
Using Automatic Memoization as aSoftware Engineering Tool inReal-World AI SystemsJames May�eldComputer Science DepartmentUniversity of Maryland Baltimore CountyBaltimore, MD 21228-5398may�eld@cs.umbc.edu Marty HallScience Applications International Corp.9841 Broken Land Parkway, Suite 118Columbia, MD 21046hall@cs.umbc.eduTim FininComputer Science DepartmentUniversity of Maryland Baltimore CountyBaltimore, MD 21228-5398�nin@cs.umbc.eduApril 1994AbstractMemo functions and memoization are well known concepts in AI programming. They have been dis-cussed since the Sixties and are often used as examples in introductory programming texts. However, theautomation of memoization as a practical software engineering tool for AI systems has never received adetailed treatment. This paper describes how automatic memoization can be made viable on a large scale.It points out advantages and uses of automatic memoization not previously described, describes the com-1



ponents of an automatic memoization facility, enumerates potential memoization failures, and presentsa publicly available memoization package (CLAMP) for the Lisp programming language. Experience inapplying these techniques in the development of a large planning system are brie
y discussed.Track: Enabling Technology.Subtrack: Software Engineering.Words: 5869.Correspondence. Please address all correspondence to: James May�eld, Computer Science Department,University of Maryland Baltimore County, Baltimore, MD 21228-5398. Voice: 410-455-3099. Fax: 410-455-3969. Email: may�eld@cs.umbc.edu.

2



1 IntroductionMemo functions and memoization are well known concepts in AI programming. They have been discussedsince the Sixties and are often used as examples in introductory programming texts [16, 13, 14]. However,the automation of memoization as a practical software engineering tool for AI systems has never receiveda detailed treatment. This paper describes how automatic memoization can be made viable on a largescale. It points out advantages and uses of automatic memoization not previously described, itemizes thecomponents of an automatic memoization facility, enumerates potential memoization failures, and presentsa publicly available memoization package (CLAMP|Common Lisp Automatic Memoization Package) forthe Lisp1 programming language. We will also brie
y discuss our experience in applying these techniques inthe development of the Signature Management System (SMS) [18], a decision support system that providessubmarine crews with situational awareness and operational advice in order to reduce detectability.The term \memoization" is derived from the term \memo function," which was coined by DavidMichie [10].It refers to the tabulation of the results of a set of calculations to avoid repeating those calculations. Auto-matic memoization refers to a method by which an ordinary function can be changed mechanically into onethat memoizes or caches its results. We place the decision about which functions to memoize in the handsof the user; this contrasts with the approach of Mostow and Cohen [11], which tries to automatically inferwhich functions should be memoized. These two approaches to automatic memoization are not incompatible,although as Mostow and Cohen point out, the latter approach is not a practical tool.Memoization is particularly apt for AI applications. Rapid prototyping is a hallmark of AI programming.Automatic memoization allows the programmer to write certain functions without regard to e�ciency, whilebeing assured of reasonable performance. By allowing the programmer to avoide these e�ciency concerns atthe outset, automatic memoization facilitates the kind of exploratory programming used in the developmentof most AI systems.The principle of memoization and examples of its use in areas as varied as logic programming [17, 7, 3],functional programming [5], and natural language parsing [12] have been described in the literature. Inall of the cases that we have reviewed, the use of memoization was either built into in a special purpose1Throughout this paper, we use the name Lisp to refer to the language Common Lisp, as described in Steele [15].3



