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Abstract— The current hyperspectral image classification
(HSIC) model based on the convolutional neural network for
feature extraction and softmax classifier has been prone to the
barrier of label prediction with limited samples. Substituting
for the enormously complicated work of terrain labeling, few-
shot learning provides a popular option for HSIC with very
few annotated samples. In this article, we proposed a novel
edge-inferring framework with the metalearning paradigm for
hyperspectral few-shot classification (HSFSC), in which a graph
neural network for similarity measurement is first presented to
iteratively infer edge labels with the exploitation of instance-
level similarity and the distribution-level similarity. Besides,
in the metatraining stage, the pixel prediction model and the
patch prediction model based on edge-inferring architecture are
concretized jointly to improve the classification accuracy of the
test samples. Expressly, at the metatesting phase, the dynamic
task-guided self-diagnosis strategy is developed for the first time
to diagnose the samples separability of the current classification
task, which is responsible for dynamically assigning the most
reliable results based on the generated reliability grade of the
sample. The extensive experimental results and analysis of three
hyperspectral image datasets demonstrate the superiority of the
proposed HSFSC architecture compared with other advanced
methods.

Index Terms— Few-shot classification, graph neural network
(GNN), hyperspectral image (HSI), label prediction, task-guided
diagnosis.

NOMENCLATURE

HSI Hyperspectral image.
HSIC HSI classification.
HSFSC Hyperspectral few-shot classification.
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DL Deep learning.
CNN Convolutional neural network.
GNN Graph neural network.
FE Feature extraction.
EIN Edge-inferring network.
Spatial EIN Spatial edge-inferring network.
Spectral EIN Spectral edge-inferring network.
DTD Dynamic Task-guided self-Diagnosis.
SPAENN Spatial-feature Extraction Neural Network.
SPEENN Spectral-feature Extraction Neural Network.
FMN Feature mapping network.
SPA-network SPAENN with spatial EIN.
SPE-network SPEENN with spectral EIN.
IDD Interclass discrepancy diagnosis.
PCD Prediction consistency diagnosis.
EIGN Spatial EIN with SPAEN.
DTDEIN EIN with DTD.
x spa

i Patch data of the i th sample.
yi Ground-truth label of the i th sample.
x spe

i Pixel data of the i th sample.
V spa

i i th node in the graph of Gspa.
V spe

i i th node in the graph of Gspe.
v

spa
l,i Feature of V spa

i at the lth layer of spatial
EIN.

sspa
l,i j Similarity between V spa

i and V spa
j .

v
spe
l,i Feature of V spe

i at the lth layer of spectral
EIN.

sspe
l,i j Similarity between V spe

i and V spe
j .

ospa
l,i j Instance-level similarity between V spa

i
and V spa

j .
dspa

l,i j Distribution similarity between V spa
i

and V spa
j .

ospe
l,i j Instance-level similarity between V spe

i
and V spe

j .
dspe

l,i j Distribution similarity between V spe
i

and V spe
j .

I. INTRODUCTION

BENEFITING from the development of optics and pho-
tonics, HSI consists of hundreds of contiguous spectral

bands, which is beneficial for object detection with a wealth
of abundant information [1]. Up until now, HSIC has played
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an important role in the fields of urban planning, vegeta-
tion monitoring, and disaster prevention. In the past several
decades, various machine learning approaches have been ded-
icated to implementing the HSIC, including support vector
machines [2], random forest [3], and neural networks [4].
Nevertheless, the early staged methods adopted the hand-
crafted spectral–spatial features that are heavily governed by
professional expertise and previous experience. To address
this defect, DL [5], [6], [7], [8], [9] emerged as a power-
ful tool for strong representation ability and achieved great
progress for HSIC. Compared with the traditional shallow
classification model, the DL models are regarded as a clas-
sification model with a multilayer structure [10] to extract
rich spatial information automatically. Among them, CNN that
is composed of a series of convolution and pooling layers
[11], [12] has made extraordinary achievements in the field
of HSIC. For instance, Hu et al. [13] employed a five-layer
1-D CNN to conduct classification directly in the spectral
domain. Chen et al. [14] adopted an unsupervised method to
construct a DL framework based on a stacked autoencoder
to extract high-order features of HSI data. Zhang et al. [15]
encoded semantic context-aware representation with a diverse
region-based CNN to obtain promising features. Notably,
all the approaches mentioned above require massive labeled
samples to train large-scale networks, which is the most fatal
flaw of the DL framework.

