

APPROVAL SHEET

Title of Thesis: Web Application Vulnerability Assessment Tools Analysis

Name of Candidate: Ajinkya Wakhale
Master of Science, 2018

Thesis and Abstract Approved:
Dr. Charles Nicholas
Professor,
Department of Computer Science
and
Electrical Engineering

Date Approved:
July 24, 2018

ABSTRACT

Title of thesis: WEB APPLICATION VLUNERABILITY ASSESSMENT
TOOLS ANALYSIS

AJINKYA WAKHALE, MASTER OF SCIENCE, 2018

Dissertation directed by: DR. CHARLES NICHOLAS
PROFESSOR,

DEPARTMENT OF COMPUTER SCIENCE,
AND ELECTRICAL ENGINEERING

In this era, with plethora of web applications and increasing amount of con-

sumers using web applications for different purposes, it becomes very important to

protect them from several web vulnerabilities present on the INTERNET. Web ap-

plications process large amount of data which they store it in a back-end database

server where confidential data like username, password, credit-card information sits.

Web applications usually interacts with customers and there is huge dependencies

between customers and the server and this dependency introduces huge security

holes which can be exploited by a hacker to steal the data [16].

The most common way to find vulnerability in the web application is to per-

form Vulnerability Assessment and Penetration testing (VAPT) on web application.

According to OWASP [16],the most efficient way of securing web application is to

manual code review. The drawback of doing manual review is that it requires ex-

pert skills and it is very time consuming and hence enterprises uses automated tools

to scan the systems and find vulnerabilities in them. Web application scanners are

automated tools that scans the web application to detect unknown vulnerabilities in

the application. This technique is usually referred as Dynamic Application Security

Testing.There are several tools available in the market that does security testing on

web applications and gives you detailed report on all the security loopholes present

in the system [16]. It requires deep insight and understanding to deal with web

application security not because of the many tools that are available, but because

it is still in nascent stage. Hence, it becomes really important to find proper tools

to scan the web applications and find vulnerabilities present in the system.

Most tools available in the market, both open source and paid commercial,

confines themselves to the specific set of vulnerabilities in which they are expert.For

example, some tools are best designed to find SQL injection in the system while

some are good in finding cross-scripting or CSRF. Hence, it becomes important to

find the right tools which takes into the consideration of development environment,

needs and most importantly web application complexity.

This research propose a detailed report on some of the most commonly used

tools in the market and their efficiency in finding out the vulnerabilities in the web

application and the technique they used to find out the security loopholes present in

the application. We discuss several efficient tools along with their advantages and

disadvantages, techniques they use and most importantly, their efficiency to detect

vulnerabilities in the application. It evaluates all the tools and give recommendation

to the developer and user of the web application. It also analyzes whether the

development and hosting environment of the application affects its security or not.

WEB APPLICATION VULNERABILITY
ASSESSMENT TOOLS ANALYSIS

by

AJINKYA WAKHALE

Master’s Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Master of Science

2018

Advisor:
Professor Dr. Charles Nicholas

c© Copyright Ajinkya Wakhale 2018

ACKNOWLEDGEMENTS

First and foremost I’d like to thank my advisor, Professor Charles Nicholas

for giving me an invaluable opportunity to work with him for this research project

He has always made himself available for help and advice whenever needed. It has

been a pleasure to work with and learn from such an extraordinary individual.

I would also like to thank all my friends and people whom I met at UMBC for

their encouragement and help whenever needed. Finally, to my parents and sister

and all the family members for motivating me to pursue my dream of doing masters.

I owe it all to them. It is impossible to remember all, and I apologize to those I’ve

inadvertently left out.

ii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Web Application . 1
1.2 Client . 1
1.3 Server . 1
1.4 Application Architecture . 3

1.4.1 Web Application Architecture 3
1.5 Web Application . 4

1.5.1 Web Application Benefits . 4
1.5.2 Web Application Security Issues 5
1.5.3 What makes Web application so vulnerable? 5
1.5.4 Security Problems in Web Application 6

1.6 Web application Security . 10
1.6.1 Basic Guidelines for Securing Web application 10
1.6.2 Network Firewall . 11
1.6.3 Securing Web application . 11

1.7 Web Application Vulnerability Assessment Tools 12

2 Related Work and Background 14
2.1 Background . 14

2.1.1 Web Application Scanner . 14
2.2 Web Application Scanners . 15
2.3 Tools Background . 16

2.3.1 OWASP Zed Attack Proxy . 16
2.3.2 Acunetix . 17
2.3.3 Nessus Pro . 18

2.4 Related Work . 19

3 Methodology 22
3.1 Introduction . 22

3.1.1 Kali Linux Features . 24
3.1.2 System Architecture . 24

3.2 Web Applications used for testing . 26
3.3 Testing tools on Application . 30

4 Results 31
4.1 Results of Scanning Tools on Web Applications 31

4.1.1 Testing OWASP ZAP . 31
4.1.1.1 ZAP on PHP Application 31
4.1.1.2 ZAP on Java Application 34
4.1.1.3 ZAP on Static Application 35

4.1.2 Testing Nessus Pro . 36

iii

4.1.2.1 Nessus on PHP Application 37
4.1.2.2 Nessus on Java Application 38
4.1.2.3 Nessus on Static Application 39

4.1.3 Testing Acunetix . 40
4.1.3.1 Acunetix on PHP Application 41
4.1.3.2 Acunetix on Java Application 42
4.1.3.3 Acunetix on Static Application 44

5 Analysis and Conclusion 47
5.1 Analysis . 47

5.1.1 PHP/IRS Application . 48
5.1.2 Java Application/XPD . 49
5.1.3 Static Website(Rayranker.com) 50

5.2 Manual testing . 50
5.2.1 Vulnerability Correctness Score 51
5.2.2 Confusion Matrix . 54

5.3 Tools Functional Evaluation . 57
5.4 Conclusion . 61

5 Future Work 63
5.1 Overview . 63

References

65

iv

List of Figures

1.1 Web application Communication . 2

2.1 ZAP as Proxy . 17
2.2 ZAP Interface . 17
2.3 Acunetix Web scanner Dashboard . 18
2.4 Homepage Of Nessus Pro . 19

3.1 Kali Linux Application Menu . 23
3.2 System architecture used for Testing 25
3.3 XPD Application . 27
3.4 Property Application . 28
3.5 Homepage of website rayranker.com 29

4.1 Screenshot of Results of Scanning ZAP tool on PHP Application . . . 32
4.2 List of Vulnerabilities in IRS application found through ZAP 33
4.3 List of Vulnerabilities in XPDOffice found through ZAP 34
4.4 Screenshot of Results of Scanning ZAP tool on XPDOffice 35
4.5 Results of Testing ZAP on Rayranker.com 36
4.6 List of Vulnerabilities in Rayranker.com found through ZAP 37
4.7 Screenshot of Results of Scanning IRS application through Nessus Pro 38
4.8 Detailed Report on Scanning Nessus on IRS Application 39
4.9 Screenshot of Results of Scanning XPD Application through Nessus

Pro . 40
4.10 Detailed Report on Scanning Nessus on XPD Application 41
4.11 Screenshot of Results of Scanning Rayranker.com through Nessus Pro 41
4.12 Detailed Report on Scanning Nessus on Rayranker.com 42
4.13 List of Vulnerabilities in IRS application found through Acunetix . . 43
4.14 Screenshot of the Results of Scanning IRS through Acunetix 43
4.15 Screenshot of the Results of Scanning XPD through Acunetix 44
4.16 Screenshot of the Results of Scanning Rayranker.com through Acunetix 45
4.17 List of Vulnerabilities in Rayranker.com found through Acunetix . . . 45

5.1 Vulnerability Correctness for IRS Application 52
5.2 Vulnerability Correctness for XPD Application 53

v

Chapter 1

Introduction

1.1 Web Application

Web Application is a simple computer program that performs some function

and uses web browser as a client. Customer uses web browser to access web applica-

tion. Web browser in turn communicates with server to access the database which

sits at the back-end and the server response the data back to the browser[13].