computing engine (e.g., for rule{based deduction, or CFG parsing), or treated in a cursory way as an examplerather than taken seriously as a practical technique. The automation of function memoization as a practicalsoftware engineering technique under human control has never received a detailed treatment. In this paper,we report on our experience in developing CLAMP, a practical automatic memoization package for CommonLisp, and its use in a large{scale AI project.By means of illustration, consider the divided{di�erence algorithm dd, which is shown in pseudo{code inFigure 1. This algorithm is used to determine coe�cients of interpolated polynomials. The algorithm, whichis a standard one in numerical methods, is taken directly from Numerical Mathematics and Computing [1].The application itself is not particularly important; it is the run{time behavior of the algorithm that isof interest to us here. The call tree for the divided di�erence algorithm dd forms a network rather thana tree; thus, a recursive call to dd with particular arguments may be repeated many times during a singlecomputation. For example, a call to dd with low=1 and high=10 will generate one recursive call with low=2and high=10 and another recursive call with low=1 and high=9; each of these will in turn make a recursivecall with low=2 and high=9. Memoization of dd causes each calculation to be performed only once andstored in a table; thereafter, each repeated recursive call is replaced by a table lookup of the appropriatevalue.Figure 2 compares the performance of memoized and unmemoized versions of a Lisp implementation ofthe divided di�erence algorithm, using f(n) = � cos(n) and the �rst n natural numbers as arguments. Sincea single function call on n points generates two recursive calls on n� 1 points, the unmemoized version has�(2n) time complexity. After memoization, the �rst invocation requires �(n2) time, since no subsequenceof points is calculated more than once, and there are (n2+ n)=2 subsequences. Subsequent invocations takenear{constant time.This algorithm for divided di�erence is typical of a large class of algorithms which have very elegantrecursive de�nitions which are simply unusable for most real problems. The conventional response to thissituation is to manually rewrite the algorithm in a dynamic programming style. Of course, such manualrewriting of the code takes e�ort and involves the risk of introducing new bugs. An attractive alternativeis to use an automatic memoization package to convert the elegant but ine�cient recursive algorithm into a4



; divided-difference algorithmdd(points: array,low: array-index,high: array-index,fn: function)beginif low = high thenreturn fn(points[low])else return (dd(points, low+1, high, fn) -dd(points, low, high-1, fn)) /(points[high] - points[low])endFigure 1: The divided di�erence algorithm for determining coe�cients of interpolated polynomials can beelegantly written using recursion and made e�cient through the use of automatic memoization.n Unmemoized Memoized Memoized(�rst run) (subsequent runs)15 11 0.18 0.000616 22 0.21 0.000617 43 0.22 0.000618 87 0.28 0.000719 173 0.4 0.0007100 Centuries 25.0 0.002Figure 2: This table shows the bene�ts of memoization on a Lisp implementation of dd. The time complexityis reduced from �(2n) to �(n2) for initial runs and to near{constant time on subsequent ones.5



useful one. This is attractive, of course, only if such a package can address the practical problems faced inreal application.In the next section we describe the some of the aspects and uses of automatic memoization not previouslydescribed in the literature. Section three compares the use of automatic memoization to the alternative ofrewriting code by hand. Section four describes the general components that should be present in anyautomatic memoization facility. Section �ve presents problems inherent in the use of memoization and thevarious ways to address them. Section six describes our experience in using automatic memoization in inthe development of SMS|a large decision support system.2 Uses of MemoizationThere are four main uses of automatic memoization. Two of these involve the avoidance of redundantcalculation, �rst, within a single function invocation, and second, across invocations. The third use ofautomatic memoization is as a pre{calculation tool, while the fourth is as a timing and pro�ling tool. Theseare not conjectured uses but ones which we found to be e�ective in many situations in a large, real{worldAI application. We discuss each of these uses in more detail in the following subsections.2.1 Repetition within a Function CallThe most common use of memoization is to avoid the repetition of sub{calculations within a single functioncall. In the divided di�erence example presented above, there were many repeated recursive calls within asingle function invocation. This type of repetition is common. For example, a simple recursive backtrackingparser may parse the same constituent many times during a single parse; thus its performance is poor.Norvig [12] has shown that such an algorithm can obtain the performance of chart parsing [8] or of Earley'salgorithm [4] through the application of memoization.Thus, we can view memoization as a technique to automatically convert a recursive algorithm into onethat has the same behavior as a dynamic programming algorithm; rather than determining the properorder in which to construct subpieces, memoization of a simple solution can typically achieve the sameperformance [2]. Again, through automatic memoization one can, in many cases, achieve the bene�ts of a6



