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Abstract—Vehicles are becoming more and more connected,
this opens up a larger attack surface which not only affects
the passengers inside vehicles, but also people around them.
These vulnerabilities exist because modern systems are built
on the comparatively less secure and old CAN bus framework
which lacks even basic authentication. Since a new protocol can
only help future vehicles and not older vehicles, our approach
tries to solve the issue as a data analytics problem and use
machine learning techniques to secure cars. We develop a
Hidden Markov Model to detect anomalous states from real data
collected from vehicles. Using this model, while a vehicle is in
operation, we are able to detect and issue alerts. Our model
could be integrated as a plug-n-play device in all new and old
cars.

1 INTRODUCTION

According to US department of transportation [12],
88% of all people are drivers with 1.9 mean number
of vehicles per household in the US [17]. Vehi-
cles have become an integral part of our life and
automobile technology has progressed to address
various needs. Earlier, it was the sole responsibility
of the driver to control various activities in a vehi-
cle, but with the proliferation of micro-controllers
and security features many such tasks have been
delegated to electronic chips. The controllers have
started taking precursory actions. To ease inter-
controller communication, a common internal com-
munication bus was introduced instead of inter-
connecting them separately. The design of the bus
gave more importance to performance than security.
Hence the protocol lacked any kind of authentica-
tion schemes or non-repudiation mechanics.

Different research enlists multiple attacks against
a vehicle. Hoppe et al. [8] describe different attacks

which are possible by malicious modifications of
ECU code. Using one such modification they were
able to open the car windows [7] automatically
when it reaches the speed of 200 kilometer per hour.
These vulnerabilities are severe since they directly
affect passenger safety. In another instance, they
hacked the comfort control unit so as to control the
warning lights. Since the comfort control ECU is
responsible anti-theft functionality, they could have
easily disabled the alarm system to ease unautho-
rized entry to a vehicle. Researchers were also able
to manipulate the Airbag Control Systems [8] in the
vehicle using a similar technique. Koscher et al. [9]
experimentally evaluated and demonstrated vari-
ous problems with the underlying system structure.
They illustrated how easy it was for a determined
attacker to infiltrate various ECUs and circumvent
different security systems. They were able to attack
various things like the speedometer, lights, brakes,
doors locks etc.

Recently researchers were able to exploit the
weakness in a car system build on top of a basic
CAN network by injecting malicious data into the
internal bus. The effects of their hack ranged from
acts like switching the lights on, to potentially fatal
acts like applying brakes. Charlie Miller and Chris
Valasek demonstrated a hack by exploiting the vul-
nerability by attaching an external device [11]. They
demonstrated their recent work at Blackhat 2015, in
which they hacked a Jeep Cherokee [10] remotely
without even attaching any external device. More
reports [15] have come out listing various vehicles
from popular car makers like Volkswagen, Skoda,
Volvo, etc. that are vulnerable to another kind of
crypto attack on key less entry.
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We first collected data from different vehicles and
formulated the problem into a data analytic prob-
lem. Then we used HMM to create a model. Once
the model is generated, we use it to predict any
unsafe or anomalous states from the data flowing
on the CAN bus. We evaluated our system by gen-
erating multiple anomalous scenarios by logically
modifying the collected real data.

1.1 Background

Older cars were just mechanical devices. But mod-
ern vehicles can be considered as a collection of
Electronic Control Units (ECU), Sensor and actu-
ators. The different control units include Anti-lock
Brake System (ABS), Adaptive Cruise control, Ac-
tive Suspension, Active Vibration Control, Enter-
tainment System, Lane Keeping Assist, Electronic
Power Steering, Adaptive Front lighting etc. Many
of these systems depend on each other and there
is a requirement to interconnect them. Since inter-
connecting each of them separately is not efficient,
Bosch proposed CAN bus, with the most recent
CAN specification CAN 2.0 published in the year
1991 [14]. In the year 1993 the International Or-
ganization for Standardization released the CAN
standard ISO 11898 [1]. It is designed to be fast and
simple in architecture.