1.2 Client

In a client server environment, a client is referred to a program that the person

uses to run the application. There could be multiple clients accessing the database

at the same time and they use server to communicate with the database. It is a

piece of program that provides a facility to the customer to use the services provided

by the server[25].

1.3 Server

In web applications, there are two sides: One is client side and another one

is server side. Both, client side and server side has programs that runs on them

concurrently. Main purpose of a web server is to parse the requests from client-side

1

Figure 1.1: Web application Communication

and give appropriate response to the client. The requests follow HTTP protocol

and are hidden from the common user of the application. Web server is responsible

to store, process and deliver the web pages to the client[27].

Application server is the server which hosts the code at server side and exposes

the business logic and processes to the client. Web server is responsible for delivering

and showing the web pages to the client whereas application server is responsible

for the logic and is responsible for the interaction with the system [22].

The figure 1.1 shows how a client interacts with web browser and application

server to request the data from the database. Client first sends HTTP requests to

the web server which in turn communicates with application server. Application

server interacts with the database and gets the required data and sends it back to

the web server. And then finally, the response is send to the client in the form of

HTTP response [3].

2

Application server is the place where developer writes the business logic of the

application. The main important attribute which server code shows are that it is

hidden from the user. User agent or the user who is accessing the web application

is not concerned with the intricacies of the business logic on the server.

1.4 Application Architecture

Software architecture of a program or a application depicts in understanding

the behavior of the system. It serves as a blueprint for the system defining the

work assignments that has to be carried out by each components. The architecture

is primarily responsible for the qualities that system depicts like performance, re

usability and the most important, Security. If the architecture of the system is

sound and effective, it mitigates the risk early in the development process [12].

1.4.1 Web Application Architecture

To develop a robust and efficient web application, the developer needs to

understand the intricacies of World Wide Web(WWW) and has to take into the

account all the features as well as the problems associated with it. The main aim of

the WWW project is to make arrangements to setup the information space so that

people and machine can communicate [7]. As customers using web applications can

be located around the world using different platforms and resources to access them.

Also the data and content moving on the network differs in the format and types.

Hence the major task for the people working on WWW project was to develop

3

a system or a platform that can provide a universal standard to the information

moving on the network. And the challenge for them was to minimize the interactions

with the network [7]. Hence the biggest daunting task for a developer at the time

when he starts to explore the best architecture pattern for his application is to select

best type and the component model of the web application.

1.5 Web Application

1.5.1 Web Application Benefits

A web application alleviate the developer concern of building applications

for specific platform, so that anyone can use them as long as they have Internet

connection. Since the client runs in the web browser, user can have any operating

system installed on his machine. Generally,it can be accessed through any web

browser like Chrome or Internet Explorer, though some applications require specific

browser [13]. It generally uses combination of server side script like (ASP, PHP etc)

and client side script like JavaScript and HTML to develop the whole application.

The client side is responsible for presenting the application to the end user while

server side deals with all the business logic of the application. Server side is also

responsible for accessing the database. According to Redrock software [1], some of

the benefits of using web application are :

• No more updating issues

• Less resources means less money

4

• Platform Independent

• Quick Development Cycles

• Improved Security

• Flexibility of the Internet

• User Tracking

1.5.2 Web Application Security Issues

Several different and interacting technologies are used to develop a web appli-

cation. Due to this reason, web application poses lots of security issues. With the

popularity of INTERNET growing, many customers are going online for their daily

work and uses several web applications. With these, lots of customer personal data

like account number, credit card numbers are going online and hence they become

vulnerable to fraud and other attacks [4].

1.5.3 What makes Web application so vulnerable?

Web applications can be complex programs which provides a service to the user

to create, delete and modify the data. Generally, web applications are considered to

be a script running on server side and the security risks and issues are only related to

the scripts running on the server. However, design of the architecture also impacts

security issues of web application [18].

5

• Designed without Security Considerations: Most often developers, man-

agers and Software Engineers who are responsible for developing the web ap-

plication do not take into the account a maximum number of security consid-

erations. If proper security procedures and methods are not followed to at the

time of designing the architecture, several security issues may be missed and

it becomes very hard to fix the problem later.

• Dependency on other Architecture Components: Web application uses

several interacting technologies to provide the service to the user. To do that,

it acts as a gateway between client and the back-end server. Due to the reliance

on the other components in the architecture, it becomes a requirement for a

web application to assign some security measures to the other components.

Since, these components may not always complement each other, separate

interfaces needs to be developed to develop the communication channel for the

components to interact with each other, leaving possibilities of many security

loopholes[17].

• Plethora of Programming Languages: Due to abundance of the program-

ming languages to develop the web application, it becomes difficult to design

and define common security framework across the infrastructure [17].

1.5.4 Security Problems in Web Application

According to OWASP [15], the top ten security issues related to the web

applications in 2017 are :

6

1. Injection: The input which is provided by the user is sent to the back-end for

processing. If the input is not validated, they may contain special characters

which has a special meaning[4]. Injection flaws occurs when an attacker can

send hostile data to the interpreter. Injection flaws are very prevalent, espe-

cially in legacy systems. An attacker can find injection vulnerabilities in SQL,

LDAP, XPath, OS commands, SMTP headers and ORM Queries.[15] Injection

can result in the data loss, loss of confidential data and it can sometimes lead

to complete host takeover.

2. Broken Authentication: For credentials stuffing, an attacker has access to

hundreds of combinatorial username and passwords. It can also use them for

finding administrative accounts and dictionary attack tools. These also leads

to attacks in session management tools. These kinds of attacks are also very

prevalent due to the design and implementation of identity and access controls

[15]. Attackers uses manual approach to find broken authentication issues

and then use automated tools to exploit them. With broken authentication,

attacker can gain access to the few accounts and then can compromise the

whole system using identity theft or disclose sensitive information.

3. Sensitive Data Exposure: To exploit sensitive data exposure vulnerability,

a manual attack is required. Attacker steal keys, executes man-in-the-middle-

attacks to steal the sensitive information. According to the OWASP [15], this

has been the most impactful attack. An attacker can exploit weak encryption

techniques used by the application to decrypt the sensitive information. Sen-

7

sitive data exposure leads to leak in sensitive and personal records of the user

like health records, credit card numbers etc.

4. XML External Entities: In these kind of attacks, attacker can exploit weak

XML processors by including hostile content in XML resulting in exploiting the

vulnerable code, dependencies and integration[15]. SAST tools can discover

the issue where XML processors allow the attacker to specify external entity

which is a URI to that is evaluated during XML processing. These can be

used to execute DOS attack and can be used to extract the data.

5. Broken Access Control: By using SAST and DAST tools, an attacker can

find the absence of access control. Due to lack of automated detection and

lack of effective functional testing,access control mechanism becomes weak.

According to OWASP [15], the technical impact of this attack is that an

attacker can acts as a authorized user or an administrator having privileged

access and can create, delete or modify the data.

6. Security Misconfiguration: According to OWASP [15], attackers can at-

tempt to exploit unpatched flaws or access default accounts, unused pages,

unprotected files and dictionaries to gain unauthorized access to the system.

These kind of attacks can happen at any level of the application stack. These

kind of attacks can often lead to complete system compromise.

7. Cross-site Scripting(XSS): It is a kind of attack, in which an attacker

can hijack user-sessions, redirect to malicious sites. A user can write content

8

into the HTML file through manipulation of input variables. After that, the

attacker can trick the user of the web application to think that the content is

real. More importantly, the attacker can craft a JavaScript cross site Scripting

attack and can steal user cookie to launch session hijacking.

8. Insecure De-serialization: De-serialization attack is kind of difficult attack

in which exploits rarely work but it does not change underlying code. Applica-

tion is vulnerable to De-serialization attack if they deserialize hostile content

provided by the attacker.According to OWASP [15], insecure De-serialization

attack can result in two types of attacks:

(a) Data structure attacks in which attacker modifies application logic or get

access to remote method execution.

(b) Access-controlled attacks in which content is changed.

