology as a supplement to regular classroom activities (e.g., Bai, Pan, Hirumi, & Kebritchi, 

2012; Kim, 2007; Santiago-Collazo, 1995). Almost as common was using technology to perform 

or check computations (e.g., Harter, 2006; Isiksal & Askar, 2005; Ke, 2006). Active learning 

uses of technology included geometry explorations (e.g., Hodanbosi, 2001), graphing calculator 

investigations (e.g., Fox, 1998), inquiry learning (e.g., Pilli & Aksu, 2013; Yang, 2014), algebra 

projects (e.g., Buck, 2009; Ogbuehi & Fraser, 2007), and data investigations (e.g., Spinelli, 

2001). Some studies engaged students with tutorial features of graphing calculators (e.g., Mirick, 

2002), computer programs (e.g., May, 2005; Voloshin, 2009; Zunker, 2008), and distance 

learning software (e.g., Spence, 2004). Using technology to support mathematics assessment 

consisted of student calculator use during a test (e.g., Bouck & Bouck, 2008; Ellerman, 1998) 

and online testing systems (e.g., Hurn, 2006). Some studies did not clearly explain how teachers 

or students were using technology. Some studies examined technology-rich mathematics 

classrooms (e.g., Bolin, 1992). Others provided students with time to work freely in a computer 

lab (e.g., Wodarz, 1994).  
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2.3 Conceptual Emphasis  

Conceptual emphasis is a second consideration of how technology is used in mathematics 

education, measuring the emphasis of the assessment items used in the achievement measure(s). 

The ability of technology to support conceptual understanding is particularly important (Kaput, 

Hegedus, & Lesh, 2007; Roshchelle et al., 2010). Erlwanger (2004) found that if a student 

already has conceptual understanding, the use of technology for basic fact recall and procedures 

is unlikely to impede student learning. But if conceptual understanding is not already present, 

using technology for basic fact recall and procedures will not help develop it; in fact, it may help 

develop and strengthen misconceptions.  

2.4 Student Characteristics  

Student characteristics (e.g., gender, ability) influence the degree to which technology 

can be used to effectively improve mathematics teaching and learning (Li & Ma, 2010). Student 

characteristics are typically included as moderators in a meta-analysis. Ma (1999) found no 

significant difference in the relationship between anxiety and achievement by grade level, 

comparing grades 4-6 to grades 10-12 and grades 7-9 to grades 10-12. In addition, the effect of 

sex was not significant. Student ability level was not examined. Hembree and Dessart (1986) and 

Ellington (2003) found that grade level moderated calculator effects on student achievement. 

Ellington (2003) found that ability levels also moderated calculator effects on student 

achievement. Li and Ma (2010) found significant effects from special education status and grade 

level. 

2.5 Study Characteristics  

Study characteristics (e.g., design, procedures, analytic methods) influence the validity of 

measured effects in a meta-analysis. Study characteristics are typically included as moderators in 
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a meta-analysis. For example, Ellington (2003) found differences in effects based on publication 

status and treatment length. Li and Ma (2010) found significant effects from the method of 

teaching (constructivist versus traditional approach) and year of publication (before and after 

1999).  

Planning for effective pedagogy involving technology follows a sequence: learning 

objective  appropriate task  appropriate tool(s) (Cohen & Hollebrands, 2011). Research 

studies often do not follow such a sequence. Researchers typically have a type of technology and 

may even have a particular lesson, sequence, or curriculum as part of the intervention (e.g., Bai 

et al., 2012; Ersoy & Akbulut, 2014; Roschelle et al., 2010; Smith, 1991). Teachers are then 

asked to adopt the intervention package, or the intervention happens outside of mathematics 

classroom. These typical research features raise validity concerns. For example, Roschelle et al. 

(2010) noted that their intervention was a replacement unit and that they were not concerned in 

Year 1 with high treatment fidelity and only attended to it minimally in Year 2. In some cases 

(e.g., Bai et al., 2012; Pilli & Aksu, 2013; Ross, Bruce, & Sibbald, 2011), particular technology 

is studied, and indication is infrequently given that researchers considered a range of tools when 

planning curriculum materials to accompany the technology. 

The independent variable in mathematics education technology research is often 

intermingled with pedagogy, making interpretation of effects difficult at best. Control conditions 

are typically some form of “business as usual” (e.g., Ellerman, 1998; Fletcher, Hawley, & Piele, 

1990). Some studies do not specify technology-supported pedagogical enhancements at all: 

students received the same content and problems with and without technology (e.g., Feliciano, 

1996). 
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Most studies that compare two types of technology use them differently in the same 

lesson (e.g., Abramowitz, 1999; Fox, 1998; Hylton-Lindsay, 1997; Yang, 2014), so effects 

cannot be attributed to the technology use alone. Brown (2007) is an exception, comparing the 

use of virtual and concrete manipulatives with similar pedagogy for the same lessons. Chen 

(2005) is another exception, comparing computer algebra instruction with personalized questions 

to computer algebra instruction without personalized questions. Effects for Chen (2005) 

therefore represent the effects of personalized questions rather than computer algebra instruction. 