2 RELATED WORK

There are two ways to address the current security
problem. One way is to prevent the attack from
happening and the second one is to detect and
mitigate the potential risk. One of the main reasons
which enable attackers to inject potentially mali-
cious messages on the CAN bus is that the protocol
lacks authentication mechanisms [9]. Researchers
tried to address this problem by using cryptogra-
phy. Wolf et al. [18] looked at the requirements
of cryptographic functions for car security. They
proposed embedded solutions to add cryptographic
functions to different ECUs which can provide se-
curity against malicious manipulations.

2.1 Attack Prevention

Hazem and Fahmy [6] proposed LCAP, a light
weight CAN authentication protocol to secure the
CAN bus in which they reduced communication
overhead and computational complexity associated
with cryptography. In this protocol, they used a
one-way hash function to generate a magic number

which is selected by the sender and can only be
verified by the receiver. The magic number would
be sent either using the extended identifier field or
as a payload over the CAN bus. LCAP requires
a predefined key and various session keys to be
exchanged between each sender and receiver, every
time in the initial phase of the protocol.

Another authentication protocol is CANAuth [16]
by Herrewege et al. This protocol is backward com-
patible with the currently used protocol. Apart from
proposing a new protocol, they identified different
restrictions on the CAN bus system like hard real-
time constraints, message length restriction, lack
of bi-directional communication, etc. In this proto-
col, authentication data is transmitted out of band
which provides a maximum length of 15 bytes for
the authentication message. After key exchange,
the authentication process will have two parts, a
counter value to prevent replay attacks and 80 LSB
of HMAC of the counter value and CAN message
data. This protocol also requires a pre-shared key.

LiBrA-CAN [4] by Groza et al. is yet another
protocol to secure the CAN bus. Instead of pro-
viding independent authentication for each sensor
or ECU, they assigned keys for a group of these
devices. They employed key splitting and MAC
mixing in this protocol to provide security. Apart
from the basic authentication scheme, they also dis-
cussed several variations of their protocol which are
broadly classified as master orient authentication
schemes and distributed authentication schemes.
The master oriented authentication schemes include
centralized, cumulative and load balanced authenti-
cation schemes, while the distributed authentication
scheme includes alternatives like two stage authen-
tication and multi master authentication schemes.

2.2 Attack Detection and Mitigation

Koscher et al. [3] discusses the importance of de-
tection mechanisms versus prevention mechanisms.
They solidify our hypothesis that, operational and
economic realities in the domain demands a detec-
tion strategy unlike the prevention strategies using
cryptography mentioned above. Ruta et al. [13]
collected the OBD data from the CAN bus and
analyzed it to infer potential risk factors and pro-
vide the user with warning. In their method they
fused the OBD speed and RPM information with
external data like weather information, location in-
formation, etc. using simple data fusion algorithms
to perform logic based matchmaking. They inferred



3

road and traffic conditions, driving behavior, etc.
and generated suggestions to minimize risk factors.
For example, their system suggests the driver to use
ABS and fog lamps along with slow driving if it
detects a foggy weather at a particular location.

2.3 Hidden Markov Models and their Applica-
tions

A Markov process is a stochastic model that follows
the Markov property, which states that any new
state transition depends only on the current state.
A Hidden Markov Model is similar to a Markov
process but with hidden or unobserved states. Each
of these hidden states will be associated with a set
of observations. To create a HMM model, we gener-
ate two set of probabilities, Transition probabilities
and Emission probabilities. Transition probability
controls how a new state, lets say “S(t)”, is chosen
from a current state “S(t-1)”. The emission probabil-
ity is probability that a specific set of observations
will be generated given current hidden state “S(t)”.
During model generation we try to estimate these
probabilities using the given data set. The different
problems solved using HMM models include the
following. Given the model, what is the probability
of an observation sequence, what is the most likely
sequence of hidden states corresponding to an ob-
servation sequence, etc.

