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ABSTRACT

Title of thesis: UNDERSTANDING TIME SERIES DATA
CLUSTERING AND CORRELATION
THROUGH VISUALIZATION

Shantanu Sengupta, Master of Science, 2018

Dissertation directed by: Dr. Penny Rheingans
Department of Computer Science and
Electrical Engineering

Time series is an essential and ubiquitous source of data with its applications

in stock markets, digital signal processing, weather forecasting, census analysis,

and health monitoring data. This form of data is generated continuously and in

massive amounts. To make sense of such deluges of overlapping temporal data,

we employ clustering algorithms which reduce the clutter by aggregating similar

shaped/behaving data into their clustered versions. In order to view if the clustering

is effective and the clusters produced are tight, we need a visualization technique

for displaying time series clusters and the underlying data it represents.

There has been previous work done in creating visualizations to represent

time series data such as line charts, Gantt charts, stream charts, and heat maps.

These visualization techniques are useful in representing a single or multiple

clustered data point on a temporal scale, but none of them can represent the

distribution of values within each of the clusters. As a result, this shortcoming

calls for new visualization techniques that combine temporal representation



techniques with statistical representation techniques.

This visualization aims to help users visualize overall clusters in the time

series data and identify interesting trends and patterns in them. In addition to

viewing the temporal characteristics of such clusters, the visualization should also

represent information about the distribution of data within a cluster. The proposed

visualization achieves this by representing various statistical aspects in the form of

box plots superimposed upon line charts. The proposed visualization method helps

users understand if there exists a correlation between two different time series data

occurring in the same time domain. This feature can help users explore the causality

and periodicity relationships between the two different time series data.

In this research, we demonstrate the results of using this visualization method

for finding the clustering and correlation within temperature and pressure time

series data for 18 cities. We also discuss an application of this visualization in

understanding the effectiveness of help-seeking behavior on student grades. This

application would allow users to correlate office hours attendance with a student’s

performance in a course.

This research contributes towards a better understanding of the properties and

quality of different time series clustering algorithms through a visual representation

of a cluster distribution. It also introduces a novel approach in visualizing the

correlation between two simultaneously occurring time series.
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Chapter 1

Introduction

Time series data is a form of data where the values are indexed in natural

temporal order. The analysis of time series data involves extracting meaningful

patterns, trends, statistics and characteristics from the data. Its applications

include, but are not limited to, helping researchers understand gene data

[Ernst et al., 2005], forecast network performance metrics

[Gutierrez and Wiesinger-Widi, 2016], predict global solar irradiance

[Mart́ın et al., 2010], economic forecasting [Hamilton, 1989], temperature

forecasting [Doganis et al., 2006], effect of air pollution on health

[Dominici et al., 2002], stock market analysis [LeBaron et al., 1999], workload

projections [Chalder et al., 2003], understanding diseases and effect of vaccinations

[Anderson et al., 1984], etc.

Clustering is one of the most useful data mining tools for extracting meaningful

information from time series data. This form of unsupervised learning tool helps

users work with unlabeled data and understand the underlying structure of complex

and massive datasets. It is difficult to use supervised learning algorithms for time

series data because of their large size and complexity [Aghabozorgi et al., 2015].

This shortcoming is the reason unsupervised clustering mechanisms work better for

time series data. Clustering algorithms are heavily employed in applications such
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as fMRI data analysis [Goutte et al., 1999], gene ontology [Ernst et al., 2005], and

rule prediction analysis [Das et al., 1998].

1.1 Problem Domain

Data visualization plays a significant role in helping users view the effectiveness

and reliability of clustering algorithms on time series data. It helps validate the

clusters generated after applying data processing algorithms such as Independent

Component Analysis (ICA) visually to identify if similar data points have been

grouped successfully into the same cluster [Himberg et al., 2004]. It also plays the

role of an interactive exploratory tool for discovering interesting patterns and trends

in temporal data. In some cases, it can help users understand trends of seasonality

and periodicity sometimes seen in time series data [van Wijk and van Selow, 1999].

Some visualizations, such as density based and distance-density based visualizations,

are particularly helpful for viewing fuzzy clustering mechanism on time series data

[Ultsch and Mörchen, 2005].

Visualization plays a major role in understanding the clusters generated by a

clustering algorithm. We can start by understanding the role visualization plays in

viewing clusters for static data. In Figure 1.1, we can see unclustered two

dimensional static data before it undergoes clustering algorithm. In Figure 1.2, we

can see static data points clustered into three groups using the k-means algorithm.

Here visualization helps users visualize the original data points and the clusters

generated. Visualization helps users understand the result of the clustering

2



Figure 1.1: Two-dimensional input data with three clusters [Jain, 2010]

algorithm. We would like to introduce a visualization that helps perform the same

for time series data. The current work done in time series cluster visualizations

misses out on two areas of time series analysis. First, it focuses heavily on

representing the clusters themselves with the assumption that the clustering

algorithm was successful in aggregating similar data points within the same

cluster. However, in some cases, clustering algorithms can be inefficient and

ineffective too. One of the significant shortcomings of the k-means clustering

algorithm is its inability to determine a good value for k. Also, the results of

k-means clustering algorithm vary with different initial seeds and are highly

sensitive to scale. Similarly, hierarchical clustering suffers from high time

complexity for large datasets and is highly sensitive to outliers [Chen et al., 2005].

Second, most of the time series cluster visualizations are focused on only

understanding the single time series that undergoes clustering. They are unable to

explain relationships of causality and correlations with other time series cluster
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Figure 1.2: Final clustering obtained by K-means algorithm at convergence [Jain, 2010]

data, i.e., they are unable to perform multiple time series analysis. Multiple time

series analysis works with more than one-time series and aims at finding dynamic

interrelationships among the variables of each of the time series. These play a

significant role in creating predictive and forecast models.

Creating a visualization that allows users to see these models in action can

help them understand the underlying data and models used for determining the

relationships between multiple time series data. Also, users can use this visualization

as an exploratory tool to find more patterns, trends, and outliers in the time series

data.

1.2 Research Goals

My research goals are to create a visualization that solves and satisfies the

following objectives:

• Users can use the visualization to understand the distribution within time
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series clusters.

• Users can use the visualization to understand the effectiveness of a clustering

algorithm on time series data.

• Users can use the visualization to understand how two different time series

data correlate with each other.

1.3 Visualization Goals

To address the two shortcomings of existing visualization techniques, we

propose a new visualization technique which can help users assess the validity of

time series clustering algorithms. The new visualization method introduces a novel

approach for viewing correlation among multiple time series. Furthermore, this

visualization can allow users to view additional statistical details about the time

series clusters, which were abstracted while clustering. Using this technique, we

can understand if the clusters produced were tight and can adequately represent

the underlying data points.

1.4 Thesis Statement

Visualizing multiple time series in their clustered format using multiple

coordinated views can help users understand important relationships among these

time series and assist with forecast and prediction, which could not have been

done using traditional time series visualization and analysis techniques. The time
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series clusters represented visually using this visualization technique can be

supplemented with the representation of cluster distribution and additional

statistical characteristics.

1.5 Approach

Clustering algorithms, when applied to time series data, can transform the data

into meaningful yet abstracted versions of the original data. Effectively representing

these forms of data by an amalgamation of traditional visualization approaches can

provide deeper insights into the data without requiring the user to be familiar with

newer visualization techniques. It builds on the knowledge and familiarity of line

charts, box plots, and stacked bar charts into time series analysis. This form of

clustering and visualization is best while working with massive overlapping time

series datasets since not a lot of previous work has been done to view time series

clusters visually.

The visualization offers novel capabilities to analyze time series data. The

users can have five views for viewing the time series data. They are as follows :

1. Unclustered original data view

2. Unclustered original data view but color-coded according to clusters

3. Clustered data view

4. Clustered data view with the distribution

5. Clustered data view with correlation to other time series

6



Figure 1.3: Visualization of Original Time Series Data in Unclustered Format

We will be looking at the use of this visualization technique to understand

the temperature data for 18 cities for the first 15 days of January 2013

[Mario et al., 2017]. Suppose, we need to summarize the entire temperature data

into four major trends and understand their trajectory through the time domain.

This data, when represented in an unclustered format as seen in Figure 1.3, can

appear cluttered and confusing to comprehend. It is difficult to interpret each

trajectory because of their closeness in paths and overlapping nature. However, it

is apparent that many of the data paths have similar or parallel trajectories. Here,

clustering algorithms can effectively reduce the number of visual elements from the

unclustered view and declutter the visualization.

Clustering these data points based on their similarity in trajectory gives the

users an idea of how the overall data can be summarized. We use a k-means

clustering method with k=4 to cluster this data. The users can use the second

view which transforms the unclustered data and color codes it by its cluster as

7



Figure 1.4: Visualization of Original Time Series Data as it undergoes clustering when

number of clusters = 4

seen in Figure 1.4 to understand if the clustering algorithm clustered together

similar-looking data points. This visualization method introduces the human

element in verifying the effectiveness of the clustering technique. As can be seen in

Figure 1.4, the k-means clustering algorithm clusters the 18 cities into four groups

of colors - red, orange, green and blue. All the time series data points in the same

cluster have the same color. We can observe slight similarity in paths for time

series data points that have the same color. In Figure 1.3, we can focus our

attention on two groups of cities. The first group of cities - Los Angeles, San

Diego, San Antonio, San Fransisco and Atlanta, and the second group of cities -

Seattle, Las Vegas, Vancouver, Portland and Nashville have similar trajectories.

The users can visualize whether similar looking data points were clustered in the

same group since the same color denotes data points within the same cluster.

However, it is still difficult for a user to comprehend the path of individual

8



Figure 1.5: Visualization of Clustered Time Series when Number of Clusters = 4

data points because of the clutter. This figure still represents the entire time series

dataset consisting of 18 cities’ temperature. As a result, visualizing only the clusters

for these similar looking data together reduces the overall clutter in the visualization

by a significant amount as can be seen in Figure 1.5. The user can cluster the

entire temperature data into a fewer number of data points than the original 18

data points. To check the effectiveness of the clustering algorithm visually, we will

perform clustering with k=4 and color code each data point in the same cluster with

the same color as can be seen in Figure 1.5. Now we can see that the orange and

red clusters represent the two groups of cities that we had discussed earlier. The

users need to decide the number of clusters depending on the level of detail required.

Their choice for the number of clusters also depends on whether they can view the

time series clusters distinctly and with sufficient detail to be able to answer relevant

questions.