2.6 Student Achievement 

Student achievement is a measure of a type of knowledge, and test scores are a measure 

of that achievement (e.g., departmental final exam in Brewer, 2009; standardized tests in Duffy 

& Thompson, 1980 and Plourde, 2008). Achievement and learning are inter-related but distinct. 

While student learning is the growth in knowledge, achievement is the status of a type of 

knowledge at a particular point in time (Linn et al., 2013). 

2.7 Student Orientation  

Student Orientation is a term coined by Schoenfeld (2011) to refer to the affective 

domain as a whole and includes attitudes, beliefs, dispositions, and preferences. Orientations 

toward mathematics and/or technology have been studied extensively, including in relation to 

technology in mathematics education. For example, Hembree and Dessart (1986) and Ellington 

(2003) examined attitudes and perceptions of mathematics in relation to calculator use. Hoffman 

(2010) and Ma (1999) examined mathematics anxiety. Hoffman (2010) also examined students’ 

sense of mathematics efficacy. Other orientation constructs that have been studied extensively 

include beliefs (Phillip et al., 2007; Schoenfeld, 1982, 1985, 1989), value of mathematics (Phillip 

et al., 2007; Tapia & Marsh, 2004), goals (Phillip et al., 2007), confidence (Fennema & 
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Sherman, 1976; Tapia & Marsh, 2004), enjoyment (Tapia & Marsh, 2004), and motivation 

(Tapia & Marsh, 2004). Fennema and Sherman (1976) examined attributions/attitudes toward 

success, perceptions of parental interest, encouragement, and perceptions of teacher attitudes. 

2.8 The Importance of Studying Achievement and Orientation Together 

There are several reasons to examine achievement and orientation outcomes together 

when studying mathematics education technology research. First, effective technology 

integration into pedagogy may result in improved achievement (e.g., Roschelle et al., 2010), 

student engagement and/or self-directed learning (Baki & Guven, 2009; Chen, 2008; Goodwin & 

Miller, 2013; Roschelle et al., 2000), mathematics confidence and motivation (Galbraith & 

Haines, 1998), or technology confidence and motivation. Orientation measures can provide 

insight into the way(s) students interacted with the technology. Student lack of 

familiarity/comfort with the technology can impede engagement (Galbraith & Haines, 1998). 

Second, a relationship between achievement and orientation has long been recognized 

(Aiken, 1970, 1976; Ma, 1999; Neale, 1969). Deep learning is not strictly cognitive but evokes 

an emotional response, requiring an affective commitment from both students and teachers. 

Enthusiasm of both students and teachers is central to the learning process (Shulman & Wilson, 

2004). 

Third, orientation can have a direct influence on student learning. For example, the way 

mathematics is taught can send implicit messages about what is valued and how various ideas are 

or are not related (Schoenfeld, 1988). Students’ learning experiences shape their beliefs, 

dispositions, value, and efficacy toward mathematics (Schoenfeld, 2011). Those orientations 

directly influence the way students approach mathematics in and out of school settings 

(Schoenfeld, 1982, 1988, 1989, 2011). 
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2.9 Connections to the present study 

This conceptual framework and its underlying research guided the research questions, 

methods, and analytic techniques of the present study. The use of multilevel multivariate meta-

analysis techniques provided a robust analytic tool for measuring effect sizes for achievement 

and orientation after accounting for their relationship. The inclusion of conceptual emphasis 

broadened the analysis of how technology was used in research to improve mathematics 

pedagogy.  

3. Method 

The present study was part of a larger mathematics education technology project that 

began with the development of a coding system to identify study characteristics (described in 

more detail in Ronau et al., 2015). The larger study examined the quality of 1,476 mathematics 

education technology papers; the present study is a unique examination of only papers that met 

all the inclusion criteria.  

3.1 Design 

This systematic review and meta-analysis followed an embedded mixed methods design 

(Creswell & Plano Clark, 2007). In this embedded mixed methods design, quantitative and 

qualitative data on student mathematics achievement and orientation were collected 

simultaneously, and the qualitative data provided a supportive, secondary role by providing 

contextual and informational nuance for the analyses. Both research questions were primarily 

investigated using quantitative methods (e.g., effect size computation, multivariate multilevel 

meta-analysis). The qualitative analyses provided important insight into the types of orientation 

that were present in the sample studies. The qualitative analyses were also foundational to the 

analysis of conceptual emphasis in the sample studies. 
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3.2 Data Collection and Inclusion Criteria 

Studies were identified through a systematic process based on the techniques outlined by 

Cooper, Hedges, and Valentine (2009) and Lipsey and Wilson (2001); for example, defining 

constructs prior to coding, defining keywords prior to conducting the literature search, defining a 

coding process, training coders, and cross-checking results. Inclusion in the sample was based on 

six criteria:  

1. The study examined a technology-based intervention. 

2. The study examined the learning of a mathematics concept or procedure (e.g., mathematics, 

algebra, geometry, visualization, representation). 