Compared with the manual labeling of natural images,
the label annotation of HSI is more expensive and difficult
in a realistic scenario. Instead of using a fixed number or
percentage of labeled sample selection, i.e., 200, 5%, and 10%
in DL methods, many approaches [16], [17], [18], [19], [20]
have been further proposed to promote the performance of
HSIC with limited labeled samples. A tensor-board linear and
nonlinear classification models in [21] and [22] are presented
for HSI data in the situation of a small number of supervised
samples. Especially, the approach of Makantasis et al. [22]
significantly reduces the number of weight parameters result-
ing in required few training samples. In recent years, few-
shot learning [23], [24] that is dedicated to few-shot image
classification has acquired better accuracy compared with pre-
vious DL methods. Specifically, few-shot learning is one of the
applications of metalearning [25], [26] in supervised learning,
which decomposes the dataset into different metatasks to simu-
late the few-shot task and learn the generalization ability of the
model. Given a K-shot C-way classification task, the purpose
of the few-shot model is to use K-labeled training data of
each class to learn the metaknowledge of C-category classifi-
cation [27]. Based on the few-shot learning strategy mentioned
above, Liu et al. [28] learned a generalized metric space by
training the CNN model with a large number of labeled data
and adapted it to new classes with limited supervised samples
at the test phase. A spatial–spectral prototypical network [29]
achieved an extraordinary classification effect with only a
few labeled samples by learning the spatial–spectral metric
space. Furthermore, a novel feature space learner [30] with
a strategy of global representation learning is designed to
achieve few-shot image classification.

Although the existing CNN-based methods have achieved
significant classification performance, the traditional CNN
model only conducts convolution on the regular square
region and fails to adaptively capture the geometric changes
between different object regions in HSI. In contrast, the
GNN [31], [32], [37], [38], [39] is specially built to oper-
ate on non-Euclidean irregular data based on the predefined
graph structure. In [33], GNN was first presented to build
neural networks on graphs. After that, GNN-based models
[34], [35], [36] have been increasingly popular in various
areas and showed great potential ability. In HSIC, many
methods applied GNN to achieve promising performance.
Wan et al. [40] employed a multiscale dynamic GNN to incor-
porate spatial information at different scales. Hong et al. [41]
presented a minibatch GNN that allows training a large-sized
network in a minibatch fashion. In [42], autoregressive moving
average filters that can better capture the global graph structure
are applied to a semisupervised GNN for few-shot HSIC.
Tong et al. [43] defined the feature aggregation function by
introducing an attention-weighted graph into GNN for few-
shot HSIC. Satorras et al. [44] first constructed a dense graph
with all samples of the few-shot task where each node concate-
nated with features and class label, and the label information
was propagated by iterative updating node features via the
graph attention mechanism network.

The previous GNN approaches for HSIC in few-shot learn-
ing mainly rely on the node-labeling framework, which trans-
fers the relation between every pair of nodes in an implicitly
way. On the contrary, the edge-labeling framework explicitly
performs the clustering by adjusting not only node features
information but also edge-label information, which indicates
whether the connected two nodes belong to the same class.
The first attempt of the edge-labeling framework has been
previously found in [45], which inferred the edge labels of
the graph for correlation clustering. Typically, an edge-labeling
GNN [46] was proposed for few-shot classification tasks under
the episodic training framework. However, the edge-labeling
framework has never been applied to the field of the few-shot
HSIC. In addition, the general few-shot model highlights the
distinctive features in the self-designed network and imple-
ments the classification directly. Typically, the approaches
only strive to refine distinctive characteristics accurately at
the network level, ignoring that from the perspective of sam-
ple composition with small interclass dissimilarity and large
intraclass similarity that may lead to the wrong classification.

In this article, the edge-inferring graph model is presented to
perform clustering by inferring edge labels for few-shot HSIC,
which enhances the ability to distinguish different categories
of nodes with the explicitly exploiting of edge features to max-
imize interclass dissimilarity. Besides, in the proposed model,
both the instance-level similarity and the distribution-level
similarity of the connected nodes contribute to the inference
of the edge. Moreover, due to the abundant spatial and spectral
information of HSIs, the edge-inferring module is adopted to
extract features and perform edge inferring for spatial and
spectral characteristics, respectively. In addition, considering
the sample separability of different tasks in the episode, DTD
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is proposed to analyze the separability environment of each
query to guarantee the most reliable label decision.

In summary, the main contributions of this article are listed
as follows.

1) The edge-inferring-based GNN framework is the first
attempt to perform the few-shot classification for HSI,
which employs GNN for metric learning by itera-
tively inferring edge labels to maximize interclass
dissimilarity. Notably, the proposed edge-inferring mod-
ule infers relation between samples with the exploita-
tion of both instance- and distribution-level similarity
simultaneously.

