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Abstract The Stokes-Brinkman equations model fluid flow
in highly heterogeneous porous media. In this paper, we con-
sider the numerical solution of the Stokes-Brinkman equa-
tions with stochastic permeabilities, where the permeabilities
in subdomains are assumed to be independent and uniformly
distributed within a known interval. We employ a truncated
anchored ANOVA decomposition alongside stochastic col-
location to estimate the moments of the velocity and pres-
sure solutions. Through an adaptive procedure selecting only
the most important ANOVA directions, we reduce the num-
ber of collocation points needed for accurate estimation of
the statistical moments. However, for even modest stochas-
tic dimensions, the number of collocation points remains too
large to perform high-fidelity solves at each point. We use re-
duced basis methods to alleviate the computational burden by
approximating the expensive high-fidelity solves with inex-
pensive approximate solutions on a low-dimensional space.
We furthermore develop and analyze rigorous a posteriori er-
ror estimates for the reduced basis approximation. We apply
these methods to 2D problems considering both isotropic and
anisotropic permeabilities.
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1 Introduction

The simulation of flow in porous media has numerous
applications, to include reservoir simulation, nuclear waste
disposal, and carbon dioxide sequestration. Such simulation
is challenging for a variety of reasons. First, the domains tend
to be fairly irregular, which complicates the model geometry.
Second, the geologic formations consist of many varying
materials, with different geologic properties. Third, there are
often fractures and vugs within the domain that alter the
effective permeabilities. The standard approach to modeling
these types of problems is to couple Darcy’s law and the
Stokes equations and enforce the Beavers-Joseph-Saffman
conditions along the interface [1,4,35]. The free-flow regions
(fractures, vugs) are modeled using Stokes flow, whereas
the porous region is modeled using Darcy’s law [12,36].
However, the two types of domains are not well-separated in
reservoirs, and it may be difficult to determine the appropriate
conditions to enforce along the interface. We model flow
in porous media using the Stokes-Brinkman equations [3,8,
19,26,31], which combine the Stokes equations and Darcy’s
law into a single system of equations. The Stokes-Brinkman
equations reduce to Stokes or Darcy flow depending upon
the coefficients and were suggested as a replacement for the
coupled Stokes-Darcy equations in [31]. By careful selection
of coefficients, the equations allow modeling of free-flow and
porous domains together, thereby resolving issues along the
interface.

In this paper, we consider the case where the exact
permeabilities are unknown but are instead specified by
a known probability distribution. The first step in many
methods to solve such stochastic PDEs is to parametrize
the distribution by a finite number of parameters. In some
instances, such as the case studied in this paper, such
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a parametrization arises naturally from a partitioning of
the domain into a finite number of subdomains. In other
instances, a truncated Karhuen-Loève expansion [18,30] may
be used to obtain such a finite parametrization. Once the
stochastic space has been parametrized, statistical moments
may be approximated through stochastic collocation [37] in
which deterministic solves are performed at carefully selected
points.

The straightforward stochastic collocation method suffers
from the curse of dimensionality–complexity grows exponen-
tially with the number of parameters. To reduce the compu-
tational complexity of collocation methods, one may utilize
Smolyak sparse grid [29] or an ANOVA decomposition [9,15,
16]. We consider the latter in this paper. By using a truncated
ANOVA decomposition, we may resolve the curse of dimen-
sionality by decomposing the intractable high-dimensional
problem into a set of tractable problems of low stochastic di-
mension which we solve by stochastic collocation. We obtain
further improvements by adaptively selecting the ANOVA
terms [28,39].

Whereas a truncated ANOVA decomposition or Smolyak
sparse grid significantly reduces the number of collocation
points, the number of remaining collocation points might
still be computationally prohibitive if the cost of solving
at a single collocation point is high. Such is the case with
the discrete Stokes-Brinkman systems, which are highly ill-
conditioned due to the heterogeneity in permeabilities. Re-
duced basis methods [6,20,21,32] alleviate this computa-
tional burden by approximating the manifold of solutions by
a low-dimensional linear space. An expensive offline step is
first performed to generate the reduced basis. However, after
the reduced basis is built, all subsequent solves at collocation
points are replaced by cheap low-dimensional computations
on the reduced basis.

Reduced basis methods in conjunction with ANOVA for
parametric partial differential equations were first studied
in [22] where a three step RB-ANOVA-RB method was
suggested for solving high-dimensional problems. The first
two steps (RB-ANOVA) are similar to the idea presented
in this paper in which a reduced basis is built and then
used to compute the ANOVA expansion. However, in our
work, the construction of the reduced basis and the ANOVA
expansion occur simultaneously rather than as separate steps.
Furthermore, in [22], only a first-level ANOVA expansion is
considered for the purpose of identifying parameters which
have low sensitivity and can be given fixed values, thereby
reducing the overall parametric dimension for the reduced
basis solve in the final (RB) step. Instead, we adaptively select
the ANOVA terms to allow higher-level terms at minimal
cost. Key to the success of our method is the use of anchored
ANOVA [28,38,39,40,41] which allows us to replace the
high-dimensional integrals of the ANOVA expansion with
cheaper low-dimensional integrals. In this way, our work
is more closely aligned with the work in [11,27] where
reduced basis methods are used in conjunction with anchored

ANOVA and adaptive selection of ANOVA terms to solve
high-dimensional stochastic partial differential equations.

In this paper, we apply these methods to the stochastic
Stokes-Brinkman problem. As a saddle-point problem, the
Stokes-Brinkman equations introduce additional complexity
to the reduced basis methods because the reduced basis
systems must be inf-sup stable. To guarantee inf-sup stability,
we follow the approach of [33], which considers the simpler
Stokes case. We also devise rigorous a posteriori error
estimates based upon the Brezzi stability theory, following
the approach of [17]. These a posteriori error estimates enable
us to be confident in the accuracy of the reduced basis
approximations and are useful in building the reduced basis.

This paper is organized as follows. In Section 2,
we introduce the Stokes-Brinkman equations, present their
discretization using mixed finite elements, and describe
the parametrization of the stochastic permeabilities. In
Section 3, we discuss the ANOVA decomposition and the
adaptive selection of terms. An overview of reduced basis
methods is presented in Section 4, and the rigorous a
posteriori error estimates upon which these methods rely
are presented in Section 5. Finally, in Section 6, we present
numerical experiments demonstrating the effectiveness of
these techniques for stochastic Stokes-Brinkman problems,
considering problems with both isotropic and anisotropic
permeabilities.

2 The Stokes-Brinkman Problem and its Discretization

2.1 The Stokes-Brinkman Equations

Let D⊂Rd , d = 2,3, be a connected, open domain with Lips-
chitz boundary ∂D. The Stokes-Brinkman equations [3,8,19,
26,31] model the flow of a viscous fluid in heterogeneous
porous material as

−ν
∗
∆u+νK−1u+∇p = f (1)

∇ ·u = 0, (2)

where ν > 0 is the constant viscosity of the fluid, ν∗ >
0 is an effective viscosity, K is a symmetric positive
definite permeability tensor, u is the velocity, p is the
pressure, and f denotes external forces. In this paper, we
restrict attention to the case where K is a diagonal matrix.
We further require that ν∗ and K−1 are bounded above
on D. Equation (1) is derived from the conservation of
momentum, and equation (2) is derived from the conservation
of mass. They are accompanied by the following Dirichlet and
Neumann boundary conditions

u = uD on ∂DD

ν
∗ ∂u

∂n
− pn = uN on ∂DN ,
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where ∂DD and ∂DN denote the Dirichlet and Neumann
boundaries, respectively, n is the unit outward normal, and ∂u

∂n
is the directional derivative of the velocity in the normal
direction.

The Stokes-Brinkman equations may be understood as
limiting cases of the Stokes equations and Darcy’s law [12,
36]. Indeed, if K� 0 and ν∗ = ν , equation (1) approximates
the Stokes equation −ν∆u + ∇p = f , and, as ν∗ → 0,
it approximates Darcy’s law u = −K

ν
(∇p− f ). Thus, the

Stokes-Brinkman equations provide a single system of
equations to solve in highly heterogeneous porous media. In
general, the choice of ν∗ will depend upon the porosity of
the material. However, for small permeabilities, the diffusive
term ν∗∆u introduces only a small perturbation to Darcy’s
law [26]. In the absence of precise information about the
value of ν∗ in regions of small permeability, it is common
to choose ν∗ = ν , which is the convention we adopt in this
paper. For more details on the choice of ν∗, see [26, pp. 26–
29].

2.2 Finite Element Discretization

We seek a weak solution to equations (1)–(2). Let L2(D)

denote the space of square-integrable functions on D,

L2(D)≡ {q :
∫

D
q2 < ∞},

and H1(D) denote the subspace of L2(D) with weak
derivatives in L2(D),

H1(D)≡ {q ∈ L2(D) :
∂q
∂xi
∈ L2(D), i = 1, . . . ,d}.