Hence, these kind of attacks can not be understated as it can lead to remote

code execution.

9. Using Components with Known Vulnerabilities: These kind of attacks

are very widespread as developer might be using many components without

even understanding their security issues and loopholes. Some of the largest

breaches to date have relied on exploiting known vulnerabilities in the com-

ponents.

10. Insufficient Logging and Monitoring: According to OWASP [15], ex-

ploitation of insufficient logging and monitoring, is the bedrock of every ex-

9

ploitation. Due to lack of monitoring, attacker time their attack so that they

are not caught. OWASP report for 2017 [15], in 2016, identifying a breach

took an average of 191 days which is a plenty of time to cause damage to the

application [19].

1.6 Web application Security

The process of building a secure web application need one or more guidelines

and procedures which needs to be followed to make it a secure system. Gritzales

and Spinelis [9] provide best practices for addressing security threats and issues in

web application. There are very comprehensive guidelines available to make the

web application more secure and it includes system, network and software security.

According to [21], the best way to secure web application is to use penetration

testing tools and the knowledge of good software practice right from the design

phase which helps in developing a robust and secure application. Hence, the need

for the requirements related to the security issues needs to be identified and included

in the design phase of the application.

1.6.1 Basic Guidelines for Securing Web application

By using well-defined security related processes, developer can guard their

applications against common threats like SQL injection and XSS. Applying basic

guidelines specific to security, helps you to achieve maximum security and lower

costs[21]. All of the developments in the web application have also attracted hackers

10

who tries to exploit web application to access unauthorized data or to deny the

service to the user. This has given birth to a new and young industry called Web

Security [2].

1.6.2 Network Firewall

The biggest myth for the developer developing a web application is that the

network firewall will protect the web applications and will not allow the malicious

user to attack the system. Network security differs from web application security.

Network security defenses such as firewalls prevents malicious users. As web appli-

cations are on-line all the time, it has to allow user to access the system and then

hopes that the user will play by the rules [2]. Hence, analyzing all the traffic coming

to the web server is not possible and vulnerabilities like SQL injection and XSS are

difficult to catch. A Web application firewall analyzes all the HTTP and HTTPS

traffic and can identify malicious users. It can block the user who is trying to exploit

the vulnerability in the application. The problem with using Web firewall is that it

detects only known vulnerabilities and as it is a user configurable software, therefore

if it is not configured properly, it does not fully protect the web application [2]. It

does not identify the loopholes present in the system.

1.6.3 Securing Web application

In order to develop a secure web application, it is required to identify all the

possible vulnerabilities present in the system before the attacker tries to exploit

11

them. Hence, it becomes very important to test the application at every stage of

SDLC. Multiple approaches could be used to find out the loopholes in the system.

One is to audit source code manually and other is to use automated tools. Both

approach has their pros and cons and hence it becomes prerogative for the software

managers to decide which approach works better for them. Different applications

require different approaches to test the system. Hence, one has to chose efficient and

effective solution that can realistically find bugs and threats present in the system.

Generally, organization uses combination of both manual and automated tools.

1.7 Web Application Vulnerability Assessment Tools

Web application Vulnerability scanners are the tools that automatically scan

the web application and detects vulnerability present in the system. In recent days,

web application scanners became very popular as they automate lots of process and

are very interactive in their use [2].

Several open source and paid web application scanners are available in the

market. All the tools have their advantages and disadvantages. Some tools are very

easy to use and are interactive and give proper reports and others are CLI based

but are more efficient in finding vulnerabilities present in the system. Some tools

are best designed to find SQL injection loophole, whereas some are expert in finding

XSS and broken authentication attack.

In this research, we aim to analyze some of the most popular tools available in

the market for web application scanning and give a detailed report on each tool com-

12

prising several parameters like usability, detecting vulnerability, reports, resources

used and how efficient they are in finding vulnerabilities in the system. Also, we

provide a detailed report on how the hosting and development environment of the

application affects its security.

The remaining document is organized as follows: Chapter 2 describes the

background and related work. It describes some of the popular tools available in

the market and it gives information about some of the research that has already

been achieved in this area. Chapter 3 describes the methodology which we used to

test the tools and different applications. It describes the testing environment which

we used to test the application. Chapter 4 summarizes our results and we conclude

in Chapter 5.

13

Chapter 2

Related Work and Background

2.1 Background

2.1.1 Web Application Scanner

To prevent the scenario of a attack, developers are always encouraged to fol-

low proper coding practices, review security measures and audit the application at

every stage. However, as web applications are centered around users interaction

with the system and satisfying user’s requirements, developers often misses security

aspects.Web vulnerability scanners are the most easy way to detect vulnerability

in the system. There are many commercial and web application scanners available

in the market which are used by enterprises to detect the security flaws in their

application [8].

These tools normally include three stages.

• Configuration

• Crawling

• Scanning

Configuration involves defining the URL and setting up the parameters. In crawling

stage, the scanner generates a map of the internal structure of the application. This

14

stage is the most important stage in scanning a web application, as failing to discover

a page will prevent their testing [8]. Scanner finds the first web page and then look

for links. Each link is then requested and the same procedure is repeated until no

more links or pages can be found.

In scanning stage, automated penetration testing is performed against the web

application by simulating browser [8]. Thousand of test cases are executed and are

analyzed to detect vulnerabilities in the application. Malicious requests are send to

the server to check the response and error codes. Then these responses are validated

and analyzed by putting a benchmark. Results are shown to the user which can

be stored for more analysis. Some tools are GUI based whereas some are CLI

tools. Web application scanners have predefined set of test rules which they use to

find the loopholes in the system. They also have collection of signatures of known

vulnerabilities of different servers, OS and network settings which are updated as

new vulnerabilities are found [8].

2.2 Web Application Scanners

Many tools are available in the market which scans web application to detect

vulnerabilities. Nowadays, most of the organizations implement web application

scanning in early stages of development. In this, scanners find the weakness of the

targeted system. By this, they find loopholes in the system before someone else

does [6]. Vulnerability scanning can be done in two ways; using automated tools

or by manual testing. Manual testing is very cumbersome and time consuming and

15

as it is implemented by a human, there are chances that some weaknesses are not

caught by the testing and the application becomes vulnerable. Hence, nowadays,

organization rely heavily on automated tools to test the application.

2.3 Tools Background

2.3.1 OWASP Zed Attack Proxy

OWASP ZAP is one of the most popular and commonly used open source tool

that is ideal for the developers and functional testers as well as it is useful to the

experienced testers [11]. It can be run on both windows and Linux platform. The

tool is written in Java programming language. Some of the features of ZAP are [24]:

• Intercepting Proxy: Analyzing requests and response.

• Scanner: Detecting Vulnerability

• Spider: Crawl a website

• Report Generation

• Brute Force: Perform Dictionary style attacks

• Fuzzing: Input of Random data strings in request headers and attacks

• Extensibility: Customized scripts to detect flaws

One of the biggest feature of ZAP is that it can be configured as proxy. Figure 2.1

the setup of ZAP acting as a proxy. This allows ZAP to record the requests and

16

Figure 2.1: ZAP as Proxy

Figure 2.2: ZAP Interface

responses and then use them for a replay attack. ZAP is one of the most popular

tool which is gained much support from over the past few years. It was ranked as

the top security tool in 2013 [14]. More about OWASP ZAP is described in chapter

3 where actual applications are tested on ZAP.

2.3.2 Acunetix

Acunetix is a multi-threaded, lightning fast crawler that can crawl thousand

of pages without interruptions. It is one of the most popular commercial tool used

to scan web applications and has very high detection rate. It is very successful in

finding SQL injection and XSS in web application. It has one of the lowest false

17

Figure 2.3: Acunetix Web scanner Dashboard

positives as it combines black-box and white-box testing to enhance the detection

rate. It has very high success rate when it is tested on applications which are

developed in PHP and .NET platforms. The trial version which we used for this

research comes for the windows platform and once successfully installed, starts a

service which can be accessed through web browser. It is only developed for testing

web applications and hence it is very popular among developers and organizations

to test their product to find loopholes in their application.