Though clustering reduces the overall visual elements in the visualization, a
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Figure 1.6: Visualization of Distribution within Clustered Time Series when Number of

Clusters = 4

user still cannot distinguish whether the clustering was efficient and tight. To be

able to tell whether the clustering is tight, the users need to be able to view the

distribution and spread of the data within a cluster. Here, the users can use the

fourth view to view the distribution of data points within a cluster. We achieve

this by representing the distribution of each cluster at that point of time with a

stacked bar chart centered around the median value of the cluster. This

representation of the clustered data points using a traditional approach may seem

like an oversimplification of the entire data because it summarizes all the

underlying unique data points. This representation abstracts some minute and

distinct characteristics of the data that may be important for the user to

understand the effectiveness of the clustering algorithm. Having a form of stacked

bar charts amalgamated with traditional line charts allows users to view such

details without removing the focus from the actual time series trajectory. This

10



view also allows users to see the spread of the cluster and determine if the

clustering algorithm was tight. We can see this in Figure 1.6 where we use this

visualization to understand temperature data for 18 cities. The users can see the

median values of the time series data by following the trajectory of the boundary

between the light blue and light red rectangles. Users can compare this median

line with the cluster trajectory line which represents the geometric mean values of

the times series data. For a distribution where the value of median is equal to the

geometric mean indicates that the data is distributed uniformly and symmetrically

within the distribution. The users can see the selected cluster by its highlight with

a thick opaque line while the other clusters are transparent in the background. We

will look at each aspect of the stacked bar chart representing the distribution

visual element in the later sections.

The final view is useful in understanding how this data correlates with other

time series data. This view allows users to view multiple time series occurring at the

same time in such a way they can see their interdependency and causality on the

same panel. This capability allows the user to perform multiple time series analysis

using this visualization technique. We will discuss this capability in detail in the

later sections.

1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the

previous approach towards visualizing time series data with an emphasis on data
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preprocessing, clustering techniques and the overall visualization of the data.

Chapter 3 is devoted to explaining the approach to creating the overall

visualization. It addresses individually all the steps involved in detail such as

clustering time series based on shape, visualizing the cluster distribution, and

visualizing the correlation between multiple time series. Chapter 4 examines an

application of the visualization tool to understand clustering and correlation

between temperature and pressure data for 18 cities. Chapter 5 discusses an

application of the visualization tool to understand the effect of help-seeking

behavior on student grades. Chapter 6 explains the future work in this research

area and possible improvements. Lastly, Chapter 7 concludes the entire paper and

the research.
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Chapter 2

Related Work

Research done in understanding time series clustering addresses the

effectiveness of each algorithm, distance metrics, and data processing methods for

different types of time series data. This research also explains the shortcomings

and limitations of each clustering algorithm for grouping similar time series data.

Information visualization has made it tremendously easy for users for

understanding time series clusters generated by clustering algorithms. The existing

visualization techniques that exist for viewing time series data, however, cannot be

extended for viewing clusters and helping users understand the correlation of one

time series over another. Moreover, the problem with the existing techniques in

viewing time series clusters and correlation is that they are highly application

specific, and highly unintuitive. In this section, we will see the existing time series

clustering algorithms and review the visualization methods to understand time

series clusters.

2.1 Clustering Algorithm

The approach to visualizing time series clusters starts by first clustering the

time series data using clustering algorithms. Clustering is the most common form

of unsupervised form of learning. It helps find structure in unlabeled data. It helps
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characterize massive datasets by a small number of representative data points that

summarize the entire dataset in a more compact and meaningful way. Some of

the most popular clustering algorithms are the k-means and hierarchical clustering

algorithms [Liao, 2005]. Each of these clustering algorithms has different distance

metrics to determine the criteria for similarity and dissimilarity among data points.

In the following section, we will discuss these two clustering algorithms: k-means

and hierarchical clustering in detail and the distance metrics generally used for time

series clustering.

2.1.1 K-Means Clustering Algorithm

K-means is one of the most popular cluster analysis algorithms. This

algorithm reduces n observational data points into k clusters such that these k

clusters effectively represent the underlying n data points

[Hartigan and Wong, 1979].

Suppose we need to cluster the data points x1, x2, ..., xn and K is the number

of clusters centroids with Li indicating the label for each of the n data points

[Hartigan and Wong, 1979]. The k-means algorithm, in a nutshell, can be

explained using the below two expressions [Hartigan and Wong, 1979]:

1. Randomly choose K initial centroids C1, C2, ... , CK

2. Repeat until convergence, i.e., the updated centroids are the same as the old

centroids.

For every data point i, set
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Li = Minimum for all j (Distance between data point xi and centroid Cj)

Li = MinimumjεK(distance(xi,Cj))

For every centroid j, set

Cj = Geometric mean of data points within the cluster

The advantage of the k-means algorithm is that the clusters produced by this

algorithm are tighter compared to other clustering mechanisms such as hierarchical

clustering. It is also computationally faster for smaller values of k. The disadvantage

of k-means is that we cannot decide a good value for k in advance. Also, random

initialization of initial centroids results in different outcomes every time the k-means

clustering algorithm is run [Abbas, ]. An effective method of choosing a suitable

value of k is using the elbow method and silhouette method, which we will discuss

in the later sections [Kodinariya and Makwana, 2013].

2.1.2 Hierarchical Clustering

Hierarchical clustering is a form of cluster analysis algorithm that works by

building a hierarchy, or tree-like structure, of clusters [Jain et al., 1999]. There

are generally two types of hierarchical clustering - agglomerative and divisive. They

differ in their clustering approach. Agglomerative starts by keeping the original data

points as individual clusters and combining them into larger clusters iteratively until

the result is just one cluster. By contrast, divisive hierarchical clustering starts with

just one cluster and splits it into more clusters until the result is all the original

data points [Jain et al., 1999].
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Consider n data points that are present initially to be clustered using

hierarchical clustering. We create a distance matrix between all these n points to

get an n × n matrix. The agglomerative hierarchical clustering algorithm can be

explained in a nutshell by the following pseudo-code:

1. Assign each item to its cluster such that if there are n items, then you have n

clusters. Let the distances between the clusters equal the distances between

the items they contain.

2. Assign each item to its cluster such that if there are n items initially, then

consider n clusters each containing their corresponding n data points. Let

the distances between the clusters equal the distances between the items they

contain.

3. Find the closest pair of clusters and merge them into a single cluster.

4. Compute new distances between the new cluster created and each of the old

clusters.

5. Repeat steps 3 and 4 until we cluster all the items into a single cluster

containing all the n items.

The advantages of hierarchical clustering are that it does not require the

number of clusters in advance to determine effective clusters and is easy to

implement. The disadvantages of hierarchical clustering are that it is sensitive to

noise and outliers, and it is difficult to identify the correct number of clusters from

the dendrogram.
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2.2 Distance Metrics

This metric helps determine the similarity or dissimilarity between two data

points. In other words, this behaves like the objective function of the clustering

algorithm. In this section, we discuss five such distance metrics: Euclidean, Dynamic

Time Warping, Manhattan, Minkowski, and Chebyshev distance.

2.2.1 Euclidean Distance

The Euclidean distance between two points in Euclidean space is the straight-

line distance between them [Singh et al., 2013]. Suppose there are two distinct time

series data x and y with n discrete time values for the same time space. We can

define the Euclidean distance between these time series as

deuclidean(x, y) = 2

√√√√ n∑
i=1

(xi − yi)2

where xi and yi is the value for time series at the ith time for x and y

respectively.

An advantage of Euclidean distance is that it is not affected by the addition

of new data points to the cluster analysis which may also be outliers.

2.2.2 Dynamic Time Warping Distance

The dynamic time warping (DTW) distance is a distance metric generally used

for comparing temporal forms of data. The DTW distance metric is generally used

in applications that involve comparing audio and visual signals. The basic intuition
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behind this metric is to compare two signals by distorting them non-linearly in the

temporal dimension to see how similar they are to each other. The advantage of

dynamic time warping is that it can be used to compare two unequal time series.

Consider two distinct time series x and y consisting of m and n discrete time values

respectively. The DTW distance algorithm can be summarized as follows:

function DTWDistance(x,y)

DTW = array [0...n, 0...m]

DTW[0, 0] = 0

for i = 1 to n

DTW[i, 0] = ∞

for i = 1 to m

DTW[0, i] = ∞

for i = 1 to n

for j = 1 to m

DTW[i, j] = d(x[i], y[j]) + minimum(DTW[i-1, j], DTW[i, j-1], DTW[i-1, j-1])

return DTW[n, m]

end function

DTW distance metric is considered more robust than Euclidean distance

because of its ability to compare two time series of different lengths.

2.2.3 Manhattan Distance

The Manhattan distance between two points is the absolute distance between

them in the cartesian coordinates [Singh et al., 2013]. Suppose there are two distinct

time series x and y with n discrete time values for the same time space. We can

define the Manhattan distance between these time series as

dmanhattan(x, y) = dmanhattan(y, x) = ||x− y||
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dmanhattan(x, y) = |x1 − y1|+ |x2 − y2|+ ...+ |xn − yn|

dmanhattan(x, y) =
n∑
i=1

|xi − yi|

where xi and yi are the values for the time series at the ith time for x and y

respectively.

Manhattan distance is based on absolute difference value and is preferable to

Euclidean distance for high dimensional datasets because of its ability to provide

better relative contrast than Euclidean distance for different values in a dataset

[Aggarwal et al., 2001]. The reason being the multivariate values for data points

are aggregated into a single variable. So if two points are close on most variables

but more discrepant on one of them, the Euclidean distance will exaggerate that

difference, but Manhattan distance will be unaffected by it and affected more by

the closeness of the other variables.

2.2.4 Minkowski Distance

Suppose there are two distinct time series x and y with n discrete time values

for the same time space. We can define the Minkowski distance between these time

series as

dminkowski(x, y) = (
n∑
i=1

|xi − yi|p)1/p

where xi and yi is the value for time series at the ith time for x and y

respectively [Van de Geer, 1995]. Here, p is called the Minkowski exponent.

The Minkowski distance for p = 1 corresponds to the same as Manhattan

distance, and p = 2 corresponds to the same as Euclidean distance. The choice
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for the value of p remains an open issue though some research uses the Minkowski

clustering index or silhouette width indexes for determining a suitable value of the

Minkowski exponent [de Amorim and Mirkin, 2014].

The only disadvantage to Minkowski approach is that it is difficult to perceive

the Minkowski distance between two data points visually in our mind because unlike

Euclidean and Manhattan, it cannot be perceived spatially [Lu et al., 2016].

2.2.5 Chebyshev Distance

The Chebyshev or Tchebychev distance between two points is the maximum

absolute distance between them in any Cartesian coordinate [Singh et al., 2013].

Suppose there are two distinct time series data x and y with n discrete time values

for the same time space. We can define the Chebyshev distance between these time

series as

dchebyshev(x, y) = maxiεn(|xi − yi|)

where xi and yi is the value for the time series at the ith time for x and y respectively.