dynamic programming approach without rewriting the control structure or introducing new data structuresto hold the intermediate results.2.2 Repetition over TimeIn a team programming environment di�erent sections of a system, written by di�erent programmers, mayaccess the same function. Alternatively, in an interactive system the user may invoke calculations at di�erenttimes that make use of some the same pieces. In these cases, there is no central routine which could managethe calling sequence to avoid repetition of the calculations. The only alternative to automatic memoizationin such cases is to have the routine in question manage its own data structures to cache previous results.2.3 PersistenceThe preceding subsections showed that memoization can eliminate the repeated invocation of expensivecalculations. These two applications of memoization are useful when it is feasible to perform the �rstinvocation of a function at run{time. Memoization is also useful when even the �rst invocation is tooexpensive to perform at run{time.Use of functions that are too expensive to calculate at run{time is usually done by building a specialpurpose data �le, and storing in it the results of an o�{line execution of the expensive routine. Then,the function in question is modi�ed to access that �le. Automatic memoization provides a method topre{calculate a function without the overhead of a hand{crafted solution. In such situations automaticmemoization eliminates the need for the programmer to know which ranges of values are stored in the data�le, and which must be calculated. To achieve persistence of an expensive function, the function is memoizedand then run o�{line on the cases of interest. The contents of the hash table are then saved to disk. Thesaved �le is later used to seed the hash table for the function when it is reloaded.There are two additional advantages of this type of memoization beyond providing the ability to pre{calculate a function. First, it allows the elimination of functions from the run{time system in cases whereall possible inputs to the memoized function are pre{calculated. Second, the input values to the memoizedfunction are determined automatically. That is, the programmer does not have to specify the range of7



possible inputs to the memoized function. In fact, this solution works even if the programmer has no ideawhich input values will be used.2.4 Timing and Pro�lingFinally, automatic memoization can also used as a pro�ling and timing tool. Many programming languagesystems provide a pro�ling facility whereby the user can see the time that a top{level function spends invarious lower{level routines. This is important for directing optimization e�orts. However, these pro�lersgenerally require signi�cant overhead. For example, a fully{metered Lisp run on a Symbolics Lisp machinecan take thirty times longer than an unmetered run. This does not include the time required to loadthe metering system. The expense of metering is worth the e�ort for important cases, and is a valuablesoftware engineering tool. In smaller cases, however, automatic memoization provides a quick but roughmethod for determining which routines to optimize. Rather than running the fully metered system, usersinteractively memoize certain functions, then repeat the original test case twice. If the timing for the secondcase improves only by, for example, �ve percent, then for that test case, no amount of optimization in theroutines in question will provide more than a �ve percent speedup. If on the other hand a great speedup isseen, then the memoized functions are good candidates for optimization.3 Alternatives to Automatic MemoizationThere are three alternatives to automatic memoization for eliminating repeated calculation: hand{craftedmemoization, dynamic programming, and development of a new algorithm. First, memoization need not beautomated. Memoizing a routine by hand could conceivably result in minor e�ciency gains over automatedmemoization. Second, in some cases an ordering can be found for the calculations to be performed suchthat full memoization is not needed. For example, in Volume 2 (Seminumerical Algorithms) of his The Artof Computer Programming [9], Knuth presents a straightforward method for calculating divided di�erencesin the proper order to get the same performance as the �rst invocation of the memoized version presentedin the Introduction. Finally, a new algorithm for a given task can be sought that does not require repeatedcalculations. 8