The space H1(D)d denotes the space of vector-valued
functions whose d components are each in H1(D). We define
the following spaces for the velocity

H1
E(D)≡ {u ∈ H1(D)d : u = uD on ∂DD}

H1
E0
(D)≡ {u ∈ H1(D)d : u = 0 on ∂DD}.

We choose a fixed w ∈ H1
E(D) and note that any v ∈ H1

E(D)

may be written uniquely as u+w for some u ∈ H1
E0
(D).

We define the bilinear forms

aS(u,v)≡
∫

D
ν
∗
∇u : ∇v, u,v,∈ H1(D)d (3)

aD(u,v)≡
∫

D
u · (K−1v), u,v ∈ H1(D)d (4)

a(u,v)≡ aS(u,v)+aD(u,v), u,v ∈ H1(D)d (5)

b(v,q)≡−
∫

D
q∇ · v, v ∈ H1(D)d ,q ∈ L2(D) (6)

where ∇u : ∇v = ∑
d
i=1 ∇ui ·∇vi. The bilinear forms aS(·, ·)

and aD(·, ·) denote the Stokes and Darcy parts, respectively,
of the bilinear form a(·, ·). We define the linear functionals

`1(v)≡
∫

D
f · v−a(w,v)+

∫
∂DN

uN · v, v ∈ H1
E0
(D), (7)

`2(q)≡−b(w,q), q ∈ L2(D). (8)

The weak formulation of (1)–(2) is then to find u ∈ H1
E0
(D)

and p ∈ L2(D) such that

a(u,v)+b(v, p) = `1(v), ∀v ∈ H1
E0
(D) (9)

b(u,q) = `2(q), ∀q ∈ L2(D). (10)

The full velocity solution with proper Dirichlet boundary
conditions is then u+w.

In the following, we denote the space H1
E0
(D) by V and the

space L2(D) by Q. Furthermore, due to the presence of zero
Dirichlet boundary conditions, we define the V inner product
as (u,v)V ≡

∫
D ∇u : ∇v.

The existence and uniqueness of solutions to (9)–(10) is
a consequence of the Brezzi stability conditions [5,7]. We
state these conditions in Theorem 1, paraphrasing Corollary
4.2.1 of [5] for the case of a symmetric a(·, ·). This theorem
additionally provides stability estimates which we will use to
derive our a posteriori error estimates in Section 5.

Theorem 1 Let V and Q be Hilbert Spaces. Let a : V ×V →
R be a continuous symmetric bilinear form that satisfies the
coercivity condition: there exists an α > 0 such that a(u,u)≥
α‖u‖V for all u ∈ V . Furthermore, let b : V ×Q→ R be a
continuous bilinear form that satisfies the inf-sup condition:
there exists β > 0 such that

inf
q∈Q

sup
v∈V

b(v,q)
‖q‖Q‖v‖V

≥ β . (11)

Then, for any `1 ∈ V ? and `2 ∈ Q?, the saddle-point
system (9)–(10) has a unique solution (u, p) ∈ V ×Q which
satisfies the stability bounds

‖u‖V ≤ 1
α
‖`1‖V ? + 2

β

√
γ

α
‖`2‖Q? (12)

‖p‖Q ≤ 2
β

√
γ

α
‖`1‖V ? + γ

β 2 ‖`2‖Q? (13)

where α and β are the above coercivity and inf-sup constants
and γ > 0 is the continuous constant satisfying a(u,v) ≤
γ‖u‖V‖v‖V for all u,v ∈V .

Coercivity and continuity of (3) and continuity of (6) are
immediately seen to be satisfied as these are the forms used in
the Stokes equations. The fact that K−1 is symmetric positive
definite implies that a(u,u) = aS(u,u) + aD(u,u) > aS(u,u)
and coercivity of (5) immediately follows. Continuity of (5)
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follows as the bilinear forms aS(·, ·) and aD(·, ·) are both
bounded due to boundedness of the viscosities and inverse
permeabilities. The inf-sup condition is more delicate, but the
spaces V and Q above were chosen to satisfy this property [14,
Chapter 3].

Remark 1 In the case where no Neumann boundary condi-
tions are specified, the inf-sup condition (11) fails as b(q,v) =
0 for all v ∈ V where q is constant. In this case, we may de-
fine Q to be the quotient space L2(D)/R in which two func-
tions q1,q2 ∈ L2(D) are identified if they differ by a con-
stant function. By equipping this space with the norm ‖q‖Q =

‖q− 1/|D|
∫

D q‖L2(D), the inf-sup condition is satisfied. This
demonstrates that the pressure solution in this case is unique
up to a constant. In this paper, we will always specify Neu-
mann conditions on a portion of the boundary.

We solve (9)–(10) using the mixed finite element
method [5]. Given conforming finite element spaces Vh ⊂ V
and Qh ⊂ Q, we seek (uh, ph) ∈Vh×Qh such that

a(uh,vh)+b(vh, ph) = `1(vh), ∀vh ∈Vh,

b(uh,qh) = `2(qh), ∀qh ∈ Qh.

By selecting finite element bases for Vh and Qh, we obtain the
discrete saddle-point problem

[
A BT

B 0

][
u
p

]
=

[
f
g

]
, (14)

where A and B are discrete analogs of (5) and (6),
respectively, u and p are the vectors of degrees of freedom
for the velocity and pressure, respectively, and f and g are the
discretizations of the functionals (7) and (8), respectively.

The coercivity and continuity properties are immediately
inherited by the finite element discretization. However, care
must be taken to ensure that inf-sup stability is maintained.
In this paper, we obtain inf-sup stability by using the Q2−
P−1 approximation in which the domain is discretized into
shape-regular quadrilaterals on which the velocity space is
piecewise continuous biquadratic and the pressure space is
piecewise discontinuous linear [14, Chapter 3].

Throughout this paper, we will use the notation MH
to denote the mass matrix for a finite-dimensional Hilbert
space H.

2.3 The Stochastic Stokes-Brinkman Problem

Let (Ω ,Σ ,P) be a complete probability space with sample
space Ω , σ -algebra Σ , and probability measure P . We
assume stochasticity in the permeability tensor K(ω) for ω ∈
Ω . For simplicity, we focus only on stochastic permeability,
although stochastic viscosity, forcing term, or boundary
conditions may be treated in a similar manner.

We assume that ω may be well-approximated by a finite
number of random variables ξ = (ξ1, . . . ,ξM)T with ξm ∈
Γm ≡ [am,bm] and ξ ∈ Γ ≡ ∏

M
m=1 Γm. This may arise, for

example, from a truncated Karhuen-Loève expansion [18,
30] or from a partitioning of the domain into subdomains.
When applying the reduced basis methods discussed in
Section 4, it will be convenient if the parametrization admits
an affine decomposition for the bilinear form (5) and the
linear functional (7) such that

a(u,v;ξ ) =
nA

∑
i=1

θ
A
i (ξ )ai(u,v)

`1(v;ξ ) =

n f

∑
i=1

θ
f

i (ξ ) fi(v),

where {ai}nA
i=1 are parameter-independent bilinear forms,

{ fi}
n f
i=1 are parameter-independent linear functionals, and {θ A

i }
nA
i=1

and {θ f
i }

n f
i=1 are functions mapping the parameter ξ to the co-

efficients of the affine decomposition. We note that the bilin-
ear form (6) and the linear functional (8) are independent of
the permeability and are, therefore, parameter-independent.

Assuming such an affine decomposition, the saddle-point
problem (14) is now parametrized as

[
A(ξ ) BT

B 0

][
u(ξ )
p(ξ )

]
=

[
f(ξ )

g

]
. (15)

The matrix A(ξ ) exhibits an affine decomposition

A(ξ ) =
nA

∑
i=1

θ
A
i (ξ )Ai, (16)

where {Ai}nA
i=1 are discretizations of the parameter-independent

bilinear forms {ai}nA
i=1. Similarly, f(ξ ) exhibits an affine de-

composition

f(ξ ) =
n f

∑
i=1

θ
f

i (ξ )fi, (17)

where {fi}
n f
i=1 are discretizations of the parameter-independent

linear functionals { fi}
n f
i=1. The affine decompositions (16)–

(17) greatly simplify the use of reduced basis methods, as is
discussed in Section 4.

3 Adaptive ANOVA and Stochastic Collocation

In this section, we introduce the ANOVA decomposition [9,
15,16] which is a useful tool for analyzing a multivariate
function. In particular, we utilize a truncated ANOVA
decomposition to approximate the computationally expensive
high-dimensional stochastic problem with a set of cheaper
low-dimensionsal problems. In addition, we adaptively select
the most effective ANOVA terms, following the ideas
presented in [28,39].