The primary advantage of the Chebyshev distance is that it is efficient and

takes less time to compute the distances between the data points. However,

Chebyshev distance considers only one single feature for representing a dataset,

which might not offer enough description of the dataset to lead to useful cluster

analysis.
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2.3 Linkage Criteria

Before a clustering algorithm is performed, we need to determine the method

used to measure the distance between different clusters. This method is called the

linkage criteria between clusters. The linkage criteria is a function that determines

the pairwise distances between observations. The most commonly used linkage

criteria are

• Single Linkage or Minimum Linkage : In this form of linkage criteria, we

determine the similarity of two clusters on the similarity of their most similar

members i.e. the elements in those two clusters which have the minimum

distance among each other [Wilks, 2011]. Mathematically, the linkage criteria

function can be described by the expression

D(X, Y ) = minxεX,yεY (d(x, y))

where X and Y are any two sets of elements considered as clusters, and d(x,y)

denotes the distance between the two elements x and y.

• Complete Linkage or Maximum Linkage : In this form of linkage criteria, we

determine the similarity of two clusters on the similarity of their most

dissimilar members i.e. the elements in those two clusters which have the

maximum distance among each other [Wilks, 2011]. Mathematically, the

linkage criteria function can be described by the expression
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D(X, Y ) = maxxεX,yεY (d(x, y))

where X and Y are any two sets of elements considered as clusters, and d(x,y)

denotes the distance between the two elements x and y.

• Average Linkage or Mean Linkage : In this form of linkage criteria, we

determine the similarity of two clusters on the average distance between all

their members [Wilks, 2011]. Mathematically, the linkage criteria function

can be described by the expression

D(X, Y ) =
1

|X|.|Y |
∑
xεX

∑
yεY

d(x, y)

where X and Y are any two sets of elements considered as clusters, and d(x,y)

denotes the distance between the two elements x and y.

2.4 Choosing an effective cluster

One of the major limitations of the k-means algorithm is that the choice for

k, i.e., the number of clusters, should be known in advance. In this research, we

consider two major methods that help find the number of clusters for time series

data.
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Figure 2.1: Depiction of a good elbow graph with a sharp elbow joint

[Kodinariya and Makwana, 2013]

Figure 2.2: Depiction of a bad elbow graph with no distinguishable elbow joint

[Kodinariya and Makwana, 2013]

2.4.1 Elbow Method

The first method is called the Elbow Method which is a visual technique for

determining an optimum number of clusters for the k-means algorithm

[Kodinariya and Makwana, 2013]. It works by assessing the sum of squared errors

between each of the points in a cluster with the cluster centroid.
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Mathematically, we can define the sum of squared errors as

SSE =
K∑
i=1

∑
xεci

distance(x, ci)
2

where SSE = Sum of Squared Errors

K = Number of Clusters

xεCi = Data points within Cluster i

Ci = Centroid of Cluster i

distance(a,b) is any suitable distance metric between data point a and b

As expected, the sum of squared errors decreases as the number of clusters increases

because as soon as the number of centroids is equal to the number of original data

points and they converge to the original data points resulting in a sum of square

errors of zero. Therefore, we need to find an intermediate cluster value which strikes

a balance between the number of clusters and least sum of the square of errors.

The idea behind the elbow method is to choose a value of k at which SSE decreases

abruptly, which produces an elbow effect in the graph as seen in Figure 2.1. However,

the disadvantage of elbow graphs is that the results may not always contain an elbow

like path. Sometimes there is no visible elbow or multiple elbow points as can be

seen in Figure 2.2.

2.4.2 Silhouette Method

The second method that helps find a suitable number of clusters is called the

silhouette method [Rousseeuw, 1987]. Unlike the elbow method which focusses on

the sum of the squared distance between points and their centroids, the silhouette

method focusses on the distance of points from points in the same cluster and
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distance from the points in the other clusters.

The advantage of using silhouettes is that they depend only on the actual

partition of the objects and not on the clustering algorithm. As a result, this

method can be used to improve upon the results obtained using the clustering

algorithm. This method can also be used to compare the results of different

clustering algorithms when applied on the same data [Rousseeuw, 1987].

To begin creating the silhouette score s(i) for a data point I, we calculate the

average dissimilarity scores a(i) with other points within the same cluster and b(i)

with other points in different clusters [Rousseeuw, 1987].

We can mathematically express average dissimilarity as

(i) = Average distance of data point i with all data points in the same cluster

b(i) = Minimum of all the average distances of data point i with data points

in other clusters

The value a(i) for a data point i indicates its closeness with other data points

in the same cluster. The smaller the value of a(i), the better is the placement of

that point in that cluster. The value b(i) for a data point i indicates its closeness

with the data points in the next closest cluster. This neighboring cluster indicates

that this is the next best cluster for this data point [Rousseeuw, 1987]. Using these

two dissimilarity measures, we can define the silhouette value for a data point.

s(i) =
b(i)− a(i)

max(a(i), b(i))

which is stated as
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α(x) =


1− a(i)

b(i)
a(i) < b(i)

0 a(i) = b(i)

a(i)
b(i)
− 1 a(i) > b(i)

As a result, the range for s(i) lies between [-1,1]. If s(i) is close to 1, then

a(i) << b(i), which indicates that the data point is very well matched with its

cluster. If s(i) is close to -1, then it indicates that the data point is better matched

with its neighboring cluster. A value of s(i) equal to 0, indicates that the data point

is equally matched to both the cluster and its neighboring cluster.

The next step after obtaining the silhouette values is to plot the graph to

understand the effectiveness of the clustering approach. We plot all the silhouette

values for data points in a cluster in increasing order as can be seen in Figure

2.3. The user can use this representation to understand how the data points are

placed within a cluster. A wider silhouette indicates large s(i) values indicating a

good cluster [Rousseeuw, 1987]. It can be seen in Figure 2.3 that the silhouette

for k=2 is narrower than k=3, thereby indicating that k=3 is a better value for k.

Another metric to determine a good value of k is to calculate the average silhouette

width for different values of k and choose the value of k which is the maximum

[Rousseeuw, 1987]. The average silhouette width is simply the average of the s(i)

for all objects i in the whole data set. As can be seen in Figure 2.3, the average

silhouette width for k=2 is 0.28 and for k=3 is 0.33, thereby indicating that k=3 is

a better choice for clusters than k=2.
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Figure 2.3: Silhouettes for k=2 and k=3 clusters respectively after clustering 12 countries

data using k-median algorithm [Rousseeuw, 1987]
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2.5 Understanding Time Series Data and Clustering Mechanisms

Time series data is a set of data points ordered chronologically. This form of

data is generally known for its large size, high dimensionality, and dynamic nature.

For our research, we will be working with time series data which is static. This

property allows us to use data processing algorithms generally used for static data

such as clustering algorithms.

Clustering algorithms play an essential role in data mining and in

understanding the structure of unlabeled data. They partition the dataset into

groups such that data points within a cluster are more similar to each other than

data points in any other cluster. The appeal of using clustering algorithms for

time series data lies in their ability to help users find patterns and anomalies in

massive unlabeled datasets.

Clustering time-series algorithms can be classified into three major categories

on the basis of the size of the time series undergoing clustering - whole time series

clustering, subsequence clustering, and time point clustering

[Aghabozorgi et al., 2015].

Whole time series clustering is the same as conventional clustering on time

series data in its entirety whereas subsequence clustering is clustering applied to

the time series extracted from a sliding window. Subsequence clustering, also

known as STS clustering, is commonly used as a subroutine in various other

algorithms for classification and prediction. Despite its usefulness in other

algorithms, it has been found that clustering on the basis of subsequences is
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meaningless because the clusters generated using this algorithm are inherently

random [Keogh and Lin, 2005]. In time point clustering, the clustering of data

points is done on the basis of a combination of their temporal proximity and the

similarity of their corresponding values [Zolhavarieh et al., 2014]. In this category

of time series clustering, not all points are clustered, some of them are considered

as noise and ignored [Aghabozorgi et al., 2015].

There has been significant research done in reviewing the effectiveness of

different time series clustering algorithms and distance metrics. Liao has reviewed

the following clustering algorithms used for time series data: relocation clustering,

agglomerative hierarchical clustering, k-means and fuzzy c-means, and

self-organizing maps [Liao, 2005]. He has also examined the

similarity/dissimilarity metrics of Euclidean distance, root mean square distance,

Minkowski distance, Pearson’s correlation coefficient, short time series distance,

dynamic time warping distance, and KullbackLiebler distance. Liao also evaluates

the results of the clustering mechanisms depending on whether the ground truth is

known in advance. Liao concludes that the effectiveness of the clustering algorithm

depends on whether it works directly on the raw data, on features extracted from

the raw data, or on models built using the raw data [Liao, 2005].

Saas et al. propose that there does not exist a consensus on which clustering

algorithm works best for time series data since it depends on the goals of clustering

and the application domain [Saas et al., 2016].

The original k-means algorithm suffers from zero accuracy guarantees due

to the randomness in the initial seeds. As a solution, Arthur and Vassilvitskii
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suggest an improvement to the existing k-means algorithm called k-means++, which

proposes a method to choose the initial seeds before applying the k-means algorithm

on the dataset [Arthur and Vassilvitskii, 2007]. When k-means and k-means++

were applied on real-world datasets, it was observed that k-means++ terminates

twice as fast as k-means with better results [Arthur and Vassilvitskii, 2007].

2.6 Visualizing Time Series and Time Series Clusters

Time series data is generally represented in a two-dimensional form where one

axis represents time, generally on a linear scale and the other axis represents non-

temporal values of the data points. Examples of time series data represented on a

linear scale are line charts, stacked area charts, bar charts, and stream graphs.

In line charts, the time series can be represented with the x-axis representing

time and y-axis representing values. In the line chart seen in the top-left image in

Figure 2.4, the x-axis represents time, and the solid line represents the Normalized

Difference Vegetation Index [Jönsson and Eklundh, 2004].

The stacked area chart is the representation of values of each group on top of

each other continuous in the time domain. This graph allows users to see the

evolution of values over a period as seen in top-right Figure 2.4

[Le Maire et al., 2011].

The stacked bar chart is the discrete representation of values of each group

on top of each other. This graph allows users to see the evolution of values over a

period as seen in middle-left Figure 2.4 [Hao et al., 2010].
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Figure 2.4: Time series data in the form of multi-line series

[Jönsson and Eklundh, 2004](top-left), stacked area chart [Le Maire et al., 2011]

(top-right), stacked bar chart (middle-left) [Hao et al., 2010], stream graphs (middle-

right) [Bostock and Heer, 2009], gantt charts (bottom-left) [Yamada and Nakano, 1992],

heatmap (bottom-right) [Neumann et al., 2010]
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Another variation of stacked area chart is stream graphs where the stacked

area is displaced around a central horizontal axis. It derives its name from its

similarity in appearance to a flowing liquid as seen in middle-right Figure 2.4

[Bostock and Heer, 2009].

Gantt Charts are a highly application specific time series visualization which

is used for project management. As can be seen in the bottom left Figure 2.4, this

visualization represents the time allotted to different activities and the percentages

of the activity completed [Yamada and Nakano, 1992].

Time series data can also be visualized on two scales of time as seen in heat

maps where the original data is represented in the form of color intensity on a two-

dimensional diagram where one axis can correspond to time as seen in Figure 2.4

[Neumann et al., 2010].

