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Abstract—Activity Recognition (AR) models perform well with 

a large number of available training instances. However, in the 
presence of sensor heterogeneity, sensing biasness and variability 
of human behaviors and activities and unseen activity classes pose 
key challenges to adopting and scaling these pre-trained activity 
recognition models in the new environment. These challenging 
unseen activities recognition problems are addressed by applying 
transfer learning techniques that leverage a limited number of 
annotated samples and utilize the inherent structural patterns 
among activities within and across the source and target domains. 
This work proposes a novel AR framework that uses the pre- 
trained deep autoencoder model and generates features from 
source and target activity samples. Furthermore, this AR frame- 
work establishes correlations among activities between the source 
and target domain by exploiting intra- and inter-class knowledge 
transfer to mitigate the number of labeled samples and recognize 
unseen activities in the target domain. We validated the efficacy 
and effectiveness of our AR framework with three real-world data 
traces (Daily and Sports, Opportunistic, and Wisdm) that contain 
41 users and 26 activities in total. Our AR framework achieves 
performance gains ≈ 5-6% with 111, 18, and 70 activity samples 
(20% annotated samples) for Das, Opp, and Wisdm datasets. In 
addition, our proposed AR framework requires 56, 8, and 35 
fewer activity samples (10% fewer annotated examples) for Das, 
Opp, and Wisdm, respectively, compared to the state-of-the-art 
Untran model. 

Index Terms—Activity Recognition, Transfer Learning, HAR, 
Heterogeneous Learning,Imbalanced Activity Recognition, Per- 
vasive Computing. 

 
I. INTRODUCTION 

Activity recognition (AR) is a prolific research area in the 
era of Internet-of-Things (IoT), pervasive, wearable and smart 
computing [1] [2] [3]. The proliferation of smart sensing de- 
vices (i.e., smartphone, smartwatch, etc.) integrated with vari- 
ous sensors (e.g., accelerometer, gyroscope, etc.) help develop 
applications related to health care monitoring, rehabilitation 
system, interactive gaming, etc., have constantly been evolving 
to improve the human-centric services in the smart living 
environments. These activity recognition systems are typically 
built to recognize a predefined and limited set of activities 
(i.e., sitting, standing) using annotated sensor signals of body- 
part movements in a similar environment. These AR systems’ 
performance degrades while recognizing similar activities in 
different environments due to variations like the same sensor 
with heterogeneous devices, sensor biases, the user’s daily 

lifestyle and activity pattern, etc. To maintain the similar 
performance of the AR system in the deployed environment 
without building a new AR system and mitigate variations of 
the new target environment, we incorporate transfer learning 
techniques. More specifically, we employ transfer learning- 
enabled maximum mean discrepancy (MMD) to mitigate the 
variations in the target environment. 

Usually, the AR model is trained on handcrafted features, 
requires domain expert knowledge, and depends specifically 
on the performed activities and environment. On the other 
hand, the deep learning techniques help extracts features 
automatically. However, deep learning techniques [4] are data- 
hungry processes and require computationally expensive re- 
sources and a large volume of annotated activity samples. 
Moreover, these deep models overfit in the presence of a 
limited amount of target domain activity samples. Therefore, 
we overcome these challenges by leveraging the unsupervised 
deep learning techniques and extracting the sensor signals’ 
inherent characteristics. 

A major aspect of the deep model is that it learns generic 
features in the beginning layers and the deep layer closer to 
the classifier learns domain-specific features [5]. [6] uses 
the inherent characteristics of the deep model and transfers 
a few layers of the source domain that helps reduce the 
computation time and transfer domain-dependent features in 
the target domain. However, the partial network (few layers) 
transfers lose the source domain’s activity pattern knowledge 
that can be incorporated during model learning and improve 
the activity recognition performance in the target domain. 
Therefore, to maximize the relationship of the activity classes 
with the represented features, we keep all the layers from 
the source trained autoencoder-based classifier (except the 
classifier layer) and generated features in the source domains. 
As a result, the finetuning process also reduces computational 
time and maximizes source domain knowledge in the target 
environment. 

A scalable and adaptable AR model can recognize new 
activities in the target environment to meet the application 
scenarios and user needs. The AR model can ask the users to 
provide annotated activity samples to learn new activities in the 
target environment. However, collecting numerous annotated 
examples and training a new AR model is not feasible. Instead 
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of employing limited annotated samples and utilizing existing 
knowledge from the source domain help maintain the AR 
model performance in the target domain. Therefore, we utilize 
existing domain knowledge from the source domain, minimize 
domain discrepancy in the target domain in an unsupervised 
way, and use limited annotated activity samples to build our 
target classifier. We summarize the key contributions of our 
work below. 

• Maximizing Existing Knowledge: To maximize do- 
main knowledge utilization, we exploit transfer-learning 
techniques. First, we train a deep autoencoder using 
source domain annotated samples. Second, this autoen- 
coder model is finetuned with unannotated samples in 
the target domain. The benefits of this approach are that 
the finetuning process is entirely unsupervised. 

• Minimizing Domain Discrepancy: Structural pattern 
mapping techniques help minimize intra-class (i.e., same 
activity in both domains) distance and maximize inter- 
class (i.e., two different activities) distances during do- 
main discrepancy minimization process using Maximum 
Mean Discrepancy. 