2.3.3 Nessus Pro

Nessus Professional Vulnerability scanner is one of the most recognized and

powerful commercial tool used to scan the web application. It is owned and devel-

oped by Tenable. According to the company Tenable [23], it has been used by more

than one million users across the globe for vulnerability, configuration and compli-

ance assessments. According to the company Tenable [23], some of the advantages

18

Figure 2.4: Homepage Of Nessus Pro

of using Nessus are:

• Easy to use: It just needs few clicks to scan the application.

• Comprehensive: It supports many technologies and identifies more vulnerabil-

ities than its competitor.

• It has very high speed scanning with very low false positives.

Nessus Pro is a commercial tool. Hence, for this research, trial version is used. Trial

version is available for seven days and Web application Scanning comes free with

the trial version. Once, Nessus is fully installed, it starts a HTTP service which can

be accessed through browsers and then applications can be scanned by configuring

the requests.

2.4 Related Work

In this research, we aim to compare these tools and provide a detailed re-

port on how these tools work and how effective they are to detect vulnerabilities

present in the system. We do a comprehensive research on the tools in finding

out the techniques they used, resources they need and how interactive and effective

19

these tools are in finding out the vulnerabilities. Yuma Makino and Vitaly Klyuev

[11],compared the tools like OWASP ZAP and Skipfish on Damn Vulnerable Web

Application (DVWA) and analyzed the results. It lists down the features of each

tool and number of vulnerabilities it is able to detect and their precision rate. In

our research, we aim to test these tools on several application developed on different

programming language like PHP, Java, and .NET. We test these tools on different

environment, by hosting the application on different platform and then compare the

tools based on the results in finding out whether the development environment af-

fects the security of the application. Testing all tools on DVWA is a good approach

but DVWA is a application developed for educational purpose and doesn’t emulate

real world application. Hence, testing tools on applications developed on different

platforms gives good detailed analysis about the tools and helps us to analyze the

tools effectively. Jose Fonseca and Marco Vieira [8] did a case study on several tools

in which they injected realistic software faults and then compared the tools based on

the result. They tested a PHP developed web application by using LAMP stack and

then tested and evaluated all the tools. Our proposed methodology uses a platform

Kali Linux in which all the tools are deployed. Then it scans the web application

developed in different programming language and hosted on different platforms to

detect the vulnerabilities present in the application. M.Curphey and R. Arawo [5],

in their research also did a similar research in analyzing the tools which they use in

their organization. Instead of testing the whole application, they used several tools

for specific areas. For example, they compared tools which are source code analyz-

ers and some tools which are Database Scanner. In our research, we aim to provide

20

a detailed and comprehensive report on each tool comprising of several parameters

and criteria to evaluate the scanners. Our objective is to evaluate each tool by doing

a black box testing on all the applications and give a detailed report by comparing

all the tools and analyze them. We compare them by using several parameters like

ease to use, their effectiveness and the resources which they consume to test the

application.

21

Chapter 3

Methodology

3.1 Introduction

To evaluate different web scanners and analyze their output, we installed all

the tools on Kali Linux platform. Kali Linux is the world’s most powerful and

popular penetration testing platform which is used by security professionals in wide

areas like vulnerability assessment, forensics and engineering. It is a flexible frame-

work which can be customized by the professionals according to their needs [10].

Continuous refinement to the operating system and the platform makes it ideal for

penetration testing framework which allows you to exploit many features of Linux

and use information from open source community. It is just not collection of tools,

but it is rather a framework which security testers and professional use to do pene-

tration testing.

Kali Linux is security auditing Linux distribution based on Debian GNU/Linux.

Kali Linux is derived from Debian testing and hence most of the packages are already

available to it from Debian repository [10].

Kali Linux can be used by several types of users. Obviously, users can install

them on their laptop to do penetration testing, but server administrators can also

use it monitor network, forensics and monitoring. Once the Kali Linux system

is installed ,all kinds of tasks and activities that are relevant to the testers are

22

Figure 3.1: Kali Linux Application Menu

available. Figure 3.1 shows the application menu of Kali Linux system. These tasks

and activities include [10]:

• Information Gathering

• Vulnerability Analysis

• Web Application Analysis

• Database assessment

• Password Attacks

• Reverse Engineering

23

3.1.1 Kali Linux Features

Kali Linux is the distribution which contains its own collection of tools tailored

according to the users. It is pretty much like other Linux systems, but there are

some features which differentiate Kali Linux with other systems [10].

• A Live system: ISO image of Kali Linux can also be used as a bootable live

system.

• Forensic Mode: Kali Linux has forensic mode which can be enable from the

boot menu.

• Complete Customizable: It is easy to customize Kali Linux based on our needs

and preferences.

• Usable on Large number of ARM devices: It provides packages for the armel,

armf and arm64 architectures.

As Kali Linux can be customized and is best suited for penetration testing. In this

research, we used Kali Linux as an operating system in which all the tools were

installed and then through the network, web applications are tested.

3.1.2 System Architecture

As Kali Linux is best suited for testing applications, it is used as a platform

where all the tools are installed. As tools consumes a lot of computing power

and resources when they test the application, a machine with higher memory and

computing power was used.

24

Figure 3.2: System architecture used for Testing

3.2 shows the architecture and methodology used for the testing purpose. Machine

1 in the 3.2 has following configuration:

• Operating System: Kali Linux:

• Installed Memory: 4 GB

• System Type: 64-bit

On machine 1, all the tools are installed. Each tools are available for the Linux plat-

form. Some of the tools like W3af comes pre-installed with the Kali Linux system.

To install all the packages, some of the packages needs to be installed.

25

To test different tools and analyze their results, web application scanners is

run on both live websites and the applications which are hosted on machine 2 in

3.2. As legal issues needs to be resolved before testing live websites, this research

focuses more on applications which can be hosted locally. Also, to analyze different

applications, developed in different environment, several web applications developed

on different platform are used to test these tools. These applications are hosted on

Machine 2 which has following configuration.

• Intel core i7-8550U

• Operating System: To analyze the tools effectively and check their effective-

ness in testing web applications and how the host machine operating system

affects their capabilities, Machine 2 has both WINDOWS and Linux platform.

And web applications which are to be tested are hosted on both Linux and

WINDOWS platform.

• Installed Memory: 8.00 GB

• System Type: 64-bit

3.2 Web Applications used for testing

Web applications can be developed in several programming languages. It is the

prerogative of web application developer to decide which environment he/she decide

to develop the application. For this research, for testing purpose, five applications

developed in five different environment are used. The development environment

26

Figure 3.3: XPD Application

used in this research are :

• Java: A Java based application called XPDOffice, built on Spring/Hibernate

framework, with JSP and AngularJS as front-end, Spring/Hibernate as back-

end and PostgreSQL as database. It is a complex workforce management

automation tool, which allows users and organizations to have a integrated

solution for HR management, time and expense management, contract man-

agement and Customer Relationship management. Figure 3.3 shows the home

page of XPDOffice. These application is used in this research as it is a very

complex application and there are many APIs requests are generated through

out the working of the application. As, the application deals with employees

data and organization confidential information, it needs to be secured and ro-

bust. The application is hosted on machine 2 and requires Java 8 and a web

server. It also needs a PostgreSQL database for the back-end.

27

Figure 3.4: Property Application

• PHP Application: This is a prototype PHP application developed on LAMP

stack, which is used by the government agency to list and maintain the prop-

erties which are in the stage of foreclosure. Government agency employees

use this application to store specific information about each houses and then

update the process of foreclosure on the application. Figure 3.4 shows the

homepage for the user ”Admin”. It has all the properties which are assigned

to him and he has all the access to update the request to complete from New

and attach files regarding to the property. As these application is very sensitive

and it contains confidential data about the house owners, it needs to be secured

and prone to attacks. Front-end is developed on HTML/CSS/Bootstrap, the

middle layer is written in PHP and MYSQL is the database.