3. The study design included a treatment and control group. 

4. The study measured both student achievement and orientation. 

5. The achievement and orientation measures were quantitative with sufficient information for 

computing an effect size. 

6. The study needed to be attainable in the English language.  

Carter et al. (2019), Conn et al. (2003), and Song, Hooper, and Loke (2013) noted that the 

best defense against publication bias (the tendency to publish primarily positive, statistically 

significant effects) is a comprehensive search of the literature that includes grey literature, 

research that is accepted based on its scientific merits rather than significance of findings 

(Rothstein & Hopewell, 2009). Grey literature was therefore included such as dissertations, 

master’s theses, and technical reports. 

The following database platforms were searched: EBSCOWeb (ERIC, Academic Search 

Premier, PsychInfo, Primary Search Plus, Middle Search Plus, Education Administration 

Abstracts), JSTOR (limited to the following disciplines: education, mathematics, psychology, 
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and statistics), OVID, ProQuest (Research Library, Dissertations & Theses, Career & Technical 

Education), and H.W. Wilson Web (Education Full Text). References from the papers identified 

through this search were examined to identify potentially relevant papers that were missed in 

these electronic searches.  

Search terms were organized into three categories: technology, mathematics, and 

education. For technology, we used search terms such as technology, calculate* (* is a wild 

card), software, Sketchpad, Geogebra, Wingeom, Cabri, TI, digital, dynamic, virtual, applet, 

web, Excel, spreadsheet, PowerPoint, tablet, computer, microcomputer, podcast, distance 

learning, CBL, CBR, probe, handheld, hand-held, hand held, visualization, 3d, 3-d, or robot. For 

education, we used search terms such as education, teach, learn, class, school, student, college, or 

train*. For mathematics, we used search terms such as math, geometry, algebra, fraction, 

rational, number, integer, variable, function, equation, expression, calc, probability, statistics, 

discrete, matrix, coordinate, or transform. Variants of each term were tried (e.g., plural vs. 

singular, prefixes vs. whole words) to prevent papers from being missed. Bibliographies from 

identified papers were examined to locate any potentially relevant papers that were not produced 

in the electronic searches. We also consulted with colleagues to identify any papers that may not 

have been indexed by a database but might be relevant (e.g., unpublished reports).  

The initial search identified 1,476 potentially relevant studies from 1968 to 2014. Studies 

were not excluded based on the year of publication. The inclusion of older studies was both 

acceptable and desirable for the following reasons. First, the focus on conceptual understanding 

versus procedures began far earlier than 1968 (e.g., Brownell, 1935). Second, traditional 

pedagogy focusing on rote procedures has remained the dominant focus in mathematics 

classrooms (Hiebert & Grouws, 2007; Stigler & Hiebert, 1997; Welch, 1978). Third, technology 
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has changed rapidly over time, so understanding how technology broadly influences student 

achievement and orientation requires understanding its uses with both older and newer 

technologies. Fourth, Ronau et al. (2015) found that research quality remained stable across time. 

These trends led to the conclusion that an arbitrary date limitation would reduce the sample’s 

representativeness. Figure 2 illustrates the flow of information as studies were identified and 

examined for inclusion eligibility. 

 
Figure 2. Flowchart of study selection (Adapted from Moher, Liberati, Tetzlaff, Altman, & 
PRISMA Group, 2009). Note: 33 full text articles were excluded for multiple reasons. ES = 
Effect Size. 
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each paired with the other five for a total of 15 coder teams). A random number was computed 

for each paper in Microsoft Excel, papers were then listed in a random order, and pairs of coders 

were assigned to papers. Within each pair, each member was designated as primary for a set of 

papers and as secondary for their partners’ papers. Once primary coders completed a paper, the 

secondary coder was notified, who then reviewed, confirmed, or questioned each decision. As a 

result, 1,224 papers were excluded from the study, leaving 240 for coders to further examine the 

full text for eligibility. 

At least two coders examined the full text to make decisions about whether a paper 

should be included, resulting in an additional 140 papers (of the 240) being excluded from the 

sample. After all papers were coded, one coder analyzed the exclusion rationale using open 

coding (Corbin & Strauss, 2008) and independently wrote memos (Grbich, 2007), which 

included patterns evident in the reasons for exclusion (listed in Figure 1). A second coder 

validated the coding and patterns. The full team then discussed the findings to ensure all patterns 

were agreed upon.  

