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We have analyzed the notions of group velodity and energy velocity/e for light pulses propagating
inside one-dimensional photonic band gap structures of finite length. We find that the two velocities are related
through the transmission coefficiehasVE=|t|2Vg. It follows thatVeg=V, only when the transmittance is
unity (Jt|2=1). This is due to the effective dispersive properties of finite layered structures, and it allows us to
better understand a wide range of phenomena, such as superluminal pulse propagation. In fact, placing the
requirement that the energy velocity should remain subluminal leads directly to the coh@;m|t|2. This
condition places a large upper limit on the allowed group velocity of the tunneling pulse at frequencies of
vanishingly small transmission.
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During the past two decades electromagnetic wave propanomalous effective index behaviaot as a result of gain or
gation effects in periodic structures, usually referred to asbsorption, but as a result of scatterinjlore importantly,
photonic band gagPBG) crystals[1], have been intensely in our case the presence of entry and exit interfaces plays a
investigated. Experimental studies highlighted particularlycrucial role in determining the definition of the group veloc-
interesting linear properties of pulses propagating in strucity and its relationship with the energy velocity. In contrast,
tures of finite length. Examples are the measurement of suboundary conditions, in the sense of entry and exit interfaces,
perluminal group velocities at midgap frequencj@$ and can play no role in the determination of either group or en-
the measurement of low group velocities near the band edgergy velocity in inhomogeneous, periodic structures of infi-
of a semiconductor heterostructUi@]. These effects origi- nite length. Our simple and straightforward analysis shows
nate with the remarkable but peculiar dispersive properties ahat there are significant conceptual, qualitative, and quanti-
finite multilayer stack$4]. The concept of group velocity is tative differences between energy and group velocities in fi-
particularly critical when applied to aabsorbing (or gain)  nite structures, in contrast to the case of infinite structures. In
homogeneoudielectric material, becausg, may be greater fact, for a periodic, infinite structure, a unique dispersion
thanc, and it can even be negative in some circumstanceselation exists betweei ; (the Bloch vector and w. The
These topics were discussed at length in the seminal book yroup velocityvg“’) is defined as/(“)=1/d Kgldw], and it

Brillouin [5], in 1970 by Loudon[6], and by Garret and can be demonstrated th‘dg“’):V(E“’ [11].

McCumber{7]. The physical relevance &, regarding pulse In order to discuss the case of 1 D, finite PBG structures,
propagation with superluminal or negative group velocitiesye consider a system consisting of pairs of alternating layers
was experimentally studied by Chu and WdB§ who mea-  of high and low linear refractive indices. The thicknesses of
sured the transmission time of a laser pulse tuned at a GaPiNe layers ar@ andb, respectively; foN periods, the length
resonance. Recently, Peatretsal. [9] theoretically showed  of the structure id.=N(a+b). For plane monochromatic
that, in the context of an absorbing, homogenous materialyaves the Helmoltz equation for the field is

the group velocity may still be meaningful even for broad-

band pulses, and whe¥ly is superluminal or negative. In ) )

Ref. [9], the group velocity was related to the pulse arrival d°E, " ‘*’_6 (2)E.=0 1)
time via the time expectation integral over the Poynting vec- dz2 2 ¢ e

tor.

In the Refs[5-9] the work dealt with pulse propagation . .
in absorbing, homogenous dielectric rﬁaterizfls.pM%re re-he general boundary conditions S‘t thff inpat=0) anafj
cently, Wanget al.[10] used gain assisted linear dispersion©UtPUt @=L)  surfaces are Ei :Er =E,(0), E
to demonstrate superluminal light propagation in atomic ce==E“(L)exd—i(w/c)L]; i(w/c)(E["—E;)=dE,(0)/dz, and
sium: the group velocity of a laser pulse under conditions of (w/C)E¢’=(dE,(L)/d2) exd —i(w/c)L]. &,(2) is the spa-
anomalous dispersion in the presence of gain can excasd tially dependent, real dielectric permittivity function, and
a result of classical interference between the different frematerial absorption is neglected. For simplicity, we assume
quency components. In this work, we discuss the case ithe structure is surrounded by ak}’ ,E;’, andE; are the
which a one-dimensiona{l D) PBG structure displays incident, reflected, and transmitted fields, respectively. We
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P ! 9 line) and the monochromatic regimsolid line). The monochro-