Visualization plays a crucial role in finding periodicity or seasonality in time

series data. The simplest way to represent periodical data is to overlay them in

cycle plots. Another visualization technique, polar area diagram which is one of

the earliest known visualizations, is used to help users understand seasonality by

representing stacked area graphs. Statistician Florence Nightingale invented it as

a tool for representing causes of mortality in the army from April 1854 to March

1855. As seen in Figure 2.5, this visualization is a modification of stacked area chart

from a common vertex. The blue wedges represented the number of deaths from

preventable diseases whereas the white wedges represented the deaths from wounds,

and the black wedges measured from the center the deaths from all other causes. It

played an essential role in conveying that the most significant cause of death during
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Figure 2.5: Coxcomb charts provided by Florence Nightingale in Notes on matters

affecting the health, efficiency, and hospital administration of the British Army

[Nightingale, 1858]

the war was not due to war-related casualties but diseases such as cholera, typhus,

and dysentery [Nightingale, 1858].

Weber et al. introduced another visualization technique called spirals that

helps users find periodic structure in the data [Weber et al., 2001]. They

demonstrate its efficacy by presenting a comparison of spirals with traditional bar

charts in Figure 2.6 for representing sunshine intensity in the same screen real

estate and same coloring scheme. Though this representation technique is useful in
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Figure 2.6: Visualization of sunshine intensity using bar chart and spiral chart. It is

easier to observe trends in periodicity and sunset-sunrise patterns in spiral chart compared

to the bar chart [Weber et al., 2001]

finding periodic elements in time series, it suffers from its inability to represent

correlation in addition to periodicity.

There has been significant research in understanding univariate time series

data by clustering it first and then visualizing the clusters. Van Wijk and van

Selow developed a visualization technique to identify trends and patterns in energy

consumption and represent them [van Wijk and van Selow, 1999]. Van Wijk and

van Selow cluster data by their similarity in the day patterns, and then represent

them using hierarchical dendrograms. However, due to shortcomings of

representing time series clusters in the form of the dendrogram, they propose a

new visualization that helps users answer interesting questions on seasonality and
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Figure 2.7: Calendar and hourly view of Employee clusters to understand Energy Usage

1998 [van Wijk and van Selow, 1999]

patterns as can be seen in Figure 2.7. In this figure, we view the results of

clustering employee attendance data for a research facility ECN. A particular color

characterizes each employee cluster. On the left-hand side, we can see that van

Wijk and van Selow have colored each day on the calendar according to its original

cluster whereas, on the right-hand side, we can see the average value per cluster

[van Wijk and van Selow, 1999]. From the right-hand side of Figure 2.7, we can

see the pattern in office hours where most employees arrive at 8:30 am and leave

by 6:00 pm. We can also observe from the left-hand side figure that the attendance

is less on Fridays and in the summer [van Wijk and van Selow, 1999].

Time series bitmaps are an alternative to representing time series in non-
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Figure 2.8: SAX representation of EEG Time Series Data [Kumar et al., 2005]

traditional methods. Kumar et al. use this method to represent four different

EEG time series data into SAX symbols as seen in Figure 2.8 [Kumar et al., 2005].

Symbolic algebraic approximation (SAX) transforms the continuous time series data

points by lower bounding the values to create discrete values. The advantage of using

SAX symbols is that it allows users to cluster time series of different lengths. It is

an efficient means of representing time series clusters. In Figure 2.8, all the SAX

symbols represent congestive heart failure EEGs, but eeg6.dat is different from the

remaining dat files because eeg1.dat, eeg2.dat, and eeg3.dat belong to one individual

and eeg6.dat belongs to a different individual. This distinction is easily observable

in Figure 2.8. Kumar et al. start by using the symbolic aggregate approximation for

converting continuous time series data into discrete symbols. These discrete values

are then clustered using hierarchical clustering and represented using a combination

of three components: dendrogram, line charts, and SAX representations. We can

see the clustered view for the SAX symbols in Figure 2.9 that groups similar looking
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symbols using hierarchical clustering.

In conclusion, the visualization of time series data is limited to standard

visualization methods. Moreover, the visualization methods for viewing time series

clusters and correlations are highly application specific and restricted. In this

research, we try to propose a visualization that represents time series clusters and

views correlations between two different time series data. The users can test the

clusters produced as a result of different clustering algorithms and different

distance metrics. It allows users to view the tightness and distribution within a

cluster statistically. The proposed visualization also allows the users to view the

effect of one time series on a simultaneously occurring time series. It also gives

users an integrated view of both the time series in one visualization that helps

them understand the correlation between two different time series clusters.
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Figure 2.9: Hierarchical clustering of time series data represented in the form of SAX

symbols [Kumar et al., 2005]
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Chapter 3

Approach

Figure 3.1: Approach overview

Figure 3.1 provides a graphical depiction of the overall flow of creating the

final visualization. The approach to visualizing time series clusters and correlation

is first to cluster the time series data into clusters using different clustering methods

and distance metrics. Once we group the time series with similar characteristics

into clusters, we can use the visualization to see the distribution within a cluster

and determine the tightness and variability of data points within the cluster. To

determine the correlation with a simultaneously occurring second time series, we
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cluster the second time series by clusters created for the first time series. This

second time series clusters are visualized in the same panel and integrated within

the original time series clusters to help users understand the effects of causality

and correlation. Furthermore, we introduce a panel which shows additional details

about the clusters formed. The remainder of the Approach chapter is broken into

three distinct sections - clustering, visualizing the distribution of data points within

clusters, and visualizing correlations.

3.1 Clustering

The time series dataset can be massive, and the data points in the series

could be overlapping in nature. Hence, we cannot visualize and understand the

individual elements easily. As a result, we can apply clustering algorithms on time

series to organize related sets or groupings based on their similarity. Clustering

helps the visualization by reducing the overall clutter at the same time maintaining

the integrity of the data by grouping similar characteristic objects to each other.

Visualizing the time series clusters enables the users to focus on the few data points

that summarize the entire dataset. If randomly chosen time series were grouped

instead of using a well-defined clustering technique, the average shape would have

no meaningful representation and fail to provide a context for comparison.

Liao reviews some of the clustering algorithms and distance metrics generally

used for time series analysis [Liao, 2005]. The following algorithms are used for

time series data clustering: relocation clustering, k-means, fuzzy c-means,
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agglomerative hierarchical clustering and self-organizing maps. Liao also discusses

different distance metrics such as Euclidean distance, root mean square distance,

Minkowski distance, Pearson’s correlation coefficient, Dynamic Time Warping, and

KullbackLiebler distance [Liao, 2005].

For clustering time series data, we use two hard clustering techniques -

k-means algorithm and hierarchical clustering because they are most commonly

used for clustering time series data. The distance metrics available to use for the

clustering algorithms are Euclidean, Manhattan, Minkowski, DTW, and

Chebyshev. For hierarchical clustering, the available linkage criteria are the single

linkage, complete linkage, and average linkage. For this use case, we prefer to use

the k-means algorithm since it allows a choice for the number of clusters to be

represented. Though, we identify an ideal number of clusters using the elbow and

silhouette method. We choose a value of k ranging between four to ten such that it

is a balance between representing the data at the same time it is small enough not

to clutter the visualization.

3.2 Visualizing distribution of data points within clusters

Assuming that we have performed the clustering and we have used suitable

metrics to determine the effectiveness of different clustering techniques, now we

would like the user to be able to understand the variability of the data points

within the cluster.

For this approach, we will employ a superposition of box plot like structure
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Figure 3.2: Box plot structure in the form of stacked bar charts to represent distribution

of the data points within a cluster

over time series data as seen on Figure 3.2 such that it represents the distribution of

values within the cluster. A box plot is an effective way of displaying the distribution

of data with the use of quartiles and different categories. In Figure 3.2, the box

plot like structure consists of four rectangles each representing a statistical range.

The dark blue rectangle represents the range from minimum to the first quartile.

The light blue rectangle represents the range from the first quartile to median.

The light red rectangle represents the range from median to the third quartile.
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Figure 3.3: Distribution of data within a bad cluster when k=3

Figure 3.4: Distribution of data within a good cluster when k=6

Moreover, the dark red rectangle represents the range from the third quartile to

the maximum. In Figure 3.2, each box plot like structure is superimposed over the

line chart representing the time series. The box plot like structure represents the

distribution of values for a particular time on the line chart.

The reason behind the choice for box plots was that users could use box plots to

answer questions about average, median, quartiles, minimum and maximum. Users

could also use it to determine outliers and their values. Users could also use this

visualization element to understand how tightly the data were grouped and if there

was any symmetry in the data.

In Figure 3.3 and in Figure 3.4, we can see two time series clusters for

temperature of 18 cities for k=3 and k=6 respectively. As can be seen from these
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figures, the cluster distribution is tighter for k=6 in Figure 3.4 compared to k=3 in

Figure 3.3, indicating a better cluster quality. In both the figures, the values

within the highlighted cluster is spread across some ranges but in case of Figure

3.4 overall distribution of the values within the cluster is narrower, thereby

indicating a tighter cluster.

3.3 Visualizing Correlations

Figure 3.5: Panel View with two time series represented individually

In addition to being able to cluster data and view the distribution of the time

series data, we would like to enable users in understanding how two different time

series data correlate to each other. One way of implementing correlation between

both the time series is to view them on the same panel, with refactored and rescaled

y-scales for each of the individual time series graphs as can be seen in Figure 3.5.
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Figure 3.6: Panel View to focus on one cluster in both the time series simultaneously

In this figure, we are looking at the humidity and temperature time series data for

18 cities when grouped into six clusters. This design choice leads to a visualization

where it is difficult to understand if there exists any correlation between the two

time series clusters. Even if we were able to focus on one cluster in both the time

series data as seen in Figure 3.6, we would still be unable to understand if there was

a correlation between the two time series.

Another novel way of integrating both the time series is to implement the

events of one time series in the form of line charts and the second time series in the

form of circles scattered according to their occurrence and their radius corresponding

to their intensity as seen in Figure 3.7. The radius of the circles are normalized with

respect to the largest value in the second time series cluster since the correlation for

different time series could be different. The presence of circles localized in a time
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Figure 3.7: Multi-coordinated view of both the time series in addition to an integrated

view to show correlation between two time series data

period may also indicate the presence of an event indicating correlation. The circles

are centered at the time where there is a correlation between the two time series.

This approach resolves the shortcomings with the multiple coordinated view. The

user can now focus on both the time series data in the same graph.

To solve the problems created by superimposing both the visualizations, we

stick to using two independent representation of the time series, but this time in

the form of a multi-coordinated view as seen in Figure 3.7. Though this requires

users to coordinate between both the time series to understand any correlation

effects, this creates less clutter and brings more focus to the time series data. This

multi-coordinated visualization technique helps transform the visualization into an

exploratory form of tool.
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Chapter 4

Case Study - Weather data

In this section, we discuss the results of the visualization techniques to help

users understand the clustering and correlation of hourly weather time series data

for 18 cities over a span of the first half of January 2013 [Mario et al., 2017]. For

this application, we analyze the hourly temperature and humidity time series data

during the same time domain.