The computation of effect sizes and coding of potential moderating variables were carried 

out by two coders independently. This double-coding process helped maximize inter-rater 

reliability and construct validity. Intra-class correlations (ICC) were computed for achievement 

and orientation effect sizes for each pair of coders. For the achievement effect size, the ICC 

ranged from .942 to .997 across coder pairs. For the orientation effect sizes, the ICC ranged from 

.995 to .997. The cross-validation process resulted in 190 of the 240 papers having full initial 

agreement prior to discussions (79%). The inter-rater reliability was therefore considered to be 

high. The coder pairs discussed all discrepancies and arrived at a consensus for the final data, 
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which helped ensure that decisions remained true to the desired constructs (i.e., construct 

validity, for example differentiating between measures of student cognition versus orientation). 

3.4 Quality Issues in Excluded Studies 

Study quality contributed to exclusion from the sample. The most common reason for 

exclusion was the lack of a control group for one or both student outcomes (N = 70, 50% of 

excluded papers). The lack of a control group was considered a quality issue. Although single 

group studies and analyses are reasonable for some contexts and research questions, they are 

limited in their ability to provide evidence that an intervention has causal positive effects on the 

outcomes and that those effects are generalizable (Shadish, Cook, & Campbell, 2002). More 

puzzling, however, were the large percentage of studies that contained both a treatment and 

control group, and both achievement and orientation measures, but did not use both measures on 

both groups (N = 31, 22% of excluded papers). Such results may reveal a limitation in the 

study’s conceptual framework for connecting the multiple outcomes and its potential to 

contribute to the knowledge base.  

The second most common reason for exclusion was the lack of orientation data or enough 

information to compute an orientation effect size (N = 63, 45% of excluded papers). If a study 

did not examine student orientation as an outcome, then the lack of orientation data would not be 

a quality issue. These 63 studies, however, did include orientation outcomes. The lack of data or 

information about orientation seemed to indicate that a stronger design was planned for 

achievement than for orientation outcomes, which suggests a potential quality issue. 

For 19 of the studies, achievement data were not available, or the study provided 

insufficient information to compute an effect size. Eight studies provided qualitative information 

only about achievement, or the focus of the study was teachers instead of students. These issues 
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were not considered to be about quality, simply a different focus of the studies. The other 11 

studies, however, were excluded because of quality issues. Three studies provided only 

aggregated treatment-control results. Seven studies provided means without standard deviations 

(or alternative statistics that could have been used to compute the effect size such as a focused F 

test).  

Papers that did not include a technology (N = 11, 7.9% of excluded papers) or 

mathematics intervention (N = 4, 2.9% of excluded papers) had remained in the larger sample 

because they still had a technology or mathematics component, but the intervention itself was not 

technology or mathematics based. This issue was not considered to be a quality issue but an 

anomaly of electronic database searches capturing search terms used in more than one way (e.g., 

visualization). 

Thirty-three papers (23.6% of the excluded papers) were excluded for more than one 

reason. The most frequent pattern of multiple exclusion categories was no control group data and 

orientation data were qualitative only/or missing key reporting measures (e.g., means with no 

standard deviations). After excluding the 140 papers, the sample consisted of 100 papers with 

123 independent effect sizes, hereafter referred to as studies. 

3.5 Independence of Effect Sizes 

In most studies that met the inclusion criteria, more than one achievement and/or 

orientation effect size was obtainable for a sample of students due to multiple subscales on a 

single instrument or multiple instruments. For example, Abramowitz (1999) reported 11 

achievement measures for the same group of treatment and control students (item format, content 

of the question, type of understanding). Some studies measured the same construct multiple ways 

(e.g., two versions of an assessment) or at multiple times (e.g., at posttest and at follow-up). Such 
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measures were aggregated into a single weighted average effect size as recommended by Lipsey 

and Wilson (2001), thereby ensuring that the data were independent at the sample level.  

In some cases, the samples of various subscales and assessments overlapped but lacked or 

gained a few students so that the sample sizes of each dependent effect size varied slightly. In 

these cases, the final sample size used was the minimum of the sample sizes to avoid over-

weighting the study. The standard errors for the average effect size was computed using the final 

sample sizes.  

In other studies, different samples were studied with no overlap (e.g., two years, two 

different samples for both treatment and control groups). For these studies, each effect size was 

independent at the sample level, so both were included in the meta-analysis. For example, Duffy 

and Thompson (1980) compared three separate treatment and control groups at different grade 

levels. These non-overlapping studies within a single paper resulted in three independent effect 

sizes for achievement and orientation. 