2) The strategy of realizing an edge-inferring module for
the patch prediction model and pixel prediction model,
respectively, is presented to improve the classification
accuracy of test samples jointly. In this style, the pre-
sented architecture is contributed by employing hierar-
chical spatial features for patch prediction and spectral
information for pixel prediction, respectively.

3) A DTD strategy is designed to assign class annotation
accurately, which is implemented by the task-specified
episode with discriminate separability dynamically.
To the best of our knowledge, it is the first attempt
to achieve class prediction in terms of the interclass
discrepancy and PCD during the metatesting phase.

II. PROPOSED APPROACH

The proposed DTDEIN method mainly consists of three dis-
tinctive components, including the FE module, the EIN mod-
ule, and the DTD block. Specifically, the FE module includes
SPAENN and SPEENN that are responsible for extracting
the spatial and spectral features, respectively. Particularly,
EIN performs edge inferring by node features and edge-label
propagation across the graph layers that are embodied in
spatial EIN and spectral EIN according to respective extracted
features. Fig. 1 exhibits the structure of the spatial EIN, and the
structure of the spectral EIN is the same as the spatial EIN with
different parameters. The procedure of similarity calculation in
EIN is shown in Fig. 2. Besides, the flowchart of the proposed
DTDEIN framework for HSFSC in the test phase is illustrated
in Fig. 3. Especially, the DTD module is designed to preserve
a comprehensive consideration of the patch prediction and the
pixel prediction, which diagnoses the sample separability in
the current classification task and keeps the global label with
a more accurate prediction iteratively. More details of each
module are described in the following.

A. Problem Definition

Due to the spatial and spectral characteristics, HSI data
are composed of the patch set denoted as Dspa and pixel set
recorded as Dspe. In the setting, the samples of several classes
from Dspa and Dspe are selected to form patch-prediction tasks
and pixel-prediction tasks, respectively. Each task includes
a support set and a query set. Specifically, for each patch
task, C classes are randomly selected, and K examples for
each class from the patch set are sampled to form the patch
support set and Q examples per class to form the patch query

set. Similarly, the pixel task of the same size is obtained.
In addition, in the training stage, a query set with data labels
is in charge to evaluate the learned classifier, and the training
strategy follows the way of episodic training. In the test
phase, the samples in the patch task and the pixel task are
corresponding.

B. Feature Extractor

In the proposed DTDEIN architecture, two networks named
SPAENN and SPEENN are employed for FE to collect
information for the subsequent graph construction. Specifi-
cally, SPAENN is utilized to extract the spatial features, and
SPEENN acts on channel dimensions of original pixel data to
capture intrinsic spectral features.

In the implementation, the SPAENN with the parameter
set ϑ spa is accomplished by four 3 × 3 convolution layers
consequently and a fully connected layer. For input patch
data x spa

i , the produced spatial feature representation with a
1-D vector is obtained by the SPAENN. SPEENN with the
parameter set ϑ

spe
i is composed of only one full connection

layer for implementation simplicity. With pixel data x spe
i fed

into the network, spectral feature representation with a 1-D
vector is acquired by the SPEENN. The specific parameter
settings are described in the experimental analysis section.

C. Edge-Inferring Graph Neural Network

To enhance the interclass discrepancy to better distinguish
different categories, we develop an edge-inferring module with
the explicit exploitation of edge features to infer a query
related to existing support clusters. Edge-inferring architecture
is constructed by stacking lth convolutional layers, in which
each layer performs edge inferring, including a node update
block and an edge update block. Based on edge-inferring
architecture, the spatial EIN and the spectral EIN are designed
for patch edge predictions and pixel edge predictions. The
edge-inferring module on spatial characteristics and spectral
characteristics are described in detail in the following parts.

To illustrate the principle of our proposed framework
clearly, we list the primary denotations of the subsequent
section in the right table.

1) Graph Construction: As demonstrated in Fig. 1, a fully
connected graph is constructed according to the rule that
each node represents each sample, and each edge represents
the similarity between the two connected nodes. Specifically,
Gspa = (V spa, E spa) is constructed with the patch task in
the proposed framework, where V SPA := {V spa

i }i=1,...,N and
ESPA := {E spa

i j }i, j=1,...,N denote the set of nodes and edges of
Gspa and Gspe = (V spe, E spe) is built by the pixel task, where
V SPE := {V spe

i }i=1,...,N and ESPE := {E spe
i j }i, j=1,...,N denote the

set of nodes and edges of Gspe, and N = C × (K + Q) is
the total number of nodes in Gspa and Gspe.