• Extensive Evaluation with Limited Annotation: We 
study the problem of limited annotation in the target 
domain and their challenges. To demonstrate the ef- 
fectiveness and efficacy of our proposed approach, we 
conducted experiments on three real-world datasets. 

II. RELATED WORK 
In the wearable pervasive computing era, the activity recog- 

nition (AR) models infer activities from various sensors using 
classical supervised machine learning approaches [7] [8] [2]. 
Classical AR are both data-driven and knowledge-based ap- 
proaches. AR models heavily depend on domain knowledge- 
dependent handcrafted features and use machine learning algo- 
rithms [9]. Activity recognition models use annotated samples 
to train classifier algorithms in a supervised fashion and infer 
activities in the target environment. These supervised machine 
learning classifiers consider environment-specific settings and 
underperform in diverse environments where user activity 
patterns, sensing devices, and sensing biases are present [10] 
[2] [3]. These handcrafted features hinder the scalability of AR 
models. Therefore, automated features extraction is warranted. 
To automate the feature extraction process and reduce 

the dependency of domain expert knowledge, the researcher 
exploited the deep learning-based feature extraction process 

in the activity recognition domain [11] [12] [13]. These 
approaches learn hidden activity patterns from the sensor data 
traces and discover meaningful patterns without the human 
intervention [14] [15] [16]. Deep learning models are data- 

hungry and also require a lot of annotation. Researchers also 
explored unsupervised deep learning methods that demand a 
large set of unlabeled training samples [13] [15]. These meth- 
ods are computationally expensive and require a significant 
training time to adjust the network parameters. None of these 

approaches work well in the presence of limited annotated 
activity samples. Various deep learning models such as CNN, 

LSTM, etc. used to infer activities [17] [18] [17]. [18] pro- 
posed convolutional neural network-based activity recognition 
approach to learn activity patterns in a semi-supervised fashion 
and infer activites. [17] proposed ensembles of deep LSTM 
(Long short-term memory) recurrent neural network model 
to infer human activities from sensor signals. None of these 
approaches work well with limited annotated activity samples 
and consider traditional AR settings. These methods did not 
consider dataset diversity, different activity styles, etc. Domain 
discrepancy needs to minimize to create a scalable activity 
recognition model. 

Transfer learning approaches help improve adaptability and 
scalability issues and reduce domain discrepancy. Recently a 
limited number of aspects of transfer learning-enabled activity 
recognition have been investigated in AR domain [19] [20] 
[21]. [20] proposed an uninformed transfer learning algorithm 
that helps minimize cross-subject variability to scale human 
activity recognition. The authors proposed to transfer label 
information from the source domain to recognize unlabeled 
activities in the target domain and assumed the availability of 
a large set of unlabeled data samples with similar activities 
in the target domain. [22] addressed the versatility of sensor 
modality and sensor position independence by transferring a 
similar set of activity labels from an existing trained sensor 
node to a new sensor node without any user intervention. In 
transductive transfer learning, a.k.a Domain Adaptation set- 
tings, similar classes present both domains, and the AR model 
learns parameters during the training phase from both domain 
data. This technique reduces the required annotated data in 
the target domain [23] [24] [25] [26] [27]. [25] proposed 
cross-domain domain transductive transfer techniques and 
minimized domain data distributions using MMD ( maximum 
mean discrepancy ) techniques and predict unlabeled images 
in the target domain. [28] proposed majority voting-based 
cross-subject transfer learning techniques that minimize the 
intra-class distance between the source and the target domain 
and infer activities. In this work, we consider both intra- and 
inter-class distance minimization. These AR models consider 
similar activities in both domains and can not recognize new 
activities in the target domain. 

Unseen activity recognition approaches investigated in the 
recent past. To address recognizing unseen activities using 
unannotated data, researchers proposed various attribute-based 
approaches [29] [7]. These attribute-based activity recogni- 
tion models assume that each activity has a unique set of 
attributes. The performance of these models degrades in the 
presence of existing and new activities. Though fusion-based 
models combine the attributes- and features-based models and 
improve performance in the target environment, these models 
failed to consider sensing baisness, activity patterns, variations, 
and user diversity in the targeted domain. In addition, these 
approaches also depend on the expert domain knowledge. To 
alleviate the annotated samples, researchers also investigated 
semi-supervised methods and learned classifier parameters 
using both labeled and unlabeled activity samples [30] [31]. 
However, these methods are error-prone and typically unable 
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to replace the need for ground-truth annotated data from 
experts. In an attempt to bootstrap an existing trained activity 
model, in this work, we advocate using a small subset of 
unlabeled samples in addition to a small subset of labeled 
activity samples in the target domain. 

This work exploits the benefits of the existing pre-trained 
deep sparse autoencoder-enabled activity recognition model 
in the source domain to reduce the required samples in the 
target domain. Our proposed method minimized both within- 
and cross-domain inter-and intra-class distances. As a result, 
our framework can infer unseen activities in the presence of a 
limited number of annotated samples in the target domain. This 
work reduces this effort by transferring the knowledge from 
the source to the target domain autonomously by using deep 
transfer learning techniques. Our proposed AR framework 
helps mitigate the scarcity of labeled activity samples by 
utilizing label information from the source domain to the target 
domain. 