4



3.1 ANOVA Decomposition

Let φ(x;ξ ) denote a parametrized function for x ∈D and ξ ∈
Γ . In our application, φ may be either the velocity u or
pressure p. Let I denote the index set {1, . . . ,M}. We will
refer to a subset T ⊆I as a direction. ANOVA decomposes
the function φ into contributions from individual directions T .
More formally, the decomposition has the form

φ(x;ξ ) = ∑
T⊆I

φT (x;ξT ), (18)

where ξT is a restriction of ξ to the coefficients in T and

φT (x;ξT ) =
∫

ΓT ′
φ(x;ξ )dξT ′ − ∑

S⊂T
φS(x;ξS), (19)

with T ′ ⊆ I denoting the complement of T in I and ΓS =

∏m∈S Γm for S⊆I . We define the order of a direction T to be
its cardinality |T |. Thus, the ANOVA decomposition attempts
to decompose φ into the contributions of each individual
direction by removing the contributions from lower-order
subdirections. The ANOVA decomposition of φ is built by
first computing the order-zero term

φ /0(x) =
∫

Γ

φ(x;ξ )dξ ,

then successively computing higher-order terms by first
marginalizing out the unused variables with

∫
ΓT ′

φ(x;ξ )dξT ′

and then removing the computed effects of previous
subdirections with ∑S⊂T φS(x;ξS). While the cost of the full
ANOVA decomposition is prohibitive in high-dimensional
spaces, it may be used to obtain a useful approximation
by truncating the expansion by keeping only the low-order
terms. Thus, a high-dimensional multivariate function may be
approximated through the sum of low-dimensional functions.

The ANOVA decomposition defined by (18)–(19) in-
volves the computation of high-dimensional integrals which
require expensive Monte Carlo computations. An alternative
is anchored ANOVA [28,38,39,40,41] in which an anchor
point c ∈ Γ is carefully chosen and the measure in (19) is re-
placed by the Dirac measure δ (ξ − c). The order-zero term
may then be computed by evaluating φ at the anchor point c:

φ /0(x) = φ(x;c).

Given the order-zero term, we may compute the first-order
terms and then the second-order terms as

φ{i}(x;ξ{i}) = φ(x;c,ξ ,{i})−φ /0(x)

φ{i, j}(x;ξ{i, j}) = φ(x;c,ξ ,{i, j})−φ{i}(x;ξ{i})

−φ{ j}(x;ξ{ j})−φ /0(x).

The notation φ(x;c,ξ ,T ) is to be understood as evaluating φ

at the parameter ξ̂ which takes on the values

ξ̂i =

{
ci i /∈ T
ξi i ∈ T.

Third and higher-order terms may be computed in a similar
fashion.

It was shown in [28] that the mean of ξ often serves as a
good choice of anchor point, and we shall use this choice.

3.2 Stochastic Collocation

We may utilize the ANOVA decomposition to compute
moments of φ . The mean of φ may simply be obtained by
summing the means of the individual terms:

E[φ(x;ξ )] = ∑
T⊆I

E[φT (x;ξT )]. (20)

A property of the standard ANOVA decomposition is the
orthogonality of its terms. Due to this, higher-order moments
such as the variance of φ may also be obtained by
summing the moments of the individual terms. However, the
orthogonality property only holds if the same measure is
used in both the computation of the ANOVA terms and in
the statistical moments. This fails in the case of anchored
ANOVA. We remark that, for a good choice of an anchor
point, the orthogonality may be approximately preserved.
For general choices of anchor points, a method involving
the covariances of individual terms is needed for good
accuracy [34]. That is, we compute the variance by summing
the covariances of all pairs of directions:

E[(φ(x;ξ )−µ)2] = ∑
T,S⊆I

E[(φT (x;ξT )−µT )(φS(x;ξS)−µS)]

where µ denotes the mean (20) and µT denotes the mean
of φT .

To estimate the moments of individual ANOVA terms,
we use stochastic collocation. In stochastic collocation, we
interpolate the stochastic solution by a set of Lagrange
polynomials at collocation points

φ(x;ξ )≈ ∑
ξ (k)∈Θ

φc(x;ξ
(k))L

ξ (k)(ξ )

where Θ ⊂ Γ is the set of collocation points and {L
ξ (k)}

are the Lagrange polynomials. The coefficients φc(x;ξ (k)) are
obtained by function evaluations at specific realizations ξ (k)

of ξ . Thus, stochastic collocation methods reduce solution
of the stochastic problem to a set of deterministic solves at
specific sample points.

5



We select collocation points for each direction T as
follows. For each index i ∈ T , a set Θi of pi points and
associated weights are selected as nodes according to a
quadrature rule on Γi. Then the full set of quadrature points
is obtained by using a tensor product ΘT =

⊗
i∈T Θi. For a

quadrature point ξ̂ =
⊗

i∈T ξ̂i ∈ΘT , the corresponding weight
is the product w(ξ̂ ) = ∏i∈T wi(ξ̂i) where wi(ξ̂i) denotes the
weight of ξ̂i in the quadrature rule for index i. The collocation
means for direction T and for the full function may then be
computed as

Esc[φT (x;ξT )] = ∑
ξ̂∈ΘT

φT (x; ξ̂ )w(ξ̂ )

Esc[φ(x;ξ )] = ∑
T⊆I

E[φT (x;ξT )]. (21)

For a direction S, let φ̃S(x;ξS) = φS(x;ξS)−Esc[φS(x;ξS)].
To compute the covariance of S and T , we need quadrature
points for S∪T , although we need not form these quadrature
points explicitly. We partition S∪T into three disjoint sets: S∩
T , S\T , and T \S. For ξ̂S∩T ∈ΘS∩T , define

ZS\T (ξ̂S∩T ) = ∑
ξ̂S∈ΘS

ξ̂S|S∩T=ξ̂S∩T

wS(ξ̂S)φ̃S(x; ξ̂S).

We may then compute the collocation covariances and
variances as

Esc[φ̃S(x;ξS)φ̃T (x;ξT )] = ∑
ξ̂∈ΘS∩T

1

w(ξ̂ )
ZS\T (ξ̂ )ZT\S(ξ̂ )

Esc[(φ(x;ξ )−µ)2] = ∑
S,T⊆I

Esc[φ̃S(x;ξS)φ̃T (x;ξT )]. (22)

For truncated ANOVA, we replace (21)–(22) with sums over
the used directions.

If a truncated ANOVA decomposition is used to
compute (21)–(22), immediate savings over the full tensor
product collocation are apparent. Assuming each index has
polynomial order p, the full tensor product collocation
requires function evaluations at pM collocation points, which
quickly becomes prohibitive even for moderate M. However,
if an ANOVA decomposition truncated at level ` is used,
then the total number of collocation points is reduced
to ∑

`
l=0
(M

l

)
pl , which is substantially less than pM .

3.3 Adaptive ANOVA

Instead of simply truncating (18) at a specified level, we could
attempt to adaptively select which directions contribute the
most significantly. Such an adaptive scheme was developed

in [28,39]. For each direction T , we can score its contribution
to the mean using

η
A(T ) =

‖Esc[uT ]‖V +‖Esc[pT ]‖Q

‖∑|S|<|T |Esc[uS]‖V +‖∑|S|<|T |Esc[pS]‖Q
. (23)

The form of this indicator was used in [27] when applying
adaptive ANOVA techniques to the Stokes equations due to
the mixed formulation of the model problem. An alternative
indicator which uses the variance rather than the mean may
be used instead. In this paper, we use the mean.

We consider a direction T active if it is included in the
ANOVA decomposition. We consider any active direction T
whose indicator (23) exceeds a given tolerance εA to be
effective. Let Jl denote the set of active directions at level l,
and let J̃l ⊆ Jl denote the set of effective directions at
level l:

J̃l ≡ {T ∈Jl : η
A(T )> ε

A}. (24)

Then we choose the next-level active directions Jl+1 as those
level l + 1 directions T satisfying S ∈ J̃l for every level l
subdirection S of T :

Jl+1 ≡ {T : |T |= l +1 and S ∈ J̃l ∀S⊂ T, |S|= l}. (25)

Thus, we build level l + 1 active directions by considering
only those directions which can be built from effective level l
directions. This heuristic is based upon the idea that, if a
direction T is important, then its subdirections at the previous
level will likely also be important.

4 Reduced Basis Methods

Whereas the anchored ANOVA method reduces the number
of collocation points needed to accurately estimate the
moments, solving (15) at each collocation point may still
be prohibitive. In the context of reduced basis methods,
we refer to solving (15) as a high-fidelity solve. Reduced
basis methods [6,20,21,32] may be used in conjunction with
ANOVA [11,27] to reduce the number of high-fidelity solves.
Suppose that the solutions at the collocation points may be
well-approximated by a low-dimensional space. Significant
computational savings may then be obtained by reducing
the full computation to this low-dimensional space. We seek
spaces Vr ⊂Vh and Qr ⊂Qh of dimensions much smaller than
those of Vh and Qh but for which the solution (ur(ξ ), pr(ξ ))∈
Vr×Qr to the variational problem

a(ur(ξ ),vr;ξ )+b(vr, pr(ξ )) = `1(vr;ξ ), ∀vr ∈Vr, (26)

b(ur(ξ ),qr) = `2(qr), ∀qr ∈ Qr (27)
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accurately approximates the solution (uh(ξ ), ph(ξ )) ∈ Vh ×
Qh to the high-fidelity problem.