In our project we use this Hidden Markov Models
which are quite popular for analyzing time series
data. et al.[19] discuss three time series clustering
approaches: raw-data-based, feature-based, model-
based. They also suggest various methods to for-
mulate clusters given a time series dataset. They
advise starting with feature extraction, followed by
clustering which will produce Clusters and maybe
Cluster Centers.

Hidden markov models have been applied to
many problems in various fields like finance, bioin-
formatics, etc. Ziv et al. [2] successfully apply it
to analyze time series gene expression data so as
to study a wide range of biological systems. They
stress that hidden markov models help them to
infer causality from the temporal response pattern
and address the challenge of handling different
non-uniform sampling rates. Zhang et al.. [19] use
hidden markov models to analyze financial data.
They take historical multidimensional and complex
nonlinear data from various financial indexes and
develop a hidden markov prediction system to find
a possible future value of a stock price.

An interesting paper by Guo et al. [5] that is
quite relevant to our study uses accelerometer, GPS
data to develop a movement and behavior model
for cattle by using hidden markov models. The
authors collect real data for individual cows in the
herd and then try to predict their movements using
machine learning models. The authors develop a
3 state model which was able to describe animal
movement and state transition behavior accurately.

As described above Koscher et al.[3] described
the importance of a detection scheme due to prac-
tical issues. Moreover the data analytics on OBD
data [13] proves useful. We believe that a machine
learning approach can provide us a method to
detect abnormal car behaviour using data from the
OBD port. Guo et al. [5] have used machine learning
algorithms like hidden markov models in a similar
manner. This leads us to believe that a similar
model can detect abnormal states from OBD data.

In our project we encounter a regular stream of
OBD messages which are transmitted on a vehicles
CAN bus. In order to determine if the car is in
normal or abnormal mode of operation we ana-
lyzed this regular stream of OBD messages. We
then formulate this problem as a Machine Learning
problem where we predict if a car is in normal mode
or in abnormal mode of operation by considering
the OBD CAN bus messages generated by the
following ECUs: Engine Control Module, Electronic
Brake control module, Transmission Control Mod-
ule, Body Control Module, Telematics, Radio, etc.

3 METHODOLOGY

We try to convert the problem of detecting abnor-
mal states in a vehicle into a data analytic problem.
To accomplish it, we follow the steps as described
in Figure 1. The first step is the data collection
phase in which the stream of CAN bus data is
collected. We can employ the OBD-II port present in
most vehicles for this purpose. Detailed discussion
on data collection can be found in Section 4 The
next step is to generate a model which can detect
anomalous states in a vehicle. Since Hidden Markov
Models (HMM) can abstract the time series data, we
use them to model this scenario. Fitting the current
scenario to HMM model is described in detail in
Section 5. The final step is the anomaly detection
using the generated model. Using HMM’s, we can
find the posterior probability of a given sequence
of observations. Whenever new observations are
available, we detect the posterior probability of the
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current sequence and if the probability falls below a
threshold, it indicates a deviation from the normal
state of the vehicle and hence we generates an alert
in that case.

Fig. 1: Proposed Detection Architecture

3.1 System Integration
Our model can be integrated with all current and
future car systems as a plug-n-play device or as
a system module programmed on the on-board
car computer. We can add our system to old cars
using their pre-existing OBD Port and attaching a
small Rasberry-Pie chip to the OBD port to collect,
analyze, and issue alerts. New cars can have this
feature pre-installed.

4 DATA COLLECTION

The first step is to collect the data from the CAN
bus. The CAN bus is a broadcast bus on which mul-
tiple devices are connected. When a device want
to communicate with other components connected
to bus, the device will broadcast a message on to
the bus with a specific message ID. As shown in

Figure 2, each CAN message will have a specific
Message ID and the message data. While send-
ing the message, each device will be identified by
the Message ID alone. It should be noted that all
devices connected to the CAN bus will receive
the message, but at the receiver end, only those
devices which requires that message will accept
it while others will just ignore it. To avoid two
devices broadcasting together, so that two messages
wont be mixed up, It uses a priority mechanism
associated with each of the message ID’s.