28

Figure 3.5: Homepage of website rayranker.com

• Static Application: A static website which contains normal forms and static

pages. It contains information about a candidate called Ray Ranker, who is

running for house of delegates in the state of Maryland [20]. For testing a static

website, this research used a static website with address as https://rayranker.com.

As it is a live website, permission has been taken from the concerned people.

To test the robustness of the tools effectively, a static web application was

used. Figure 3.5 shows the homepage of the website.

To analyze the tools effectively, wide range of applications are tested which differs in

development environment, database setup, complexity and resources they use. Once

all the applications are tested and scanned from various tools, results are analyzed

and then a conclusion is made about all the tools and their efficiency.

29

3.3 Testing tools on Application

Each tools has a interface which allows you to enter URLs for the target

application. All the applications mentioned in section 3.2 are hosted on Windows

machine and uses several components like Web server and database to run smoothly.

Once the application is hosted on machine 2 as shown in 3.2, the tools installed on

machine 1 scans the web application and lists out the vulnerabilities present in the

application by using the target URL. Detailed analysis and results of all the tools

are presented in Chapter 4 for all the applications mentioned in section 3.2.

30

Chapter 4

Results

4.1 Results of Scanning Tools on Web Applications

4.1.1 Testing OWASP ZAP

OWASP ZAP has the capability to act as a proxy between web server and the

browser. You can modify the settings of ZAP connection in tools section of ZAP

interface. Once, it is configured to listen to the proxy, all the applications activity

which are run on browser are all caught by ZAP. ZAP stores all the information

about requests and responses made by the application. Once, all the manual activity

is completed, ZAP has an option of Spider, which finds out all the pages which has

not been accessed by the manual activity. And, after that active scan attacks all

the possible scenarios and lists out all the vulnerabilities present in the application.

4.1.1.1 ZAP on PHP Application

The PHP based web application which is used for testing in this research

is a complex and sensitive application. After testing OWASP ZAP on the IRS

application, eleven vulnerabilities were found. Out of these nine alerts, four were

high priority alerts, three were medium priority alerts and four were low priority

alerts. High priority alerts were Cross-Site Scripting and SQL injection. It found five

31

Figure 4.1: Screenshot of Results of Scanning ZAP tool on PHP Application

areas in the code where cross side scripting can be infected and in one place where

SQL injection is possible. This application is susceptible to one of the most popular

attack that is SQL injection. Also, there are several instances where error/warning

messages can disclose sensitive information and it is possible to view the directory

listing, which can reveal hidden scripts, backup source files which can be accessed

to read sensitive information. Figure 4.1 shows the screen-shot of the results of

scanning IRS application through ZAP.

32

Figure 4.2: List of Vulnerabilities in IRS application found through ZAP

Figure 4.2 shows the vulnerabilities present in the PHP based applications. It

also shows the number of instances where code is vulnerable to the attack. ZAP

uses Spider to find out the hidden links and pages which are not accessed manually

and then make crafted requests to the applications to find out the vulnerabilities.

Following shows ZAP data scanning the IRS application.

• Total URLs Found: 27

• Total Requests Made: 10518

• Total Time taken for Scanning: 1 hour

• Total Number of Alerts: 11

33

4.1.1.2 ZAP on Java Application

Testing ZAP on Java Application provided significant results which exposes

vulnerabilities present in the application. We tested OWASP ZAP on our web

application which was developed in Java. Total ten vulnerabilities were found by

scanning XPD from ZAP. Out of ten, three were of High priority, two were medium

and remaining five were low priority. It took almost one hour to scan the whole

application. Following shows ZAP data on Scanning ZAP on XPDOffice and figure

4.1.1.2 shows the screenshot of the results.

• Total URLs Found: 457

• Total Requests Made: 97394

• Total Time taken for Scanning : 2 hour 10 minutes

• Total Number of Alerts: 10

Figure 4.3: List of Vulnerabilities in XPDOffice found through ZAP

34

Figure 4.4: Screenshot of Results of Scanning ZAP tool on XPDOffice

4.1.1.3 ZAP on Static Application

We tested OWASP ZAP on the static web application rayranker.com to find

the security loopholes in the system. Again, ZAP is used as a proxy, which records

all the activities occurring on the browser and then uses Spider to find out all the

hidden pages and links and then uses Active scan to find out the vulnerabilities. We

found total thirteen vulnerabilities in the website. Out of thirteen, two were of high

priority, three were medium and remaining eight were of low priority alerts. It was

able to found SQL injection in the application, which is considered to be the most

common vulnerability found in the web applications and can lead to severe data

loss. Figure 4.5 shows the screenshot of the results of scanning the website through

ZAP.

It took almost six hours to test the whole application and the spider found total

35

Figure 4.5: Results of Testing ZAP on Rayranker.com

5164 URLs to scan the whole application. Figure 4.6 shows the list of vulnerabilities

present in the application and the number of infected areas for each alert.

Following shows the ZAP data on scanning Rayranker.com through ZAP.

• Total URLs found: 5164

• Total Time Taken in Hours: 6

• Total Number of Alerts: 13

• Total Requests Made: 437058

4.1.2 Testing Nessus Pro

As Nessus Pro is a commercial tool, we used a trial version which is available

for seven days. Web application scanning comes with the trial version and hence we

were able to test Nessus Pro on our web application. Once Nessus Pro is installed on

36

Figure 4.6: List of Vulnerabilities in Rayranker.com found through ZAP

the machine, it works as a service which provides a interface to login on the browser.

Once, you are logged in, it provides you the option for a new scan which can be

configured. Once, scanning is complete, it lists down the vulnerabilities found by

scanning the web application.

4.1.2.1 Nessus on PHP Application

We tested Nessus Pro on our PHP application and found 25 vulnerabilities.

Out of twenty five, three were High priority alert and eight were of medium priority.

It was able to find many possible vulnerabilities in the server as Nessus Pro scans

the server first and then starts scanning the whole application. It took almost five

hour to scan the whole application and Nesuss Pro trial version doest not reveals the

requests it makes to scan the application. It was able to find potent vulnerabilities

which makes the application very insecure especially through SQL injection and

clickjacking.

37

Figure 4.7: Screenshot of Results of Scanning IRS application through Nessus Pro

4.1.2.2 Nessus on Java Application

XPD application which is developed in Java environment is scanned through

Nessus to find out the vulnerabilities in the application. Total twenty seven vul-

nerabilities were found by scanning the XPD application. Out of twenty seven, two

were high priority alerts, three were medium, one was low and remaining were info

alerts. Total time to scan the application was around three hours. Figure 4.1.2.2

shows the screenshot of the results which were found by scanning XPD application

through Nessus Pro. It was able to found big security loopholes like CSS and Path

traversal which if exploited, can result in big data loss.

38

Figure 4.8: Detailed Report on Scanning Nessus on IRS Application

4.1.2.3 Nessus on Static Application

We tested Nessus Pro on the static website which we used for our research.

Total thirty vulnerabilities were found. Out of thirty, one were of high criticality, ten

were medium and remaining were with low criticality and others were info warnings.

Total time taken to scan the whole application was around six hours and Nessus

does not give detailed number of requests it uses to find out the vulnerabilities in the

application. Figure 4.12shows the detailed number of vulnerabilities found and the

number of infected areas. Total time taken to scan the whole application is around

six hours. Nessus was able to find some big vulnerabilities like Stack Buffer flow

which is a very big security issue and can lead to loss of confidentiality and integrity

of the application. Figure 4.12 lists down the vulnerabilities found by scanning

Rayranker.com through Nessus Pro.

39

Figure 4.9: Screenshot of Results of Scanning XPD Application through Nessus Pro

4.1.3 Testing Acunetix

Acunetix is a commercial tool and hence for this research we used a trial ver-

sion which provides all the functionalities of the paid version free for fourteen days.

Acunetix is a very popular web scanner because it specializes only in web applica-

tion. Its interface is very interactive and less complex. Acunetix can automatically

detect the technologies used by the web application and then scans the application

using pre-defined settings.We scanned all our web applications through Acunetix

and found many vulnerabilities.