Let Vr denote a matrix whose columns form a V -
orthogonal basis for the space Vr, and, similarly, let Qr
denote a matrix whose columns form a Q-orthogonal basis
for the space Qr. Then (26)–(27) is equivalent to solving the
following saddle-point problem as in (15)

[
VT

r A(ξ )Vr VT
r BT Qr

QT
r BVr 0

][
ur(ξ )

pr(ξ )

]
=

[
VT

r f(ξ )
QT

r g

]
. (28)

The approximate solutions in Vh and Qh may then be obtained
as Vrur(ξ ) and Qrpr(ξ ).

Care must be taken to ensure that the reduced basis
problem (26)–(27) is inf-sup stable. Whereas the coercivity
and continuity of a on the reduced basis space follow directly
from the coercivity and continuity of a on the high-fidelity
space, the inf-sup condition (11) is not immediately satisfied.
The condition may be satisfied by properly enriching the
velocity space Vr relative to the pressure space. Let T : Q→V
denote the supremizer operator such that, for a given q ∈
Q, T q satisfies

(T q,v)V = b(v,q) ∀v ∈V. (29)

Then the inf-sup condition is satisfied if, for each q ∈
Qr, T q ∈ Vr [33]. Let {u1

r , . . . ,u
s
r} be a set of s high-fidelity

velocity solutions from which we seek to build the reduced
basis and {p1

r , . . . , ps
r} be the corresponding set of s high-

fidelity pressure solutions. We then obtain an inf-sup stable
approximation by defining

Vr ≡ span
{

u1
r , . . . ,u

s
r,T p1

r , . . . ,T ps
r
}

Qr ≡ span
{

p1
r , . . . , ps

r
}
.

Note that, with this procedure, the dimension of Vr is always
twice that of Qr.

The efficiency of the reduced basis method stems from
the dimension of (28) being significantly smaller than the
dimension of (15). The accuracy relies upon the construction
of rigorous a posteriori error estimates which bound the errors
of the reduced basis solutions in the V and Q norms. These
will be the subject of Section 5. For now, we simply assume
such error estimates are available.

We desire the entire computation on the reduced space
to be independent of the size of the high-fidelity spaces. For
solving (28), this means that the assembly of the saddle-
point system must be done independently of the size of
the high-fidelity problem. For this, we exploit the affine
decomposition (16)–(17) to obtain the reduced basis affine
decompositions

VT
r A(ξ )Vr =

nA

∑
i=1

θ
A
i (ξ )V

T
r AiVr

VT
r f(ξ ) =

n f

∑
i=1

θ
f

i (ξ )V
T
r fi.

Thus, after constructing the reduced basis, we compute and
store the parameter-independent quantities VT

r AiVr, VT
r fi,

QT
r BVr, and QT

r g.

4.1 Constructing the Reduced Basis

We form the reduced basis using a variation of the standard
greedy algorithm [32, Chapter 7] which is summarized in
Algorithm 1. In the standard greedy algorithm, the reduced
basis is formed in a potentially expensive offline step. A
finite training sample set Ξ ⊂ Γ is selected from the space
of parameters such that Ξ is a good representation of the
parameter space. To fit within our full reduced basis ANOVA
algorithm (Algorithm 2), we allow the case where the greedy
training algorithm can extend an existing reduced basis. If
no reduced basis currently exists, a sample point ξ ∈ Ξ

is selected at which a high-fidelity solve is performed to
initialize the reduced basis. For each iteration of training,
reduced basis solves are performed over all points in Ξ

and the a posteriori error estimates are computed for each
reduced basis solution. If all error estimates are below a
prescribed tolerance εRB, then training stops and the current
reduced basis is output. Otherwise, the parameter which
attains the largest error estimate is selected and a high-
fidelity solve is performed at this parameter. The high-
fidelity solution is then added to the reduced basis. This
process repeats until all error estimates are below the desired
tolerance. To ensure inf-sup stability, in addition to adding the
high-fidelity velocity solution to the velocity reduced basis,
we must also add the application of the supremizer (29)
to the corresponding pressure solution. A Gram-Schmidt
orthonormalization procedure should be used to ensure that
the reduced basis matrices remain orthonormal with respect
to the appropriate inner product.

Our variation of the standard greedy algorithm follows
that of [13] for reduced basis collocation in which the
formation of the collocation points and the generation of
the reduced basis are not separated. That is, as we are
building the collocation points at each ANOVA level, we
use those collocation points as our training set Ξ . In [13],
the authors proposed a single sweep through these points by
augmenting the reduced basis whenever a single parameter’s
error estimate exceeds the tolerance. In this paper, however,
we use the standard approach of computing error estimates
over all training points and augmenting the reduced basis
with a high-fidelity solve at the point with the largest error
estimate. We remark that this approach is easily parallelized
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Algorithm 1 Greedy algorithm for generating a reduced basis
using a training set Ξ and a tolerance εRB.
1: if Vr and Qr are uninitialized then
2: choose ξ̂ ∈ Ξ

3: compute high-fidelity solution (15) (u(ξ̂ ),p(ξ̂ ))
4: compute supremizer (29) v(ξ̂ ) = M−1

V BT p(ξ̂ )
5: Vr ←

[
u(ξ̂ ) | v(ξ̂ )

]
6: Qr ←

[
p(ξ̂ )

]
7: end if
8: loop
9: for ξ ∈ Ξ do

10: compute RB solution (28) (ur(ξ ),pr(ξ ))
11: compute a posteriori error estimate (34) ∆r(ξ )
12: end for
13: let ∆ = maxξ∈Ξ ∆r(ξ )

14: if ∆ < εRB then
15: return reduced basis and offline quantities
16: else
17: let ξ̂ = argmaxξ∈Ξ ∆r(ξ )

18: compute high-fidelity solutions (15) (u(ξ̂ ),p(ξ̂ ))
19: compute supremizer (29) v(ξ̂ ) = M−1

V BT p(ξ̂ )
20: Vr ←

[
Vr | u(ξ̂ ) | v(ξ̂ )

]
21: Qr ←

[
Qr | p(ξ̂ )

]
22: end if
23: end loop

as the reduced basis solves and error estimate computations
are embarrassingly parallel. The approach in [13], however,
is better suited for serial computation. The full reduced basis
ANOVA algorithm is summarized in Algorithm 2.

Algorithm 2 Reduced Basis Adaptive ANOVA with initial
level `, maximum level L, reduced basis tolerance εRB, and
ANOVA tolerance εA.
1: compute anchor point c as mean of distribution
2: solve u(c),p(c) of high-fidelity problem (15) at anchor point c
3: compute supremizer (29) v(c) = M−1

V BT p(c)
4: Vr ← [u(c) | v(c)]
5: Qr ← [p(c)]
6: initialize set of active directions J` as all directions of order up to `

7: initialize Ξ0←{c}
8: for l = ` to L do
9: generate all collocation points Ξl for the active directions J`

10: form reduced basis training set Ξ ← Ξl \Ξ0
11: update reduced basis matrices Vr and Qr using training set Ξ and

tolerance εRB (see Algorithm 1)
12: Ξ0← Ξl ∪Ξ0
13: perform reduced basis solves on Ξ0 and compute ANOVA

indicators (23)
14: if l < L then
15: compute effective directions J̃l (24)
16: compute next-level active directions Jl+1 (25)
17: if |Jl+1|= 0 then
18: return reduced basis and ANOVA solutions
19: end if
20: end if
21: end for
22: return reduced basis and ANOVA solutions

5 A Posteriori Error Estimates

Essential for the successful application of reduced basis
methods is the computation of rigorous a posteriori error
estimates. We follow the approach of [17] for saddle-point
problems, which develops residual-based error estimates
based upon the Brezzi stability theory. Let ur(ξ ) ∈ Vr
and pr(ξ )∈Qr denote the reduced basis velocity and pressure
solutions, respectively, for parameter ξ , and let uh(ξ ) ∈ Vh
and ph(ξ )∈Qh denote the high-fidelity velocity and pressure
solutions, respectively. We are interested in bounding the
velocity and pressure errors

eu
r (ξ )≡ uh(ξ )−ur(ξ ) ∈Vh

ep
r (ξ )≡ ph(ξ )− pr(ξ ) ∈ Qh.