4.1 Visualization Goals

The aim of using this visualization method is to understand how the

temperature data for 18 cities can be summarized and if there lies a correlation

between the temperature and humidity data of these cities. We would like the

users to be able to answer the following questions about this case study through

this visualization:

1. How can the overall temperature data for these 18 cities can be summarized

efficiently? Which cities have similar trends in weather for the first half of

January 2013?

2. What are the chances that it is going to be humid when temperature is low

and when it is high?
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3. Which group of cities have the highest and lowest temperature doing a

particular time period?

4. Is there any correlation evident between temperature and pressure data to

make a general statement about temperature and humidity?

5. What are the maximum and minimum temperatures within a group of cities

that have similar temperature trajectories?

4.2 Data Ingestion

The temperature data and humidity data for 18 cities is available in two

separate CSV files obtained from Kaggle [Mario et al., 2017]. The dataset was

originally acquired using Weather API on the OpenWeatherMap website.

The temperature data contains columns for every city and their temperature at

different times. The pressure data contains the records of the city and their humidity

at the same times as the temperature data. The rows in this file correspond to the

time series temperature and humidity data for 18 cities in the United States in

first half of January 2013. This time span and the cities were randomly selected.

The temporal data in both the CSV files are regularly spaced with hourly intervals

between subsequent time data points. The temperature is present in kelvin (K)

temperature scale, but it is transformed to Fahrenheit since it is easier to perceive

city temperatures in Fahrenheit. The humidity data is represented in percentage.

We ingest the data from this file into the visualization framework with the

use of a D3 API called d3.csv() function which contains a path parameter to the
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CSV file. It transforms the entire CSV file into an array of objects which undergoes

preprocessing to be available for creating visualization elements in the tool.

4.3 Data Preprocessing

The temperature data for the 18 cities for the first first half of January 2013

is now ready for ingestion. It does not require any preprocessing before it can be

used by our visualization method.

However, some of the entries in the humidity CSV file are missing for the 18

cities during the interval chosen for analysis. As a result, we explore two options

that help perform data analysis in case of missing values [Sarstedt and Mooi, 2014].

The first approach is to omit the entries for missing values for all the cities, but this

is not a good choice for our visualization technique since it converts the time series

into an irregularly spaced time series. The second approach is to fill the missing

values with the average of all the other values present for the entry. We employ the

second approach as it helps us retain the regularity in the time intervals between

subsequent entries.

4.4 Deciding the number of clusters

We can see the elbow plots for each distance metric in Figure 4.1. As we can

see from the figures, DTW and Minkowski are the best choices among all the

distance metrics because they have less variation in values indicating that the

clusters produced generally converge to give the same results. These two distance
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Figure 4.1: Sum of squared errors vs Cluster size for different distance metrics -

Euclidean, Dynamic Time Warping, Manhattan, Minkowski, and Chebyshev
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metrics also generally tend to decrease in the sum of squared errors as the number

of clusters increase. For this particular application, we will use DTW distance

metric since the sum of squared errors for DTW for the same cluster size were

lower than that of Minkowski.

Now in the elbow graphs, there is no sharp elbow joint present, which is one

of the shortcomings of using an elbow graph. We need to find a value which allows

us to identify many distinct patterns in the data. Choosing a higher value for the

number of clusters is still not a disadvantage since the sum of square error decreases

with the increase in clusters. However, this value has to be small enough not to

make the visualization cluttered. As a result, we will be choosing a value of k=4

since it is small enough not to clutter the visualization and large enough to give us

distinct patterns in the temperature data.

4.5 Shape Based Clustering of Time Series Data

Figure 4.2 represents the temperature in its unclustered format. Here the x-

axis represents the time, and the y-axis represents the temperature in Fahrenheit.

A single colored line in this visualization represents a temperature through the first

half of January. This visualization is highly cluttered and is completely unusable as

an exploratory tool. It not only fails to give any intuition on the trends and patterns

in the scores of the cities, but it also fails to answer the visualization goals we began

with while developing this visualization method. Despite its cluttered format, we

can observe that there are many lines which have similar trajectories through time.
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Figure 4.2: City temperature data for first half of January 2013 in unclustered format

Figure 4.3: City temperature data for first half of January 2013 clustered based on shape

We can cluster these similar trajectory lines by clustering this time series data by

shape.

The clustering algorithm used for this case study was a standard K-means

algorithm with four clusters and a thousand iterations. The reason we chose four
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clusters was that it is small enough not to clutter the visualization, and large enough

to give us distinct patterns in the temperature data. Moreover, a thousand iterations

were considered a good choice because the data points converged successfully into

these four clusters by the end of the thousandth iterations. The distance metric

chosen for the k-means algorithm was dynamic time warping. The rationale behind

this choice for the distance metric was this metric could effectively group two time

series having the same trend in temperature data even if they were shifted by some

time interval. As can be seen from Figure 4.3, the visualization now contains only

four clusters that adequately represent the temperature of the 18 cities for first half of

January 2013. This can be observed from the fact that the time series clusters closely

represents the original time series data. Also the distribution of the data within a

cluster represents the original data points, thereby maintaining the integrity of the

original data points. From this figure 4.3, we can see that the trends of peaks and

valleys are the same for all the clusters indicating the same periods for rise and fall

in temperature during the day. Clustering helps the user to group together similar

shaped time series data into one cluster, thereby reducing the overall clutter in the

visualization.

4.6 Behavior-based clustering of Time Series Data

Clustering the cities temperature data by shape allows us to view groups of

cities that have a similar trend in temperature variation in the first first half of

January. The overall clustered view of the temperature allows us to view the
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Figure 4.4: Clustered view of humidity data for 18 cities when clustered on the basis of

similar temperature trajectories

summarized dataset with ease.

In addition, we would also like to know if the temperature data for these

cities is in any way correlated to the humidity data for these cities during the

same time span. Ideally, there is an inverse correlation between temperature and

relative humidity. The higher the temperature, higher the air molecules can hold

onto the water molecules. As a result, the relative humidity decreases with rise in

temperatures.

To be able to correlate the city temperature clusters with their corresponding

humidity data, we need to cluster the humidity data by the temperature clusters.

Therefore, clustering the humidity by temperature clusters reduces the overall

visual elements in the visualization as seen in Figure 4.4. In this figure, the x-axis

represents time in hourly intervals, and the y-axis represents the humidity for the

clusters measured in percentage. In Figure 4.4, we can highlight a particular

cluster in the temperature panel, and three corresponding humidity lines get

highlighted in the humidity panel. The thickest line indicates the lowest humidity

in that cluster; the second thickest line indicates the highest humidity in that
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cluster and the thinnest line indicates the average of the humidity values in that

cluster. The intuition behind indicating all these three values is that the average

value by itself is not an accurate measure of the humidity values in the cluster

since the humidity time series are not clustered by their similarity in shape. As a

result, for a particular time period, the humidity cluster can have widely varying

values. Hence, we would like the users to be able to view the distribution of values

in the humidity clusters as well.

4.7 Statistical Attributes of Time Series Data

Figure 4.5: Visualizing the distribution within temperature data for 18 cities in the first

first half of January 2013

With this visualization, one of the key questions we would like to answer are

which cities have similar temperature patterns and if they have similar patterns how
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close are they to each other. With that aim in mind, we have integrated floating

box plots superimposed over the temperature line chart to show the variability of

the data within a cluster. It also gives us the trends on the maximum and minimum

temperature that a group of cities may have.

With clustering, we have removed the unnecessary clutter from the

visualization, but we have also abstracted out the unique and interesting

occurrences in the temperature dataset. As a result, we would like the user to be

able to see the spread of the cluster so that they can understand how tight was the

cluster. In the case of time series data, it may so happen that the tightness in a

cluster is localized for a particular time that is responsible mostly for selecting a

data point within a cluster. This tightness at a particular time period means that

at that time period, all the data points have very close temperature and the

variability is very less. We will discuss this further in detail with examples in the

Results section.

The original line series representing the clusters characterizes the geometric

mean of all the data points within the cluster. We can see additional statistical

characteristics for the cities cluster such as median, maximum and minimum. As

we can see in Figure 4.8, we have represented the distribution of the cluster at a

particular time with a stacked bar chart which functions like a box plot is

providing us with insights on the maximum, minimum, median, upper quartiles,

lower quartiles, and outliers. These overlaid stacked bar charts provide additional

answers to questions such as what is the highest temperature among the cluster.
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4.8 Results

Figure 4.6: Temperature Cluster - Blue and Red

We have summarized the weather dataset for 18 cities into four clusters, which

groups the cities with time series temperature data together. From Figure 4.6 and

Figure 4.7, we can see the four clusters each distinguishable with a unique color

and additional details displayed on the left hand side panel. We can see the size of

the cluster and the cities grouped together within this cluster, indicating that these
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Figure 4.7: Temperature Cluster - Green and Orange
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cities have a similar temperature trajectory.

As can be seen from Figure 4.6, we can say that during that the blue cluster

(containing Albuquerque, Kansas City, Saint Louis, Chicago, and Indianapolis) has

the lowest temperature until 11 January where the red cluster (containing

Vancouver, Portland, Seattle, Las Vegas, and Nashville) intersperses to be the

lowest temperature up to 14 January.

Similarly, from Figure 4.7, we can say that during the entire first half of

January, the green cluster (containing Phoenix, Dallas, and Houston) and orange

cluster (containing San Francisco, Los Angeles, San Diego, San Antonio, and

Atlanta) superimpose over each other for specific time periods to have the highest

temperature.

Figure 4.8: Visualizing the distribution within red cluster containing Vancouver,

Portland, Seattle, Las Vegas, and Nashville

We can also see how faithfully the data points within a cluster follow the
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Figure 4.9: Visualizing the effects of humidity on the temperature of the cities in the

green cluster

Figure 4.10: Visualizing the effects of humidity on the temperature of the cities in the

orange cluster

cluster. In Figure 4.8, we can see that the red cluster is tight up to the first seven

days in January compared to the remaining seven days where we can see that the
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clustering is not tight and the variability is too significant. This considerable

variation in temperature values indicates the presence of outliers in the second half

of the 14 day period.

Looking at the correlation of humidity data superimposed on temperature

data for each cluster, we get a visualization as can be seen in Figure 4.9 and Figure

4.10. In these figures, we look at the correlation of humidity data for the orange

and green cluster respectively. On a preliminary observation, we can notice that the

larger radius circles are concentrated on the valleys, and the smaller radius circles are

concentrated on the peaks. The radius of the circle is proportional to the humidity

value at the corresponding temperature at that time. The larger the circle, the

larger is the humidity value and the smaller the circle, the smaller is the humidity

value. So from both the integrated views of the green and orange clusters, we can

say that for higher temperature, the radius of the circles is smaller indicating a low

humidity value, whereas the opposite can be said for lower temperatures where the

large radius of the integrated circles indicate high humidity value. In conclusion,

we can observe an inverse correlation between the temperature and humidity at

the same time. This kind of inverse correlation pattern can be observed in all the

clusters. It is more prominent in the green and orange clusters compared to the

remaining two clusters.