Fig. 2: CAN Message

It should be noted that the OBD port, which is
mandatory in many countries is also connected to
the CAN bus in order to collect diagnostic infor-
mation. Hence we can essentially attach a device
on to the OBD-II port and extract data for analysis.
There are multiple tools like OBDLink Mx, Blue
driver, CAN-BUS Shield which can be connected to
Arduino board and ELM 327 clone devices which
can be attached to OBD port to extract the raw
messages broad-casted over it.

For data collection, we used STN1100 based OB-
DLink MX. STN1100 is a multi protocol OBD to
UART interpreter integrated circuit. It has a 16 bit
processor with inbuilt flash memory and a RAM. It
supports the complete AT command set (Command
set for ELM 327 based chip-set) along with a new
set of ST commands. It supports different protocols
like ISO 15765-4 (CAN), ISO 11898 (raw CAN) and
SAE J1939 (heavy vehicles). Other selected features
include voltage input for battery monitoring and
automatic protocol detection. We used OBDWiz, a
tool which connect with OBDLink MX, to interface
with the vehicles OBD port. During data collection,
we set the “STMA” command, which will extract all
the data flowing over the CAN bus. We collected
data from vehicle from different manufacturers
which include “Honda Accord”, “Toyota Corolla”
and “Chevrolet Cruze”.
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We faced some practical limitations for collect-
ing the data. Many of these vehicle manufacturers
have different mechanisms which hinders direct
collection of data from the CAN bus. Some of
the techniques include using multiple CAN buses
which are guarded by different gateways. These
gateways can be unlocked only by specific tools.
But these simple techniques wont stop a malicious
attacker to crack into it. We were able to collect the
information from sensors like Vehicle speed, load,
engine coolant temperature, Engine RPM, Intake
air temperature, Absolute throttle position and O2
voltage using the tools mentioned.

5 MODEL GENERATION

The second step in our approach is to analyze
the collected data to develop a model which can
identify anomalous states. In this project we try
to use Hidden Markov Models (HMM) to create
a model. The intuition behind using this model is
described below. We consider the movement of a
vehicle is nothing but a sequence of states which are
dependent on the previous state, like the Markov’s
processes. For example consider the sequence of
activities from T1 to T12 as shown in Figure 3. At
T1 speed is zero and the Door is open. At T2 the
door is closed and it starts moving. The car gathers
speed gradually till T6. But at T7 there is a sudden
jump of 85 miles per hour making the speed to 100
mph. At T8 the speed of car is 200 miles per hour
and the door is open. We can clearly see that the
probability of a state change from T6 to T7 and T7

to T8 are unusual. Hence from these sequences we
can detect anomalous behaviors.

In order to generate the model, we first separated
the data collected into data from different compo-
nents using custom scripts. To create a model, we
used the HMM tool box from Matlab. It has built in
functions to perform various HMM operations with
high efficiency. The important functions available in
it are the following.
• hmmgenerate: This function generates a ran-

dom sequence of observations corresponding
to a HMM model which includes the transi-
tion and emission probabilities

• hmmestimate: Given a sequence of observa-
tions and states corresponding to it, this func-
tion will estimate the corresponding transition
and emission probabilities.

• hmmtrain: For a given sequence of observa-
tions, this function will find the maximum

Fig. 3: Sample Car Event Time-line

likely hood estimate for emission and transi-
tion probabilities.

• hmmviterbi: This function determines the
most possible sequence of states correspond-
ing to a sequence of observations.

• hmmdecode: For a given model and a se-
quence of observations, this function will esti-
mate the posterior probabilities for the given
sequence of observations.