III. THE PROPOSED ACTIVITY RECOGNITION 
FRAMEWORK 

We propose and design an AR Model for recognizing 
unseen activities in the presence of user activity patterns 
diversity, sensing biases, and limited activity samples in the 
target domain. We assume that the source domain has a 
significant amount of labeled activities samples and a pre- 
trained AR model. The proposed AR model constructs a 
common feature space where similar activity samples help 
generate similar feature space to tackle this problem. Fig. 1 
represents the overview of our activity recognition approach. 

Problem Statement 
Mathematically we define our problem as follows. Let 

Framework Architecture 

Our AR framework feed sensor signals to the autoencoder to 
generate deep features. Furthermore, the latent structural pat- 
tern mapping module minimizes feature discrepancy between 
the domains, and finally, we used these discrepancy minimized 
features to predict activity in the target domain. Fig. 2 shows 
the overall architecture of our AR framework. 

Data Processing: We pass the accelerometer sensor signals 
through a low-ass median filter to filter the noise. Next, we 
determine the band of the filter by applying FFT to the data. 
Finally, each frame is created from the filtered accelerometer 
sensor signals using a fixed-width sliding window with 50% 
overlap per frame. These activity frames then pass through the 
auto-encoder to train and generate deep features later. 

Deep Feature Encoding (DFE): Autoencoder, a feed- 
forward neural network [32] [33] help learn unannotated 
sensor signal features automatically in two steps - i) encoding 
and ii) decoding. Our proposed four layers deep autoencoder 
discovers activity patterns by first compressing the given input 
sensor signals x in the encoder step. Then the decoding step 
generates a similar output vector x̄ by decompressing it. 

The encoder works similarly as PCA [34]. This compression 
(encoding) of the signals helps capture inherent features when 
the dimensions of the hidden layers are smaller than the 
input sensor signals. As a result, reconstructing similar output 
as the raw sensor signals in the decoding process becomes 
challenging. We, therefore, construct a sparse hidden layer as 
the first hidden layer by adding sparsity constraint and feed 
sensor signals into this layer. This technique helps maintain 
a larger dimension of our sparse layer to get the meaningful 
feature representation after the encoding step. Furthermore, 
the additional three layers of our encoder help capture non- 

source domain training data Ds = {x(s), y(s)}Ns
 = linear correlations among the activities. We named this mod- 
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{Xs, y(s)}, where x(s) ∈ Rd denotes d-dimensional source- 
domain instance and y(s) denotes the corresponding label of 
Cs categories. We assume that the target domain contains 

ified autoencoder as Deep Sparse Autoencoder (DSAE). Our 
DSAE learns the hidden layers’ weights matrices and bias 
vectors by minimizing the following reconstruction error. 

NL1 

d-dimensional unlabeled data instances and target domain 
data are represented as Dt = {x(t), y(t)} = {X(t), y(t)} Jaen (W, b) = min ||x − x̄ | |2 + α Φkl W,b (ρ||ρ̂i) (1) j j m i=1 

where y(t) is the class label to infer. We also assume that ρˆ =  1
    

aL1 x
 

(2) 

contains activity categories, Ct = {Cun ∪ Csn}, where seen 
activities categories, Csn and Cun represents unseen activity 
categories. Due to the heterogeneity in the target domain, 
marginal probability distributions of data between these two 
domains are different (P (Xs) ̸= P (Xt)). It is worth to note 
here that transfer learning based approach works when both 
the source and target domains are related, which implies that 
the generated feature space between two domains has explicit 

The first term of Eqn. 1 represents the reconstruction cost 
of our DSAE where W and b denote weights and biases 
of encoding and decoding layers, respectively. The second 
term, of Eqn. 1, represents Kullback-Leibler (KL) divergence 
between the sparsity constraint ρ (empirically set to 0.05 for 
all the neurons in the first layer) and average activation ρˆ of 
the first hidden layer. The average activation of a hidden unit, 
j is computed using Eqn. 2, where m denotes the number 

or implicit relationship to each other. of sensor signal samples, and aL1
 represents activation unit 

For example, the source and target domains activity sets 
are {‘Sitting’, ‘Standing’, ‘Cooking’, ‘Eating’} and {‘Sitting’, 
‘Standing’, ‘Cooking’, ‘Biking’, ‘Jogging’}, respectively and 
both the domains contain accelerometer sensor signal traces. 
In this scenario, the target domain has two unseen activities, 
and the total number of activity categories is imbalanced. 

j of first layer (denoted as L1). We employ the mini-batch 
gradient descent (MGD) [35] method to determine the changes 
of weights and biases and update the network parameters 
accordingly. This automatic feature extraction process learns 
features space without considering the distribution of activity 
labels. 

target domain constitutes both seen and unseen activities and 
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Fig. 1: Overview of our activity recognition approach. (a) Source domain labeled activity instances, (b) Target domain contains 
both unlabeled and few labeled activity instances, (c) Common feature space for classification, and (d) Resulting activities 
after classification. Note that different shapes correspond to different activities. 

Latent Structural Pattern Mapping: 
Our proposed DSAE generated features may maximize 

the intra-class distance and minimize inter-class distances in 
the target domain. Nevertheless, this problem space becomes 
complex in the presence of new activities. Therefore, we 
employ intra-class compactness and maximize inter-class sep- 
arability that helps reduce the cross-domain discrepancy. Dur- 
ing mapping the structural pattern between the domains, we 
also minimize the within-domain intra-class distance, cross- 

Fig. 2: Overall Framework Architecture. 