Five journal articles presented findings from dissertations that were also included in the 

sample. In every case, these dissertations included measures (both statistically significant and 

non-significant) that were not included in the journal articles (selective non-reporting bias, as in 

Boutron et al., 2019). The decision was therefore made to retain the dissertations and exclude the 

five journal articles (3.6% of the excluded papers) to preserve independence at the sample level.  

3.6 Analytic Methods 

The analytic process began with the computation of effect sizes. Effect sizes were 

adjusted in the analyses to address clustering effects and dependent variable correlation. Multiple 

publication bias analyses were conducted to evaluate the potential for effect size inflation and to 

estimate a true effect after adjusting for potential bias. 
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3.6.1 Effect Size Computation 

The standardized mean difference effect size (Borenstein, 2009; Lipsey & Wilson, 2001) 

was used to measure the effects of technology interventions between treatment and control 

groups on student achievement and orientation. The standardized mean difference divides the 

mean difference by the pooled standard deviation and can be interpreted as a number of standard 

deviations (Lipsey & Wilson, 2001). Although Hedge’s g is often used to adjust the standardized 

mean difference for small sample sizes, the correlation between the standardized mean difference 

and Hedge’s g was greater than .999 for both achievement and orientation, rendering the 

adjustment trivial in the present sample (as noted by Borenstein, 2009). For simplicity, the 

standardized mean difference was used for all subsequent analyses. 

When both pretest and posttest data were available, posttest effect sizes were adjusted by 

computing the “difference in differences” in the means from posttest to pretest and standardizing 

this mean difference by the pooled post-test standard deviation (Borenstein, 2009; Lipsey & 

Wilson, 2001). Finally, some studies in the sample provided statistics other than means and 

standard deviations, such as dichotomous proportions (e.g., the percentage of students mastering 

a skill), focused F tests (e.g., only two groups being compared), t tests, and correlation 

coefficients (between an outcome and treatment membership). Standard statistical formulas were 

used to convert these scores to the equivalent standardized mean difference effect size (Lipsey & 

Wilson, 2001). 

3.6.2 Clustering Effects and Dependent Variable Relationship 

Two adjustments were made to address clustering effects and the relationship between 

the dependent variables (achievement and orientation): a design effect (Higgins, Eldridge, & Li, 

2019; Kish, 1965) and multi-level multivariate meta-analysis (MLMM) modeling (Kalaian & 
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Kasim, 2008). For many research questions posed in educational contexts, student-level data 

violate the assumption of statistical independence because they are assigned into treatment 

groups as a whole class (i.e., cluster assignment) rather than as individuals. The nesting of 

students within studies in the context of a meta-analysis also violates the assumption of statistical 

independence. Ignoring these sources of dependence can result in effect sizes that have 

spuriously small standard errors, meaning such studies will overstate the statistical significance 

of the tests, and any confidence intervals generated will be too small if not adjusted (Hedges, 

2007).  

Design-effect-adjusted effect size estimates were computed using Equation 15 from 

Hedges (2007). Adjusted variances were computed using Equation 16 from Hedges (2007). 

Hedges and Hedberg (2007) provided estimates of ρ for Grades K–12. For studies involving 

multiple grades, an average of ρ for the included grades was used.  

MLMM modeling was used to adjust effect size estimates for the nesting of students 

within studies and the covariance between achievement and orientation (Kalaian & Kasim, 

2008). Variance between students within a single study (within-study variance) is computed 

from data in the study and included in the model (V-Known Models), which means that effects 

and comparisons are based on between-study variance (Raudenbush & Bryk, 2002). MLMM 

analyses were computed using R 3.6.2 Metafor package (R Core Team, 2019; Viechtbauer, 

2010). See Online Supplement A for details about the design effect and MLMM models. 

3.6.3 Publication Bias 

Publication bias occurs as a result of studies not being published because they lack 

statistical significance in their primary outcomes (Rothstein et al., 2006). In some cases, authors 

decide not to submit the paper for publication or take longer to do so (Cooper, DeNeve, & 



21 
 

Charlton, 1997; Suñé, Suñé, & Montoro, 2013); in other cases, studies are rejected because they 

did not report significant findings. Sometimes studies omit information about some outcomes in 

the study to facilitate publication (outcome reporting bias, as in Pigott, Valentine, Polanin, 

Williams, & Canada, 2013). These actions result in the body of literature available for a meta-

analysis having artificially inflated effect sizes. 

Methods for adjusting for publication bias are generally not robust in the presence of high 

heterogeneity (Carter et al., 2019; Stanley, 2017), which we found in the data (see Online 

Supplement A). Publication bias analyses are based on a set of assumptions about the 

mechanisms leading to bias; to the extent those assumptions are correct, the models produce 

more valid results (Vevea, Coburn, & Sutton, 2019). Publication bias tests generally rely on an 

examination of the relationship between the effect size and its standard error (or variance for 

some tests), which may be due to publication bias or several other potential explanations (e.g., 

power analysis, adaptive sampling, repeated trials, and the multifactorial nature of larger studies 

(i.e., inclusion of moderating factors) yielding smaller effects (Kühberger, Fritz, & Scherndi, 

2014). Publication bias is, however, most often the culprit when the effect and its standard error 

are negatively correlated (Kühberger et al., 2014).  