vs frequency. Increasing the number of periods, the energy VEIOCItX"latic wave regime is also obtained using pulses at least several tens

does not converge to the results obtained using the dispersion of thoef picoseconds in duration. The dashed line corresponds to Bloch'’s

infinite structure. The elementary cell is composed 0faCombmat'OQ/eIocity for the infinite structure. The structure is similar to that

of half-wave—quarter-wave layers. The indices of refraction are_" . R . . ) .
n,=1 and n,=142857: the respective thicknesses ae outlined in Fig. 1, but contains 100 periods. Inset: the 100-period

L = . a - structure is approximately 6@m. in length, while the spatial extent
=No/(4ng) andb=Xo/(2n), With Xo=1um andwo=2mC/No. ot the 1l width at half maximum of the pulse is approximately

20 um.

introduce the dimensionless quantitids,(z) =E(z)/E/",
t,=E{exdi(w/c)L)/E’, andr ,=E;/E, where ® (z) is _ )
the field profile at frequency, andt, andr,, are the trans- fOr 20- and 100-period stacks, and compare wiltt) (for
mission and reflection coefficients, respectively, all calcudnfinite structuresv{” coincides withV”) of an infinite
lated using the standard matrix transfer technique. The avestructure made with the same elementary cell. We find that
aged energy velocity, which measures energy flow across thée energy velocities of the infinite and finite structures do
sample, is defined as the ratio of the spatial average of theot converge to one another by increasing the number of
Poynting vector to the spatial average of the energy densitgeriods. This is due to the fact that in the monochromatic
within the same volumél1], which in our 1D geometry is approximation it is always possible to resolve each transmis-
given by sion resonance, and hence its curvature, even if more periods
are added. In this regime, incident pulses propagate through
the structure tuned at one transmission resonance, for ex-
ample, with their bandwidth significantly smaller compared
_ (2)  toresonance bandwidth. Put another way, the spatial extent
zldz of the pulse is orders of magnitude greater then the physical

ic2 (L db¥
f dz

1
ER{X o PoTaz
2
€(2)| P, |°+—
w

w

dz

length of the structure. As a result, the pulse samples all
internal and external interfaces simultaneously; it is delayed,
We decompose the field in the formb.,=|® |e' 7. It fol- and in the end completely transmitted, with minimal distor-
lows that|d>w|2d1‘}w/dz is a conserved quantity admitted by tion or scattering lossd8]. Therefore, the interaction should
Eqg. (1). Substituting into Eq(2), integrating by parts, and more properly be referred to as a scattering event.
using the boundary conditions above, the energy velocity To better clarify this situation, we consider the case of a
V) takes a form that involves both the transmittaficg?  short pulse incident on a structure several pulse widths in
and the imaginary part of the reflectivity, of the stack: length. If the spatial extent of the pulse is so short that it
traverses the structure without simultaneously sampling both
2 entry and exit interfaces, then we may expect that the dis-
clt| / o ° e
V) = ) (3)  continuity at the entrance and exit interfaces will not signifi-
EJL 2| ® |2dz—ilm(r ) cantly affect the dynamic§12]. This is shown in Fig. 2,
Lo €u(2)|Py Lo - © where we plotv{”) as calculated in the quasi monochromatic
limit via Eq. (3), and also as numerically calculated for an
The second term in the denominator indicates that the energycident Gaussian pulse 150 fs in duration, tuned in the pass-
is generally not equally shared by the electric and magnetiband of a 100-period structure. The enefgyoup velocity
components, which become identical only at each peak off the infinite structure is also shown in the figure. The com-
transmittance, where,, vanishes. In Fig. 1 we depi(kl(E‘”) parison between the length of the structure and the pulse
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13.01 P Bloch velocity regions locities are equal, and given by Bloch’s velocity. However,
- even if the structure is long, it is nevertheless finite, and so

nor T Y the pulse must eventually exit, leading to a reduction of en-

ool ergy and a reversal in sign in the total momentum. Once the

momentum becomes negative, we track the first pulse re-

S5 70f flected from the exit interface. In fact the momentum under-
4 goes several sign reversals, until all the energy has left the
% sor structure. From Fig. 3 it should be evident that the energy
a0l Y velocity is equal to Bloch’s velocityonly after the entire
L pulse has entered and remains inside the structuwfgle in
10 - general the time-averaged energy velocity will be different.
‘ With these considerations in mindie define the tunnel-
10, 100 200 300 ing timein a quasi monochromatic regime, consistent with

our approach:
Time (in unit of A/c)