Source Domain Knowledge Encoding: DSAE helps learn 
inherent activity characteristics unsupervised. However, estab- 
lishing the correlation between the activity and corresponding 
features requires tuning the network parameter for the activity 
classes. Since the source domain has annotated activity sam- 
ples, we append a softmax classifier at the encoding layer’s end 
to encode class labels in the source domain and fine-tune our 
DASE model parameters. We use the following cross-entropy 
objective function to optimize this source domain classifier 
model. 

domain intra-class distance and maximize within-domain and 
cross-domain inter-class distances. Fig. 3 shows the detailed 
schematic diagram of our proposed approach. These DSAE 
generated feature spaces that are unable to establish the rela- 
tionship between the source and target domain class labels and 
cannot utilize source domain class information to infer target 
domain activities. We explicitly incorporate the correlation 
among activities within and between the domains using intra- 
class compactness and inter-class separability information by 
projecting the DSAE generated features to separate kernel 
space by deriving the following matrix that considers these distances into account. 

1  eθT xi I 
S(ss) S(st) 

1 
(4) 

min − 
θ n 

1{yi = j} log 
 k 

 
 

j 
 
 

θT x 
(3) Sϕ = Sc − γSs = S(ts) S(tt) 

 

where 1(.) is an indicator function and provides 1 when the 
condition is true otherwise 0. θ denotes softmax classifier 
parameters - weights and biases. We employ the mini-batch 
gradient descent [36] method to tune the network parameters. 

Target Domain Feature Extraction: The performance of 
the source trained classifier degrades while deploying in the 
target domain due to the marginal distributions of the data 
between two domains and unseen activity samples. We discard 
the softmax classifier portion, keep the source trained encoder 
(four layers), and generate features for the source and target 
domain sensor signals. The feature generation shown in Fig. 2. 
The generated target domain features show a discrepancy with 
the source for the similar activities. Therefore, we explic- 
itly emphasize source domain knowledge and maximize this 
knowledge transfer by maximizing inter-class distance and 
minimizing intra-class distance by employing the structural 
pattern mapping technique and reducing the discrepancy be- 
tween these two domains’ feature space. 

 
 
 
 
 
 
 

Fig. 3: Schematic diagram of structural pattern mapping. The 
blue dotted line represents within-domain inter-class distances. 
The deep yellow color line and the red dotted line depict intra- 
class class distances and intra-class distances, respectively. 
Note that different shapes correspond to different activities. 
After applying the structural pattern mapping techniques, we 
assume that both the source and target domain share similar 
feature spaces that minimize the intra-class distance and 
maximize the inter-class distance. 

where γ is the model parameter that helps balances 
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between the intra-class compactness (Sc) and inter-class 
separability (Ss). The Sϕ matrix contains both within 
(S(ss), S(tt)) and cross-domain (S(st), S(ts)) information and 
S ∈ R(ns+nt)×(ns+nt). The major benefits of this matrix is 
that it ables to handle imbalanced classes between the domains 
and also considers the relationship among the instances explic- 
itly. We define individual component Sci,j and Ssi,j of Sc and 

where the trace of a matrix is represented by tr(.) and X ∈ 
R(ns+nt) is the cross-domain activity data. The kernel matrix 
is represented as K = ϕ(X̂ )ϕ(X̂ ) and A ∈ Rn×k is the 
projection matrix. We adopt the presented technique in [25] 
and construct the MMD matrix Mc that involves the latent 
class structure (The matrix, S is constructed from intra- and 
inter-class separability information) as follows. 

Ss, respectively for every pair of instances (xˆi, xˆj) for within- 
domain and across-domain. These individual component Sc Mc =

   
sij mij 

T
 (9) 

and Ssi,j is a scalar and defined as follows. 
(c) 
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si,j i,j i j i j 
where W (c) and W (s) represent the intra-class and inter- objective is to minimize the class-conditional distribution 

i,j i,j between the domains and incorporate the inherent structural class nearest graph. We define these graph as follows. 
 

W (c)(ϕ(x̂i), ϕ(x̂j )) = 
1,  if yi = yj 
0,  otherwise 

activity patterns. 
Optimization: Our DSAE generated features are non-linear, 

we employ kernel K instead of X̂ and incorporate regu- 

W (c)(ϕ(x̂  ), ϕ ( x̂  )) =

  
1, if yi = yj

 
larization term in our optimization function and rewrite the 

 
 

We construct the within- and across-domain neighbor graph 
using the k-nearest neighbor classifier. Every instances of min 

ATKHKTA=I tr (ATKMcKTA) + β ||A|| (10) 
S matrix is generated using equation 5and 6. Source do- 
main annotated activity samples are used to construct the 
neighbor graph by following the standard K-nearest algorithm 
and generating all instances of S(ss) matrix. Each of these 
matrices, S(st), S(ts), S(tt), require knowing both source and 
target domain annotation. The target domain pseudo labels are 
generated using similar techniques as joint distribution adap- 
tation algorithm (JDA) [37]. Both pseudo-labels and provided 
limited annotation of the target activities and annotated sources 
activity samples are used to construct the nearest neighbor 
graph matrix. After constructing these neighbor graphs, we 
apply softmax function (g) over the cosine similarity distance 
(dc) within- and across-domain to measure the similarity 
for each instances pair. We define the similarity function 
g(ϕ(x̂s), ϕ ( x̂ t  )) as follows. 

s t 
i i s t 

We solve the Equation 10 using Lagrange multiplier 
technique. We denote the Lagrange multiplier as Λ = 
diag(λ1, λ2, ..., λk) ∈ Rk×k and derive Lagrange function 
from equation 10 as follows. 