Automatic memoization is not a substitute for �nding the proper algorithm for a task. However, whenthe major bene�t of the development of a new algorithm is a savings in repeated calculations, automaticmemoization of an existing algorithm has several advantages. These advantages also recommend automaticmemoization over the other approaches described above. They fall into three categories: quality of solution,ease of use, and additional uses of memoization.3.1 Quality of solutionAutomatic memoization usually leads to short, clear implementations, because the code to implement thee�ciency improvement does not appear in the body of the function being improved. Furthermore, if thefunction to be memoized has already been written and debugged, the use of automatic memoization doesnot risk the introduction of bugs into the function to the same degree that developing new code for the taskdoes. This last point is especially important in the development of large, complex system where there isa natural reluctance to change routines that have already been tested and veri�ed, especially if that willrequire changes in multiple places in the code. Furthermore, because it is simple to switch back and forthbetween the memoized and unmemoized versions, it is easy to compare the performances of the two versions.3.2 Ease of useIn most languages automaticmemoization can be implemented so that it is simple to memoize and unmemoizefunctions. None of the alternatives to automatic memoization can boast such a light load on the programmer.Again, this ease of use depends in part on avoiding the requirement of writing, debugging and eventuallymaintaining new code. This ease of use is especially important in arti�cial intelligence applications, becausethe design of such applications tends to change rapidly and frequently.3.3 Additional usesWhile the alternatives to automatic memoization mentioned above eliminate repeated calculations, they donot, in general, provide the other bene�ts of automatic memoization, i.e. persistence of cached values andusefulness as a timing and pro�ling tool. It would be possible, of course to build in some of these features9



such as a persistent cache mechanism. However, the automatic memoization approach requires us to do thisonly once|in the general memoization facility.The result of these bene�ts is that automatic memoization o�ers signi�cant practical advantages inbuilding real systems. Hall and May�eld [6] describe some of these advantages in more detail as they appliedto the development of the SMS system.4 Components of an Automatic Memoization FacilityBased on our experience in developing and using CLAMP, we have identi�ed characteristics that any au-tomatic memoization facility should have. Automated memoization of some sort can be implemented inmost languages. Languages that provide the user with an interactive run{time environment (such as Lisp,Dylan and ML) must have either run{time function name resolution or a patchable code segment to allowautomated memoization. Languages that are strictly compiled (such as most implementations of C) mustbe augmented with some sort of preprocessor to allow automated memoization.Three types of control functions make up a useful memoization package: memoization and unmemoizationfunctions, cache control functions, and statistics reporting functions. We will discuss each in turn.4.1 Memoization ControlFirst, the system must provide the user with a variety of methods to easily memoize and unmemoize functions.These methods should allow both absolute control over memoization (e.g. memoize a function, unmemoizea function, unmemoize all functions), and also, if possible, temporary memoization commands (e.g. treata function as memoized while evaluating a particular expression, treat a function as unmemoized whileevaluating a particular expression).It is important to allow the programmer to experiment with the e�ects of memoization in the context ofhis or her program. It is not always obvious what impact memoizing a function will have. For example, at�rst glance, the Hailstone function shown in Figure 3 looks to be a good candidate for memoization, butexperimentation shows no bene�ts from doing so.22Of course, some careful reasoning will also lead a programmer to the same conclusion, but not all programmers will have10



(defun Hailstone (n)(+ 1 (cond ((= n 1) 0)((evenp n) (Hailstone (/ n 2)))(t (Hailstone (+ 1 (* 3 n)))))))Figure 3: The Hailstone function appears to be a good candidate for memoization, but it is not.4.2 Cache ControlSecond, the system must provide methods to control individual memoization caches, both for a single sessionand across sessions. Most important is the ability to explicitly clear a cache, thereby forcing all functionreturn values to be re{calculated. Persistence is provided by allowing the user to instruct that a cache besaved to disk, and in a later session, to instruct that such a saved cache be read from disk. Ease of useconcerns dictate that these methods be activated by referring to the name of the memoized function, andnot to the name of a disk �le or to some other internal data structure.4.3 Data ControlFinally, the memoization package should provide routines that report statistics collected while a memoizedfunction is running. These statistics should include the number of times a memoized function is called, andthe number of times that such invocations result in the return of a cached value. The user should also beallowed to reset these statistics in preparation for a new run.5 Memoization FailuresA major advantage of automatic memoization is its transparency. However, an overly{transparent view canlead to problems. While some aspects of these memoization failures have been discussed in the literature(notably by Mostow and Cohen [11]), most have not. Instead, we learned them the hard way in using thethe time and experience to do this type of analysis. 11