FIG. 3. Total energydashegland momentuntgsolid) inside the 5 1
structure for the pulse shown in the inset of Fig. 2. Both momentum 7w=—f €,(2)|®,[*dz——Im(r,). (6)
. Clo w
and energy increase as the pulse traverses the entry boundary. The

energy velocity for the entire process, i.e., the ratios of the area

under the curves, which is a measure of energy flow through thj-his definition _O_f the t“””e”_”g time, derived by imposing
structure in both directions, cannot be the same as the Bloch velo0undary conditions on our finite structure and suggested by

ity, which monitors only the velocity of the transmitted pulse. Mul- EQ- (3), is the electromagnetic analogue of Smith's "dwell
tiple reflections inside the stack lead to ringing in reflection andtime” [13], which addresses electron wave packet tunneling
transmission from the structure. times through a potential barrier. According to Smith, a
quantum particle spends a mean time proportional to
J5/¥(2)|?dz in the region of space between 0 andwhich
width is made in the inset. As the inset shows, the structurés just the probability of finding the particle within the same
is several pulse widths in length. As a result, the energyegion of space. Following Bohfii4], we use the concept of
velocity of the pulse propagatinigsidethis structure better electromagnetic energy density, instead of the quantum prob-
approximates the energy velocity of the infinite structureability density, to define the tunneling time: E@) states
(Bloch's velocity). The energy velocity of the pulse does not that the time the field spends inside the structure is propor-
show the same sharp cutoff near the band edge that we olienal to the energy density integrated over the volume. The
serve for both the infinite and the 100-period structures, beterm —Im(r )/ represents the difference in energy be-
cause the pulse is ultrashort, and so even if the carrier freaveen the electric and magnetic components, and it has no
quency is tuned inside the gap a good fraction of the energgounterpart in the quantum case. Equati6h thus estab-
is still trasmitted. We find the same degree of convergencéishes a clear link between large delay times and field local-
only if the pulse width and structure length are significantlyization, as experimentally verified for pulse propagation near
increased simultaneously, so that the pulse can better resolee band edgé¢3]. One may also define a group velocity
the frequencies near the band edge, but can still fit well inassociated with the delay of the transmitted pulse\/g'§
side the structure, as in the inset. In Fig. 3, the total momen=L/7,. In the eyes of an observer, this definition of group
tum and energy inside the 100-period structure depicted igelocity is an extremely useful and powerful concept. How-
Fig. 2 are shown as functions of time. The total electromagever, we remind the reader that we are not considering
netic momentum for the pulse inside the structure can b@ropagation in a uniform medium, where a true group veloc-
written as follows: ity can be defined. Our system consists of a pulse whose
spatial extent can be orders of magnitudes larger compared
to the length of the structure, which is therefore entirely con-
_1 _ 1t tained within the puls¢3]. As a consequence, the dynamics
9= SS(t)== f E (zD)XH,(zh)dz (4 . e, .
c c?Jo can only properly be described as a scattering event, with an
associated tunneling time.
The total energy is given by Once a convenient group velocity has been defined in the
manner indicated, Eq3) can finally be recast in the follow-
L
U(t)= J
0

ing simple form:

As the pulse enters the structure, there is a rapid rise iEquation(7) is a strikingly simple result that makes it clear
both the energy and momentum, which settle to constarthat for finite structures the tunneling velocity, and the
values once the whole pulse travels inside the structuresnergy velocityVg are the same only at each transmission
When the pulse is totally inside, both group and energy veresonance, and can be very different from each other, espe-