 
L = tr (AT(KMcKT + βI)A)+ tr ((I − ATKHKTA)Λ) 

(11) 
We take the partial derivative with respect to A and set 

the derivative δL = 0 then Equation 11 becomes generalized 
eigen-decomposition and can be written as follows. 

 
(KMcKT + βI)A = KHKTAΛ (12) 

We apply iterative optimization to find k smallest eigen 
vectors and compute the projection matrix A. The transformed 
feature space then computed as Z = AX. Any classifier can 
be used to train with the projected cross-domain activity data g(ϕ(x̂i ), ϕ(x̂j )) =  nt 

(d (ϕ(x ŝ),ϕ(x t̂)) 
 

 

(7) 
and infer activities. 

 

 
The function g is normalized and computes the similarity 
score using the cosine distance function for each pair of 
instances. This function helps distinguish similar and dis- 
similar instances. Sϕ matrix is formulated without explicitly 
minimizing conditional data distribution. 

Minimize conditional data distribution: We adopt Max- 
imum Mean Discrepancy (MMD) techniques to reduce the 
cross-domain conditional data discrepancy, embed cross- 
domain latent structures, and generate common feature sub- 
space. Hence our optimization problem becomes as follows. 

st 

The proposed method optimizes the intra- and inter-class 
distance between the source and target domain instances. 
Furthermore, the generated features space segregate different 
class instances farther and agglomerate similar class instances. 
Therefore, the k-nearest neighbor classifier works well to 
infer activities in the target domain. In this work, we de- 
ploy a k-nearest neighbor classifier trained with the cross- 
domain data to infer target domain activities. To compare 
the performance of our proposed AR framework, we consider 
Transfer Component Analysis (TCA) [38], Joint Distribution 
Adaptation (JDA) [37], and Untran [6]. During the embedding Sij  ϕ(xˆ ) − ϕ(x )  = tr(A KM K A) (distribution difference minimization) step, we apply linear 

  
Sss   

Stt i j 
 

c 
kernel for TCA, JDA, our proposed method to construct kernel 

  matrix as suggested by [38] and [37]. (8
 

k 

Activity Classification: 

optimization problem as follows. 

j 
||sss||1 j i i,j ci,j S m = i j i
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IV. EXPERIMENTAL EVALUATION 

In this section, we discuss the details of our experiments. 
 

A. DataSets Description 

We validate our proposed activity recognition framework 
with three publicly available datasets. We use accelerometer 
sensor signals from these datasets. The dataset descriptions are 
discussed below. 

i) Opportunity dataset (Opp) [39] [40] contains naturalistic 
17 activities of daily living (ADL) from four participants. The 
activities include drinking, cleaning table, eating sandwich etc. 
Data was recorded at 64 Hz for about 6 hours of recording 
from 5 Inertial Measurement Unit (IMU) on the upper limbs 
and torso comprising of 3D accelerometers, 3D gyroscope and 
3D magnetic field sensor. We consider 10 activities and use 
only accelerometer sensors data to evaluate our framework. 

ii) WISDM Actitracker dataset (Wisdm) [41] contains 6 
distinctive human activities including walking, jogging, sitting 
etc. belongs to 29 users. Data was collected at 20 Hz using 
a smartphone accelerometer sensor kept on front pants leg 
pocket. 

iii) Daily and Sports dataset (Das) [42] containing 19 
activities performed naturally by 8 subjects. Data was collected 
at 25 Hz sampling frequency. Each activity duration was 
5 min for each subject. The activity set includes sitting, 
playing basketball, cycling etc. Five motion tracker (MTx) 
units were used to collect the activity dataset where each 
MTx unit contains 3D accelerometer, 3D gyroscope, and 3D 
magnetometer sensors. MTx units were placed on the torso, 
right arm, left arm, right leg and left leg. 

 
B. Implementation Details 

We implemented our framework using python based deep 
learning platform, Tensorflow [43]. Accelerometer sensor data 
was segmented into 128, 200 and 125 samples with 50% 
overlap for Opp, Wisdm, and Das. Frames were filtered with 
a low-pass median filter to remove noises. These frames were 
then fed into the DSAE to extract features from the sensor 
signals. We implemented transfer learning baseline methods, 
TCA, and JDA with python. Our DSAE is comprised of four 
layers. We concatenated the softmax function at the end of 
the encoder to build the DSAE classifier and fine-tuned the 
classifier parameter for the source domain annotated data. We 
ran our AR framework on a server equipped with four NVIDIA 
GTX 1080-Ti GPUs and 64 GB memory with an Intel Core 
i7-6850K processor. 

