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Abstract: Land cover is one of the key terrestrial variables used for monitoring and as input for
modelling in support of achieving the United Nations Strategical Development Goals. Global and
Continental Land Cover Products (GCLCs) aim to provide the required harmonized information
background across areas; thus, they are not being limited by national or other administrative
nomenclature boundaries and their production approaches. Moreover, their increased spatial
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resolution, and consequently their local relevance, is of high importance for users at a local scale.
During the last decade, several GCLCs were developed, including the Global Historical Land-Cover
Change Land-Use Conversions (GLC), the Globeland-30 (GLOB), Corine-2012 (CLC) and GMES/
Copernicus Initial Operation High Resolution Layers (GIOS). Accuracy assessment is of high
importance for product credibility towards incorporation into decision chains and implementation
procedures, especially at local scales. The present study builds on the collaboration of scientists
participating in the Global Observations of Forest Cover—Global Observations of Land Cover
Dynamics (GOFC-GOLD), South Central and Eastern European Regional Information Network
(SCERIN). The main objective is to quantitatively evaluate the accuracy of commonly used GCLCs at
selected representative study areas in the SCERIN geographic area, which is characterized by extreme
diversity of landscapes and environmental conditions, heavily affected by anthropogenic impacts
with similar major socio-economic drivers. The employed validation strategy for evaluating and
comparing the different products is detailed, representative results for the selected areas from nine
SCERIN countries are presented, the specific regional differences are identified and their underlying
causes are discussed. In general, the four GCLCs products achieved relatively high overall accuracy
rates: 74–98% for GLC (mean: 93.8%), 79–92% for GLOB (mean: 90.6%), 74–91% for CLC (mean: 89%)
and 72–98% for GIOS (mean: 91.6%), for all selected areas. In most cases, the CLC product has the
lower scores, while the GLC has the highest, closely followed by GIOS and GLOB. The study revealed
overall high credibility and validity of the GCLCs products at local scale, a result, which shows
expected benefit even for local/regional applications. Identified class dependent specificities in
different landscape types can guide the local users for their reasonable usage in local studies. Valuable
information is generated for advancing the goals of the international GOFC-GOLD program and
aligns well with the agenda of the NASA Land-Cover/Land-Use Change Program to improve the
quality and consistency of space-derived higher-level products.

Keywords: land cover; earth observation; validation; weighted accuracy; confidence levels;
inter-comparison; SCERIN

1. Introduction

Standardized global and continental land cover (GCLC) products provide key terrestrial reference
baseline data for numerous global, regional and national scale applications and inputs for large scale
economic land use and ecosystem modelling. In the last decade, several global and continental
land cover products of varied spatial resolution have been developed for example, Globeland-30,
Corine-2012, GlobeCover-2009, Global Historical Land-Cover Change and Land-Use Conversions,
UMD land-cover product [1]. Recent studies have shown that when global land cover products
are compared, there are significant spatial disagreements across land cover types [2,3]. This is
due to the actual thematic class definition, which can be quite different from product to product,
the use of different satellite sensors, the classification methodologies and the lack of sufficient in
situ data. Accurate datasets with estimates of the state and dynamics of terrestrial land cover
are needed for environmental change studies, land resource management, climate modelling and
sustainable development [4–8].

Validation is a crucial part of the land-cover mapping process, since without proper evaluation
against higher-quality reference data, any land-cover map remains an untested hypothesis that cannot
be used as basis for practical applications [9] and management decisions. Validation, as defined in the
CEOS-LVP report (Committee in Earth Observation Satellites, www.ceos.org), is an established process
including quality control, qualitative assessment, cross-comparisons, confidence maps and accuracy
assessment. Several studies have validated global and continental land cover products to analyse their
strengths and weakness. Different approaches exist for the high resolution GCLC products validation.

www.ceos.org
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These include validation within the product development [10,11], or independent validation by
third parties either reported in scientific literature [8,12,13] or requested by the agencies that are
responsible for the product development [14]. The GCLC products are validated by different methods,
for example, sample based validation using reference datasets [8,15–17] or inter-comparison with other
well established products [10,18,19]. The authors [20] compared four satellite-derived 1 km land cover
datasets (IGBP [21], UMD [22], GLC2000 [23] and MODIS [24]) based on the map of agreement of
seven study areas around the globe. South America gained the highest (82%) agreement of the four
global land cover datasets. The authors [3] found a critical disagreement in cropland and forest cover
between a given pair of land cover maps (GlobCover, MODIS map and GLC-2000) using a concept of
Minimum Measurable Disagreement [2,25]. The accuracy was 76%, 77% and 57.6% for the cropland
and 81%, 80% and 60% for the forest, correspondently. The authors [8] reported the high weighted
overall accuracy rates of 89%, 90% and 86% for CORINE Land Cover 2012, GIO High Resolution
Layers and Globeland30 datasets, respectively, using analysis based on Google Earth imagery.