Theoretically, it is generally stated that the higher the temperature, the more

moisture it can hold, as a result the relative humidity decreases, which is evident in

this visualization.
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Chapter 5

Case Study - Information Visualization in Education

Information visualization is an indispensable part of data mining and analysis.

It relies heavily on human cognition to identify unstructured insights by visualizing

the data and identifying exciting aspects in it. Current research in education involves

helping academicians understand the role of student performance and the effects of

several factors on it. Information visualization makes it easier to identify critical

effects of such factors on student data. In this case study, we focus on the use of the

proposed visualization method to understand the relationship between time series

help-seeking behavior data and simultaneously occurring performance time series

data for the introductory course of CMSC 201 for two semesters. This method can be

used for understanding the correlation between any two generalized simultaneously

occurring time series data.

5.1 Visualization Goals

The aim of using this visualization method is to understand if there is a

correlation between the performance of students in the course and the office hours

attendance of the students. We would like the users to be able to answer the

following questions about this case study through this visualization:

1. How can the overall performance of a class be represented efficiently?
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2. How does the overall performance of the entire class for a course look with

assistance and without assistance?

3. Which office hour events in the semester have the most significant/least impact

on the student’s grade?

4. Which were the best performing groups, lowest performing groups, groups with

maximum improvement and most significant decline? How does the office hour

attendance look for each of these groups?

5. For which event and duration of help-seeking behavior was there the most

impact on a student’s grade?

6. How many times did attending an office hour lead to an improvement in grade

for a student? How many times has missing office hours result in a decline in

grade?

7. For repeating events such as homework and projects, are there any similarities

in office hour trends?

8. Which group of students (best/worst) attends office hours more during

different times of the semester?

5.2 Student Performance and Previous Visualization Techniques

Most of the research aims at exploring patterns and correlation in student

performance due to various time series factors. Gkatzia et al. discuss several such
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factors that are time series data in the education domain [Gkatzia et al., 2013].

The factors that they collect from students and teachers in the form of time series

data can be broadly classified into effort, frustration, and difficulty. They have

classified effort into three subfactors - the numbers of hours the students have

studied, the level of revision they have done and the number of lectures they

attended. They have classified frustration into subfactors such as the

understandability of the content, the presence of other deadlines and any pertinent

health, personal issues, and their severity. They describe difficulty as the student’s

perception of difficulty with the content as the course progresses. Visualizations

using visual elements to show the correlation among time series data can help

researchers view new relationships between these time series factors.

Data processing and visualization are two critical tools used in educational

data mining. Data processing manipulates and transforms raw data into useful

information which can then be passed to visualization tools for effective

representation. This form of processing includes format conversion, validation,

sorting, summarization, aggregation, analysis, and reporting. Visualization, on the

other hand, includes encoding this processed data in pictures and graphics thereby

making it easier for users to understand it effectively.

Before diving into the existing visualization tools and techniques, we will

discuss the following topic: the purpose of building this tool for our research, the

data processing involved, and the representation techniques we intend to use for

the processed data. The intuition behind building this tool is to view if there

exists any correlation between help-seeking behavior in students and their grades.
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The help-seeking behavior data and the student grade data are in time series

format. Due to its massive nature, we will employ clustering techniques to reduce

the raw data into essential and unique time series data points. This visualization is

composed of an amalgamation of line-charts and shifted stacked bar charts to

represent clustered time series clusters and the distribution of data within the

clusters.

Researchers have spent a considerable amount of time understanding factors

that impact student performance. This research is generally aimed at finding

methods for improving student grades as well as for identifying reasons that lead

to a decline in grades. In our thesis, we will be looking at the effects of

help-seeking behavior, specifically office hours attendance, on student performance.

Using this visualization, we would like to answer questions on how does attending

office hours at a certain point in the semester for a specific duration affect a

student’s performance and overall grade.

Most of the research done in understanding student performance can be

classified into two categories. The first category deals with understanding how

collecting and analyzing student performance data help in improving the quality of

education and the second category deals with understanding the impact of various

factors on student performance.

Educational data mining (EDM) is an interdisciplinary research area that

deals with helping researchers understand educational context data. Visualization

plays a crucial role in helping researchers understand student performance using

visual elements and graphics. Presentation of data in graphical format helps users
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Figure 5.1: The main screen of eduViz. The top panel allows side-by-side exploration

of grades based on Date, Assignment, and Subject. Information can be filtered, and

distinct views can be chosen so that the user can compare grades as desired. The bottom

panel allows grade assignment using the partition slider shown on the bottom left. The

resulting grades are shown in the scatterplot (bottom left) and histogram (bottom right)

[Friedler et al., 2008]

understand information quickly, pinpoint emerging trends, and identify

relationships and patterns.

Some of the previous work in EDM also uses visualization to understand

student grades and factors which affect it. The purpose of such visualization tools

is also to identify scope for improvements in existing teaching methodologies.

Friedler et al. propose a tool called eduViz that enables teachers to explore grade

patterns to identify individual needs and promote fairer student assessment.
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Teachers can use eduViz to see the trajectory of student scores and compare the

scores relative to the entire class for specific course events [Friedler et al., 2008].

This tool also helps them gauge areas needing focus and improvement.

Additionally, Friedler et al. use eduViz as an exploratory tool to provide a grade

assignment interface for teachers. Teachers can use this to see the number of

students assigned to each grade range using a scatter plot and histogram in a

multi-coordinated view [Friedler et al., 2008]. Friedler et al. also discuss the

effectiveness of the tool eduViz compared to existing visualization techniques such

as Blackboard, Microsoft Excel, and WebCT. They further explain how eduViz

solves some of the problems users generally face using Excel, Blackboard and

WebCT [Friedler et al., 2008]. There are several shortcomings of eduViz that we

intend to address through our visualization tool. One of the major shortcomings of

eduViz is that it focusses on just one student at a time and thereby, cannot be

simultaneously used by viewers to view the entire class grades at once. It also does

not give an overview of the entire classroom so that the user can look at the

overall trends in the performance. Since eduViz is a multiple coordinated view

panel, it requires the users to coordinate two different panels to understand

relations of causality and correlation.

Most of the visualization techniques employed in research are limited to

existing and standard visualization techniques such as line charts, bar charts,

scatter plots and pie charts. However, there is research that uses novel

visualization techniques for the field of EDM. Kay et al. in their seminal work

introduce several novel visualization techniques that help users understand the

67



Figure 5.2: Activity Radar for representing individual contribution within a team for

SVN and Wiki [Kay et al., 2006]

effect of group activity collected during a semester-long software development

project course [Kay et al., 2006]. They use this visualization to answer five

significant questions about team leadership, mutual performance monitoring,

backup behavior, adaptability, and team orientation. Kay et al. have used an

activity radar, as seen in Figure 5.2, to indicate the individual contribution of

members within a team according to their contribution to SVN and Wiki Pages. A

colored dot indicates each of the individuals within a group, and his or her

contribution to the project is proportional to how close he or she lies to the center

of the circle. The circle itself has two tints: light and dark tint. The separation of

these tints indicates the average contribution of the members of the group. The

dark tint indicates an above average level contribution whereas the light tint

indicates a below average contribution. This kind of representation of individual

components within a group is in line with one of the goals we have for representing
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time series clusters, where we would like our visualization to represent the

distribution of points within a cluster. However, we would also like to view

additional characteristics such as median, interquartile ranges, minimum and

maximum to be able to view the tightness of the cluster.

5.2.1 Effect of Help-Seeking Behavior Data on Student Grades

In this case study, we propose a visualization method to look at how

help-seeking behavior, in particular attending office hours, impacts student grades.

We analyze the office hours and performance time series data for the introductory

course CMSC 201 during the term Spring 2017 and Fall 2017. We examine the

data to understand if there exist any patterns or trends between these two distinct

time series. We use this visualization method as an exploratory analysis tool to

understand how events in the office hour data correlate with the performance of

the students in the Spring semester.

There has been significant research on understanding student performance in

the recent years. Education data mining (EDM) is an area of data mining that

focusses on understanding education data to understand how the quality of

education can be improved. EDM allows teachers, parents, and policymakers to

improve the quality of education by understanding teaching techniques, course

planning, resource allocations and student grades. It uses methods and tools from

the broader field of data mining for detecting patterns in extensive collections of

educational data. Pattern detection in such datasets would have been otherwise
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impossible because of the enormous volume of data that exist in the educational

domain [Heeren and Fagen, 2015].

5.2.2 Help-seeking behavior Background and Previous Work

Figure 5.3: Comparison of frequent and infrequent attendees for office hours

[Heeren and Fagen, 2015]

Nadler defines help-seeking behavior as an activity consisting of three

components: a person in need of help, a source of help, and a specific need for help

[Nadler, 2015]. In an educational setting, the person in need of help is the student,

the source of the help is the teaching assistants and instructors, and the help

sought could be assistance needed for solving assignments or concept related help.

Some of the previous work in understanding the effectiveness of office hours deals

with understanding how the most frequent users (twenty percent of enrollment) of

office hours perform in comparison to the remainder of the class for programming

assignments and exams. It uses data visualization as a method to explain its

findings compellingly such as a bar chart matrix as seen in Figure 5.3 to provide a

comparison between the frequent and infrequent users of office hours. They find
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that students visiting office hours frequently perform better than their infrequent

counterparts for programming assignments, but they perform the same in exams.

This finding is explained by the fact that the office hours generally focus on the

programming assignments more than on exams.[Heeren and Fagen, 2015] as seen

in Figure 5.3.

5.3 Data Ingestion

The student grade data and office hour data for the introductory course CMSC

201 for term Spring 2017 and Fall 2017 is available in two separate CSV files. In

another CSV file, there are various course events listed according to their date of

occurrence and their weight in the overall grade.

The Spring 2017 student grade file contains the grades data for 274 students

whereas the Fall 2017 student grade file contains the grades for 491 students collected

over a span of three and a half months. This file contains the scores that students

have scored for various course events in the semester such as Homeworks, Labs,

Projects, Surveys and Exams. The time series data in the grades file is in the form

of a irregularly spaced time series data.

The help-seeking files contains the records of students and their attendance at

the office hour for various topics throughout the semester. This file contains fields

such as student id, date attended, topic needed help with, name of the TA who

assisted, notes, waiting time and duration of attendance.

We ingest the data from this file into the visualization framework with the
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use of a D3 API called d3.csv() function which contains a path parameter to the

CSV file. It transforms the entire CSV file into an array of objects which undergoes

preprocessing to be available for creating visualization elements in the tool.