We note that these errors are the solution to the Stokes-
Brinkman problem

a(eu
r (ξ ),v;ξ )+b(v,ep

r (ξ )) = r1(v;ξ ), ∀v ∈Vh (30)

b(eu
r (ξ ),q) = r2(q;ξ ), ∀q ∈ Qh (31)

where r1(·;ξ ) ∈ Vh
? and r2(·;ξ ) ∈ Qh

? are the reduced basis
residuals defined by

r1(v;ξ )≡ `1(v;ξ )−a(ur(ξ ),v;ξ )−b(v, pr(ξ )) (32)

r2(q;ξ )≡ `2(q)−b(ur(ξ ),q). (33)

We are interested in tight upper bounds ∆ u
r (ξ ) and ∆

p
r (ξ )

which satisfy

‖eu
r (ξ )‖V ≤ ∆

u
r (ξ )

‖ep
r (ξ )‖Q ≤ ∆

p
r (ξ ).

We may then form an a posteriori error estimate over the
whole solution as

∆r(ξ ) =
√

∆ u
r (ξ )

2 +∆
p
r (ξ )2. (34)

Applying the stability bounds (12)–(13) from Theorem 1
to (30)–(31), we obtain the following upper bounds for the
errors:

‖eu
r (ξ )‖V ≤

1
α(ξ )

‖r1(·;ξ )‖V ? +
2
β

√
γ(ξ )

α(ξ )
‖r2(·;ξ )‖Q?

(35)

‖ep
r (ξ )‖Q ≤

2
β

√
γ(ξ )

α(ξ )
‖r1(·;ξ )‖V ? +

γ(ξ )

β 2 ‖r2(·;ξ )‖Q? ,

(36)

where α(ξ ) is the coercivity constant
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α(ξ )≡ inf
v∈Vh

a(v,v;ξ )

‖v‖2
V

,

γ(ξ ) is the continuity constant

γ(ξ )≡ sup
u,v∈Vh

a(u,v;ξ )

‖u‖V‖v‖V
,

and β is the inf-sup constant

β ≡ inf
q∈Qh

sup
v∈Vh

b(v,q)
‖q‖Q‖v‖V

.

Note that the inf-sup constant β is defined independently
of the parameter ξ . Thus, we only need to solve a single
eigenvalue problem to determine its value over all parameters.
The coercivity α(ξ ) and continuity γ(ξ ) constants are
parameter-dependent so that computing their exact values
would require solving separate eigenvalue problems for
each parameter. To reduce the computational cost, we
instead compute tight bounds in an efficient manner that is
independent of the dimension of Vh. Details of this procedure
are described in Section 5.2.

Using a lower bound αLB(ξ ) ≤ α(ξ ) for the coercivity
constant and an upper bound γUB(ξ ) ≥ γ(ξ ), for the
continuity constant, we may define our error estimates as

∆
u
r (ξ )≡

1
αLB(ξ )

‖r1(·;ξ )‖V ? +
2
β

√
γUB(ξ )

αLB(ξ )
‖r2(·;ξ )‖Q?

(37)

∆
p
r (ξ )≡

2
β

√
γUB(ξ )

αLB(ξ )
‖r1(·;ξ )‖V ? +

γUB(ξ )

β 2 ‖r2(·;ξ )‖Q? .

(38)

Since these are upper bounds for the stability estimates (35)–
(36), we observe that these are true upper bounds for the
reduced basis errors.

5.1 Efficient Computation of the Dual Norm

Computing the error estimates (37)–(38) requires computa-
tion of the dual norms of the residuals. Dual norm computa-
tions are best performed through use of the Riesz representa-
tion. Let RH : H → H? denote the Riesz isomorphism from a
Hilbert space H to its dual defined by 〈RHu,v〉H = (u,v)H for
all u,v∈H. Here, 〈·, ·〉H denotes the duality pairing and (·, ·)H
denotes the inner product. Then, by the Riesz representation
theorem, for any f ∈ H?, we have ‖ f‖H? = ‖R−1

H f‖H . For
finite-dimensional spaces, it is apparent that the operator RH
is represented by the mass matrix for the H-norm. Thus, if f
denotes the vector of coefficients for f ∈ H?, then ‖ f‖2

H? =

fT M−1
H f.

In order for the error estimates to be computed efficiently
during the online phase, we desire the cost to be independent
of the dimension of the finite element spaces Vh and Qh. To
this effect, we utilize the affine decompositions (16)–(17).
The dual norm of the residual (32) is then computed as

‖r1(·;ξ )‖2
V ? =

n f

∑
i=1

n f

∑
j=1

θ
f

i (ξ )θ
f
j (ξ )Ci j

−2

(
n f

∑
i=1

nA

∑
j=1

θ
f

i (ξ )θ
A
j (ξ )Di j

)
ur

−2

(
n f

∑
i=1

θ
f

i (ξ )Ei

)
pr

+uT
r

(
nA

∑
i=1

nA

∑
j=1

θ
A
i (ξ )θ

A
j (ξ )Fi j

)
ur

+2uT
r

(
nA

∑
i=1

θ
A
i (ξ )Gi

)
pr

+pT
r Hpr, (39)

where

Ci j = fT
i M−1

V f j

Di j = fT
i M−1

V A jVr

Ei = fT
i M−1

V BT Qr

Fi j = VT
r AT

i M−1
V A jVr

Gi = VT
r AiM−1

V BT Qr

H = QT
r BM−1

V BT Qr,

and the dual norm of the residual (33) is computed as

‖r2(·;ξ )‖2
Q? = R−2Sur +uT

r Tur

where

R = gT M−1
Q g

S = gT M−1
Q BVr

T = VT
r BT M−1

Q BVr.

The terms Ci j,Di j,Ei,Fi j,Gi,H,R,S,T are all parameter-
independent and can be computed and stored during the
offline phase. Thus, the dual norms for the residuals may be
computed efficiently during the online phase in a cost that is
independent of the dimensions of Vh and Qh.

Remark 2 For moderately large reduced bases, the offline
quantities may consume a significant amount of memory. In
particular, there are n2

A matrices of the form Fi j. If the size of
the velocity reduced basis is N, then each of these matrices
will contain N2 entries, for a storage requirement of n2

AN2
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double-precision floating-point numbers. Nonetheless, the
computation is still independent of the size of the high-
fidelity problem. This, however, should be considered when
evaluating the efficiency of the reduced basis method.

5.2 Efficient Computation of Stability Bounds Using SCM

As previously remarked, we seek efficiently computable
bounds on the coercivity and continuity constants with
cost that is independent of the high-fidelity problem. A
popular method for obtaining such bounds is the Successive
Constraint Method (SCM), first proposed in [23] and
subsequently refined in [10]. We recall here the method as
presented in [10].

For simplicity, we focus on the coercivity constant, since
the method may easily be extended to the continuity case.
Recall that the coercivity constant is the largest α(ξ ) > 0
such that a(u,u;ξ )≥α(ξ )‖u‖V for all u∈V . Using the affine
decomposition of a, we may write

α(ξ ) = inf
u∈V

nA

∑
i=1

θ
A
i (ξ )

ai(u,u)
‖u‖V

. (40)

Defining the set

Y ≡ {y = (y1, . . . ,ynA)
T ∈ RnA :

∃u ∈V 3 yi =
ai(u,u)
‖u‖V

, i = 1, . . . ,nA},

we may express (40) as the minimization problem

α(ξ ) = inf
y∈Y

nA

∑
i=1

θ
A
i (ξ )yi.

We may obtain a lower bound for α(ξ ) by replacing Y with
a set YLB(ξ ) such that Y ⊂ YLB(ξ ). By choosing YLB(ξ )

to be a convex polyhedron, we obtain the following linear
programming problem

α
LB(ξ ) = min

y∈YLB(ξ )

nA

∑
i=1

θ
A
i (ξ )yi.

To define YLB(ξ ), we first note that the box B defined as

B ≡ {y ∈ RnA :

inf
u∈V

ai(u,u)
‖u‖V

≤ yi ≤ sup
u∈V

ai(u,u)
‖u‖V

, i = 1, . . . ,nA}

clearly satisfies Y ⊂ B. Forming B involves the solution
of 2nA eigenvalue problems. Suppose we are given two
sets of parameters–ΞE for which exact coercivity constants
have been computed and ΞP for which lower bounds have
been computed. Then a finer YLB(ξ ) may be obtained

as follows. First, choose ME ,MP ≥ 0 and locate the ME
points {ξ 1

E , . . . ,ξ
ME
E } in ΞE that are closest to ξ and the MP

points {ξ 1
P , . . . ,ξ

MP
P } in ΞP that are closest to ξ . We then

include the following ME + MP inequality constraints in
addition to those defined by the box B:

nA

∑
i=1

θ
A
i (ξ

j
E)yi ≥ α(ξ j

E), j = 1, . . . ,ME

nA

∑
i=1

θ
A
i (ξ

j
P)yi ≥ α

LB(ξ j
P), j = 1, . . . ,MP.

It is clear that the set YLB(ξ ) is a superset of Y . We thus
reduce the problem of computing αLB(ξ ) to solving a linear
program in nA variables with 2nA+ME +MP linear inequality
constraints, which is independent of the dimension of Vh, as
desired.