For the initialization, v
spe
0,i and v

spe
0,i are obtained by SPAENN

and SPEENN, respectively. sspa
0,i j and sspe

0,i j are initialized in
terms of the following formula:

sspa
0,i j = sspe

0,i j =

⎧⎨⎨
⎨⎩

1, if zi j = 1 and i, j ≤ N × K

0, if zi j = 0 and i, j ≤ N × K

0.5, othersize
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Fig. 1. Framework of the spatial edge-inferring network. In this illustration, a two-way two-shot problem is presented as an example. First, the graph is
constructed with the feature vector obtained by SPAENN. Second, the node update and the edge update block are carried out with similarity calculation.
Finally, the edge-label predictions are obtained.

Fig. 2. Spatial similarity calculation with the consideration of instance
similarity and distribution similarity. The symbol of represents the operation
of (3) for obtaining distribution similarity, and represents the operation
of (4) and (5) for obtaining final spatial similarity. (a) Instance-Similarity
computation. (b) Distribution-Similarity computation.

where zi j representing the edge label that is defined by

zi j =
�

1, if yi = y j

0, otherwise.

2) Node Updation: According to the graph attention mech-
anism, edge features are regarded as attention coefficients
to aggregate neighbor node information. First, given v

spa
l−1,i

and sspa
l−1,i j from the l − 1th layer, the neighborhood feature

aggregation is calculated by the following equation:
v

spa
l,i = fl−1 ◦ ul−1 ◦ v

spa
l−1,i (1)

where the symbol of ◦ denotes the concatenation
operation, and fl−1 = �

j (v
spa
l−1, j · sspa

l−1,i j ) and ul−1 =�
j (v

spa
l−1, j · (1.0− sspa

l−1,i j )) represent the aggregated

information with neighbor nodes, emphasizing similar
information and different information, respectively.

Subsequently, v
spa
l,i is further transformed by the following

equation:
v

spa
l,i ← Ml

�
v

spa
l,i ; δspa

l

	
(2)

where Ml is an MLP with parameters of δ
spa
l that is stacked

with two convolution blocks.
Similarly, given v

spe
l−1,i and sspe

l−1,i j from the layer
l − 1th layer, v

spe
i,l is achieved by Ml with the parameters

of δ
spe
l .

3) Edge Updation: In the proposed network, edge fea-
tures are updated based on the newly updated node fea-
tures with the calculation of spatial similarity, which consists
of instance-level similarity and distribution-level similarity,
as shown in Fig. 2. First, given v

spa
l,i , a multiple convolution

blocks (MCB) with the parameters of ζ
spa
l is employed to

transfer the nodes to a new embedding-feature space. Next, the
Euclidean distance between the nodes is adopted to measure
ospa

l,i j in our architecture. Afterward, dspa
l,i j is acquired for each

pair node by considering the instance similarity over all nodes
in the graph in a one-versus-N manner by the following
equation:

dspa
l,i j = 1.0− σ



N�
m

��ospa
l,im − ospa

l, jm

�� (3)

where σ is the sigmoid function aiming to transform the
instance similarity to a certain scope.

Finally, the feature of each edge is updated with the follow-
ing formulas:

sspa
l,i j = ospa

l,i j · dspa
l,i j · sspa

l−1,i j (4)

sspa
l,i j = g

�
sspa

l,i1, sspa
l,i2, . . . , sspa

l,i j , . . . , sspa
l,i N

	
(5)
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Fig. 3. Procedural diagram of the DTDEIN model in the test phase. First, the samples in the patch task and the pixel task are performed edge inferring
with extracted features, respectively, to obtain patch prediction and pixel prediction. Next, DTD realizes prediction improvement through the reliability grade
of the label obtained by self-diagnosis.

where · represents the multiplication and g is the L1 regular-
ization operation.

Likewise, given v
spe
l,i and v

spe
l, j from the lth layer, the spectral

similarity sspe
l,i j is finally obtained by an MLP block with

parameters of ζ
spe
l .

4) Loss Function: In the metatraining phase, the parameters
of ϑ spa ∪ {δspa

l , ζ
spa
l }Ll=1 in the SPA-network are trained with

the following loss function:

Lspa =
L�

l=1

M�
m=1

λl Le

�
Ym,e, Ŷ l,spa

m,e

	
(6)

where Ym,e and Ŷ l,spa
m,e are ground-truth edge-labels’ matrix and

edge predictions matrix of the mth task at the lth layer in the
SPA-network, respectively, Le is binary cross-entropy loss in
an end-to-end fashion, λl represents the coefficient, L means
the layer number of spatial-EIN, and M is the number of tasks
for one iteration.