5.4 Data Preprocessing

The first step in preprocessing the student grade data is to transform the

individual grades into percentage scores. We compute the new scores such that

they consider the performance of all the past course events. The intuition behind

this conversion is to understand the overall percentage score of a student as the

semester progresses. As a result, the final score achieved due to this conversion is

the same as the final score achieved by the student in the semester.

To obtain a student’s performance in the course at a point in time, the entire

data has to be changed from an irregularly spaced time series to a regularly spaced

one. Doing this allows us to have better accuracy while using the K-means clustering

algorithm to create the clusters. It also helps to represent the student performance

on a day to day basis. This conversion of irregularly spaced time series to regularly

spaced time series is the second step in preprocessing the data.

The office hour data is also preprocessed to group all the events based on

dates and duration. This preprocessing is essential since most of the students have

attended the office hours for different durations. Grouping them by a duration

interval can help the users understand the effectiveness of attending different office

hour intervals. It can help users understand if attending office hours for longer
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duration has any effects on a student’s performance compared to attending office

hours for shorter durations. Also, the office hour attendance data is not continuous

and regularly spaced for the entire semester. Hence, we need to create additional

data points for converting it into regularly spaced time series data. We need to

convert it into regular spaced data so that the student performance which is

continuous and regularly spaced can be correlated with this data.

5.5 Deciding the number of clusters

In this section, we discuss two methods used to determine the number of

clusters for the k-means algorithm.

The first method employed is the elbow method

[Kodinariya and Makwana, 2013]. We plot the sum of squared errors vs. the

number of clusters for five different distance metrics :

1. Euclidean distance

2. DTW distance

3. Manhattan distance

4. Minkowski distance

5. Chebyshev distance

We can see the plots for each distance metric in Figure 5.4. As we can see

in the elbow graphs in these figures, the elbow joints for all the distance metrics

73



Figure 5.4: Sum of squared errors vs cluster size for different distance metrics - Euclidean,

DTW, Manhattan, Minkowski, and Chebyshev
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except Euclidean distance are visible. For Euclidean distance, the elbow joint is

present at k=3. However, this value of k may not be a good choice if we would like

to understand the effects of office hours on student grades since there will be only

so few student grade clusters for us to base our results. If the number of clusters

is too small, then the findings made using this tool will be very general. Another

disadvantage of choosing so few clusters is that the smaller the choice of clusters

more is the abstraction of the unique data points. If this distinct unique points

are abstracted, then the user can no longer understand interesting aspects such as

anomalies or patterns in the data.

We need to find a value which allows us to identify many distinct patterns in

the data. Choosing a higher value for the number of clusters is still not a

disadvantage since the sum of square error decreases with the increase in clusters.

However, this value has to be small enough not to make the visualization

cluttered. This can be decided visually by choosing different values of clusters and

viewing the cluster distribution. Depending on the visibility of centroids and their

distribution, a suitable value for k can be chosen.

Let us look at the effect of increasing the clusters in viewing the student grades

using the DTW as the distance metric in Figure 5.5. We see that with the increase

in the number of clusters, more distinct patterns can be viewed. However, in the

case of k=20, we can see that the overall number of visual elements start to become

cluttered. In the visualization for k=20, we can see that many of the clusters start

overlapping on each other thereby making it difficult to observe their trajectory

through time.
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Figure 5.5: Student grade clusters for different values of k = 3, 10 and 20 respectively

with DTW distance
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The number of clusters chosen for this case study was ten clusters. The reason

we chose ten clusters was that the minimum square error was sufficiently less for

ten clusters. Also, the ten clusters can adequately represent the performance of the

class for course CMSC 201 during the term Spring 2017 and Fall 2017 respectively

without abstracting many details.

5.6 Shape Based Clustering of Time Series Data

Figure 5.6: Student grade data for CMSC 201 Spring 2017 to unclustered format

Figure 5.7: Student grade data for CMSC 201 Spring 2017 clustered based on shape

Figure 5.6 and Figure 5.8 represents the student grade data for the Spring

2017 and Fall 2017 respectively in its unclustered format. Here the x-axis represents

the time, and the y-axis represents the score of the student as a percentage. A

single colored line in this visualization represents a student performance through the
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Figure 5.8: Student grade data for CMSC 201 Fall 2017 to unclustered format

Figure 5.9: Student grade data for CMSC 201 Fall 2017 clustered based on shape

semester. This visualization fails to give any intuition on the trends and patterns

in the scores of the students. It is highly cluttered and is completely unusable as

an exploratory tool. It fails to answer the visualization goals we began with while

developing this visualization method. Despite its cluttered format, we can observe

that there are many lines which have similar trajectories through time. We can

cluster these similar trajectory lines by clustering this time series data by shape.

The clustering algorithm used for this case study was a standard K-means

algorithm with ten clusters for Spring 2017 in Figure 5.7 and hierarchical

clustering for Fall 2017 in Figure 5.9. We chose two different clustering techniques

for the Spring and Fall 2017 time series data so that we could see the difference in

clusters created by these two different clustering algorithms. We will further see

the distribution of values within these clusters in Section 5.10 Statistical
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Attributes of Time series data.

5.7 Behavior-based clustering of Time Series Data

Figure 5.10: Clustered view of office hour data for Spring 2017 when grouped by behavior

Figure 5.11: Clustered view of office hour data for Fall 2017 when grouped by behavior

Clustering the student grade data by shape has given us distinct clusters

such that these clusters effectively encompass the performance of the entire class.

However, the office hour data for these students are still unclustered.

To be able to correlate the student grade data with their corresponding office

hour data, we need to cluster the office hour data by the clusters created by grouping

similar shaped student grades together. Therefore, clustering the office hour data

based on their grade clusters reduces the overall visual elements in the visualization
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as seen in Figure 5.10 and 5.11 for the Spring 2017 and Fall 2017 semesters. In

this figure, the x-axis represents time, and the y-axis represents the time spent by

a student for office hours in minutes.

The Figure 5.11 and 5.10 contains three details about the office hour behavior

of a cluster. The dashed lines represents the minimum and maximum time attended

by a cluster and the solid line represents the average time attended by a cluster.

5.8 Statistical Attributes of Time Series Data

One of the key reasons for creating an entire novel visualization technique

to represent time series clusters was to assess the effectiveness of the clustering

algorithm. We can view the distribution within the clusters to understand if the

clustering algorithm was valid or not. In this case study, we replace the original 274

Spring 2017 data points and 491 Fall 2017 with ten clusters. Since the data points

within the cluster have been highly abstracted, the unique and distinctive features

of these data points have been missed out on in this clustered visualization. To get

a peek into how the data within a cluster is distributed, we have supplemented the

original student grade data with the distribution of data within a cluster in the form

of time series data. This representation technique uses elements of a box plot and

overlays them on the time series line chart. This form of statistical representation

allows the user to look at the performance of the students.

The original line series representing the clusters characterizes the geometric

mean of all the data points within the cluster. We would like the ability to view
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Figure 5.12: Visualizing the distribution within student grade clusters for Spring 2017

Figure 5.13: Visualizing the distribution within student grade clusters for Fall 2017

additional statistical characteristics for a cluster. As we can see in Figure 5.12 for

Spring 2017 and Figure 5.13 for Fall 2017, we have represented the distribution of

the cluster at a particular time with a stacked bar chart. This bar chart functions

like a box plot which provides us with insights on the maximum, minimum, median,

upper quartiles, lower quartiles, and outliers. These overlaid stacked bar charts

provide additional answers to questions such as what the best scores within the

cluster were, the worst scores, median scores and understand outliers.

In the Figure 5.12 for Spring 2017 and Figure 5.13 for Fall 2017 clusters, we

can see the data within the highlighted cluster is distributed over time. We can see

that the data begins with high variance initially, but later the variability decreases

and the cluster closely follows the median values of the distribution.
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5.9 Results

Figure 5.14: Visualizing the office hour and student grade time series data of the best

performing cluster for Spring 2017

We have summarized the overall performance of the class by these ten clusters

in Figure 5.7 for Spring 2017 and 5.9 for Fall 2017. The grade performance of the

clusters can be seen in the lower half of the visualization with the corresponding

office hour data represented on the upper half.

For the Spring 2017 semester, the best performing group is represented in blue

in Figure 5.14, and the worst performing group is represented in teal in Figure 5.15.

Looking at all the different groups of students, we can say that the better performing

group attended office hours more than the worse performing group. In the case of

the best performing group, they attended office hours more frequently and for longer

durations as seen in Figure 5.14 compared to the worst performing group which did
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Figure 5.15: Visualizing the office hour and student grade time series data of the worst

performing cluster for Spring 2017

Figure 5.16: Visualizing one of the best performing clusters in Fall 2017 dataset
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Figure 5.17: Visualizing one of the worst performing clusters in Fall 2017 dataset

not attend office hour at all in Figure 5.15.

Similarly for the Fall 2017 data, we can see that the best performing student

clusters in blue attend office hours more frequently and reasonably regularly as seen

in Figure 5.16. On the other hand, the lowest performing group in yellow for the

Fall 2017 semester do not attend any office hours as can be seen in 5.17.

In both the semesters, we can see that as the performance of the students

decreases, the office hour attendance frequency and duration also decreases. This

visualization helps to answer the same questions that earlier required multiple

coordinated views. It can be observed that the better-performing groups of

student attend office hours more in comparison to the worse performing groups.

The intensity or the duration of attendance of office hours in the better-performing

groups are similar and also heavily localized around specific dates.
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Figure 5.18: Visualizing the office hour data integrated with the grade clustered data

for only those students who attended office hours for Spring 2017

Figure 5.19: Visualizing the office hour data integrated with the grade clustered data

for only those students who did not attend office hours for Spring 2017

Figure 5.20: Visualizing the office hour data integrated with the grade clustered data

for only those students who did attend office hours for Fall 2017

If we compare only students who sought help in the form of office hours, we can

view their integrated grade-office hour visualization in Figure 5.18 for the Spring

2017 semester and in Figure 5.20 for Fall 2017 semester. In these figure, we can
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Figure 5.21: Visualizing the office hour data integrated with the grade clustered data

for only those students who did not attend office hours for Fall 2017

observe that, of the students who attend office hours, the cluster of students who

had performed the worst attended minimal office hours. And student clusters who

performed well attended office hours much more frequently and usually well before

the due dates.

However, we cannot say the same for all the students who did not attend

office hours. We can see the office-grade visualization for students who did not

attend any office hours for Spring 2017 in Figure 5.19 and for Fall 2017 in Figure

5.21. As expected, since these groups of students did not attend any office hours,

there are no circular overlays or bubbles for office hour intensity over the grade

lines. In this visualization, we can see that there do exist students who, despite

not seeking any help, performed at par with students who attended office hours. It

would be interesting to obtain other factors that impact the grades of students and

view them in an integrated format to see the causal relationship that exists between

these factors.