evolving CLAMP system through the experiences of AI programmers using the facility over the course ofseveral years in developing the SMS system.The most common criticism of automatic memoization that we hear from programmers who have notused it is that the use of a technique that cannot guarantee correct results after its application is out ofthe question. This complaint is unfounded. As a counterexample, a technique that is widely{used by Cprogrammers is function in{lining through macro expansion. Such macro expansion is not guaranteed toproduce the correct results in all cases. However, because the programmer controls when macros are applied,the technique can be used pro�tably. It is for this reason that we advocate programmer control over theselection of functions for memoization. In the following subsections, we describe the potential pitfalls wehave encountered in making decisions about which functions to memoize.5.1 Cache ConsistencyMemoization is used to avoid recalculation when a function is invoked with arguments it has seen previ-ously. Direct changes to the function should result in the memoization cache being 
ushed automatically, aspresumably it will then contain incorrect values. This situation is relatively easy to detect. More di�cultto detect is the alteration of one or more of the sub{functions that the memoized function calls. There areseveral ways to alleviate this problem. The best method would be for each memoized function to keep a listof all functions in its call tree, and require that the cache be 
ushed when any of those entries is modi�ed.This could not be done automatically at run{time without the use of special data structures in the unmem-oized functions; this capability is unlikely to be adopted in most programs. In many cases, a proper use ofmodularity will indicate how far changes are likely to propagate. Since the user always has access to a list ofthe currently memoized functions, a warning to check the list whenever changes are made is often su�cient.This is a trade{o�. One of the goals of an automatic memoization facility is to provide tools that are easyfor the programmer to adopt. If using memoization requires invasive changes to unmemoized routines, thisgoal will be compromised.However this problem is addressed within a single session, it is usually not a problem across sessions.Run{time changes to functions usually occur during development. If caches are not saved to disk, the12



memoized routines will once again calculate correct values the next time the system is loaded.Caches that are saved to disk present a much more serious problem. In some senses, such caches areno di�erent from normal data �les, and the same problems of outdated versions apply. No fully automatedsolution will guarantee consistency, short of a system builder that forces recalculation of all saved valueswhenever there are changes in any code on which the function depends. This is not an unreasonable optionduring development, since the memoization facility makes it easy to save entries. O�{line calculations canbe performed at regular intervals. However, there is still an incentive to limit these calculations, since theirtime{consuming nature is what led to saving the tables to disk in the �rst place.One way to limit the likelihood of inadvertent use of obsolete values semi{automatically is to periodicallyrecalculate memoized values. First, the programmer speci�es a percentage of the entries that are to berecalculated on loading the hash table, and/or a percentage of times where the memoized function will invokethe original function even though its arguments have been seen before. In each case, these recalculated valuesare compared to the original ones; a warning is given if the results are not identical. Load{time recalculationmay not be possible, of course, since all the routines needed for a calculation may not be available when thefunction is de�ned. Similarly, run{time recalculation may not be desirable, even with a very low percentagespeci�cation, if the system is counting on a given level of performance. Even if both techniques are used,they do not guarantee that all obsolete values will be found. Thus, these techniques should be used as acomplement to other software engineering techniques (such as explicit maintenance of dependencies), ratherthan as a replacement for them.5.2 Non-FunctionsMemoization only works for true functions, not procedures. That is, if a function's result is not completelyand deterministically speci�ed by its input parameters, using memoization will give incorrect results. Thenumber of functions that can be memoized successfully will be increased by encouraging the use of a functionalprogramming style throughout the system. 13