In addition, for the SPE-network with the parameters of
ϑ spe ∪{δspe

l , ζ
spe
l }Ll=1, the loss function for the episode training

is defined by the following formula:

Lspe =
L�

l=1

M�
m=1

λl Le
�
Ym,e, Ŷ l,spe

m,e

	
(7)

where Ŷ l,spe
m,e are edge predictions matrix of the mth task at the

lth layer in the SPE-network.
In summary, the process of the training episode is outlined

in Algorithm 1.

D. Dynamic Task-Guided Self-Diagnosis

The key to the HSIC framework is to enhance separability
by exploiting spectral and spatial features. In this work, at the

metatesting phase, due to the randomness and heterogeneity
of classification tasks under the metalearning strategy, we pro-
pose DTD consisting of IDD and PCD, which carries on
self-diagnoses of sample separability with probability distrib-
utions of patch task and pixel task, and keeps the most reliable
classification results with label decision.

We set label prediction of a query q as cq and corresponding
reliability grade recorded as rq in the current classification
task. In addition, since different tasks may have different
prediction labels on the same query q to assign the most
reliable classification results as the task changes, we set a
global variable yq to record the most reliable classification
results and gq to record the corresponding reliability grade.
The probability of a sample q that belongs to the existing
support class ck is calculated by the following equation:

px
q,k =

�
j : j �=q∧y j=ck

sx
q j,L

K
(8)

where px
q,k is the probability of sample q that belongs to ck

in the x-network, x ∈ (“spa”, “spe”), and sx
q j,L represents the

edge feature of the final layer.
1) IDD: In this article, IDD refers to the diagnosis of

whether the strength of interclass dissimilarity is enough large
to distinguish heterogeneous samples. Specifically, the largest
and second probabilities on the query sample q recorded as
f x
q and sx

q can be obtained. IDD acting on sample q is denoted
as IDD(hx(q)) to verify whether the strength of interclass
discrepancy contributes to classification depending on the
setting critical value θ , which is implemented as follows:

IDD(hx(q)) =
�

1, hx(q) >= θ

0, otherwise
(9)
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Algorithm 1 Training Episode Algorithm
Input: The patch tasks and pixel tasks
Output: ϑ spa ∪ {δspa

l , ζ
spa
l }Ll=1ϑ

spe ∪ {δspe
l , ζ

spe
l }Ll=1

/∗The Training Episode in SPA-network
for t = 1, . . . , M

Randomly generate a patch task
v

spa
0,i ← Spatial feature extraction by SPAENN with
xspa

i and ϑ spa

Gspa = (V spa, Espa) ← Graph construction
for l = 1, . . . , N do

for i = 1, . . . , N do
v

spa
l,i ← Node update with {vspa

l−1,i }, {sspa
l−1,i j }; δspa

l

end
for i, j = 1, . . . , N do

sspa
l,i j ← Edge update with {vspa

l,i }, {sspa
l−1,i j }; ζ spa

l )

end
Ŷ l,spa

t,e ← {sspa
l,i j }

end
end
Lspa ← Calculate loss with Equ. (6)
Update ϑ spa ∪ {δspa

l , ζ
spa
l }Ll=1 ← ∇(Lspa).

/∗ The Training Episode in SPE-network.
for t = 1, . . . , M

Randomly generate a pixel task
v

spe
0,i ← Spatial feature extraction by SPEENN with
xspe

i ; ϑ spe)
Gspe = (V spe, Espe)← Graph construction
for l = 1, . . . , N do

for i = 1, . . . , N do
v

spe
l,i ← Node update with {vspe

l−1,i }, {sspe
l−1,i j }; δspe

l

end
for (i, j) = 1, . . . , N do

sspe
l,i j ← Edge update with {vspe

l,i }, {sspe
l−1,i j }; ζ spe

l

end
Ŷ l,spe

t,e ← {sspe
l,i j }

end
end
Lspe ← Calculate loss with Equ. (7)
Update ϑ spe ∪ {δspe

l , ζ
spe
l }Ll=1 ← ∇(Lspe).

where the value of hx(q) represents the most influential
interclass dissimilarity for sample q in the x-network, which
is calculated by

hx(q) = f x
q − sx

q . (10)

2) Predictions Consistency Diagnosis: PCD refers to judg-
ing whether the class attributes predicted for spatial features
and spectral features are consistent. PCD acting on sample q is
denoted as PCD( f (q)) to verify whether classification results
are consistent with the SPA-network and the SPE-network,
which is implemented as follows:

PCD( f (q)) =
�

1, f (q) = 0

0, otherwise
(11)

where f (q) = cspa
q − cspe

q . cspa
q and cspe

q represent classi-
fication results for spatial and spectral, respectively, which