In the present study, 98 of 123 studies (80%) were found in grey literature (dissertations, 

master’s theses, or technical reports). Publication bias in the remaining 20%, however, could still 

produce bias in the effects (Stanley, 2017). See Online Supplement A Tables A11 and A12 for 

comparisons of publication type.  

To analyze the potential of publication bias, multiple tests were conducted, following the 

advice of Vevea et al. (2019) to provide triangulation of results. Non-parametric rank 

correlations between effect sizes and standard errors were computed (Begg & Mezumdar, 1994), 
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and a moderator test between published and unpublished studies was conducted. The Henmi and 

Copas (2010), Vevea and Woods (2005), and Precision Effect Test-Precision Effect Estimate 

with Standard Errors (PET-PEESE; Stanley, 2017) models are presented in the results. 

Additional results from Duval and Tweedie (2000) trim and fill model, Egger, Smith, and 

Minder (1997) regression test, and Rosenthal-Orwin-Rosenberg fail-safe N tests (Rosenthal, 

1979; Orwin, 1983; Rosenberg, 2005) are included in Online Supplement B. For consistency, all 

publication bias analyses reported in Section 4 are based on design-effect-adjusted effect sizes 

because some publication bias tests are sensitive to clustering effects. For comparison purposes, 

analyses based on original effect sizes are included in Online Supplement B. 

3.6.4 Conceptual Emphasis Computation 

All included studies were examined independently by two researchers to compute a 

conceptual emphasis score. For each study, the achievement items were examined to determine 

whether procedural or conceptual knowledge was measured. The conceptual emphasis score was 

the percentage of achievement items that measured conceptual knowledge. The primary coder 

examined every item for every measure that was reported in the study. Ninety-eight of the 

studies (79.7%) provided sufficient information to make this determination; 15 of the studies 

(12.2%) did not share the instrument but were clearly measuring procedural knowledge; 10 

studies (8.1%) were unclear and were assumed to be procedural because no claims of conceptual 

understanding were made. The percentage of items that were judged to address conceptual 

knowledge was then computed. The secondary coder reviewed those determinations and noted 

any discrepancies, agreements, disagreements, and questions. The reviewers met and reached 

consensus for all final scores. 

4. Results 
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This study examined two research questions: (1) what are the effects on achievement and 

orientation after accounting for dependent variable correlation, clustering effects, and publication 

bias? and (2) to what extent was conceptual understanding an emphasis of mathematics 

education technology research? For Question 1, results from the multi-level multivariate meta-

analysis (MLMM) model are presented, followed by publication bias analysis results. For 

Question 2, results from the conceptual emphasis analysis are presented.  

All studies in the sample included a control group, but the detail with which the control 

group was defined varied greatly from study to study. Most studies defined the control group as 

some sort of “business as usual.” The meaning of business as usual was highly variable between 

studies. Studies also inconsistently described the pedagogy accompanying the technology in the 

experimental group or in the control group.  

4.1 Achievement and Orientation Effect Sizes 

The MLMM model produced estimates of the effect size for achievement and orientation 

after accounting for their correlation and clustering effects. An analysis of true between-study 

variance based on the MLMM model provides insight into the potential for moderator variables 

to explain achievement and orientation effects. Publication bias analyses provide estimates of the 

degree of publication bias in the sample and estimates of the effect sizes after accounting for that 

bias.  

4.1.1 Achievement and Orientation Effect Sizes after Accounting for their Correlation and 

Clustering Effects 

The achievement and orientation effect size estimates (Research Question 1) from the 

MLMM unconditional model based on design-effect-adjusted effect sizes, which accounted for 

clustering effects were γAch = 0.113 (p = .004), γOrntn = 0.125 (p < .001). Although the correlation 
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between achievement and orientation effects was positive and significant before accounting for 

clustering effects (rho = .523, p < .001; see Online Supplement B Table B2), the correlation after 

accounting for clustering was non-significant, rho = -.063, p = .495. A breakdown of orientation 

constructs and their effect sizes is provided in Online Supplement C. 

The between-study variance (τ) was reduced to zero for both achievement and orientation 

using the design-effect-adjusted estimates (see Online Supplement B Table B2). Because 

significant true heterogeneity was not present after accounting for clustering effects, no 

moderators were added to the model. Moderator tests for unadjusted estimates are provided in 

Online Supplement A but should be interpreted with caution. 