40

Figure 4.10: Detailed Report on Scanning Nessus on XPD Application

Figure 4.11: Screenshot of Results of Scanning Rayranker.com through Nessus Pro

4.1.3.1 Acunetix on PHP Application

We scanned our IRS application which is developed in the PHP environment

through Acunetix. As the application is developed in the PHP environment, we

used PHP predefined settings. Acunetix provides this options when we configure

our target for scanning. Total forty four vulnerabilities were found by scanning

the application. Thirteen were of high severity, twenty one were of medium, six

were low and four were informational. It was able to find vulnerabilities like Blind

SQL injection, Cross-site scripting and Click-jacking.Following shows Acunetix data

41

Figure 4.12: Detailed Report on Scanning Nessus on Rayranker.com

obtained by scanning the IRS application.

• Total time: 40 min

• Total Number of Requests: 17,643

• Total Number of Alerts: 44

4.1.3.2 Acunetix on Java Application

We tested Acunetix on our web application XPDOffice which is developed on

the Java platform. At the time of configuring, we used Acunetix predefined settings

for Java environment so that it can effectively scan the application. We found total

twenty one vulnerabilities in the XPD Application. Out of twenty, six were of high

severity, seven were of medium, three were low and remaining were informational.

Following shows Acunetix data obtained by scanning the XPDOffice application.

• Total Time taken: 40 mins

42

Figure 4.13: List of Vulnerabilities in IRS application found through Acunetix

Figure 4.14: Screenshot of the Results of Scanning IRS through Acunetix

43

Figure 4.15: Screenshot of the Results of Scanning XPD through Acunetix

• Total Number of Requests made: 2974

• Total Number of alerts: 21

4.1.3.3 Acunetix on Static Application

We tested Acunetix on our static application called Rayranker.com. As it

is a live website, it can be easily configured on the Acunetix interface. We found

total sixty four vulnerabilities through Acunetix. Out of sixty four, one was of high

severity, thirty nine of medium, twenty four of low and remaining were informational.

Following shows Acunetix data obtained by scanning the website rayranker.com.

44

Figure 4.16: Screenshot of the Results of Scanning Rayranker.com through Acunetix

Figure 4.17: List of Vulnerabilities in Rayranker.com found through Acunetix

• Total time taken: 5h40m31s

• Total Number of Requests: 55,902

• Total Number of Alerts: 70

We were able to detect some of the known vulnerabilities like Directory listing and

Click-jacking by scanning the website through Acunetix.

45

This chapter discusses all the results this research got after testing the applica-

tions through all the tools. Chapter 5 analyzes those results and compare different

tools based on different criteria and gives a conclusion about the tools.

46

Chapter 5

Analysis and Conclusion

5.1 Analysis

We tested our all three tools on our three web applications and found many

vulnerabilities that are present in those applications. We aim to compare these tools

and analyze them with different parameters. We search if there is something new

or special in their approaches and how they scan the web applications. Also, we

were interested in dissecting the procedures which they use to scan the application,

their effectiveness in finding vulnerabilities and the resources they use. Lastly, how

much expertise and knowledge is needed to understand the tool. In our research, we

focused mainly on black-box testing of the web application i.e Enterprise focused

tools. Our main aim was to analyze the tools comprehensively. We have done

black-box testing on all the web applications. It does not know the internals of the

application and uses crawling to find more links and fuzzing techniques over the web

Http requests. We use two kinds of parameters to compare the tools. One is from

the results which we got from scanning the web application and other is performance

and functionalities which the tools provide. For the results, the parameters are :

47

IRS Application Data Comparison(PHP)
Scanner Name Total Alerts Total Scan Time Total Number of

Requests
OWASP ZAP 11 197 s 10518
Acunetix 44 130s 17,643
Nessus Pro 25 5h N/A

• Number of requests

• Number of Alerts

• Total Time taken

We compared the data which we got by scanning all the applications from different

tools and then we analyzed those results.

5.1.1 PHP/IRS Application

If we analyze the results, we can see that Acunetix was able to find more

vulnerabilities than other tools. Acunetix provides a functionality to adopt a pre-

defined settings for the development environment in which the web application is

developed. All the three tools were able to find SQL injection, which comes in top 10

vulnerabilities according to OWASP. Acunetix was the only tool to detect cross-site

scripting problem in the application which can cause huge damage to the applica-

tion. Moreover, all the tools were able to find the vulnerabilities, but Acunetix were

able to detect more vulnerabilities deeply. It first scanned the web server first and

gives you the loopholes in the web server. Acunetix gives you the option of cus-

tomizing your target on the basis of the development environment and then it uses

its predefined scripts to scan the application. If we analyze all the results, Acunetix

48

XPD Application Data Comparison(Java)
Scanner Name Total Alerts Total Scan Time Total Number of

Requests
OWASP ZAP 10 1 h 97394
Acunetix 21 210s 2974
Nessus Pro 27 5h N/A

was able to find more vulnerabilities at the application level. Nessus Pro is more

expert in finding the network security issues, while ZAP was able to detect more or

less same vulnerabilities as Nessus Pro.

5.1.2 Java Application/XPD

We tested all the tools on our Java application and found some interesting re-

sults. Both ZAP and Nessus were able to find vulnerabilities like Cross-site scripting

and path traversal. Nessus is very fast but most of its scanning process involves scan-

ning the network and server. Other tools apart from ZAP might have detected more

number of alerts, but the issues were mostly at the server side. ZAP was able to find

more vulnerabilities at the application level. It is well known for Java applications

and the results which we got proves that. ZAP provides an option in which it acts

as a proxy and records all the pages that browser visits and then uses Spider and

Active scan to find more vulnerabilities. Acunetix was also able to find some of the

vulnerabilities, but it doesn’t cover the whole application comprehensively.

49

Static Website Data Comparison
Scanner Name Total Alerts Total Scan Time Total Number of

Requests
OWASP ZAP 13 6 h 4,37,058
Acunetix 64 5h 55,902
Nessus Pro 30 6h N/A

5.1.3 Static Website(Rayranker.com)

All three tools scanned the live website rayranker.com and found many vulner-

abilities at the application level and at the server level. All the tools found medium

severity alerts like Directory traversal and Open SSL flag set. But ZAP was able to

find out the vulnerabilities like Cross-site scripting and SQL injection. Both these

vulnerabilities comes in top ten vulnerabilities according to OWASP. As ZAP acts

as a proxy, it gives you the option to record all the activity at the browser and

then uses Spider to find more links. It works best for the static application as the

pages are fixed. Acunetix was also able to find out many vulnerabilities but those

were mostly informational and of medium severity. Hence, ZAP works best for the

websites which are static.

5.2 Manual testing

For our two web applications XPDOffice and Property Application, we sent

the vulnerabilities which we found from our tool to the development team of the

organization who is responsible for developing it. Development team verified the

vulnerabilities by doing manual testing on the applications and reported false posi-

tives,false negatives and True positives for each vulnerabilities detected by the tools.

50

As all the tools generated report giving proper attack details about each vulnera-

bilities found, the testing team was able to test them and report about each tool.

5.2.1 Vulnerability Correctness Score

We used the data which we got from the testing team and generated a vul-

nerability correctness score for each tool by dividing the number of vulnerabilities

which it was able to correctly detect to total number of vulnerabilities verified by

the testing team. This score gives us a good parameter to analyze the tools precision

rate and also evaluate them on the basis of false positives and false negatives.

V ulnerabilityCorrectness = (NoOfmatchedAlerts/TotalAlertsV erified)

Figure 5.1 shows the vulnerability correctness for each tool results that is verified

from manual testing of our Property app Application. It shows all the vulnerabil-

ities which was verified manually by the testing team and is presented in a matrix

comparing them with the results from tools. For example, if we see the figure 5.1,

vulnerability blind sql injection was detected by Acunetix but not by ZAP and Nes-

sus Pro. We use this data to calculate vulnerability correctness for each tool and

then use this percentage score to evaluate these tools.