Algorithm 2 DTD

Input: sspa
i j,L , sspe

i j,L , yi gi

Output: yi , gi // global classification label and reliability
grade after DTD

// In current classification task
for q = C × K + 1, . . . , C × K + Q do

pspa
q,k , pspe

q,k ← Obtain two sets of probability
distribution with Equ. (8)

IDD(hspa(q)), IDD(hspe(q)) ← Calculation with
Equ. (9)

PCD( f (q)) ← Calculation with Equ. (11)
/∗ Decision label
cq ← Obtain the classification result in the current
task

rq ← Obtain the reliability grade of cq by Table I
if gq ! = “I”

if rq == “I”
yq = cq, gq = “I”

else if gq ! = “II” and rq == “II”
yq = cq , gq = “II”

else if gq == null
yq = cq , gq = “III”

else Keep the previous prediction.
end

end

TABLE I

PREDICTION RELIABILITY SETTING OF THE DIFFERENT LEVEL BASIS

is completed by

cspa
q = arg max

k

�
px

q,k

	
, cspa

q = arg max
k

�
px

q,k

	
. (12)

3) Label Decision: We adopt the result of the SPA-network
cspa

q as label prediction in the current classification task
(cq = cspa

q ). The outputs of IDD and PCD correspond to
the separability level, which indicates the reliability grade for
label prediction in the current classification task. Table I shows
corresponding reliability grades with PCD and IDD, in which
I, II, and III represent classification results reliability grade and
present the order from high-reliability grade to low-reliability
grade, and the number “1” represents that the corresponding
diagnosis infers that the current classification environment sat-
isfies the corresponding requirement. Therefore, the reliability
grade for label prediction rq is obtained in Table I. As shown
in Algorithm 2, following the rule of updating the results of
the low-reliability grade with the results of the high-reliability
grade, we decide whether update the global label variable
with the current label prediction. In this way, each sample
is guaranteed to assign the most reliable classification label
eventually.
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Fig. 4. Data of the Botswana scene. (a) False-color image. (b) Ground-truth
image.

Fig. 5. Data of KSC. (a) False-color image. (b) Ground-truth image.

III. EXPERIMENTS AND ANALYSIS

A. Data Description

In this section, three kinds of extensively popular datasets
are adopted to validate the effectiveness of our proposed
model. The first one is the Kennedy Space Center (KSC) data
that are acquired by the AVIRIS sensor in the USA. The size of
the data is 512 × 614, and it contains 176 bands after the water
absorption bands removing. This dataset includes 13 land-
cover classes, and the false-color image and the ground-truth
image map are illustrated in Fig. 4(a) and (b), respectively.

The second dataset is called the Botswana data, which was
captured over Botswana in Okavango Delta with the NASA
EO-1 Hyperion sensor. The resolution of the data is 1476 ×
256 with 145 bands after removing uncalibrated and noisy
bands. The false-color image and the ground-truth map cover
13 land-cover classes are shown in Fig. 5(a) and (b).

The last dataset is the Houston data that were collected
from the University of Houston campus and the neighboring
urban area. This scene contains 144 bands in the 380–1050-nm
region and 349 × 1905 pixels. Fig. 6(a) and (b) exhibits a

Fig. 6. Data of Houston. (a) False-color image. (b) Ground-truth image.

TABLE II

HYPERPARAMETER SETTING OF THE PROPOSED MODEL

false-color composite image and the ground-truth map consists
of 15 labeled classes, respectively.

B. Experimental Configuration

To explore the classification performance of the proposed
DTDEIN network for HSFSC, a series of other state-of-
the-art models were also exploited for comparison, includ-
ing GNN [11], EGNN [46], PN [14], SSRN [28], and
FADCNN [47]. In addition, the EGNN with the PCD block is
denoted as TDEGNN, and the DTDEIN network without the
DTD block is called the EIGN method. In our experiment,
for EGNN and the extended TDEGNN and EIGN, we accom-
plished them with the same hyperparameters as our method.
For others, we accomplished them with the default parameters
of the original approaches.

The hyperparameter setting of the proposed method is listed
in Table II. Here, for the Houston dataset, c represents the
number of primary components after PCA, and for the KSC
dataset, c is the initial band number of the dataset. a is the
band number of the dataset, and b − l is the input channel
number at the lth layer of MLP. Under the FSCL setting of
the proposed method, we cut the HSI into 11 × 11 image
size to form a patch dataset Dspa through PCA and obtain a
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Fig. 7. Classification maps of the Botswana scene with compared methods. (a) PN. (b) SSRN. (c) FADCNN. (d) GNN. (e) EGNN. (f) EGIN. (g) TDEGNN.
(h) DTDEIN.

pixel dataset Dspe with pixel data x spe
i of HSI. Besides, for the

employed Botswana dataset, we randomly select seven labeled
samples (i.e., examples) in each class and nine labeled samples
(i.e., examples) in each class for KSC and Houston.