5.3 Modi�cation of ResultsInherent in the idea of memoization is that data is stored, rather than calculated anew each time a functionis called. Thus, memoized functions can return results that share structures, even if the unmemoized versionalways creates new structures. Even without memoization, operations that modify function results aredangerous from a software engineering perspective. A common problem is that such routines will work �newhen �rst written, but will make subsequent modi�cations di�cult. However, in some cases they can lead toe�ciency gains; with care, programmers can use them to speed up the functions that can really bene�t fromtheir use. Unfortunately, the transparent view of memoization breaks down when used with such routines.For instance, suppose that function Raw-Data returns a newly{created list of numbers. It is called by thefunction Normalized-Data, which destructively removes the maximum and minimum entries from the listbefore returning it. Prior to memoization, this might be perfectly safe. After memoizing Raw-Data, however,each subsequent retrieval of supposedly identical data values might in fact receive a shorter list. Avoidingthis problem not only requires the user of memoization to know how the function to be memoized works,but also how it will be used by other functions. This is often a di�cult task; an easier approach is to tightenthe standards on when modifying operations are allowed, and to require increased documentation for thosefunctions that truly need to use them.5.4 Compiler Optimization of Recursive CallsSome compilers will optimize the code they output by converting tail{recursion to iteration. Such optimiza-tion eliminates the recursive function call, but not the work required to calculate the function's result. Sincememoization relies on explicit function calls to activate its table{lookup, such optimization will bypass thememoization process. To avoid this problem, the compiler must be instructed not to eliminate tail{recursionin memoized routines. Compilers that do optimize tail{recursion usually provide an appropriate compilerdirective, for use by the memoization machinery.A more subtle optimization is sometimes made by compilers for languages that resolve function namesat run{time. Such compilers will often bypass the name resolution process for direct recursion. Whenmemoization is implemented by binding the memoized function to the original function name, this once14



again results in a circumvention of the memoization table{lookup. The function will still return correctresults, but the computation savings provided by memoization will be lost. It is less common for a compilerto give the user explicit control over this kind of optimization.3Note that this problem can eliminate some, but not all, of the advantages of memoization. Althoughthe results of the optimized{away recursive calls will not be cached, the results of the top{level calls will becached. In the terms of the use categories described in Section 2, the bene�ts of repetition within a functioncall are lost but those due to repetition over time are not.5.5 Recognizing Call EquivalenceMemoization is performed by doing an exact match on the argument list, using the Lisp function equal bydefault. If function Foo is de�ned as:(defun Foo (&key (Bar 2) (Baz 3) ...)and is memoized, all of the following will be treated as distinct, even though the parameters have identicalvalues in all cases:(Foo)(Foo :Bar 2)(Foo :Bar 2 :Baz 3)(Foo :Baz 3)(Foo :Baz 3 :Bar 2)Similarly, one can have counterintuitive results when the arguments are 
oating point numbers, forgettingthat, for instance, 2 is not equal to 2.0, and 1.234567 is not equal to 1.23456, even though the functionmay treat them as identical. The solution adopted by the SMS program is to introduce \wrapper" functionsthat take keyword arguments, 
oating point numbers, etc., canonicalize the arguments into some commonform, then pass them on to an internal function that takes only required arguments in the standard format.It is this internal function that is then memoized.3Common Lisp compilers have the notinline directive for this, although we discovered in the course of developing CLAMPthat the commercial Common Lisp system we were using failed to follow that directive.15