2

e DIELZDI+ S5 Bz a2
w

VED=[t, |2V 7)
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(dashesfor the 20-period structure described in the caption of Fig.given in Eq.(4) (solid line), and as calculated using the definition of
(2). In the gap, the group velocity becomes superluminal. At resophase timgdashed lingfor the 20-period structure of Fig. 1.
nanceV{”'=V{), andV{” is a minimum. The group velocity for

the infinite structure is also depictédotted ling for comparison. the time domain yield results that are consistent with our

. S S predictions, namely, a group velocity of approximatelycs.5
cially at frequencies inside the gap. The n‘_nph_catlons of .Eq'for pulses tuned inside the gap. We emphasize that although
(7) are even more profound and far reaching if we consider

) X 0 o
superluminal tunneling behavior. We begin with the asser? humerical comparison shows a modest 10% quantitative

tion that the energy velocity can never take on values greatéﬁhf"mge in the maximum superlumlqal vglout.y, it should be
thanc, namely,V(E‘”)sc. This can be explicitly demonstrated evident that the definition of tunneling time in our E®)

for an arbitrary, nonabsorbing 1D potential barrier of finite appears more_correct from a co_n_cep_tual point of view be-
length [15]. From Eq.(7) it immediately follows that the C2use it establishes a clear nontrivial link between the energy

tunneling velocity satisfievg")<c/|tw|2. That is,the simple and group velocity, as exempli_fied in our B@). This is link )
requirement that the energy velocity should be subluminaj’at cannot be established using the simpler phase tunneling

does not prevent superluminal tunneling times. In fact, thid/me- o
inequality places an unambiguous upper limit on the tunnel- [N summary, we have shown that there are nontrivial con-
ing velocity that can be achieved without violating the re-Ceptual, qualitative, and quantitative differences between en-
quirement that the energy velocity remain sublumiissed ~ €rgy and group velocities in structures of finite length, as
on these simple considerations, statements regarding supé&xemplified in our Eq(7). These considerations have natu-
luminal pulse propagation should always be qualified by thd@lly led us to develop the concept of a tunneling time, which
energy velocity and transmittance. In Fig. 4 we N‘é‘t’) and Wwe call the electromagnetic analog of Smith’s tunneling

V(E“’) versus frequency for the 20-period structure of Fig. 1.ime, _that can bg useful in understandmg the limits and
Inside the gap, the group velocity becomes superluminalr,nef"mlng of what is referreq .to as superluminal pulse propa-
ation under general conditions. The only requirements for

while the energy velocity always remains causal. In this case;[qh lidity of th that th tteri tential
minimum transmittance can be as low as one part th Y\ € vaildity ot our theory are that the scatlering potentia

note that the maximum superluminal group velocity is ap_should be real, and the bandwidth of the incident pulses

; : g ; should be much narrower than a typical resonance bandwidth
proximately 5.5 times the speed of light in vacugsee Fig. }
5), far below the upper limit imposed by the condition that near_the banq edge; see, e.g., R8f. We no'te. ?hat the last
the energy velocity should remain subluminal, 0Pd.0 requirement is also necessary for_ the defl_nltlon of a phase
There is an alternative definition of the group velocity, astime [13]. However, the tunneling time predicted by our Eq.

discussed in Refl16], i.e.,Vy=L/7 . The associated tunnel- (6) is formglly and conceptually not the same as thg phase
¢ tunneling time, by a measure that depends on the interplay

ing time, also referred to in the literature as the "phasepenyeen electric and magnetic components. These differ-
time” [11,14 is defined asr,=d¢/dw, where ¢ is the  onces may be accentuated depending on the circumstances,
phase of the transmission function. In Fig. 5 we compare thee ' sirycture length, frequency, and boundary conditions. A
tunneling velocity calculated using E@), and the tunneling  more challenging problem would be the extension of these

velocity calculated using the phase time for the 20-periogegits to multidimensional PBG structures.
structure. While in the pass band the two methods yield simi-

lar results, our method gives slightly higher estimates

(~10%) for the maximum superluminal velocity compared We thank Neset Akozbek and Omar El Gwary for helpful
to the method of the phase time. This difference corresponddiscussions relating to this work. Two of ¢&. D. and M.

to a time delay of the order of 1 fs, which is small but C.) are grateful to the U. S. Army European Research Office
measurabl§2]. The integration of the equations of motion in for financial support.
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