In our experiments, the overall accuracy (OA) and the
average accuracy (AA) are employed as objective criteria
to evaluate the effectiveness of all the compared methods.
In the training phase, we conducted a five-way five-shot
experiment and sampled one query for each of the five classes
randomly. In the testing phase, we conducted a five-way two-
shot experiment and sampled five queries for each of the
five classes randomly. The Adam optimizer is employed in
our DTDEIN with the initial learning rate of 10−3, which is
conducted by each iteration with a weight decay of 10−6. The
other setting includes M used for metatraining of 20, L for
the layer number of 3, and v x for PCD of 0.5. In addition,
the coefficient parameters are set to λ1 = 0.5, λ2 = 0.5,
and λ3 = 1.0. All the methods are conducted five times via
PyTorch 1.1 with Python 3.8 with an Intel I5-8400 CPU and
8-GB RAM.

C. Results and Analysis

In the experiment for Botswana, the classification results of
OA obtained by different methods on the Botswana dataset
are illustrated in Table III, and Fig. 7 demonstrates the visual
comparison of the result maps. As shown in Table III, the
proposed DTDEIN achieved the highest OA of 99.88% among
all the compared methods. Moreover, we observe that the
performance of EGNN (96.90%) based on the edge framework
is better than GNN based on the node framework of OA
(96.2%). TDEGNN increased OA to 98.40%, which proves the
effectiveness of the DTD block. The EIGN model achieved

the OA of 98.42%; it can be seen that the proposed edge
derivation module has a more positive effect than EGNN on
the dataset. In addition, from the classification map in Fig. 7,
only the sixth class (“Riparian”) occurs classification error,
which further demonstrates the effectiveness of our proposed
DTDEIN.

In the experiment for the KSC, Fig. 8 illustrated colorful
result maps of the different models. As shown in Table IV,
the proposed DTDEIN still yielded the best classification result
(98.41%). TDEGNN outperformed EGNN, and DTDEIN out-
performed TDEGNN by a substantial margin, which indicated
that the DTD block can improve performance effectively. From
the classification results in Fig. 8, all methods without DTD
block have a lot of classification errors between the fourth
class and the 12th class. Comparatively, TDEGNN improves
this problem. Furthermore, the result of the proposed DTDEIN
having a DTD block shows fewer error classifications and
yields a smoother visual effect. Therefore, it is convincing to
conclude that the proposed DTDEIN has stronger robustness
than the compared methods.

The last experiment is performed at the Houston. The
colorful classification maps are illustrated in Fig. 9. The
experimental results of different methods are presented in
Table V; similar to the results in Botswana and KSC, EGNN
outperformed the GNN. TDEGNN increases accuracies by
12.25% of OA. The highest OA of 91.12% was still yielded by
our approach compared with other methods, which validates
the strength of our proposed method. In addition, it can be
seen that the performance of all methods was worse than that
of the KSC and Botswana datasets. The reason is that the
Houston dataset has a lower spectral resolution and contains
much noise than Salinas and Botswana. Furthermore, from
the classification results in Fig. 9, stronger spatial correlation
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TABLE III

CLASSIFICATION PERFORMANCE COMPARISON WITH ALL THE COMPARED METHODS OF THE BOTSWANA SCENE

TABLE IV

CLASSIFICATION PERFORMANCE COMPARISON WITH ALL THE COMPARED METHODS OF THE KSC

and fewer misclassification pixels can be observed in the
classification map of the proposed DTDEIN model compared
with EGNN and other competitors.

D. Impact of the Number of Labeled Examples

In this experiment, the proposed DTDEIN is investigated
under different numbers of labeled examples. In specific,
a series of experiments are conducted with labeled samples’
number for each class varying from 1 to 13 on three datasets.
The performance of the proposed model on three datasets is
reported in Fig. 10. It can be observed that, as the labeled sam-
ples increase, the accuracy gradually improves. The accuracy
of the Botswana dataset can reach more than 95% with one
labeled sample. In addition, when the number of samples of

each type rises to 7 on Botswana datasets and 9 on KSC and
Houston datasets, the accuracy has been significantly improved
with stable performance, which implied that our proposed
model can achieve high accuracy with very few samples. All
observations indicate the effectiveness and stability of our
DTDEIN method.