Though different aspects might be considered for the product validation (e.g., completeness,
logical consistency, positional accuracy), thematic accuracy assessment represents the core part of the
product validation. Error matrices and derived standard accuracy measures as overall accuracy, user´s
and producer’s accuracies are the commonly reported quantity allowing comparable and consistent
accuracy assessment [26]. Therefore, thematic accuracy assessment was used in the present study for
the validation of the GCLCs products in selected study areas of the SCERIN region. The specificity of
the high resolution GCLC products is their wide coverage on one hand and their local relevance and
local utility on the other hand [10]. From this respect, despite the validation of the GCLC products
at broader scale, validation of the high resolution GCLC products in specific areas at local scale is
important to deliver information on their local usability for the local applications.

This study represents a multinational coordinated effort in the region of South, Central and
Eastern European Regional Information Network (SCERIN (http://csebr.cz/scerin/)), an established
network of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project of the
Global Terrestrial Observation System (GTOS) (Figure 1), towards identifying possible discrepancies
among the recently available land cover information in terms of accuracy and confidence. In particular,
the study aims to contribute to the validation and comparison of four GCLCs products (GLCs, CORINE
Land Cover 2012, GIO High Resolution Layers and Globeland30) against a common (more or less—see
Section 2.4) validation dataset, that is, not directly among each other but indirectly through their
accuracy assessment results with the status on the ground. The goal was to quantitatively and
qualitatively assess the uncertainties of the considered products over selected representative study
areas in the SCERIN region and in relation to land cover classes like arable land, impervious surfaces,
forests and water bodies. The issue of validation for the GCLC products is highly topical for SCERIN
scientists and professionals to support large-scale measurements of the ecosystem parameters and
natural processes in the region. This effort aims to contribute to the goals of the international
GOFC-GOLD program and furthers the agenda of the NASA LCLUC Program to improve the quality
of space-derived higher-level products.

http://csebr.cz/scerin/
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Figure 1. Study areas location with sites’ numbers and names.

2. Materials and Methods

2.1. Study Areas

The SCERIN region is characterized by long-term heavy anthropogenic impacts with prevailing
socio-economic drivers leading to intensive large-scale land cover and land use changes [27,28].
The 13 study areas cover 53,562 km2 along a latitudinal as well as longitude transect in the region
from Central (CZ, PL, UA) to South (GR, TR) Europe (Figure 1, Table 1). The study areas represent the
diverse heterogeneity of the regions, expressed by different land cover and land use (LCLU) classes and
elevation gradients (Figure 2). Most of the study areas include arable land, grassland, forest and urban
areas. Several areas also include rare LCLU classes as pastures, barren land. Territorial differences
in land cover and land use changes have been evident in the study areas since 1990. Countries in
the central part of study area (e.g., CZ, SK, HU) have been affected by more intensive and wider
spectrum of changes (often antagonistic: intensification and urbanization as well as land abandonment
and afforestation). On the other hand, the southern countries (e.g., BG, GR) and the central parts of
Poland and Romania experienced an overall lower intensity of changes. Significant changes occurred
over agricultural land. Intensification of resources (mainly over-grazing) has been a prominent trend
especially in Central Europe [27,29]. Urbanization has shown a trend of intensive increase, as well
as population concentration in the big cities, towards which the main flow of investment have been
aimed [30]. The main socio-economic drivers in Central and Eastern Europe are the transition from a
rural to urban society and the shift in Central and Eastern Europe to post-socialism [31]. In addition,
climate change continue to interfere with the anthropogenic factors in the region, with adverse
consequences on ecosystem services and function [28]. The relevance of the selected study areas to the
prevailing climatic conditions in the SCERIN region is of high importance and is evident in Figure 3.
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Table 1. Geographic features of the areas used for validation.

N (Area, km2) Study Area Description

1 (3901)

Bulgaria (BG) study area Sofia consists of the following administrative units: Pernik
municipality (477.2 km2), Dupnitsa municipality (329.1 km2), Radomir municipality
(540.49 km2), Samokov municipality (1209.9 km2) and Sofia City municipality with the
capital city of Sofia (1344 km2). The land is predominantly mountainous. To the North are
the southern slopes of the Balkan Mountains and to the south rises the Rila Mountains with
the highest point in the Balkan Peninsula—Musala (2925 m a.s.l.). There are also several
smaller mountains such as Vitosha (2290 m a.s.l.), Plana (1337 m a.s.l.), Lyulin (1256 m a.s.l.),
Lozenska (1190 m a.s.l.) and spacious valleys such as Sofia’s (1180 km2, 550 m a.s.l.),
Dupnitsa’s (520–700 m a.s.l), Pernik (750 m a.sl.) and Samokov’s (185 km2, 950 m a.s.l)
kettles. The study area has almost all land-cover types represented in Bulgaria,
which imposed its choice. Google Earth dataset was used for the validation.

2 (3998)

Czech Republic (CZ) study area Třebíč-Znojmo-Brno is located in Moravian part of the
country. The landscape is formed mainly by agricultural use with addition of forest, urban
and water land covers. The area is characterized by elevational gradient from 150 m to
650 m a.s.l. and covers six agricultural climatic zones ranging from very warm to slightly
cold. Google Earth dataset together with airborne hyperspectral data were used for
the validation.