What remains is to demonstrate how ΞE is selected and
the lower bounds for the points in ΞP are obtained. These may
be built through an offline training procedure. This procedure
will make use of the following upper bound for α(ξ ).
Given any ξ ′ for which α(ξ ′) has been computed, we
may use the corresponding eigenvector u′ and compute y′ =
(y1, . . . ,ynA)

T ∈Y where yi = ai(u′,u′)/‖u′‖V . Collecting all
such y′ into a set YUB, we obtain an upper bound as

α
UB(ξ ) = min

y∈YUB

nA

∑
i=1

θ
A
i (ξ )yi.

Since YUB is small and finite, we may compute this upper
bound efficiently by simply enumerating over all elements
of YUB. Furthermore, since clearly YUB ⊂ Y , we have a true
upper bound. Given upper and lower bounds for the coercivity
constant, we define the indicator

η
SCM(ξ )≡ 1− αLB(ξ )

αUB(ξ )
(41)

which measures the relative gap between the upper and lower
bounds.

Having determined an indicator for the quality of the
SCM approximation, we may now describe the offline
training algorithm. We begin with a training set Ξ which
should be representative of the parameter set. Choose ξ ′ ∈ Ξ ,
initialize ΞE = {ξ ′} and ΞP = Ξ \{ξ ′}, and set αLB(ξ ) = 0
for all ξ ∈ Ξ . Then loop as follows. Solve for the exact
coercivity constant for ξ ′ and compute lower bounds using
SCM and indicators for all ξ ∈ ΞP. If the largest indicator is
below a desired tolerance εSCM, terminate. Otherwise, select
a new point ξ ′ ∈ ΞP with the largest indicator, compute and
store α(ξ ′), move ξ ′ from ΞP to ΞE , and update the lower
bounds for points in ΞP using SCM. Repeat until termination.
This procedure is summarized in Algorithm 3.
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Algorithm 3 Greedy training algorithm for SCM given
training set Ξ .
1: ΞE ← /0, ΞP← Ξ

2: choose ξ ′ ∈ Ξ

3: αLB(ξ )← 0 for all ξ ∈ Ξ

4: loop
5: compute and store α(ξ ′)
6: ΞE ← ΞE ∪{ξ ′}, ΞP← ΞP \{ξ ′}
7: if ΞP = /0 then
8: return SCM data
9: end if

10: for ξ ∈ ΞP do
11: update αLB(ξ ) using SCM
12: compute indicator ηSCM(ξ ) (41)
13: end for
14: η ←maxξ∈ΞP ηSCM(ξ )

15: if η < εSCM then
16: return SCM data
17: end if
18: ξ ′← argmaxξ∈ΞP

ηSCM(ξ )
19: end loop

6 Numerical Experiments

We compare the effectiveness of reduced basis ANOVA on
a set of three model problems. These model problems are
introduced in Section 6.1 and consider both isotropic and
anisotropic permeabilities. In Section 6.2, we analyze the
performance of the SCM method on the three problems and
provide details on the necessary eigenvalue computations.
Finally, in Section 6.3, we study the performance of reduced
basis ANOVA.

6.1 Model Problems

We consider three model problems. All three make use of the
simple 2D square domain pictured in Figure 1. The top and
bottom boundaries are designated as walls through which no
flow occurs. The left boundary is a parabolic inflow boundary.
The right boundary is a do-nothing out-flow boundary. All
three problems partition this domain into n × n uniform
subdomains in which permeabilities are constant. All three
problems use constant viscosity ν = ν∗ = 10−3 and a zero
forcing term.

parabolic
inflow

do-nothing
outflow

(0,0)

(1,1)

Fig. 1: Domain in 2D used for numerical experiments

For the first problem, labeled iso in the following
discussion, we consider isotropic flow in which the
permeability tensor in each subdomain is of the form kI for
a scalar k > 0. In this case, we partition the domain into 9×9
subdomains. Each subdomain is then partitioned into 12×12
regular quadrilateral elements to form a 108 × 108 grid.
The permeability coefficient of each subdomain is uniformly
distributed in an interval [a,b] chosen as follows. First, for
each subdomain, a value c is sampled from a Beta(0.5,0.5)
distribution and then mapped to the interval [−6,−3]. A
value r is uniformly sampled in the interval [0.05,0.15],
and the chosen interval is [(1− r) · 10c,(1 + r) · 10c]. The
parameters of the beta distribution were chosen to skew the
permeabilities to slightly favor a mix of high permeability
regions (near 10−3) and low permeability regions (near 10−6).
The mean permeabilities for each subdomain are displayed in
Figure 2 on a log scale.

Fig. 2: Mean permeabilities for the iso problem on a log scale

The resulting stochastic space is then of dimension N =

81. The parametrization coincides with the permeabilities
in each subdomain, i.e., ξ ∈ R81 with ξi equal to the
permeability in subdomain i. The affine decomposition (16)
consists of nA = N +1 = 82 parameter independent matrices
as follows:

Ai =

{
AS i = 1
Ai−1

D i > 1,
(42)

where AS is the discretization of the Stokes bilinear form (3),
and Ak

D is the discretization of the Darcy bilinear form (4) with
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support only on subdomain k. The mappings {θ A
i (ξ )}

nA
i=1 then

take the form

θ
A
i (ξ ) =

{
1 i = 1
1/ξi−1 i > 1.

(43)

To apply the Dirichlet boundary conditions, we use the finite
element function which interpolates the Dirichlet conditions
on the Dirichlet boundary and has zero value on all remaining
nodes. Let wh denote this finite element function. Then,
since we define zero forcing term and do-nothing Neumann
conditions, the discretizations of (7)–(8) are simply

`1(vh;ξ ) =−a(wh,vh;ξ ) ∀vh ∈Vh (44)

`2(qh) =−b(wh,qh) ∀qh ∈ Qh. (45)

Note that, since b is parameter-independent and the
Dirichlet boundary conditions are parameter-independent, the
discretization (45) is parameter-independent. However, due to
the dependence of a on the parameter, the discretization (44)
is parameter-dependent. It admits an affine decomposition
of the form (42)–(43). We note, however, that our choice
of wh suggests that we need only n f = 10 parameter-
independent vectors, corresponding to the vector arising from
the Stokes bilinear form and the 9 Darcy bilinear forms on the
subdomains which border the in-flow boundary.

For the second and third problems, we consider
anisotropic flow in which the permeability tensor in each
subdomain is of the form diag(kx,ky) for positive scalars kx 6=
ky. The second problem, labeled aniso1, considers the case
where kx < ky, that is, where vertical flow is favored. The
third problem, labeled aniso2, considers the case where kx >

ky, that is, where horizontal flow is favored. Both problems
are partitioned into 6 × 6 subdomains, each subdomain
partitioned into 18 × 18 elements. This partitioning is to
make the size of the problems similar to that of the isotropic
problem. Here, the total number of elements is 108× 108,
matching the isotropic problem exactly; and the number of
parameters is 72, as there are two parameters per subdomain.

The distributions on permeabilities are chosen in a manner
similar to the isotropic problem. The main difference is that
the smaller permeability (kx in the case of aniso1, ky in
the case of aniso2) has the beta random variable mapped
to [−6,−4.75], and the larger permeability (ky in the case of
aniso1, kx in the case of aniso2) has the beta random variable
mapped to [−4.25,−3]. The mean permeabilities for each
subdomain and direction are displayed in Figures 3 and 4 on
a log scale.

The anisotropic problems admit a similar affine decompo-
sition to the isotropic problem. However, now there are two
Darcy parameter-independent matrices per subdomain, each
discretizations of (4) with support only from basis functions
on the given subdomain and direction. Thus, nA = 73. Further-
more, we have n f = 7, as our choice of wh only admits non-
zero parameter-independent vectors arising from the Stokes

bilinear form and then one for each of the 6 subdomains bor-
dering the in-flow boundary (as the Dirichlet in-flow condi-
tions are zero in the y-direction).

Table 1 compares the sizes of the finite element
discretizations of each problem. As can be observed, all three
problems have the same dimension for the high-fidelity space,
suggesting they should all be of similar difficulty. Condition
number estimates, computed using the condest function in
MATLAB, for the assembled matrices when choosing the
mean of each distribution as the parameter are presented
in Table 2. Here, we observe that all three problems are
fairly ill-conditioned. We note that the sizes of the high-
fidelity problems were chosen to be small enough that we
could perform the high-fidelity solves efficiently using a
direct solver. The log permeabilities were also chosen to
be within the interval [−6,−3] so as to keep the condition
numbers moderate. These condition numbers have an effect
on the sharpness of the error bounds, as will be discussed in
Section 6.3. In short, larger condition numbers imply that the
error bounds may not be as sharp, leading to potentially larger
reduced bases than necessary.

Table 3 compares the sizes of the stochastic dimension
and number of parameter-independent components in the
affine decompositions. The isotropic problem is larger in this
case due to the use of more subdomains.