The first issue for model generation is how to con-
vert the collected data into a series of observations.
For example consider the speed which is collected
from the CAN bus. From our collected data we
noticed that we have more data at the lower speed
bands (0 mph - 10 mph) and average speed bands
(40 mph - 60 mph). For other regions the data is
really sparse. The problem with such a data model
is that it can create a lot of false positives, since we
don’t have enough data for many state transitions.
Hence we trained our model using gradients for
the continuous data on the CAN bus. For example
in case of speed, instead of using actual speed, we
find the speed gradients and train our system for it.
The next issue is on how to accommodate multiple
observations as a single vector. We have different
type of sensors in a vehicular system. Some of them
will push data on to CAN bus at regular interval
like speed and RPM. On the other hand there are
some other observations which are pushed on to
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the system only when they are required like door
sensors in some vehicles. In our model, we create
a vector containing different inputs from different
systems. Each vector will then represent a single
observation and hence our system will be trained
for each of those observations.

To train our model, the data interpreted from the
CAN bus are represented as a sequence of observa-
tion as mentioned above. For example Speed is 20
mph, RPM is 3000, State of door is closed etc. are
modeled as a vector sequence. During implemen-
tation, we interpret the different values from par-
ticular slots in the CAN message and convert into
decimal values from Hex values before using them
to train our model. Now these interpreted values
are used to generate the sequence of observations.
We use this generated sequence of observations to
train HMM model using the “hmmtrain” function
in Matlab. We chose to use the Baum-Welch algo-
rithm for training which will generate Transition
and Emission Probabilities corresponding to test
sequences.

6 ANOMALY DETECTION

Now the next step is to find any anomalous states.
As we described earlier, we are not only detecting
attack states, but also any unsafe or anomalous
states. For example, even though it is not caused by
an attacker, opening of door at 200 mph is unsafe
and hence we flag it. To detect unsafe states, we

Fig. 4: Sliding Window For Anomaly Detection

use a sliding window of “n” previous observations
as shown in Figure 4. The sliding window moves
every time a new observation is available. One of
the operations which we can do with HMM is to

detect the posterior probability of a given sequence.
In this case, once the sliding window is determined,
we use all observations in that window and deter-
mine the posterior probability of that sequence. In
our case each of the observation would be a vector
of different sensor values. It will generate a set of
probabilities corresponding to each observation. If
the probability of any such sequence is below a
threshold, based on the generated model, it implies
that getting that observation in that sequence is very
low and hence we identify it as an anomalous state.

We implemented anomaly detection using the
matlab tool box. The anomaly detection module
has the model as its first input. In our implemen-
tation, the input stream from the CAN bus is fed
to this module. It will convert it into a sequences
of observation using the same procedure we had
used during model generation phase. Now when
new observations are available, the module will
pick up “n” previous observations from the sliding
window and use “hmmdecode” from matlab to find
the posterior probability for the sequence in the
window. The module will now generate an alert, if
the probability of any observation in the sequence
is going below a set threshold value.

7 EVALUATION & RESULTS

For our evaluation, we need to verify that no alerts
are generated during normal conditions and alerts
are generated during unsafe conditions. To test the
normal conditions, we split the collected data into
two parts. The first part is used for training the
model and the second part is used to verify if the
model generates any false positives. For evaluating
the system to detect unsafe states, we hand crafted
different scenarios by injecting unsafe data into the
actual data. We had done a progressive evaluation
scheme to test the performance of our model. Our
first evaluation used only data from a single sensor.
Further evaluations use more than one values at the
same time. We describe our evaluation method and
corresponding results below.

7.1 Single Observation Evaluation
We first trained our system only based on a single
observed value. We used the data from speed sensor
and RPM sensor separately for this. Figure 6 repre-
sents a part of test data for speed shown graphically.
Each of the spikes in it represents the anomalous
sudden change in speed caused as a result of the
introduction of anomalous data to the real data
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(a) Anomalous RPM Increase (b) Anomalous RPM Decrease

Fig. 5: Test Data for RPM as a single observation

(a) Anomalous Speed Increase (b) Anomalous Speed Decrease

Fig. 6: Test Data for Speed as a single observation
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(a) Anomalous Speed
Decrease