3 (803)

Czech Republic (CZ) study area Giant Mountains (Krkonoše Mts.) is located in northern
part of the country, on the border with Poland. This area represents mountain and foothills
landscapes. The area is characterized by elevational gradient from 450 m to 1300 m a.s.l.
The mountainous part with its specific valuable ecosystems is protected as National Park.
The most valuable ecosystems are natural forests and relict arctic tundra. The land cover in
the mountainous part is composed mainly by forests, mountain meadows, pastures and
alpine treeless areas (tundra). At the foothills landscape mosaics is composed of forests,
agriculture land (meadows, pastures and arable land) and settlements (small towns and
villages). Orthophotos were used for the validation of this area on the Czech territory,
while Google Earth dataset was used for the Polish side.

4 (1620)

Czech Republic (CZ) study area Prague metropolis contains 224 municipalities of the
Central Bohemia Region located in the immediate vicinity of Prague, where elevation
ranges from 166 to 492 m a.s.l. The rapid growth of the town since 1990 has brought some
negative aspects for the landscape. These are primarily urban sprawl and soil sealing.
Suburbanization processes with the new residential development have been strongly
concentrated, especially, in the most attractive localities in Prague’s surrounding pristine
areas where it often occupied very large areas. Agricultural areas have been lost due to the
expansion of transport networks and construction accompanying development, as well.
A combination of orthophotos and Google Earth dataset were used for the validation.

5 (6848)

Greece (GR) study area Central Macedonia is located in the northern part of the country
in the Region of Central Macedonia, which is one of the thirteen administrative districts of
Greece. A maximum elevation of the study area is of 1648 m a.s.l. It comprises of
agricultural land, forests, inland waters and artificial surfaces. Agricultural activities
involve management of both arable and irrigated crops, with high production of cereal,
fruits and industrial plants. The region has a rich biodiversity within various ecosystems
and numerous protected areas. A combination of orthophotos and Google Earth dataset
were used for the validation.

6 (7060)

Greece (GR) study area Thessaly is located in the central part of the country and borders
the regions of Western and Central Macedonia in the north, Epirus in the west, Central
Greece in the south and the Aegean Sea in the east. The landscape is composed of
mountainous parts in the perimeter and lowlands in the centre with a maximum elevation
of 2917 m a.s.l. (Olympus mountain). It consists of high landscape and land cover diversity,
including islands and main land in the same area, mountains and plain areas and mixed
land use conditions. Google Earth images and WorldView 2 products [generated by NASA
Goddard] were used for the validation.
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Table 1. Cont.

N (Area, km2) Study Area Description

7 (1582) &
8 (1786)

Two Polish (PL) study areas located in Greater Poland and in Lower Silesian
voivodeships. Greater Poland area is a flat arable region with a maximum elevation of
174 m a.s.l. and large agriculture fields. Lower Silesian area is also a region with a
dominant agriculture sector but smaller fields. The elevation is up to 941 m a.s.l in the
Owl Mountains, Central Sudetes. Both areas are mainly featured by agricultural landscape
(~80% for each) with addition of forest land cover (~15% and 11%, respectively) and
artificial surface of 5% coverage each. The smallest land cover extent is the inland water,
which occupies circa 1%. These areas were selected based on the criterion of demonstrating
minimum CLC Changes between 2006 and 2012 [32]. Google Earth dataset was used to
validate both study areas; additionally, for the Lower Silesian study area, the WorldView 2
[generated by NASA Goddard] products were used.

9 (5362)

Romania (RO) study area Braşov is situated in the centre of the country. It is
characterized by a mountainous relief that occupies 40% of the area surface. The rest of the
territory (60%) is mostly occupied by hilly areas and in a smaller proportion by plains.
The maximum elevation is 2527 m a.s.l. in the Carpathian Mountains and the minimum
400 m a.s.l. in the Olt River floodplain. The land cover is well balanced between
agricultural, pastures, forests and urban areas, making Brasov study area a representative
area for the central part of SCERIN. Airborne images were used for the validation.

10 (6701)

Serbia (RS) study area Southern Vojvodina is located in the northern part of the county,
along the southern boundary of the Vojvodina autonomous province and the
southernmost periphery of the Carpathian basin. The land cover consists of arable land,
forest, artificial surfaces, inland waters and urban areas, providing representativeness for
larger regions of the Carpathian basin relevant to the SCERIN area. The agricultural
lowlands range in elevation between 70 and 120 m a.s.l. These plains surround the low,
gently sloping, forest covered isolated hills of Fruška gora National Park (539 m a.s.l.) and
Vršac mountain (641 m a.s.l.) and the large, artificially afforested protected natural area of
Deliblato sands. Inland waters are represented by wide flows of the Danube and Sava
rivers and a number of lakes. Google Earth images were used for the validation.

11 (6404)

Slovakia (SK) study area Nitra represents the diverse Slovak landscape extending from
Danube lowlands in the southern part, along river terraces and highlands up to
Carpathian Mountains in the northern part with elevation range from 98 to 936 m a.s.l.
Intensive agriculture (arable lands) dominates the study area. Forestry prevails in the
mountains. Urban areas represent mainly small centralized villages and one metropolitan
city (Nitra). Google Earth images were used for the validation.