6.2 SCM

For the eigenvalue problems solved during the SCM training
(see Algorithm 3), we used the LOBPCG method [24] as
implemented in the BLOPEX MATLAB package [25]. The
inf-sup constant, being parameter-independent, required only
a one-time eigenvalue computation. The specific eigenvalue
problem solved was to find the smallest eigenvalue λ of

BM−1
V BT x = λMQx (46)

and choosing β =
√

λ . No preconditioner was used. The
coercivity and continuity constants are parameter-dependent
and require solving for the smallest and largest, respectively,
eigenvalues λ (ξ ) of the generalized eigenvalue problem

A(ξ )x = λ (ξ )MV x. (47)

For the coercivity constant, we solved for the smallest
eigenvalue λ (ξ ) of (47) using an incomplete Cholesky
factorization of A(ξ ) as a preconditioner and set α(ξ ) =

λ (ξ ). Computing the continuity constant requires solving for
the largest eigenvalue of (47). For this, we transformed the
problem into solving for the smallest eigenvalue µ(ξ ) of the
generalized eigenvalue problem

MV = µ(ξ )A(ξ )x. (48)

12



Fig. 3: Mean permeabilities for the aniso1 problem on a log scale

Fig. 4: Mean permeabilities for the aniso2 problem on a log scale

The continuity constant is then chosen as γ(ξ ) = 1/µ(ξ ). All
LOBPCG computations were performed with a maximum of
1000 iterations and a tolerance of 10−10.

We remark that inverting MV is performed during the
computation of (39), computation of (46), and application
of the supremizer (29). For small enough problems, we may
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Problem subdomains elements total elements velocity dof pressure dof total dof
iso 9×9 12×12 11664 92880 34992 127872

aniso1 6×6 18×18 11664 92880 34992 127872
aniso2 6×6 18×18 11664 92880 34992 127872

Table 1: Comparison of sizes of the finite element discretization for each model problem

Problem condition number
iso 2.6894×104

aniso1 5.0727×104

aniso2 4.0431×103

Table 2: Comparison of condition number estimates for the
assembled matrices with the mean parameter

Problem stochastic dimension nA n f
iso 81 82 10

aniso1 72 73 7
aniso2 72 73 7

Table 3: Comparison of parametrization sizes for each model
problem

compute and store the sparse Cholesky factorization of MV .
In these cases, we may use these factors to perform an exact
solve as a preconditioner for (48). If a preconditioned iterative
method is required for inverting MV , then we may use the
same preconditioner for (48). In this paper, we used the
Cholesky factors for the preconditioner.

Each application of SCM requires solving a linear
programming problem. For this, we used the linprog

function in MATLAB with the dual-simplex algorithm.
For the SCM training of each model problem, we

generated a Halton set of size 50000. We chose ME =

MP = 100 and the tolerance εSCM = 0.1. Table 4 summarizes
the number of iterations required for each model problem
to attain the prescribed tolerance. As can be observed, the
training terminates fairly quickly in all three cases, with the
coercivity constant being slightly harder than continuity and
the isotropic case being slightly harder than the anisotropic
cases. The isotropic case being more difficult is likely due
to the larger number of parameters. Figures 5 and 6 display
the largest indicator (41) over each iteration of training. The
indicators for the iso problem are plotted with the solid blue
line with circles; the indicators for the aniso1 problem are
plotted with the dashed red line with squares; the indicators
for the aniso2 problem are plotted with the dotted black line
with triangles.

6.3 Reduced Basis ANOVA

To study the effectiveness of reduced basis ANOVA on
the three model problems, we compute reduced basis
ANOVA approximations using the following tensor product
of reduced basis and ANOVA tolerances. For the reduced
basis tolerances, we consider the set {1,0.1,0.01}. For the

Problem coercivity continuity
iso 23 7

aniso1 11 3
aniso2 12 3

Table 4: Number of SCM training iterations to obtain a
tolerance of εSCM = 0.1 with a training size of 50000 points
and parameters ME = MP = 100
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iteration
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SCM training coercivity
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Fig. 5: Largest indicators for coercivity during each iteration
of SCM training using a tolerance of εSCM = 0.1 with a
training size of 50000 points and parameters ME = MP = 100
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Fig. 6: Largest indicators for continuity during each iteration
of SCM training using a tolerance of εSCM = 0.1 with a
training size of 50000 points and parameters ME = MP = 100
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ANOVA tolerances, we consider the set {10−4,10−5,10−6}.
Thus, we performed a total of 9 reduced basis ANOVA
computations for each problem. In all problems, we used
all ANOVA directions up to level 1 and adaptively selected
directions for higher levels. In all problems, the adaptive
selection of ANOVA directions terminated at level 2. We
used Gauss-Legendre quadrature with polynomial order 5
for generating collocation points. We compare each reduced
basis ANOVA computation with the results from a Monte
Carlo simulation performed using 106 points generated from
a Halton set. We assume that the moments computed using
the Monte Carlo are accurate enough to be used as the true
moments so that we may use it to approximate the error in the
moments from the reduced basis ANOVA computations.

Table 5 summarizes the L2 norms for the errors in
mean and variance for the iso problem, where the error
here is taken as the difference between the reduced basis
ANOVA approximation and the Monte Carlo simulation.
These values are normalized by the norm of the Monte Carlo
approximation so as to provide relative errors. The table
shows the errors in the velocity, pressure, and combined
mean and variances. It is clear that, as the reduced basis
tolerance is reduced, better approximations to the mean and
variance are obtained. A reduced basis tolerance of 10−2

results in excellent approximations even for an ANOVA
tolerance of 10−4. However, there appear to be little gains
from reducing the ANOVA tolerance. Accuracy improves
by increasing the tolerance from 10−4 to 10−5; however,
increasing the tolerance from 10−5 to 10−6 yields no
improvement. Tables 6 and 7 present the same information
for the aniso1 and aniso2 problems, respectively. In these
cases, we observe the same trend of increased accuracy when
reducing the reduced basis tolerance and stagnating accuracy
when reducing the ANOVA tolerance.

The errors over the physical domain D are displayed in
Figures 7 (pressure), 8 (velocity magnitude), 9 (x velocity),
and 10 (y velocity). All of these images were generated using
ParaView [2] from the computations with a reduced basis
tolerance of 0.01 and ANOVA tolerance of 10−6. Each figure
consists of six subfigures arranged in a 2x3 grid. The columns
correspond to the problems iso, aniso1, and aniso2, in that
order. The first row depicts the mean error and the second
row depicts the variance error.

The pressure errors are depicted in Figure 7. The
errors exhibit different behavior among the three problems.
For the iso problem, the errors appear to be evenly
distributed throughout the domain although with clear
increases at the corners of subdomains. However, for the
aniso1 (resp., aniso2), problem, we observe vertical (resp.,
horizontal) bands. Recall that the chosen permeabilities for
the anisotropic problems favor either vertical or horizontal
flow. The bands appear to reflect these favored permeabilities,
as higher errors might be expected where values are greater.
As with the iso case, interfaces and corners between
subdomains are emphasized. The heightened errors at these

interfaces are likely due to higher order effects not captured
in the ANOVA terms selected for the expansion.

The velocity errors are depicted in Figures 8, 9, and 10. As
with the pressures errors, the errors in all cases are heightened
along subdomain interfaces, as expected due to the exclusion
of higher order ANOVA terms. Furthermore, the favored
permeabilities for the anisotropic problems result in larger
errors in the velocity directions which are favored, again
likely due to the values being larger.

While the above analysis demonstrates that a smaller
reduced basis tolerance greatly improves the accuracy of
the moment computations, it comes with a cost of a larger
number of high-fidelity solves and a larger reduced basis.
Table 8 summarizes the number of high-fidelity solves for
each problem and each choice of tolerances. For comparison,
the number of collocation points is provided in parentheses.
For all three problems, it appears that the number of high-
fidelity solves almost doubles as the reduced basis tolerance
is reduced by a factor of 10. However, the number of high-
fidelity solves remains fairly constant even as the ANOVA
tolerance increases. This suggests that a small reduced basis
is able to fairly accurately approximate the space of high-
fidelity solves.

The decrease in the a posteriori error estimates over each
iteration of training is depicted in Figure 11. The velocity
error estimate is depicted as the solid blue line, the pressure
error estimate as the red dotted line, and the combined
error estimate as the orange dashed line. Each error estimate
depicted is normalized by the norm of the reduced basis
solution to produce a relative error estimate. The figure
displays, at each iteration, the largest relative error estimate
of the given type. Since the largest error estimates for each
type are not guaranteed to be taken from the same sample
at any given iteration, and each of these error estimates are
normalized by the reduced basis solution at that sample, there
is no guaranteed ordering of the values (i.e., the combined
error is not necessarily greater than the velocity or pressure
error).