4.1.2 Influence of Publication Bias on Effect Sizes 

The weighted average achievement effect size for published studies was 0.085 (SE = 

0.035) and for unpublished studies was 0.121 (SE = 0.020). For orientation, the weighted 

average effect size for published studies was 0.208 (SE = 0.035) and for unpublished studies was 

0.091 (SE = 0.020). The moderator test for achievement showed no significant variance between 

published and unpublished studies, Qach(df = 1) = 1.3569, p = .244, but there was significant 

variance for orientation, Qorntn(df = 1) = 5.5921, p = 0.018. 

Begg and Mezumdar (1994) rank correlations between effect size and standard error were 

not significant for achievement (Kendall’s τ = 0.0622, p = .309) but were for orientation. 

(Kendall’s τ = 0.1689, p = 0.006). This result is consistent with Egger’s regression test (Online 

Supplement B).  

The Henmi and Copas (2010) adjusted estimate showed no difference from the design-

effect-adjusted estimate (0.113, p = .004). The orientation estimate also showed no difference 

(0.125, p < .001). These estimates suggest that whatever publication bias exists in the sample is 
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not responsible for the positive effects that were found.  

For the Vevea and Woods (2005) selection model, three sets of weights were analyzed to 

specify potential effects from different degrees of bias severity (Table 1). Weights to specify 

more or less severe bias were taken from Vevea et al. (2019).  

Table 1 
Estimates for Vevea and Woods (2005) Weight Function Selection Models 
Model p-value steps Weights Intercept estimate 
Achievement    

Unadjusted   0.1131 
Less bias .01, .05, .50, 1 1, .90, .70, .50 0.0456 
Moderate bias .01, .05, .10, .50, 1 1, .99, .95, .75, .50 0.0281 
Severe bias .01, .05, .10, .50, 1 1, .99, .90, .50, .10 -0.1926 

Orientation    
Unadjusted   0.1247 
Less bias .01, .05, .50, 1 1, .90, .70, .50 0.0568 
Moderate bias .01, .05, .10, .50, 1 1, .99, .95, .75, .50 0.0393 
Severe bias .01, .05, .10, .50, 1 1, .99, .90, .50, .10 -0.1601 

Note. Weights are listed respectively to the p-value steps.  
 

The adjusted estimates are small for less or moderate bias for both achievement and orientation 

effects. Only under severe bias do the results indicate a large adjustment. 

PET-PEESE meta-regression models were computed using a random effects model to test 

the null hypothesis that the effect in infinitely large studies is zero with statistical significance 

indicating that the null hypothesis should be rejected and that a real effect does exist (Table 2).  
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Table 2 
Results for PET-PEESE Models  

Model Estimate z 
Achievement   

PET   
Intercept 0.047 (SE = 0.089) 0.530 
SE 0.168 (SE = 0.205) 0.818 

PEESE   
Intercept 0.074 (SE = 0.056) 1.320 
Variance 0.208 (SE = 0.209) 0.993 

Orientation   
PET   

Intercept -0.070 (SE = 0.090) -0.781 
SE 0.497 (SE = 0.206) 2.410* 

PEESE   
Intercept 0.024 (SE = 0.056) 0.425 
Variance 0.530 (SE = 0.210) 2.521* 

*p < .05. 
 

For both achievement and orientation, the PET estimate of the intercept was non-

significant, so the PET model was retained. The final models for both achievement and 

orientation indicated no significant true effect.  

Overall, we concluded that the potential for bias is higher in orientation than for 

achievement. Both effects, however, showed adjustment to near zero in the estimates. Caution 

should therefore be taken in interpreting effect size estimates as true effects.  

4.2 Conceptual Emphasis in Mathematics Education Technology Research 

The conceptual emphasis of the technology interventions provides important insight into 

the way technology has been coupled with pedagogy over time (Research Question 2). No 

studies focused exclusively on concepts, but 101 studies (82% of 123 studies) did focus 

exclusively on procedural measures (0% conceptual emphasis). The achievement effect size 

varied widely across these 101 studies, ranging from -1.37 to 2.67 (weighted average ES = 

0.149). The orientation effect size also varied widely, ranging from -0.693 to 3.07 (weighted 

average ES = 169). The 22 studies (18% of 123 studies) that did include measures of conceptual 
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understanding ranged from 5% to 88% in conceptual emphasis. For these 22 studies, the 

achievement effect size also varied widely, ranging from -0.285 to 0.659 (weighted average ES = 

0.070). For orientation, the effect size ranged from -0.194 to 1.226 (weighted average ES = 

0.092). Only two studies used measures that focused at least 50% on concepts (Bouck & Bouck, 

2008; Santiago-Collazo, 1995). With so few studies giving meaningful emphasis to concepts, 

comparisons of the effect sizes were not deemed meaningful; that is, most studies that addressed 

concepts did so only slightly, so the underlying pedagogy that accompanied the use of the 

technology was not meaningfully different than the 101 studies with no conceptual emphasis. 