12 (6735)

Turkish (TR) study area Canakkale province is located in the northwest part of the
country, covering the survey area, excluding Imbros and Tenedos Islands and Gallipoli
Peninsula. Besides the historical and cultural importance, the area serves as one of the two
transitional crossroads that combine Europe and Asia. The area has complex topographic
structure and the elevation ranges from the sea level at Dardanelles Strait up to 1741 m
a.s.l. at mount Ida. The majority of the area is covered by different types of forests. Arable,
urban and inland water land covers are also present on the study area. Google Earth
dataset was utilized for the validation.

13 (762)

Ukraine (UA) study area Obukhiv is in Kyiv region, Obukhiv district, which is a part of
the Joint Experiment for Crop Assessment and Monitoring (JECAM) FAO study area in
Ukraine. This territory is an intensive agricultural area with moderately continental, mild
climate and sufficient moisture and it demonstrates a lot of different land cover types with
an elevation up to 252 m a.s.l. The crop calendar lasts from September till July for winter
crops and from April to October for spring and summer crops. A typical field size is
30–250 ha. Crop types include winter wheat, winter rapeseed, spring barley, maize, soy
beans, sunflower and sugar beet. Due to relatively large number of major crops and other
socioeconomic factors there is no typical simple crop rotation in this region. Most
producers use different crop rotations depending on specialization. The Google Earth
dataset was used for the validation.
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Figure 2. Elevation comparison between SCERIN and pilot areas (according to the 25 m European
Digital Elevation Model [33].

Figure 3. Comparison of SCERIN mean meteorological conditions against the study areas’ ones for
the 1981–2010 interval (Latin numbers indicate the month or the year). (The data set used for climatic
characterization of SCERIN and study areas is provided by Climatic Research Unit (CRU), University
of East Anglia. The data set is a gridded time-series for air temperature and precipitation, for the
1981–2010, version 4.01 on 0.5◦ × 0.5◦ grid [34]).

2.2. Selection of Global and Continental Land Cover Products and Classes

The GCLC products, selected for analysis in this study include (Table 2):

- the Global Land Cover (GLC), which has been developed by USGS (The United States Geological
Survey) in collaboration with the University of Maryland and the Department of Geographical
Sciences. The purpose of the dataset was to register global forest changes [10]. The layers have been
derived from Landsat 7 ETM+ data acquired between 2000 and 2012 using image interpretation
methods [10], with a spatial resolution of 30 × 30 m (https://landcover.usgs.gov/glc/).

- the GlobeLand30 (GLOB), which is developed and distributed by the National Geomatics
Centre of China. The main goal of the GLOB is to provide good quality information (land
cover map) covering the entire Earth and complex spectral and textual characterization of
global landscapes at medium to high resolution [15]. It has been developed using the pixel

https://landcover.usgs.gov/glc/
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and object-based methods applied on Landsat TM and ETM+ images and the multispectral
images of China Environmental Disaster Alleviation Satellite (HJ-1) from 2010 with a 30 × 30 m
resolution [15]. The classification system includes ten land cover types: cultivated land, forest,
grassland, shrubland, wetland, water bodies, tundra, artificial surfaces, bare land, permanent
snow and ice (http://www.globallandcover.com/GLC30Download/index.aspx).

- the Corine Land Cover 2012 (CLC), which is a land cover inventory (in 44 classes) project initiated
in 1980s by the European Union, in order to support environmental policy development in
Europe. It has been updated in 2000, 2006, 2012 and the latest started in 2016. The CLC dataset is
generated at national level under the European Environment Agency (EEA) management and
quality control (http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012). Data
used to derive the CLC 2012 classes are IRS P6 LISS III and Rapid Eye dual date from 2011 to
2012 with a 25 × 25 m resolution (http://land.copernicus.eu/pan-european/corine-land-cover).
Computer assisted photo-interpretation (CAPI) is the mapping methodology used to obtain the
dataset. The version of the CLC dataset, 18.5, is used for this study. The incorporation of CLC,
although a land cover/ land use product, in the analysis is related with the fact that it is actually
the main source of information that many environmental, climate, socioeconomic and so forth,
studies are using for the area.

- GMES/Copernicus Initial Operation High Resolution Layers (GIOS), which represent land
cover maps of European countries and address both the local component (i.e., the Urban
Atlas (https://www.eea.europa.eu/data-and-maps/data/urban-atlas)) and the continental
component. The main objectives of the GIOS are to monitor the land cover at a high spatial
resolution and continental level and to assist major environmental issues, as soil sealing:
imperviousness; and natural cover: forest, grassland, wetland and water bodies [35]. It is
implemented by the European Environmental Agency under the Copernicus framework.
The GIOS were obtained from the same satellite imagery as CLC (2011 to 2012), by semi -
manual interpretation method, with a spatial resolution of 20 × 20 m (http://land.copernicus.
eu/pan-european/high-resolution-layers).

Table 2. Main characteristics of used GCLC products.

GCLC Product Data Source Time Frame Spatial Resolution Classification Method Provider

CLC IRS P6 LISS III
and Rapid Eye 2011–2012 25 × 25 m Computer assisted

photo-interpretation European Environment Agency

GLOB Landsat 5 TM
and 7 ETM+ 2010 30 × 30 m pixel and object-based

methods
National Geomatics Centre

of China

GIOS IRS P6 LISS III
and Rapid Eye 2011–2012 20 × 20 m semi-manual

interpretation method
Environmental Agency under the

Copernicus framework

GLC Landsat 7
ETM+ 2000–2012 30 × 30 m image interpretation

methods [10]

The United States Geological
Survey and University

of Maryland

For the validation and comparison purpose, four thematic LULC classes were determined:
‘Agriculture’ lands, ‘Artificial’ areas (e.g., urban, human-made constructions), ‘Forest’ areas having
more than 10% of tree cover density (according to FAO definition [36]), ‘Water bodies’ and ‘Other’ areas.