5.6 Cache Value RepresentationIn the current system, the routines that save data to disk do so by printing the representation of the objectusing format, directing the output stream to a �le. This means that Lisp objects whose print representationcannot be parsed by read cannot be saved to disk. Some objects such as CLOS instances and structuresallow the de�nition of a custom print function, and this can sometimes be used to save them to disk. Butthis is not a general mechanism, and special{purpose code will need to be written in those cases.6 Experience and EvaluationThe Signature Management System (SMS) is a decision aid for submarine crews that provides situationalawareness and operational advice to help the ship reduce its overall detectability. It has been developedover the last �ve years under ARPA funding at the Johns Hopkins University Applied Physics Laboratory(JHU/APL). Outside of APL, team members have come primarily from industry, with eight corporationsand two universities on the development team. The system combines a variety of representations includingframes/objects, production rules, mathematical models, and procedural code. About 75% is written inCommon Lisp, with the remainder in C; it runs on UNIX platforms.The automatic memoization system was used in the SMS program by at least six Lisp developers fromthree di�erent companies. \Permanent" memoization (i.e. uses other than pro�ling) remains in the re-leased system in 25 places. However, use as a �rst{cut pro�ling tool was one of the most common uses ofmemoization. All four uses described in Section 2 were used extensively by multiple programmers.6.1 SMS Magnetics ModuleFigure 4 gives timing statistics for a magnetics module used in the Signature Management System, timedafter various uses of memoization were put into e�ect. Ignoring the bene�ts when the user asks for the samedisplay at di�erent times (which is in fact quite common), Figure 4 gives a summary of the time bene�ts ofmemoization on the �rst time invocation of the top{level display (which is shown in Figure 5). Times are inseconds, and are conservative approximations. Similar results were obtained with other modules.16



aspect Time (sec) Speedupunmemoized original 48 1.0+ conventional optimization 36 1.33+ repetitions over time 24 2.0+ dynamic programming 2 24.0+ saved lookup tables 0.001 48,000Figure 4: These �gures show the cumulative e�ects of the di�erent aspects of automatic memoization on amagnetics module used in the Signature Management System.6.2 SMS Detectability Planning DisplayGiven the diverse uses of memoization by various programmers on the SMS program, we attempted toestimate the overall contribution of memoization to the system. For instance, Figure 5 shows a displayused as an aid to planning submarine operations in the SMS system. It shows the predicted probability ofdetection of the submarine for various choices of heading and speed, drawn on a polar plot with the angle(theta) indicating heading (0 corresponding to due north), and the radius (r) corresponding to speed. Each(r,theta) pair (arc) in the display is coded with a color indicating the cumulative probability of detection forthe sub if it were to operate at the indicated course and speed.This display is used as a high{level tool in planning, and thus includes highly summarized information.It presents a single number for probability of detection which is a composite of all the potential detectionmethods or signatures. The user frequently is interested in the contribution of individual signature com-ponents to this composite. Since the probability of detection of each component is memoized before it iscombined into the composite, any component corresponding to a point on the display can be retrieved almostinstantly. Taking advantage of this, the display of Figure 6 can be maintained with virtually no additionalcomputation.Whenever the user moves the mouse over the composite detectability display (Figure 5), the correspondingspeed and course for the point under the mouse is calculated. Then, the individual components are calculated,with their relative values shown in the bar charts. Due to the e�ects of memoization, the component values17



Figure 5: The top{level display from the SMS submarine planning system shows the predicted probabilityof detection of the submarine for various choices of heading and speed, drawn on a polar plot with the angleindicating heading, and the radius corresponding to speed. Each arc is color coded to indicate the cumulativeprobability of detection for the sub if it were to operate at the course and speed.18