In this tool, we also provide an additional panel on the left-hand side that

gives the user additional information about their selection of cluster. The panel can
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Figure 5.22: A panel that allows user to view details about clusters selected by user

Figure 5.23: A sub panel that allows users to upload the grade, office hours and calendar

files. It also allows the instructor to view all students, students who only attended office

hours and students who did not attend any office hours

be seen in 5.22. This panel consists of four sub-panels.

The first sub-panel as seen in Figure 5.23 allows the users to upload the files

required to render the visualization. The three required files are the grades file, the

office hour attendance file and the calendar file. In addition, this section also allows

the user to filter the student by their attendance type. There are three types of
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attendance - all students, only students who attended office hours and only students

who missed office hours. Clicking on the ”Render” button allows the data analysis

and processing to be proceeded followed by the rendition of the visualization.

Figure 5.24: A sub panel that allows users to choose different modes to explore the data.

The four supported modes are none, numbers mode, correlation mode and distribution

mode

Figure 5.25: Number mode ON in the visualization panel

The second sub-panel as seen in Figure 5.24 allows the users to choose the

type of view for the visualization. There are four types of view available for the
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user. The first is to disable all the other views marked by ”None”. The second view

is called the ”Highlight Numbers” view which allows the user to view the data with

actual values in the graph. This can be seen in detail in Figure 5.25. The third view

is the ”Correlation” view which creates the integrated line-bubble view as seen in

Figure 5.9. The last view is ”Distribution” View which helps the users understand

the distribution within a cluster as seen in Figure 5.13.

Since this tool is built for exploratory purposes, we add another feature ”Event

Pillars” into this tool that gives the users some perspective on the events that occur

during the semester. The user can enable/disable course event pillars that identify

significant events that occur during the course. This feature can be seen in Figure

5.9 where the vertical lines in the visualization marked by the events occurring is

represented.

Figure 5.26: A sub panel that allows users to view details about the selected cluster

The third sub-panel as seen in Figure 5.26 allows the users to see the cluster

name and cluster size along with its assigned color. The entry corresponding to the

selected cluster gets highlighted to inform the user of their choice and bring focus

to the cluster detail.
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Figure 5.27: A sub panel that allows users to compare the office hours attendance of

the selected cluster with the class average

The fourth sub-panel as seen in Figure 5.27 allows the user to perform a

comparative analysis of the selected cluster with the class average. The rationale

behind this pane is to allow users to compare the selected cluster with the other

clusters. The elements in this panel indicate the event and a comparison of the

number of minutes attended by this cluster with the class average. When the number

of minutes attended by a cluster is more than the class average, it is highlighted in

green with the difference following the event name measured in minutes. When the

number of minutes attended by a cluster is less than the class average, the element

is highlighted in red. If the selected cluster contains students who have not attended

any office hours, then the event name is followed by N/A and is highlighted in grey.

In addition to the existing capabilities, a user can now click an office hour
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Figure 5.28: Visualizing the details of the selected office hour circle

circle to view additional details about the event as can be seen in Figure 5.28. In

this figure, the user selects an office circle highlighted by thick black boundaries.

On clicking this circle, the user gets additional details displayed on the Office Hour

Detail panel stating the date of visit, the average number of minutes spent in that

session and the reasons for visiting the office hour.

The layout of this tool is such that it requires the users to view both the data

points in parallel and assume that the events they look at each of the two different

visualizations correspond to each other. This form of view is called a multiple

coordinated view. This visualization method depends heavily on the ability of a user

to coordinate and view the different visualizations to see any form of correlation.

Using this tool, we can make the following observations:

1. Students attend more office hours only before a major course event than any

concept related event. In Figure 5.7, we can see that for all the groups for the

Spring 2017 semester, the correlation events are present more on the days of

the events compared to any time in between the events. Similarly, in Figure
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5.9, we can see that for all the groups for the Fall 2017 semester, the correlation

events are present more on the days of the events compared to any time in

between the events.

2. Within students who attend office hours, the higher performing groups attend

office hours frequently and for larger durations. In Figure 5.14 for Spring

2017 and 5.16 for Fall 2017, we can see that for the higher performing groups

the attendance events are more frequent and the radius of the circle generally

decreases as the performance transitions from top to bottom.

3. Students who perform poorly attend very little or no office hours and in less

frequency as can be seen in Figure 5.15 for Spring 2017 and 5.17 for Fall 2017.

4. Students who performed poorly attended little or no office hours, but the

opposite is not true. Some of the students who did not attend any office hours

performed at par with the students who attended office hours as can be seen

in Figure 5.19 for Spring 2017 and Figure 5.21 for Fall 2017.

5. There is a similarity in the number of office hours attended for some course

events such as projects, homework, and labs indicating the same level of

difficulty as can be seen in Figure 5.7 for Spring 2017 and Figure 5.9 for Fall

2017.
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Chapter 6

Future Work

In this section, we will discuss two main areas of work - (1) overcoming

limitations to specific clustering techniques and types of time series data, (2)

handling cases where the number of clusters is very few or very high.

Several limitations exist in the current visualization when it comes to

flexibility with the clustering technique and with the type of time series data that

it can visualize. The current visualization technique works effectively for some

hard clustering algorithms such as k-means and hierarchical clustering. However,

for other algorithms such as self-organizing maps (SOM) or soft clustering

algorithms such as fuzzy-c means, this visualization may not work. The current

visualization works by assigning a data point to one cluster only. But in case of

soft clustering algorithm, the data points can belong to more than one cluster.

Future work for this limitation could include integrating different views for

different clustering algorithms.

This visualization method also suffers from the limitations of the clustering

algorithm used for clustering time series data. Clustering algorithms are ineffective

in clustering irregularly spaced time series data and time series with different

lengths. Even though the visualization can display the clusters produced as a

result of clustering irregularly time series data, the clusters may not be a good
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summarization of the underlying data. For the use cases for this visualization tool,

we have converted the irregularly spaced time series to regularly spaced time series.

Though, regularizing time series data has its limitations such as dilution of data

due to unnecessary intermediate data points and loss of information stored in the

variable durations between data points. Future work could consist of using data

processing and clustering mechanisms used for analyzing irregularly spaced data.

The correlation visualization method in this research is limited to displaying

correlation in events that occur in parallel in the same time domain. The

visualization fails to use the superposition of the circles on the line charts for time

series with different time domains. Also, this visualization technique enables

viewing the effects of only one time series on another. In real-world applications, it

is highly possible that the effect of causality in time series data is not just due to

one single time series data but due to multiple different time series data, static

values and even due to the past values of the original time series data. The current

visualization needs to be extended to be able to show such relationships.

Furthermore, the visualization of the clusters is highly dependent on the

choice for the number of clusters. For a poor choice of the number of clusters, the

visualization may not summarize the data adequately. As a result, the clusters

produced may not be tight. In case we choose an exceedingly high number of

clusters, our visualization will become cluttered, which fails the purpose of

clustering the original dataset. In future work, we could probably integrate

visualizations of elbow, silhouette and gap statistic methods that complement the

visualization by recommending good values for the number of clusters in the
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k-means algorithm. It could also integrate a hierarchical dendrogram for

hierarchical clustering where the users can cut the dendrogram at a particular level

and view the number of clusters corresponding to this choice. We could also

integrate clustering approaches that avoid choosing the number of clusters

altogether such as DBSCAN [Liao, 2005] and YADING [Ding et al., 2015].

In the case of the k-means algorithm, we can also run into the issue of choosing

bad initial centroids. As a result, the visualization may end up having clusters which

do not contain any data from the data set and with random values along the time

domain. The presence of such empty clusters may create unnecessary clutter in

the visualization. Future works could include using algorithms such as k-means++

which gives a good choice of initial seeds for the k-means algorithm. The only

drawback to implementing this algorithm would be that finding good initial seeds

may take additional time.

Lastly, this visualization only answers questions such as if this clustering

technique was effective or if the clusters produced were tight, but it cannot answer

questions of what is a suitable clustering algorithm for this data. Also, it does not

suggest a good choice for the number of clusters for a dataset.
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Chapter 7

Conclusion

In this research, we propose a visualization method that allows users to view

the clusters produced as a result of different clustering techniques. There are already

visualization methods to display k-means clustering and hierarchical clustering on

static data as seen in Figure 7.1 but the previous work in observing time series

clusters are highly application specific. Through this research, we have suggested a

technique to visualize a time series cluster for any general time series data. Also,

through this research, we also propose a novel method of representing the correlation

between simultaneously occurring time series data.

Figure 7.1: Concept diagram of k-means clustering [Zhang et al., 2017]

To show the usefulness of this technique, we discuss two applications for this

visualization technique - with weather data and student performance data. Through

the use of the correlation, we see the inverse correlation between temperature and

pressure time series data for 18 cities. Using the clustering and correlation method,
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we view the relationship between office hour attendance and student performance

data for the introductory course CMSC 201 over a span of two semesters.

The introduction of this visualization method allows users to view the

effectiveness of different clustering techniques and the choice for the number of

clusters. This technique enables users to understand whether a clustering

technique applied on a dataset produces tight clusters. It gives users an insight

into the distribution of the data within a cluster. Furthermore, the ability to view

correlation among time series dataset enables users to look at relationships of

causality or periodicity easily.

However, the clustering and correlation technique still has several shortcomings

that we have discussed in the future work. The visualization is developed only for

representing the result of clustering uniformly spaced time series data. Time series

data for several applications are sparse and irregularly sampled time series cannot

be clustered effectively to be able to be represented visually.

While discussing the use cases for this visualization, we have assumed that

the number of clusters chosen for representing the entire dataset is sufficient to

summarize the data effectively. We also assume that the number of clusters that

effectively summarizes the data does not clutter the visualization. In some cases,

the visualization used to represent the clusters is only as good as the clustering

technique used.

We developed a straightforward approach to visualize time series clusters

created as a result of different clustering algorithms and different distance metrics.

The visualization aims at introducing a human element in verifying the results of
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the clustering algorithm, specifically, for series data. Furthermore, the choice for

the number of clusters for both of the applications was tailored to provide a

balance between enough detail about the dataset and small enough not to clutter

the visualization.

To demonstrate the effectiveness of the approach, we applied the techniques

to two different applications: weather and student performance - office hour data.

Using this approach we were able to summarize the temperature data for 18 cities

into five clusters and explain the correlation of these clusters with the humidity

data cluster. For the student performance - office hour approach, we were able to

view the general trends in student performance for CMSC 201. We also observed

how office hours attendance might contribute towards the performance of these

student clusters. We create a highly functional panel that in addition to the

visualization technique, helps the user focus on particular clusters, compare

clusters and understand the correlation patterns with the office hour data with

ease. The visualization tool consisting of the novel visualization technique and

panel was built to answer the visualization objectives. This visualization tool can

also help viewers view any form of correlation and clustering in a uniform spaced

time series data.

Overall, this research has provided a novel way to visualize time series clusters

and correlation over time using a superposition of line charts with box plots or with

circles in a single visualization.
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