(b) Anomalous Speed
Increase

(c) Anomalous RPM
Increase

(d) Anomalous RPM
Decrease

(e) Anomalous Speed
Increase RPM Decrease

(f) Anomalous Speed
Increase RPM Increase

(g) Anomalous Speed
Decrease RPM Increase

(h) Anomalous Speed
Decrease RPM Decrease

Fig. 7: Test Data for RPM and Speed together

collected from vehicle. Ideally such a sudden spike
is an unsafe state according to our hypothesis. Our
generated model was able to detect each of those
spikes. In order to make sure that this will work
not only for that particular observation, we tried
it with RPM sensor data shown in Figure 5. In
a similar way the spike represents a very sudden
change in RPM. We should note that the rate of
change in RPM and Speed are different. RPM can
increase more rapidly than speed. But since our
model is based on real data collected from vehicles,
it can detect all those variation which will normally
happen in them. The results are concluded in the
table 1. We can see that all different anomalous
changes, which cannot correspond to the normal
context of a car was detected by our generated
model. Moreover at those places which do not have
spikes the model did not generate any alert.

7.2 Multiple Observations Evaluation
Since our model work well with single observa-
tions, we evaluated how it will work while con-
sidering multiple observations together in a vector.
For this evaluation we chose the speed and RPM
observations together as a single vector. Both speed
and RPM values are generated at regular intervals
and hence we could map every speed value with

No Type Speed Result RPM Result
of Change Alert Status Alert Status

1 ⇑ False False

2 ⇓ False False

3 ⇑⇑ True True

4 ⇓⇓ True True

5 ⇐⇒ False False

TABLE 1: Single Observation Evaluation. ⇑ -
Gradual Increase, ⇑⇑ - Sudden Increase,

⇓ - Gradual Decrease ⇓⇓ - Sudden Decrease,
⇐⇒ - Normal (from Test data)

an RPM value. A part of the anomalous values
we generated and tested using our model is rep-
resented in figure 7. The different spikes represent
different anomalous situations which should not
happen normally in a vehicle. We tested eight differ-
ent anomalous situations in it. Each one represents
either one of the quantity or both of them be-
ing modified which represent a potential malicious
state. For example figure 7e is the situation in which
the speed is suddenly increased while the RPM
value suddenly decrease, which is a scenario that
can never happen in a normal running vehicle.
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Similarly figure 7f represents the situation in which
the RPM and speed increase rapidly such that it is
not physically possible in a normal vehicle. After
generating the model, we tested these different
cases and the evaluation results are described in ta-
ble 2. We can see that the results are promising and
could detect such scenarios. But we acknowledge
the fact that we need to test our method with more
anomalous states of varying degrees.

No Speed RPM Alert Status Result

1 ⇑⇑ ⇑⇑ True

2 ⇑⇑ ⇓⇓ True

3 ⇓⇓ ⇑⇑ True

4 ⇓⇓ ⇓⇓ True

5 ⇑⇑ ⇐⇒ True

6 ⇓⇓ ⇐⇒ True

7 ⇐⇒ ⇑⇑ True

8 ⇐⇒ ⇓⇓ True

9 ⇐⇒ ⇐⇒ False

TABLE 2: Multiple Observation Evaluation. ⇑⇑ -
Sudden Increase, ⇓⇓ - Sudden Decrease,

⇐⇒ - Normal (from Test data)

8 CONCLUSION

In this project we looked at various security hacks
that have surfaced in the recent past. We also stud-
ied the CAN Data Bus Model and how to extract
data from a CAN Bus. We successfully extracted
data from various Ford, Toyota and Honda Cars.
Even though data is generated fast and could be
collected in bulk from these vehicles, we found that
to tackle different issues in this area using data
analytic approach, we not only need the data in
quantity, we require data with variety also. Hence
we identified the requirement of better data sets
with variety in this domain for future research ac-
tivities. Using the collected dataset we generated a
Hidden Markov Model for the prediction of anoma-
lous or unsafe states. Our initial results show that
such data analytic techniques could be successfully
used to identify anomalies and hence unsafe states
in a vehicle. Unlike various other methods, such a
method could successfully be utilized in both older
and newer vehicles. Such techniques could not only
protect them from malicious attacks, but also could

be employed to assist the driver in various ways.
For example such analytics could be used to de-
tect engine failures early or different sensor mal-
functioning.