can be calculated and graphed as quickly as the user can move the mouse.The system was run from this display in the default mode and then with all memoization turned o�.The results, given in Figure 7 show a 631x improvement in speed, and a 4,822x improvement in the amountof temporary memory (garbage) allocated. Benchmarks are notoriously misleading, and in many places thecode would have been written dramatically di�erently if memoization had not been available. Nevertheless,the results are illuminating, especially since they represent improvements over the original baseline system.Since the computation of this summary display represents the �nal, high{level computation of the entiresystem it is a reasonable way to measure the contribution of the use of automatic memoization.7 ConclusionsAutomatic memoization is a powerful tool that allows many simple but ine�cient algorithms to be madeuseful in practice. Beyond this basic advantage though, automatic memoization provides other signi�cantadvantages to the arti�cial intelligence programmer. These advantages include the ability to add persistenceto a memoized function, and the ability to perform timing and pro�ling studies rapidly. These advantagesfar outweigh the potential pitfalls of automatic memoization in arti�cial intelligence applications, because ofthe prevalence of a rapid prototyping approach in such projects.Source code for the CLAMP system is available via anonymous FTP (ftp://ftp.cs.umbc.edu) or by emailvia a request to (hall@cs.umbc.edu). CLAMP is also available on the Internet Lisp archives at CMU andThinking Machines, and is part of the CMU AI CD{ROM.Acknowledgements. This work was supported in part by the Advanced Research Projects Agency underJHU/APL subcontract 605089{L. The authors thank V.J. Benokraitis (AAI Corporation), Lien T. Duong(AAI Corporation), J. Paul McNamee (AAI Corporation), Peter Norvig (Sun Microsystems), and David J.Scheerer (The Johns Hopkins Applied Physics Laboratory) for their helpful comments, both on the LISPimplementation and on earlier versions of this paper. Thanks to John Aspinall (Symbolics) for suggestingthe use of the divided--difference example. 19



Figure 6: In the SMS system, a bar chart shows the relative strength of each of the several componentsignatures which make up the overall probability of detection. This componential analysis was trivial torecover as a side e�ect of the decision to memoize the computation of the overall probability of detection.
version time bytes consedmemoized 4.06 sec. 615,784unmemoized 2562.74 sec. 2,969,392,724Figure 7: Dramatic improvements in execution time and consing were obtained in the overall SMS system.20



References[1] Ward Cheney and David Kincaid. Numerical Mathematics and Computing. Brooks/Cole, 1980.[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MITPress and McGraw Hill, 1990.[3] S.W. Dietrich. Extension tables: Memo relations in logic programming. In Fourth International Sym-posium on Logic Programming, pages 264{273, 1987.[4] J. Earley. An e�cient context-free parsing algorithm. Communications of the Association for ComputingMachinery, 6(2):451{455, 1970.[5] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley, 1988.[6] Marty Hall and James May�eld. Improving the performance of AI software: Payo�s and pitfalls in usingautomatic memoization. In Proceedings of the Sixth International Symposium on Arti�cial Intelligence,pages 178{184. Megabyte, September 1993.[7] B. Ho�mann. Term rewriting with sharing and memoization. In H. Kirchner and G. Levi, editors,Algebraic and Logic Programming: Proc. of the Third International Conference, pages 128{142. Springer,Berlin, Heidelberg, 1992.[8] M. Kay. Algorithm schemata and data structures in syntactic processing. In Proceedings of the Sympo-sium on Text Processing. Nobel Academy, 1980.[9] Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 1969.[10] Donald Michie. \memo" functions and machine learning. Nature, 218(1):19{22, April 1968.[11] Jack Mostow and Donald Cohen. Automating program speedup by deciding what to cache. In Pro-ceedings of the Ninth International Joint Conference on Arti�cial Intelligence, pages 165{172. MorganKaufmann Publishers, Inc., 1985.[12] Peter Norvig. Techniques for automatic memoization with applications to context-free parsing. Com-putational Linguistics, 17(1):91{98, 1991. 21



[13] Peter Norvig. Paradigms of AI Programming: Case Studies in Common LISP. Morgan Kaufmann,1992.[14] F. C. N. Pereira and S. M. Shieber. Prolog and Natural-Language Analysis. csli, Stanford, CA, 1987.[15] Guy L. Jr. Steele. Common Lisp: The Language. Digital Press, second edition, 1990.[16] Gerry Sussman and Hal Abelson. The Structure and Interpretation of Computer Programs. MIT Press,1983.[17] David S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93{111, 1992.[18] David Wenstrand, H. Lee Dantzler, Marty Hall, David Scheerer, Charles Sinex, and David Zaret. Amultiple knowledge base approach to submarine stealth monitoring and planning. In Proceedings of theDARPA Associate Technology Symposium, June 1991.

22