The emphasis on conceptual understanding did not increase for the studies in the sample over 

time (Figure 3).  

 
Figure 3. Scatterplot of conceptual understanding emphasis over time. Numbers in the graph 

represent the number of effect sizes in the same year with the same conceptual emphasis. 
 
The correlation between time and conceptual emphasis was small but significant, r = -

.226 (SE = 0.089), p = .012. This correlation accounted for approximately 5% of the variance in 

conceptual emphasis. This trend of reducing conceptual emphasis can also be seen by 

aggregating studies into decades (Table 3) with the highest emphasis on conceptual 

understanding between 1980 and 1989. 
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Table 3 
Conceptual Emphasis by Decade 

Decade Mean Percent 
Conceptual Emphasis 

Percent of Studies with 
Conceptual Emphasis > 0 

Number of 
Studies 

1970-1979 0.0 0.0 7 
1980-1989 13.1 53.8 13 
1990-1999 7.6 26.8 41 
2000-2009 1.4 7.1 56 
2010-2014 0.0 0.0 6 

Note. Total N = 123 studies. 
 

Table 4 provides the mean conceptual emphasis by each type of technology use in the 

intervention. This comparison addresses Research Question 2 (conceptual emphasis of 

mathematics education technology research) for both pedagogy and assessment. Effect sizes by 

technology use are provided in Online Supplement A.  

Table 4 
Technology Use by Conceptual Emphasis 

Technology Use Mean Conceptual 
Emphasis (SD) 

Number of 
Studies 

Instruction Enhancement 7.1% (0.16) 45 
Computation 4.1% (0.10) 42 
Active Learning 0.0% (0.00) 20 
Tutorial 0.0% (0.00) 9 
Assessment 12.5% (0.25) 4 
Technology-rich environment; Uses not specified 6.0% (0.10) 3 

Note. Total N = 123 studies. 
 
5. Discussion 

This section will discuss the results in terms of general conclusions, control conditions, 

and conceptual emphasis. The discussion will conclude with recommendations for future 

research.  

5.1 General Conclusions 

Overall, we concluded that the evidence is insufficient to make claims about technology’s 

general effectiveness in supporting mathematics learning outcomes. The effect sizes for 

achievement and orientation after adjusting for clustering effects were very small but statistically 
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significant. Adjustments for publication bias reduced them to zero. Clustering effect adjustments 

also reduced model variance to zero, which means that no features of participants, type of 

training, or other potential moderating variables can improve or explain intervention effects in 

this sample of studies. 

5.2 Control Conditions 

Control group conditions are especially important because they help define the nature of 

the intervention, the independent variable, and how to interpret the results. Seventy studies were 

excluded because of lack of a control group, 31 of which had a control group for achievement 

but not for orientation. In the sample studies, control group conditions were described in very 

general terms, leaving the nature of the independent variable in doubt. Most studies described 

some form of “business as usual” condition. In some studies, business as usual meant the same 

pedagogy in both groups with and without technology. But in other studies, the technology 

innovation effected a different pedagogical approach that was not clearly accounted for in the 

control group. Many descriptions were unclear about the nature of the pedagogy in the treatment 

and control groups. This lack of clarity warrants caution in interpreting effects from these 

studies. 

5.3 Conceptual Emphasis 

The exploration of conceptual emphasis found that most studies (82%) focused entirely 

on procedural understanding, and that focus has not changed over time. The 20 active learning 

studies included no conceptual emphasis in their achievement measures. This result was 

surprising given the exploratory, conceptual nature of active learning pedagogies.  

Most technology can support procedural or conceptual understanding, depending on how 

it is used. For example, a four-function calculator can be used to simply check answers (as in 
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Godia, 1982), or it can be used to recognize number patterns and develop mathematical 

reasoning about those patterns (e.g., broken calculator activities, as in Leatham, Lawrence, & 

Mewborn, 2005). Some technology tools have been developed with the explicit purpose of 

fostering conceptual understanding (e.g., understanding equivalence of fractions applet at the 

National Library of Virtual Manipulatives, 2017). While the advent of technology offers ripe 

opportunities for exploratory learning to help students build connections, the present study found 

that most research efforts in mathematics education technology have largely neglected to move 

beyond skill-based outcomes. 

5.4 Recommendations 

This study found a lack of information in the sample studies regarding the way pedagogy 

and technology were integrated and the nature of the control conditions. We therefore 

recommend that future studies of mathematics education technology examine both the pedagogy 

and the technology and describe the control conditions more fully. Because most studies 

measured achievement wholly through procedural skills, we recommend that future research 

include conceptual measures. Furthermore, we recommend that outcomes beyond achievement 

be given more attention in research designs to fully explore the complex array of student 

outcomes in a learning situation. 
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