2.3. GCLC Products’ Pre-Processing

The four above listed openly available GCLC datasets were downloaded for the extent of SCERIN
region and stored at raster format (Figures S1–S4 of the Supplementary Materials). The legends
harmonization as an important requirement for the validation [29] was elaborated (see Table 3). Only
comparable classes were assessed and the class ‘Other’ is the result of the merging of the rest of the
classes and/or the unclassified areas in each specific GCLC. The importance of class ‘Other’ lies only
in accounting for the possible bias, respectively to the reported accuracy assessment results, that a
smaller or bigger percentage of a study area not to be considered might bring along, due to a) the

http://www.globallandcover.com/GLC30Download/index.aspx
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
http://land.copernicus.eu/pan-european/high-resolution-layers
http://land.copernicus.eu/pan-european/high-resolution-layers
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nature of the GCLC (e.g., the GLC or GIOS), which might not include all examined land cover classes
and b) to the amount of the unclassified pixels (please see Section 2.4).

The CLC nomenclature comprises of three levels [37]. In this study Level-3 is not considered.
Out of the 15 Level-2 thematic land use classes the ones present within the study area extent were
merged to their respective higher hierarchical classes; thus, Level-2 classes were downscaled to Level-1
according to [8]. From the GLOB, four classes of following grid-code values were extracted: 10—‘Arable
Lands,’ 20—‘Forest,’ 60—‘Water,’ 80—‘Urban Area’ and merged as the one layer. From GLC, tree cover
and water layers were acquired as separate raster files. Only pixels with tree coverage above 10% were
selected and merged with water into the final raster file. From the GIOS dataset, four layers were
utilized: forest tree type, tree cover density, imperviousness and permanent water body. Broadleaf
and Coniferous Forest types were initially selected, upon which the rule of tree cover density with
value equal and higher than 10% was applied (according to [36]). The extracted pixels, forming the
new forest layer were merged with the impervious and permanent water body layers into one final
raster file. Eventually, four final raster files for the four GCLC products were clipped to each study
area extent. The remaining land cover areas for each study region were classified as ‘Other’ class.

Table 3. The corresponding LC classes between the different employed GCLC products.

General Class CLC Class GLOB Class GIOS Class GLC Class
Agriculture 2. Agricultural Areas Arable Lands (code 10) - -

Artificial 1. Artificial Surfaces Urban area (code 80) Imperviousness -

Forest 3. Forest and Semi-Natural
Areas (only 3.1.) Forest (code 20) Broadleaf and coniferous forests with

tree cover density of 10% and more
Tree cover with density

10% and more
Water 5. Water Bodies (only 5.1.) Water (code 60) Permanent water body Water
Other All other areas All other areas All other areas All other areas

2.4. Sampling Methodology

SCERIN region comprises of a very large area with a diverse landscape, climatic and land use
variability depending on the location and country. 13 study areas differing in size and landscape type
were selected in order to analyse validity and accuracy performance of the GCLCs at the local scale.
Thus, a rigorous sampling design was developed. Samples are derived following a comprehensive
sampling procedure based on each layer’s percentiles of each subset area class, as follows:

1. The size of the sample that forms the validation dataset for each study area is designed to
satisfy the approach proposed by Foody (2009) for defining the testing set in remote sensing studies.
More analytically, this approach is applied using the equation:

n =
z2

a/2P(1 − P)
h2 (1)

where n is the sample size, za/2 the critical value of the normal distribution for the two-tailed
significance level α, P is a planning value for the correctly allocated cases population proportion
and h the half width of the desired confidence interval. Here a typically adopted 0.05 significance
level giving a za/2 equal to 1.96 considered. A large conservative value for P of 0.5 and a confidence
interval between ±4% up to ±5% were used. For a h of 0.04 applying the Equation (1) results to an
estimation of sample size of 601 samples and for the value 0.05, 385 samples. On top of this result
and in order to account for the size of each subset area, a maximum of 1000 sample points was set for
the biggest study area. For smaller areas a percentile of the 1000 points was defined, based on their
extent. However, a minimum of 500 points was set as a rule, too. This means that each study area had
to provide 500 to 1000 validation points.

2. In relation with the number of sample points per class and layer, a stratified random sampling
design [16,38,39] was employed based on the area fraction of each Level 1 CLC subclass to the total
cover area. In order to address significant low sample sizes, a minimum of 20 sample points per Level 1
CLC class is set (i.e., 2% of the maximum possible 1000 sample points). More specifically, the minimum
of 20 sample points is given to each Level 1 CLC category that was attributed with less than twenty
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sample points, whereas the additional ones increased the total number of sample points interpreted
for the area.