 
C. Performance Metrics 

We evaluated and compared the performance of our AR 
framework based on the following metrics. i) Precision P = 
(   T P   ), ii) Recall R = (   T P   ), iii) F-1 Score = 2×P ×R 

 

Dataset Source Domain Target Domain 
Opp 3 1 
DAS 6 2 

WISDM 21 8 

TABLE I: Number of users in the source and target domain 
Number of Unseen Activities 

 
 
 
 

TABLE II: AR framework performance accuracy (%) on a 
varying number of unseen activities in the target domain while 
maintaining an equal number of activities in the source and 
target domains. 

D. Experimental Results 
Each dataset is partitioned into two groups, and each group 

contains distinct users. Users are selected randomly to create 
source and target domain. Table I shows the number of users 
in the source and target domain for each of the datasets. 
We evaluated our model performance in presence of varying 
number of unseen activities and varying number of annotation. 

E. Performance under the varying number of unseen activi- 
ties: 

Two experimental settings are considered to showcase the 
effectiveness of the proposed model, i) an equal number of 
activities in both domains, and ii) an increasing number of 
activities in the target domain. 

i) An equal number of activity classes with varying unseen 
activities: In this experiment, both the source and target 
domain contain an equal number of activities while varying the 
number of unseen activities in the target domain. In the case of 
the Opp and Das dataset, both the source and the target domain 
contain five activities, and in the Wisdm dataset, both domains 
contain three activities. In the first step of this experiment, the 
target domain contains one unseen activity, and the rest of 
the activities are similar to the source activities. We report the 
average result by conducting this experiment for all the unseen 
activities. In the next step, the target domain contains two 
unseen activities. In this way, we repeat this process until the 
target domain contains all the unseen activities. The classifier 
is trained with 20% annotated target domain activities. On 
average, 111, 17, and 70 annotated activity samples (activity 
samples distribution shown in table IV) are selected from Das, 
Opp, and Wisdm, respectively. 

 
 

Datasets 
Number of Unseen Activities 

1 2 3 4 5 
Das 93.39 89.89 84.14 85.27 83.59 
Opp 72.72 67.69 63.16 60.00 56.87 
Wisdm 96.96 89.21 81.98 - - 
Avg. 87.69 82.23 76.43 72.64 70.23 

 

TP +FP TP +FN P +R TABLE III: AR framework performance accuracy (%) in the 
and, iv) Accuracy =   T P +T N   , where TP, FP, TN, and 
FN are the number of instances of true positive, false positive, 
true negative and false negative, respectively. 

presence of a varying number of unseen activities in the 
target domain while the target domain contains all the source 
activities and additional unseen activities 

Datasets 
 

1 2 3 4 5 
Das 86.77 81.70 76.11 72.45 68.02 
Opp 82.94 70.98 68.70 63.05 60.67 
Wisdm 80.09 68.18 65.25 - - 
Avg. 83.58 73.62 70.02 67.75 64.35 

 



Table II represents the performance of our AR framework. 
We see that our AR framework achieves accuracy ≈ 87%, 83% 
and 80% for Das, Opp, and Wisdm dataset, respectively, for 
single unseen activity in the target domain. The proposed AR 
framework achieves lower accuracy because the Opp dataset 
consists of more diverse user activity styles, sensing biases, 
and device heterogeneity. In addition, this dataset also contains 
a small number of annotated activity samples (17 samples) and 
missing values. We notice that our AR framework performance 
decreases with the increased number of unseen activities in 
the target domain. This result is expected because we add 
more unseen activities in the target domain and treat these new 
activities samples as noise. Our classifier fetches difficulties 
transferring knowledge from source to target with more new 
instances. 

ii) An increased number of activities in the target with 
varying unseen activities: In this experimental setting, the 
target domain contains all the activities present in the source 
domain. In addition, the target domain has a varying num- 
ber of unseen activities. The proposed AR framework is 
trained with 20% annotated data in the target domain; on 
average, 159, 24, and 131 annotated activity samples (activity 
samples distribution shown in table V) are selected from 
Das, Opp, and Wisdm, respectively. Both seen and unseen 
activities in the source and target domain help establish the 
minimized cross-domain and in-domain intra- and inter-class 
distance minimization. Table III represents AR framework 
performance. For two unseen activities in the target domain, 
our AR framework achieves 89.89%, 67.69%, 89.21% for 
Das, Opp, and Wisdm datasets, respectively. Similar source 
domain activities in the target domain help reduce the cross- 
domain intra- and inter-class distances between the domains. 
Our AR framework performance depends on the pseudo labels 
for the unannotated samples to construct the neighbor graph 
that explicitly participates in optimization. Therefore, more 
common activities between the domains help improve the 
accuracy of our model. 

F. Performance under varying labeled activities 
We investigate our model performance in the presence of a 

variable number of annotated data in the target domain for the 
following scenarios - i)A an equal number of activity classes 
in the target domain, and ii) an increased number of activity 
classes in the target domain. 