For the iso problem, all three errors appear to be roughly
equal. For the aniso1 problem, however, the velocity error
is the largest with the combined error being in between
velocity and pressure. Recall that the aniso1 problem favors
vertical flow, but the boundary conditions impose horizontal
flow. This contention between vertical and horizontal flow
perhaps explains the increased difficulty of the reduced
basis in approximating the velocity space. On the other
hand, the pressure error is the greatest for the aniso2
problem with the velocity and combined errors being roughly
equal. For this problem, horizontal flow is favored so that
there is no contention between the flow specified by the
boundary conditions and the permeabilities, allowing easier
approximation of velocity.

The error estimates are displayed on a log scale,
suggesting linear convergence. The black vertical line marks
the iteration at which training terminated after the first
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εA εA εA

10−4 10−5 10−6 10−4 10−5 10−6 10−4 10−5 10−6

εRB
1 4.89×10−4 4.50×10−4 4.50×10−4 3.27×10−4 2.42×10−4 2.42×10−4 3.28×10−4 2.43×10−4 2.43×10−4

mean0.1 3.23×10−4 2.10×10−4 2.14×10−4 3.78×10−5 3.65×10−5 3.66×10−5 3.88×10−5 3.70×10−5 3.71×10−5

0.01 1.11×10−4 9.82×10−5 9.97×10−5 6.63×10−6 3.61×10−6 4.34×10−6 7.29×10−6 4.51×10−6 5.13×10−6

εRB
1 3.41×10−1 3.22×10−1 3.22×10−1 2.41×10−2 1.97×10−2 1.97×10−2 2.41×10−2 1.98×10−2 1.98×10−2

variance0.1 2.03×10−1 9.42×10−2 9.40×10−2 2.71×10−3 2.31×10−3 2.31×10−3 2.73×10−3 2.31×10−3 2.32×10−3

0.01 5.49×10−3 5.07×10−3 4.93×10−3 7.11×10−4 9.57×10−5 1.01×10−4 7.11×10−4 9.61×10−5 1.01×10−4

velocity pressure combined

Table 5: L2-norm of moment errors for reduced basis ANOVA estimates of the iso problem

εA εA εA

10−4 10−5 10−6 10−4 10−5 10−6 10−4 10−5 10−6

εRB
1 4.49×10−4 3.95×10−4 3.95×10−4 7.70×10−5 4.65×10−5 4.66×10−5 7.74×10−5 4.70×10−5 4.71×10−5

mean0.1 2.38×10−4 2.45×10−4 2.46×10−4 9.48×10−6 1.16×10−5 1.25×10−5 1.03×10−5 1.24×10−5 1.32×10−5

0.01 9.15×10−5 7.80×10−5 7.76×10−5 3.26×10−6 2.48×10−6 2.46×10−6 3.62×10−6 2.82×10−6 2.80×10−6

εRB
1 9.35×10−2 6.82×10−2 6.82×10−2 9.51×10−3 8.28×10−3 8.22×10−3 9.53×10−3 8.29×10−3 8.23×10−3

variance0.1 1.06×10−2 1.03×10−2 1.04×10−2 1.27×10−3 6.07×10−4 6.04×10−4 1.27×10−3 6.10×10−4 6.07×10−4

0.01 2.74×10−3 2.02×10−3 2.00×10−3 9.99×10−4 7.72×10−5 7.72×10−5 9.99×10−4 7.81×10−5 7.81×10−5

velocity pressure combined

Table 6: L2-norm of moment errors for reduced basis ANOVA estimates of the aniso1 problem

εA εA εA

10−4 10−5 10−6 10−4 10−5 10−6 10−4 10−5 10−6

εRB
1 1.18×10−4 1.06×10−4 1.06×10−4 1.76×10−4 1.57×10−4 1.57×10−4 1.70×10−4 1.51×10−4 1.51×10−4

mean0.1 3.79×10−5 4.24×10−5 4.24×10−5 2.47×10−5 2.42×10−5 2.42×10−5 2.67×10−5 2.71×10−5 2.71×10−5

0.01 2.51×10−5 1.48×10−5 1.49×10−5 1.73×10−5 9.29×10−6 7.56×10−6 1.85×10−5 1.01×10−5 8.82×10−6

εRB
1 6.19×10−2 4.94×10−2 4.94×10−2 3.33×10−2 2.33×10−2 2.34×10−2 3.34×10−2 2.35×10−2 2.35×10−2

variance0.1 3.82×10−3 4.72×10−3 4.73×10−3 1.62×10−3 1.81×10−3 1.83×10−3 1.63×10−3 1.83×10−3 1.84×10−3

0.01 2.24×10−3 1.35×10−3 1.58×10−3 8.36×10−4 3.58×10−4 4.03×10−4 8.44×10−4 3.65×10−4 4.12×10−4

velocity pressure combined

Table 7: L2-norm of moment errors for reduced basis ANOVA estimates of the aniso2 problem

εA

10−4 10−5 10−6

εRB
1 28 (1573) 33 (27701) 33 (43541)

iso0.1 59 (4021) 61 (33605) 62 (50885)
0.01 110 (7285) 122 (43541) 123 (52165)

εRB
1 29 (1537) 31 (19889) 31 (37825)

aniso10.1 50 (2737) 52 (27665) 52 (40049)
0.01 90 (3985) 95 (36737) 96 (41185)

εRB
1 34 (2737) 37 (35665) 37 (41185)

aniso20.1 73 (2737) 77 (34609) 77 (41185)
0.01 91 (3329) 120 (34609) 121 (41185)

Table 8: Comparison of number of high-fidelity solves used
to form the reduced basis and number of ANOVA collocation
points (in parentheses) for the three problems with varying
tolerances

ANOVA level. The increase in the error estimates at the start
of the second ANOVA level is due to an increase in the
number of collocation points used during training. In both the
iso and aniso1 problems, the increase in error between levels
is small, suggesting that the reduced basis formed at the end
of the first level generalized fairly well to the new collocation
points. The aniso2 problem has a larger increase in error, but
there was also a larger decrease in error towards the end of
the level 1 training. This suggests that the level 1 reduced
basis did not generalize well to the new collocation points. In
all cases, however, the error appears to decrease during the

second level at roughly the same rate as during the first level,
despite the greater increase in the number of training samples.

The a posteriori error estimates only compute an upper
bound on the actual error. It would be helpful to understand
how tight these error estimates actually are. To study this, we
selected a random subset of 1000 ANOVA collocation points
from each problem using tolerances εRB = 0.01 and εA =

10−6 and computed high-fidelity solutions at each selected
point. Using the associated reduced basis for each problem,
we also computed the reduced basis approximation. From
this, we obtained exact errors for each collocation point and
computed ratios of the a posteriori error estimate against the
exact error. This ratio is called the effectivity of the error
estimator. These values are presented in Figure 12. Velocity
ratios are shown in blue upward facing triangles, pressure
ratios in red downward facing triangles, and combined ratios
in orange circles. Since the error estimates form upper
bounds, we expect these ratios to be greater than 1. However,
if the bound is tight, we expect the ratios to be close to
1. From the figure, it is apparent that all ratios are greater
than 1, suggesting our error estimates are true upper bounds.
However, the ratio is much greater than 1, suggesting that
the upper bounds are not as tight as we would like them
to be for an ideal setup. It is well known that the tightness
of the error estimate is related to the condition number [32,
Section 3.6.2]. As demonstrated in Table 2, the Stokes-
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Brinkman systems are highly ill-conditioned, resulting in
loose upper bounds with the error estimates. Thus, the
effectivities of Figure 12 are expected. Nonetheless, despite
the lack of sharpness in the upper bounds, our experiments
provide numerical evidence that combining reduced basis
methods with anchored ANOVA yields substantial benefits
to estimating the moments of stochastic Stokes-Brinkman
problems.

7 Conclusion

We demonstrated that the use of the truncated ANOVA
decomposition is effective in reducing the number of
collocation points needed for accurate approximation of the
statistical moments of several Stokes-Brinkman problems
with stochastic permeability. Additionally, we showed that
reduced basis methods yield significant savings by reducing
the number of high-fidelity solves required to compute these
moments. The reduced basis methods rely upon accurate
and efficient a posteriori error estimates. We present such
estimates based upon the Brezzi stability theory. While these
error estimates allowed us to construct small reduced bases,
they were not as sharp as desired due to the high-fidelity
systems being highly ill-conditioned. Nonetheless, excellent
reduced basis approximations were obtained.
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Fig. 7: Moment errors in pressure for each of the three problems
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Fig. 8: Moment errors in velocity magnitude for each of the three problems
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Fig. 9: Moment errors in the x velocity for each of the three problems
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Fig. 10: Moment errors in the y velocity for each of the three problems
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Fig. 11: Maximum values of error estimates for each training
iteration using εA = 10−6 and εRB = 0.01
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Fig. 12: Ratio of the error estimates (34)–(38) against the
exact errors from high-fidelity solves for each of the three
problems at 1000 randomly sampled ANOVA collocation
points
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