Sample points were randomly selected with the stratified approach for each GCLC, based on
each of the other three GCLC layers to be examined; thus, the validation dataset was at the end
unique and appropriate for each GCLC. The percentiles of coverage extent of each high-level category
(‘Water,’ ‘Forest,’ ‘Agriculture,’ ‘Imperviousness’ and ‘Others’) were estimated. Parts of the percentiles
coincided at all layers. Those sample points were kept in the database for all GCLC layers to facilitate
the interpretation procedure. Parts of the percentiles differed and as a result an additional number of
points per land cover layer was introduced (Figure 4). So, some of the validation points were the same
across the GCLC classes, while a smaller or bigger percentage of them differed.

In cases that the ‘Other’ class’ area was larger than 50% of the total area, the number of the sample
points was increased, so that the rest classes’ sample points account for at least 50% of the sample
dataset. This way the result was maintained as unbiased as possible. The latter procedure resulted in
more sample points in total than shall have been according to the original calculation for the total area
of the whole study area (Table 4).

Figure 4. Land Cover % at the Giant Mountains (CZ) study area, as an example of the diverse land
cover % present at the various GCLCs (numbers on top of the columns present the number of samples
taken for each class validation).

Table 4. Final Number of Sampling Points per study area.

Study Areas Sample Size
(CLC)

Sample Size
(GLOB)

Sample Size
(GIOS)

Sample Size
(GLC)

Giant Mountains (CZ) 501 523 531 520
Třebíč-Znojmo-Brno (CZ) 599 585 848 801
Prague metropolis (CZ) 532 523 912 853

Greater Poland (PL) 539 534 802 840
Lower Silesian (PL) 537 531 828 839

Thessaly (GR) 1010 1019 1730 1790
Central Macedonia (GR) 974 981 1323 1577

Nitra (SK) 903 917 1158 1607
Canakkale (TR) 946 941 1561 942
Obukhiv (UA) - 500 - 532
Brasov (RO) 751 755 814 796

Sofia, Pernik, Samokov and Dupnitsa (BG) 644 643 815 -
Southern Vojvodina (RS) 925 925 1104 1069

TOTAL 8861 9377 12,426 12,166

2.5. Ground Truth Data and Uncertainty Assessment

The reference data were manually generated based on existing orthophoto material, WorldView 2
very high resolution imagery (HRs) or Google Earth (GEs) from the same year and a date, as close to
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the date of the raw image acquisition (DRIA) (from which the GCLC layer at the respective location
was generated) as possible (closest DRIA). Multisource data made possible to retrieve information
close prior and close after the DRIA and were complementary considered to the closest DRIA,
if appropriate (e.g., for water bodies class cases). This way, the possibility of misclassification due
to LULC seasonal/temporal changes was reduced. Especially for the HRs, the multispectral images,
centred on the required dates were selected from the DigitalGlobe archive and retrieved through the
NASA-NGA Commercial Archive data portal (http://cad4nasa.gsfc.nasa.gov/), as L1B radiometrically
and sensor corrected imagery. They were stored and processed on the GSFC/ADAPT cloud within the
specifically designated environment. To derive validation PDF products, the data was ortho-rectified,
using a 30 m digital elevation model (DEM) available from USGS, projected to Universal Transverse
Mercator coordinate system (UTM, World Geodetic System 1984). All images were merged into a
new false colour raster composite, considering all available images and making a pixel selection to
minimize the presence of clouds, shadows and snow.

The decision about the real cover on the ground considered the surrounding area of the sampling
point over HRs or GEs, using a 60 m × 60 m buffer zone around the point. In case of 30 × 30 m
resolution layers this means ±1 pixel, which shall cover for the georegistration uncertainty observed,
evident also in a smaller extent (at the range of a few meters), as reported by [40–42] in most recent
studies for the GE images. Especially [43] note for the GE images situation back in 2008 that the
horizontal positional accuracy of the GE images is sufficient for assessing remote sensing products
at a Landsat relevant spatial resolution across most of the world’s peri-urban areas; finding out that
accuracy is higher in developed countries (RMSE of 24.1 m). Interpreters’ opinion was additionally
weighted by the interpreter him/herself. In this context, each interpreter provided a confidence
level to handle the uncertainty for each and every annotation during the generation of the ground
truth database. Three confidence levels were assigned as #1 for >75% confidence level, #2 for 25–75%
confidence level and #3 for confidence level below 25% [8]. For example, #3 would mean that the exact
geolocation belongs to A class, while all the surrounding pixels indicate that this is not correct and
it shall be registered as B class; however, due to the fact that A is exact at the point, the interpreter
assigned class A to it, while indicating a #3 confidence level. The confidence level slicing was used this
way, as it is easy to understand and implement by the interpreter, whether he or she are certain (i.e., #1)
or not certain (i.e., #2) that this is the case, or rather certain that this is not the case (i.e., #3) of the
reality registered on the image due to its lower spatial resolution. Worth to mention that interpreters
are experienced personnel working with remote sensing datasets frequently in land cover/ use topics
and they were trained following specific jointly developed guidelines through the three years process
and development of this study and extensive technical meetings.