51

Figure 5.1: Vulnerability Correctness for IRS Application

Similarly, Figure 5.2 shows the vulnerability correctness for each tool results

for our XPDOffice Application. It also shows the vulnerabilities which was verified

from manual testing and each tool performance for the specific vulnerabilities. Table

5.1 shows vulnerability correctness score for each tool against the tested applications.

The score is calculated in percentage and shows the correctness of the tool.

52

Figure 5.2: Vulnerability Correctness for XPD Application

Vulnerability Correctness
Tool Application Total

alerts(manual
testing)

No. Of Vulnera-
bilities Matched

Vulnerability
Correct-
ness(percentage)

Acunetix IRS 18 13 72.2
Nessus Pro IRS 18 10 55.55
ZAP IRS 18 7 38.88
Acunetix XPDOffice 11 6 54.54
Nessus Pro XPDOffice 11 5 45.45
ZAP XPD 11 6 54.54

Table 5.1: Vulnerability Correctness for each tool

53

5.2.2 Confusion Matrix

A confusion matrix is a table that is often used to describe the performance

of a model or a testing on the test data. It has four important terminologies.

• True Positives: What is predicted is actually present

• True Negatives: What is not predicted and is not present

• False Positives: What is predicted but not actually present

• False Negatives: What is not predicted but present

We can use a confusion matrix to generate two scores Precision and Recall for our

tools. As, we have set of vulnerabilities which was verified by the manual testing.

We can use this data to generate two more scores to effectively evaluate our tools.

In our case, true positives would be vulnerabilities which were found by the

tools and which was verified by manual testing. Similarly, false positives will be

one which was detected by tool but was not present in the application. Also, False

Negative are the vulnerabilities which were there in the application but was not

detected by the tools. So, if we create confusion matrix for each tool results when

compared with actual results, we can calculate Precision and Recall.

54

a
ct

u
a
l

v
a
lu

e

Prediction outcome

p n total

p′ True
Positive

False
Negative

P′

n′ False
Positive

True
Negative

N′

total P N

Table 5.2: Confusion Matrix

• Precision: It is fraction of relative instances among the retrieved instances.

Also called positive predictive value. Precision could be defined as measure of

quality.

• Recall: It is fraction of relative instances that have been retrieved over the

total amount of relevant instances. It can also be termed as relevance and can

be defined as measurement of completeness.[26].

Both these values can be calculated from confusion matrix which can be used to

evaluate our tools.

Precision = (TotalPositive/(TotalPositive + FalsePositive))

Recall = (TotalPositive/(TotalPositive + FalseNegative))

We created a confusion matrix for all the results which we got by testing our tools

on IRS application and XPDOffice. Based on their false positive and total positive,

we calculated Precision and Recall for each tools and then used them to evaluate the

55

Tools Test Results
Tools Application True Positive False Positive False Negative
Acunetix XPDOffice 6 3 5
Nessus Pro XPDOffice 5 1 6
ZAP XPDOffice 6 2 5
Acunetix IRS 13 1 5
NessusPro IRS 10 1 8
ZAP IRS 7 3 11

Table 5.3: Tools Testing Results

tools. Table 5.2.2 shows the test results for each tool on IRS and XPDOffice. Table

shows True positives and true negative for each application found by comparing the

vulnerabilities with the one shown in figure 5.1 and 5.2. Using these data, we can

create confusion matrix for each tool and then calculate their Precision and Recall.

Acunetix on IRS
13(tp) 5(fn)
1(fp) 0(tn)

Table 5.4: Confusion Matrix for Acunetix on IRS

We created confusion matrix for each tools on the basis of the data in Table 5.3

and used the data to calculate Precision and Recall. Table 5.10 shows the Precision

and Recall for all the results.

ZAP on IRS
7(tp) 11(fn)
3(fp) 0(tn)

Table 5.5: Confusion Matrix for ZAP on IRS

56

Nessus on IRS
10(tp) 8(fn)
1(fp) 0(tn)

Table 5.6: Confusion Matrix for Nessus on IRS

Acunetix on XPD
6(tp) 5(fn)
3(fp) 0(tn)

Table 5.7: Confusion Matrix for Acunetix on XPDOffice

5.3 Tools Functional Evaluation

We used several parameters to evaluate functional side of the tools and how

easy it is to configure them and scan the web applications. Each tool has its own

interface and provides different functionalities to scan the web application. Some

tools like Acunetix also provides the functionality to customize the scanning tem-

plate for specific development environment. Some tools like Nessus and Acunetix

gives you the option to upload a sequence which can be tested to find vulnerabili-

ties.PFollowing discusses each tools with different parameters.

• Speed: This is the total amount of time taken to scan the web application.

Number of requests generated by the tool is directly proportional to the scan

time. If we compare the scanning time of all the tools tested on all three

web applications. Nessus Pro is a suite with many scanners available to scan

ZAP on XPD
6(tp) 5(fn)
2(fp) 0(tn)

Table 5.8: Confusion Matrix for ZAP on XPDOffice

57

Nessus Pro on XPD
5(tp) 6(fn)
1(fp) 0(tn)

Table 5.9: Confusion Matrix for ZAP on XPDOffice

Tools Test Results
Tools Application Precision Recall
Acunetix XPDOffice 66.66 54.54
Nessus Pro XPDOffice 83.3 54.54
ZAP XPDOffice 75 54.54
Acunetix IRS 92.8 72.2
NessusPro IRS 90.9 55.5
ZAP IRS 70 38.88

Table 5.10: Tools Testing Results

the application. Acunetix is very fast compared to other tools as it is multi-

threaded and scans the target very fast.

• Prerequisite Knowledge and Expertise: Both ZAP and Nessus need prior

knowledge about HTTP requests and authentication. To use these two tools

effectively, prior knowledge of web authentication is required. Acunetix di-

rectly gives you the option to scan the application and hence it can be used

by new developers to scan their application. Nessus Pro configuration is very

complex and you need to understand the site map of the application before

scanning it. It needs login page details, landing page and form data to config-

ure the scan, which sometimes becomes difficult. ZAP is a open-source tool

and hence there are many tutorials which can be found on the web and can

be used by the tester and developers.

• Interface-Ease to use: Acunetix has the best interface, which provides you all

58

the options to configure the target and scan the application. Its configuration

is very easy and doesn’t require deep understanding of the application. ZAP’s

interface is also complex, but it gives the option where it acts as a proxy and

can record all browser activities. After that, Spider and active scan can detect

vulnerabilities in the application. Nessus Pro’s interface is very complex and

needs deep understanding of the tools before using it.

• Specialization and Scan Template: All three tools provides a default template

which is used for scanning the applications. Some tools like ZAP gives you the

option to customize the scan template according to the vulnerabilities. Nessus

Pro uses a predefined template to scan the web applications. It first scans the

server and then starts scanning the web application. As said earlier, it becomes

difficult to configure the template in Nessus. Acuentix also has a default

template, but it has several other scan types like High risk vulnerabilities,

SQL injection, and cross-site scripting. According to the need and design of

the web application, scans can be configured in Acunetix.

• Predefined Settings for development environment: Only Acunetix provides

the functionality to configure the scan according to the development environ-

ment of the web application. It has predefined scripts and settings for the

applications developed in Java, PHP, ASP, Node,js and many more.

• Report: All the tools provides an interface to generate the report for the scans.

Both Nessus Pro and Acunetix provides very deep and understandable report

which can be used by the developers and tester to detect the critical areas in

59

the web application. ZAP also provides you the option to generate report, but

its report lacks depth. It also provides complete URLs which it requested to

the web application to detect the vulnerabilities.

• Cost: OWASP ZAP is a open source tool, but its vulnerability correctness

percentage is highly appreciable compared to other tools. Acunetix is very

expensive compared to Nessus Pro. Its cost is around 8000 dollars for ten

targets whereas Nessus Pro comes at 2190 dollars per year. Nessus Pro, not

only provides a web application scanner, but also provides a whole suite of

scanners which can be used to scan other components. Acunetix focuses only

on Web application scanning.