ACKNOWLEDGMENT

This work is done as a part of the Insure project
sponsored by National Science Foundation (NSF).
We thank Dr. Alan Sherman for his valuable com-
ments and suggestions during this work. We also
thank Mike Moore, Alan Barker and Joesph Raetono
from the Oak Ridge National Laboratory, for an-
swering our various queries related to practical
issues, we faced during this work.

REFERENCES

[1] ISO 11898-1:2003. Road vehicles – controller area network
(can) – part 1: Data link layer and physical signalling.

[2] Ziv Bar-Joseph. Analyzing time series gene expression
data. Bioinformatics, 20(16):2493–2503, 2004.

[3] Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage, Karl
Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi
Kohno, et al. Comprehensive experimental analyses of
automotive attack surfaces. In USENIX Security Sympo-
sium. San Francisco, 2011.

[4] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege,
and Ingrid Verbauwhede. Libra-can: Lightweight broad-
cast authentication for controller area networks.

[5] Ying Guo, Geoff Poulton, Peter Corke, GJ Bishop-Hurley,
Tim Wark, and David L Swain. Using accelerometer,
high sample rate gps and magnetometer data to develop
a cattle movement and behaviour model. Ecological
Modelling, 220(17):2068–2075, 2009.

[6] Ahmed Hazem and Hossam AH Fahmy. Lcap-a
lightweight can authentication protocol for securing in-
vehicle networks. In 10th escar Embedded Security in Cars
Conference, Berlin, Germany, volume 6, 2012.

[7] Tobias Hoppe and Jana Dittman. Sniffing/replay attacks
on can buses: A simulated attack on the electric window
lift classified using an adapted cert taxonomy. In Pro-
ceedings of the 2nd workshop on embedded systems security
(WESS), pages 1–6, 2007.

[8] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security
threats to automotive can networks–practical examples
and selected short-term countermeasures. In Computer
Safety, Reliability, and Security, pages 235–248. Springer,
2008.

[9] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak
Patel, Tadayoshi Kohno, Stephen Checkoway, Damon
McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental security analysis of a modern auto-
mobile. In Security and Privacy (SP), 2010 IEEE Symposium
on, pages 447–462. IEEE, 2010.

[10] Charlie Miller and Chris Valasek. Remote exploitation
of an unaltered passenger vehicle. Technical report,
Blackhat 2015.



10

[11] Charlie Miller and Chris Valasek. Adventures in automo-
tive networks and control units. In DEF CON 21 Hacking
Conference. Las Vegas, NV: DEF CON, 2013.

[12] United States Department of Transportation. Household,
individual, and vehicle characteristics.

[13] Michele Ruta, Floriano Scioscia, Filippo Gramegna, and
Eugenio Di Sciascio. A mobile knowledge-based system
for on-board diagnostics and car driving assistance. In
UBICOMM 2010, The Fourth International Conference on
Mobile Ubiquitous Computing, Systems, Services and Tech-
nologies, pages 91–96. Citeseer, 2010.

[14] Bosch Semiconductors. Can with flexible data-rate.
[15] Darlene Storm. Hack to steal cars with keyless ignition:

Volkswagen spent 2 years hiding flaw.
[16] Anthony Van Herrewege, Dave Singelee, and Ingrid

Verbauwhede. Canauth-a simple, backward compatible
broadcast authentication protocol for can bus. In ECRYPT
Workshop on Lightweight Cryptography 2011, 2011.

[17] Adam Verbach. The american commuter spends 38 hours
a year stuck in traffic.
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