2.6. Accuracy Assessment Incorporating Confidence Level Evaluation

A confusion matrix approach, per confidence level, was used to validate the performance
of each GCLC map. This method reflects the agreement between each GCLC and the ground
truth [17,44–46], using four accuracy measures: the producer’s accuracy (PA), the user’s accuracy
(UA), the overall accuracy (OA) and the kappa coefficient, based on errors of omission and commission
on the non-diagonal lines of the confusion matrix (rows and columns). Equation (2) calculates the
incorporation of the confidence parameter to the validation process,

wA =
∑3

i=1 wi ∗ Ni ∗ Ai

∑3
i=1 wi ∗ Ni

(2)

where wi is the given weight for the i confidence level, Ni the number of observations and Ai the
achieved accuracy metric rate for the given confidence group. Based on the methodology used in
Reference [8] the different weights are calculated using the median of the confidence level, defined
based on the percentage range, that is, 87.50 for 75–100% (#1), 50.00 for 25–75% (#2) and 12.50 for

http://cad4nasa.gsfc.nasa.gov/
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0–25% (#3). Then the corresponding weight wi for each confidence class was 0.583 for confidence level
#1, 0.333 for #2 and 0.083 for #3.

3. Results

3.1. Accuracy Assessment per GCLC

The validation process indicated that the four GCLCs products show a rather good OA at the
studied SCERIN areas. In particular, the resulting weighted OA was in most cases over 85%, while in a
few cases below but not less than 70% (Figure 5). In most cases, the CLC has the lower scores, while the
GLC the higher ones closely with GIOS and GLOB.

Figure 5. Weighted overall accuracy (OA) rates per area and GCLC layer.

Additional information for each product per LC class is presented in Tables 5–9. In particular, the
resulting UAs of CLC (Table 5) indicated a relative low performance (OA below 60%) of 6.39% of all
cases for the ‘Artificial’ and the ‘Water’ classes, while 10.64% of all cases lower accuracy (60–75%) for the
same classes. By GLOB (Table 6) percentages decrease to 3.84% and 7.68%, respectively. GIOS (Table 7)
with the ‘Agriculture’ class missing show lower accuracies in 8.34% of all cases, equally divided to
‘Artificial,’ ‘Forest’ and ‘Water’ classes. Finally, GLC (Table 8) with the ‘Artificial’ and the ‘Agricultural’
classes being omitted demonstrates 3.84% with lower accuracy for the ‘Water’ class (Figure S1).

Table 5. CLC User’s Accuracy and Overall accuracy (wOA) metrics following the implementation
of Confidence levels, the non-weighted Overall Accuracy (OA) and the percentage difference (∆) of
weighted and non-weighted OAs (in bold numbers the accuracies of the dominant land cover categories
of the specific study area).

CLC

Study Area
Class

OA
(in %)

wOA
(in %)

∆

(in %)Artificial Agriculture Forest Water

Weighted User’s | Producer’s Accuracy (in Rounded %)

Giant Mountains (CZ) 73 | 87 86 | 92 95 | 93 - | - 86.00 91.00 5.00
Třebíč-Znojmo-Brno (CZ) 88 | 59 89 | 95 84 | 86 70 | 100 84.00 86.00 2.00
Prague metropolis (CZ) 94 | 95 96 | 98 90 | 90 65 | 75 79.00 95.00 16.00

Greater Poland (PL) 85 | 72 98 | 98 95 | 100 100 | 100 97.00 97.00 0.00
Lower Silesian (PL) 100 | 86 98 | 99 90 | 95 100 | 95 97.00 98.00 1.00

Thessaly (GR) 62 | 98 97 | 98 98 | 72 98 | 99 91.00 92.00 1.00
Central Macedonia (GR) 29 | 45 84 | 92 95 | 46 62 | 85 73.00 74.00 1.00

Nitra (SK) 76 | 90 89 | 97 98 | 76 94 | 88 85.00 91.00 6.00
Canakkale (TR) 78 | 63 80 | 66 89 | 94 93 | 89 79.00 81.00 2.00
Obukhiv (UA) - - - - - - -
Brasov (RO) 81 | 78 90 | 89 94 | 90 32 | 100 87.00 89.00 2.00

Sofia, Pernik, Samokov and
Dupnitsa (BG) 99 | 95 91 | 100 99 | 79 91 | 95 80.00 82.00 2.00

Southern Vojvodina (RS) 57 | 85 93 | 98 94 | 77 92 | 96 86.00 92.00 6.00
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Table 5. Cont.

CLC

Study Area
Class

OA
(in %)

wOA
(in %)

∆

(in %)Artificial Agriculture Forest Water

Weighted User’s | Producer’s Accuracy (in Rounded %)
Cases divided by All Cases Sum of Cases (horizontal addition)

Cases of lower accuracy (60–75%) 4.26 | 4.26 0.00 | 2.13 0.00 | 2.13 6.38 | 2.13 10.64 | 10.65
Failures (accuracy <60%) 4.26 | 4.26 0.00 | 0.00 0.00 | 2.13 2.13 | 0.00 6.39 | 6.39

Table 6. GLOB User’s Accuracy and Overall accuracy (wOA) metrics following the implementation
of Confidence levels, the non-weighted Overall Accuracy (OA) and the percentage difference (∆) of
weighted and non-weighted OAs (in bold numbers the accuracies of the dominant land cover categories
of the specific study area).