• Vulnerability Correctness: Table 5.1 shows the vulnerability correctness for

each test that the tool performed on two applications. It can be seen that

Accunetix and Nessus Pro has high vulnerability correctness percentage for

all the tests. ZAP’s performance and detection rate is highly appreciable for

a open source tool. If we compare all the vulnerability correctness values,

Nessus Pro and Acunetix has high correctness value compared to ZAP.

• Precision and Recall: We created confusion matrix for all the tests and calcu-

lated precision and recall for the same. A high precision means that the test

returned substantially more relevant results, while high recall means that the

test returned most of the relevant results. Precision and Recall values for the

tests performed by the tools are shown in Table 5.10. As you can see, Acunetix

and Nessus Pro have high precision which means that they were able to find

60

most of the vulnerabilities present in the application. ZAP’s precision is also

very high and is appreciable if we consider that ZAP is a open source tool.

All tools have almost same Recall value which means they found most of the

correct vulnerabilities and number of false positives were less for all the tools.

5.4 Conclusion

If we evaluate all the results and analyze them, all tools were effective to find

some of the vulnerabilities present in our web applications. Both commercial tools

Nessus Pro and Acunetix has ability to do a comprehensive scan of the application.

They were able to detect some of the known vulnerabilities like SQL injection and

Cross-site scripting, which exposes serious security loopholes in the application. If

we consider the development environment of the web applications, only Acunetix has

the functionality to customize the scan according to the environment. Acunetix’s

interface and ease to use stands among all the tools as it provides a easy interface

and the response time is also fast. ZAP acts as a proxy between browser and web

application and hence was able to test all urls in the application. It also uses Spider

to find the links which browser has not visited and then do complete scan to find

out the vulnerabilities. Acunetix generates a site map of the application which it

is scanning and then uses its scripts to test the application. For a complete black-

box testing of a web application, this research recommends Acunetix commercial

version which can do a comprehensive scan on the web application and can present

security loopholes to the developer and testers. Its interface also is easy to use and

61

can be configured easily. The report generation in Acunetix is also deep and well

explained and shows the attack details. It also provides functionality to generate

reports using different templates according to the user of the application. Like exec-

utive,developer, OWASP Top 10 and many more. Hence, for a comprehensive scan

of a web application, which can detect all known and unknown vulnerabilities, Nes-

sus Pro is recommended. It is a complete package to both developers and testers.

Nessus pro does a comprehensive scan of the network and web servers but lacks in

overall testing of web application. It doesn’t create site map as Acunetix does and

hence sometimes misses some part of the web application which might have vulner-

abilities. Acunetix creates a site map of the web application and crawls through

all the links to find vulnerabilities and hence is best suited for a web application

scanner among these popular web scanners.

If we consider vulnerability correctness value for ZAP, its performance is highly

appreciable if we consider that ZAP is an open source tool. So, an organization who

does not want to spend money on buying commercial tools for scanning their web

applications, ZAP is recommended.

Acunetix is suited for organizations who would like to use it on a continuous

basis and wants to focus only on Web application scanning. If we compare the results

of both the commercial tools which we used in our research, their performance is

almost similar. Hence, it depends on application structure and web application

components to select a tool which is best suited for their security purpose.

62

Chapter 5

Future Work

5.1 Overview

In the recent years, a lot of web applications have been released in the world.

People all around the world uses web applications for their daily work like banking,

social media and many more. This increase also brings lots of security issues in the

web application which can be exploited by the hackers. Hence, it becomes imper-

ative and significant for developers and enterprise to secure their web applications

before hackers can exploit them. However, testing for vulnerabilities manually is

very tedious and time consuming and sometimes human hand misses some of the

known vulnerabilities while testing the application. Hence, there is a need of web

application scanner. Companies around the world uses web application scanners in

their Software Development Life cycle to detect vulnerabilities and remove them.

Hence, the market for web scanners has increased a lot. There are many tools in the

market which provides the option to testers and developers to scan their application

and check for security loopholes. In this research, we evaluated top three tools on

three web applications; developed in three different development environment and

evaluated the tools. We used Kali Linux to host the tools and a window machine

to host the applications. We scanned all the applications from different tools and

analyzed their results. We compared them on different parameters like Ease to use,

63

interface, response time, number of alerts and total number of requests. Then, we

came up with a conclusion for a tool which would be well suited for a black box

testing of a web application.

In future, we plan to include more tools for our evaluation so as to compare

them more effectively. Also, we tested our tools on applications which have unknown

vulnerabilities. But, in the future, we can scan our tools on applications which have

known vulnerabilities and then compare them with others. This result along with

our research can evaluate the tools efficiently.

Two web applications out of three which we used in this research were hosted

on local machine and one was a live website. In the future, we can use applications

which are hosted on cloud server like Amazon and then scan those applications

to evaluate these tools. Once, the applications are hosted on QA system which

emulates production system, it becomes more efficient to test them as it will be able

to detect real-world vulnerabilities and can help developer and testers to design their

system free of security loopholes.

64

References

[1] 10 benefits of web based applications and systems, Sep 2015.

[2] Robert Abela. Getting started with web application security, Dec 2017.

[3] Durai Amuthan.h. What is the difference between application server and web
server?, Jun 2014.

[4] Lauri Auronen. Tool-based approach to assessing web application security.
Helsinki University of Technology, 11:12–13, 2002.

[5] Mark Curphey and Rudolph Arawo. Web application security assessment tools.
IEEE Security & Privacy, 4(4):32–41, 2006.

[6] Nor Izyani Daud, Khairul Azmi Abu Bakar, and Mohd Shafeq Md Hasan. A
case study on web application vulnerability scanning tools. In Science and
Information Conference (SAI), 2014, pages 595–600. IEEE, 2014.

[7] Roy T Fielding and Richard N Taylor. Principled design of the modern web
architecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–150,
2002.

[8] Jose Fonesca. Testing and comparing web vulnerability scanning tools for sql
injection and xss attacks. page 1.

[9] Stefanos Gritzalis. Addressing threats and security issues in world wide web
technology, 1997.

[10] Raphael Hertzog, Jim OGorman, and Mati Aharoni. Kali Linux Revealed:
mastering the penetration testing distribution. Offsec Press, 2017.

[11] Yuma Makino and Vitaly Klyuev. Evaluation of web vulnerability scanners. In
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), 2015 IEEE 8th International Conference on, volume 1,
pages 399–402. IEEE, 2015.

[12] J.D Meir, Alex Homer, and David Hill. Web application architecture guide.
Web Application Architecture Guide, page 618, 2008.

[13] Daniel Nations. What exactly is a web application?, Feb 2018.

[14] NJ Ouch. 2013 top security tools as voted by toolswatch.org readers, Dec 2013.

[15] Top OWASP. Application security risks-2017, open web application security
project (owasp), 10.

65

[16] Andrey Petukhov and Dmitry Kozlov. Detecting security vulnerabilities in web
applications using dynamic analysis with penetration testing. Detecting Secu-
rity Vulnerabilities in Web Applications Using Dynamic Analysis with Penetra-
tion Testing, page 116.

[17] Kristof Phillipsen. Web application vulnerability assessment, Jul 2015.

[18] Sajjad Rafique, Mamoona Humayun, Zartasha Gul, Ansar Abbas, and Hasan
Javed. Systematic review of web application security vulnerabilities detection
methods. Journal of Computer and Communications, 3(09):28, 2015.

[19] Abdul Rahman. Analysis of web application security. IEEE, page 35, May
2017.

[20] Ray Ranker. Home.

[21] Khairul Anwar Sedek, Osman Norlis, Mohd Osman, and Kamaruzaman Jusoff.
Developing a secure web application using owasp guidelines. 2, 10 2009.

[22] Angela Stringfellow. What is web application architecture? how it works,
trends, best practices and more, Sep 2017.

[23] Tenable. Tenable network security — usa 2016.

[24] Usman Waheed. Security regression testing framework for web application
development. Master’s thesis, 2014.

[25] Wikipedia. Client (computing), Jun 2018.

[26] Wikipedia. Precision and recall, Jul 2018.

[27] Wikipedia. Web server, May 2018.

66