An equal number of activities in target domain: In 
this experiment, we vary the number of annotated activity 
samples in the target domain while maintaining an equal 
number of activities in both environments. The average activity 
annotation distributions shown in table IV. In addition, the 
target domain varies the number of unseen activities. The 
average performance of our AR framework is shown in 
figure 4. We observe that our AR framework performance 
increases with the increasing number of annotated samples in 
the target domain for all three datasets. Furthermore, we see 
that the Opp and Das dataset performs better than the Wisdm 
dataset because the Wisdm dataset contains fewer activities 

in both domains. Our AR framework creates a neighbor graph 
composed of intra- and inter-class distances within- and cross- 
domains. We infer that more activities help create this neighbor 
graph, minimizing discrepancies and maximizing knowledge 
transfer. Therefore, the less common activities in both domains 
degrade our model performance. 

Percentage of annotated activity samples 
 
 
 

TABLE IV: The number of activity samples in percentage 
distribution for an equal number of activities in target domain. 

 
100 

 
 

90 
 
 

80 
 
 

70 
 
 

60 
 
 

50 
 
 

40 
10 20 30 40 50 60 70 80 90 

Percentage (%) of Training Instances in the Target Domain 
 

Fig. 4: Our AR framework Performance (Accuracy(%)) on 
varying labeled data in the target domain. Note that both 
domain contains same number of activities 

 
Datasets 

Percentage of annotated activity samples 
10% 20% 30% 40% 50% 60% 70% 80% 90% 

Das 80 160 239 320 400 480 560 639 720 
Opp 12 24 37 49 62 74 86 99 111 

Wisdm 65 131 196 262 328 394 459 524 590 

TABLE V: The number of activity samples in percentage 
distribution for an increased number of activities in the target 
domain. 

An increased number of activities in the target do- 
main: In this experimental setting, we vary the number of 
labeled activities from 10% to 100% while maintaining similar 
activities and additional unseen activities in the target. The 
average activity annotation distributions shown in table V. 
Furthermore, we increase unseen activities by adding one other 
unseen activity in the target in each step. The average results 
are reported for each corresponding percentage of annotated 
data in Figure 5. With the varying labels, the performance of 
our classifier follows similar trends as with the equal number 
of classes in the target domain. However, the AR framework 
fetches difficulties constructing neighbor graphs for the Opp 
dataset as the total number of activity samples is smaller. 
In addition, it contains missing values and idle body part 
movement. 

G. Individual Activity Recognition Performance 
We investigate the individual activity recognition perfor- 

mance of our AR framework. In this experiment, we varied 
the number of unseen activities from 1 to n in the target 
domain for each activity while using 20% annotated target 
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Datasets 
 

10% 20% 30% 40% 50% 60% 70% 80% 90% 
Das 55 111 167 223 278 334 390 445 500 
Opp 8 18 26 35 45 53 62 71 80 

Wisdm 35 70 105 140 176 211 246 281 316 
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Fig. 5: Our AR framework Performance (Accuracy(%)) on 
varying labeled data in the target domain. Note that both 
domain contains increased number of unseen activities 

 

Dataset Our AR UnTran JDA TCA 
Das 81.70 74.75 51.23 45.24 
Opp 63.15 65.86 50.92 26.77 

Wisdm 80.68 69.51 42.61 34.68 
Avg. 75.18 70.07 48.25 35.56 

TABLE VI: Baseline performance comparison (Accuracy (%)) 
for an equal number of activities in the target domain 

domain samples. The average individual activity recognition 
performance for each dataset is shown in Figure 6a, 6b, and 6c, 
respectively. From figure 6a, we see that our model achieves 
F1 scores ≈65%, 60%, 62% for activities ‘Running’, ‘Lying’, 
and ‘Exercising’, respectively for Opp dataset. In the case 
of the ‘Running’ activity, a few instances are detected as 
‘Lying’ or ‘Exercising.’ Similarly, ‘Lying’ and ‘Exercising’ 
activities are also falsely detected as ‘Exercising’ or ‘Running’ 
and vice-versa. This misclassification happens as a result 
of similar features present in those activities. Therefore, we 
can infer that activities with distinct patterns improve our 
model’s performance. In the case of the Opp dataset, we notice 
that ‘Clean Table,’ ‘Open Fridge’ shows F1 scores ≈ 43% 
and 48%, respectively. Opp dataset has missing values and 
also contains non-movement-related activities. These activities 
share less knowledge during neighbor graph generation, and 
hence performance degrades our AR framework. In the case 
of the Wisdm dataset, we see that our model achieves F1, 
precision, and recall values of ≈ 86%, 83%, 89%, respectively. 
This dataset contains no missing values and less heterogeneous 
instances in the source and target domain that help improve 
the performance of our model. 

 
H. Baseline Performance Comparison 

To show the efficacy and effectiveness of our AR frame- 
work, we compare the performance of our model with the 
following baseline methods UnTran, JDA and TCA. We follow 
similar experimental settings as UnTran to compare the per- 
formance with the state-of-the-art algorithm. The experiment 
was conducted with two unseen activities in the target domain 
for both cases - (i)) an equal number of activities and ii) an 
increased number of unseen activities in the target domain. 
These two unseen activities are randomly selected from the 
target domains. We repeated these random unseen activity 
selections for all the unseen activities and reported our AR 
framework’s average performance in tables VI and VII. 