E. Semisupervised Few-Shot Classification

In this section, we designed a semisupervised experiment
where the model is trained with the training set and applied to
the new dataset without fine-tuning to verify the generalization
of the proposed method. In this experiment, the EGNN [48]
model is chosen as a comparison. In our semisupervised
experiment, we use Pavia Centre and KSC as the training
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Fig. 8. Classification maps of the KSC with compared methods. (a) PN. (b) SSRN. (c) FADCNN. (d) GNN. (e) EGNN. (f) EGIN. (g) TDEGNN. (h) DTDEIN.

Fig. 9. Classification maps of the Houston with compared methods. (a) PN. (b) SSRN. (c) FADCNN. (d) GNN. (e) EGNN. (f) EGIN. (g) TDEGNN.
(h) DTDEIN.

TABLE V

CLASSIFICATION PERFORMANCE COMPARISON WITH ALL THE COMPARED METHODS OF THE HOUSTON

dataset to train the model, and Salinas and Botswana are used
as the test dataset to evaluate the generalization ability.

In specific, for our DTDEIN, we employ the five-way five-
shot setting for training and five-way two-shot setting for
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Fig. 10. Overall accuracies of our method with different numbers of the
labeled examples per class for the three datasets.

Fig. 11. Accuracy value of the Botswana and Salinas scenes with semi-
DTDEIN model and semi-EGNN model.

TABLE VI

ABLATION STUDY ON THE THREE HSI DATASETS

testing and seven labeled samples for each type of test set. For
EGNN, a five-way five-shot setting is used for both training
and testing. The comparison results on Salinas and Botswana
datasets are delivered in Fig. 11, in which semi-DTDEIN and
semi-EGNN represent that used in semisupervised. As can be
seen from Fig. 11, the proposed method (semi-DTDEIN) is
much better than semi-EGNN by a big gap. More specifically,
the proposed method achieved an OA of 98.92% for Botswana,
and 96.76% for Salinas is higher than the OA of 80.60%
for Botswana and 81.34% for Salinas achieved by EGNN in
the semisupervised experiment. Therefore, it proves that the
proposed method has a strong generalization ability.

F. Ablation Study

To verify the contribution of the double-network mecha-
nism (spatial network and spectral network) and DTD block
in the presented approach to the ultimate classification result,
the ablation study is carried out on the three datasets with
the edge-inferring module as the baseline part. Individually,
Table VI exhibits the results of the experiments, where DEIGN
represents double-network structure, and the EIGN represents
spatial network structure. All methods involving DTD block

decide label according to the priority label decision strategy
mentioned in Section I.

1) Double-Network: To demonstrate the contribution of the
double-network clearly, Table VI is demonstrated as two parts
in different colors separately. The red part shows the method
using a single network (spatial network), and the blue part
shows the method using the double-network structure. It is
observed that the OA in blue is more competitive than in red,
especially for the Houston and the KSC data. In specific, the
DEIGN + PCD model is better than the model EIGN, and
the DEIGN + IDD approach also outperformed the model
EIGN + IDD. Therefore, we conclude that the double-network
presented in this article is effective, especially for the dataset
with low spatial resolution and more noise.

2) Dynamic Task-Guided Self-Diagnosis: To show the
effectiveness of the DTD block, we conduct another experi-
ment to compare the classification performance provided with
or without the DTD block. As can be seen in Table VI, all
the models with the DTD block show better performance than
the ones without it. In specific, the OAs of the single network
structure model in the first two adjacent columns (EIGN and
EIGN + IDD) testify that the IDD block is more conducive
to the simpler HSIC model. The OA improves 1.0% for
Botswana, 6.12% for KSC, and 5.31% for Houston compared
with the great role in the single network structure. For the
three columns on the right in the table, the double-network
structure with PCD yielded excellent performance. With IDD
participating in the double-network model (DEIGN + PCD),
the OA enhances 0.28% for Botswana, 3.79% for KSC, and
2.05% for Houston.

IV. CONCLUSION

In this article, a novel edge-inferring GNN for metalearning
with DTD is proposed for HSFSC. Specifically, the edge-
labeling network performs edge inferring to perform clus-
tering explicitly with both instance-level similarity and the
distribution-level similarity, which has great advantages in
exploring complex data relationships with limited labeled
samples. Besides, aiming at spatial and spectral features of
HSI, the edge-inferring architecture is embodied in two edge-
inferring models, which jointly contributes to classification in
the test phase. Furthermore, we design a DTD for label predic-
tion accurately at the metatest phase, which joins two different
levels of information to keep the most reliable classification
results.
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