TABLE VII: Baseline performance (Accuracy (%)) compari- 
son for an increased number of unseen activities in the target 
domain 

With both an equal number of activities and an increased 
number of activities scenarios, the proposed AR is trained with 
20% labeled data in the target domain. In contrast, other base- 
line methods are trained with 30% annotated target domain 
activity samples. We choose 30% annotated target domain 
data because the state-of-the-art UnTran model works well 
with 30% labeled data. Table VI represents the performance 
comparison of our AR framework for balanced activities 
between the source and target domain in the presence of 
two unseen activities in the target domain. From Table VI 
we see that our AR framework achieves superior performance 
compared to other baselines. Our AR framework achieves an 
average performance accuracy of 75%. Compared to UnTran 
our model performance gain is ≈ 5-6% with only 20% labeled 
activity samples in the target domain. Our AR framework 
achieves performance gain ≈ 26-39% compare to other meth- 
ods (JDA, TCA). These results clearly show the effectiveness 
of explicit structural mapping between the source and target 
domain. It is noted that our proposed AR framework requires 
10% lesser annotated activity samples to achieve performance 
gain 5-6% accuracy compared to the state-of-the-art Untran 
method. In other words, the proposed AR framework requires 
56, 8, and 35 fewer activity samples for Das, Opp, and Wisdm 
datasets to achieve the performance gain of 5-6% accuracy. 

Table VII shows the detailed comparison results of our AR 
framework with the existing methods for an increased number 
of unseen activities in the target domain. Our AR framework 
achieves performance gain ≈ 4-5% compared to UnTran 
model with 10% less annotation. In other words, the proposed 
AR framework requires 79, 13, and 65 fewer activity samples 
for Das, Opp, and Wisdm datasets to achieve a performance 
gain of 4-5% accuracy. We also notice that UnTran model 
performs better for the Opp dataset. We suspect that decision 
fusion from multiple classifiers helps better performance gain 
for more diverse, heterogeneous, and noisy environments. This 
experimental setup helps understand additional activities in the 
target domain capable of learning from the existing activities 
in the source domain. 

I. Parameter Sensitivity 
In this section, we investigate our AR framework perfor- 

mance on the following model parameters setting- i) similarity 
balancing parameter (γ), ii) regularizing parameter (β), and 
iii) number of kernel subspace (k). We change one parameter 
and keep the other two parameters unchanged during the 
experiment. We sample the value of the γ and β from 
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We also sam- 
ple the parameter k ∈ [10, 100] and report the accuracy of 
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Dataset Our AR UnTran JDA TCA 
Das 89.89 78.92 69.51 68.25 
Opp 67.69 74.57 69.96 36.26 

Wisdm 89.21 81.32 66.67 67.03 
Avg. 82.63 78.27 68.71 57.18 
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Fig. 7: Influence of learning parameter on our AR framework 

our AR framework. Note that we train our classifier in the 
presence of 20% labeled data in the target domain. Both the 
source and target domains contain eight activities in common. 
In addition, our target domain contains two unseen activities. 
Figure 7 showcase the parameter impact of our AR framework 
performance for all three datasets. Our model approximately 
performs best at γ = 0.5 therefore, we choose γ = 0.5 
for all three datasets throughout our experiments. Note that 
(Fig. 7a) our model achieves accuracy ≈ 85%, 89% and 71% 
for γ = 0.5 for Das, Wisdm and Opp dataset, respectively. 
We also notice that the performance of our model for the 
parameter β = 0.5 is ≈ 88%, 89%, and 74% for Das, Wisdm, 
and Opp datasets, respectively. Therefore, we choose γ = 0.5 
throughout our experiments. From Figure 7c, we see that our 
model performs better for k = 80. Theoretically, k = 0 
means an ill-defined problem, and k = ∞ means cross-domain 
adaptation has not been performed. 

 
V. DISCUSSION 

Our proposed activity recognition framework addresses a 
significant promising problem of unseen activities with the 
help of limited annotation in the target environment. There 
are, however, a few limitations of our AR framework. First, we 
evaluated our framework with wearable accelerometer sensors 
signal only. Though performance examination against three 
public datasets implicitly attests to the efficacy of our frame- 
work against users, environmental heterogeneity, and sensing 
biasness. However, additional investigations are required to 
understand the effect of heterogeneous sensors (i.e., camera, 
PIR, etc.) and devices (smartwatch, smart-necklace, etc.). 
Furthermore, our AR helps reduce the amount of annotation 
required in the target domain but could not diminish the 

required annotation efforts. In this work, we focus on aver- 
age performance for recognizing unseen activities. However, 
additional investigation is needed to understand the impact of 
the presence and absence of specific activities in the target 
domain. 

VI. CONCLUSION 
Human activity recognition techniques help develop vari- 

ous smart applications in different domains such as health- 
care, obesity management, sports analytic, etc. Our transfer 
learning-enabled activity recognition technique helps infer 
unseen activities with limited annotated activity samples in 
the target environment. This paper proposes a novel activity 
recognition framework to minimize within- and cross-domain 
intra-class distance, maximize inter-class distance, and recog- 
nize seen and unseen activities in the target domain. First, we 
exploit the deep sparse autoencoder to generate source and 
target domains features. We then utilized the MMD distance 
minimization techniques to reduce the discrepancy between 
the domains and recognize activities in the target domain. 
Finally, we evaluated our proposed framework performance 
with several state-of-the-art transfer learning baseline models. 
The recognition performance of our framework suggests that 
our AR framework is scalable and adaptable in large-scale, 
diverse target environments. 
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