GLOB

Study Area

Class
OA

(in %)
wOA
(in %)

∆

(in %)Artificial Agriculture Forest Water

Weighted User’s | Producer’s Accuracy (in Rounded %)

Giant Mountains (CZ) 84 | 83 86 | 96 95 | 92 83 | 96 87.00 92.00 5.00
Třebíč-Znojmo-Brno (CZ) 91 | 92 92 | 96 89 | 85 60 | 100 89.00 90.00 1.00
Prague metropolis (CZ) 96 | 94 96 | 99 96 | 96 97 | 97 81.00 96.00 15.00

Greater Poland (PL) 85 | 59 99 | 98 94 | 100 100 | 94 98.00 98.00 0.00
Lower Silesian (PL) 100 | 95 99 | 100 93 | 82 87 | 43 97.00 98.00 1.00

Thessaly (GR) 88 | 100 97 | 96 98 | 76 100 | 98 91.00 93.00 2.00
Central Macedonia (GR) 57 | 58 91 | 98 97 | 84 100 | 100 90.00 91.00 1.00

Nitra (SK) 87 | 91 82 | 98 97 | 61 98 | 93 88.00 90.00 2.00
Canakkale (TR) 83 | 76 92 | 79 84 | 95 84 | 87 80.00 83.00 3.00
Obukhiv (UA) 54 | 98 86 | 84 91 | 74 97 | 96 75.00 79.00 4.00
Brasov (RO) 89 | 19 91 | 91 96 | 90 73 | 100 87.00 89.00 2.00

Sofia, Pernik, Samokov and
Dupnitsa (BG) 81 | 95 63 | 100 98 | 89 97 | 100 83.00 87.00 4.00

Southern Vojvodina (RS) 64 | 16 94 | 99 90 | 83 91 | 97 90.00 92.00 2.00
Cases divided by All Cases Sum of Cases (horizontal addition)

Cases of lower accuracy (60–75%) 1.92 | 0.00 1.92 | 0.00 0.00 | 3.84 3.84 | 0.00 7.68 | 3.84
Failures (accuracy < 60%) 3.84 | 7.69 0.00 | 0.00 0.00 | 0.00 0.00 | 1.92 3.84 | 9.61

Table 7. GIOS User’s Accuracy and Overall accuracy (wOA) metrics following the implementation
of Confidence levels, the non-weighted Overall Accuracy (OA) and the percentage difference (∆) of
weighted and non-weighted OAs (in bold numbers the accuracies of the dominant land cover categories
of the specific study area).

GIOS

Study Area

Class
OA

(in %)
wOA
(in %)

∆

(in %)Artificial Agriculture Forest Water

Weighted User’s | Producer’s Accuracy (in Rounded %)

Giant Mountains (CZ) 92 | 100 - 95 | 94 84 | 100 87.00 94.00 7.00
Třebíč-Znojmo-Brno (CZ) 96 | 47 - 91 | 98 77 | 95 85.00 87.00 2.00
Prague metropolis (CZ) 95 | 94 - 93 | 96 70 | 99 83.00 94.00 11.00

Greater Poland (PL) 94 | 92 - 99 | 100 100 | 97 99.00 99.00 0.00
Lower Silesian (PL) 99 | 96 - 98 | 99 100 | 93 98.00 99.00 1.00

Thessaly (GR) 97 | 99 - 97 | 98 100 | 98 95.00 98.00 3.00
Central Macedonia (GR) 78 | 91 - 89 | 92 100 | 97 89.00 91.00 2.00

Nitra (SK) 87 | 87 - 89 | 90 100 | 97 90.00 91.00 1.00
Canakkale (TR) 95 | 62 - 94 | 92 92 | 84 91.00 92.00 1.00
Obukhiv (UA) - - - - - - -
Brasov (RO) 85 | 97 - 96 | 98 100 | 100 89.00 91.00 2.00

Sofia, Pernik, Samokov and
Dupnitsa (BG) 81 | 97 - 97 | 100 99 | 99 58.00 72.00 14.00

Southern Vojvodina (RS) 65 | 46 - 65 | 100 96 | 100 91.00 91.00 0.00
Cases divided by All Cases Sum of Cases (horizontal addition)

Cases of lower accuracy (60–75%) 2.78 | 2.78 - 2.78 | 0.00 2.78 | 0.00 8.34 | 2.78
Failures (accuracy <60%) 0.00 | 5.56 - 0.00 | 0.00 0.00 | 0.00 0.00 | 5.56
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Table 8. GLC User’s Accuracy and Overall accuracy (wOA) metrics following the implementation
of Confidence levels, the non-weighted Overall Accuracy (OA) and the percentage difference (∆) of
weighted and non-weighted OAs (in bold numbers the accuracies of the dominant land cover categories
of the specific study area).

GLC

Study Area

Class
OA

(in %)
wOA
(in %)

∆

(in %)Artificial Agriculture Forest Water

Weighted User’s | Producer’s Accuracy (in Rounded %)

Giant Mountains (CZ) - - 89 | 97 97 | 95 90.00 92.00 2.00
Třebíč-Znojmo-Brno (CZ) - - 77 | 94 79 | 100 87.00 90.00 3.00
Prague metropolis (CZ) - - 90 | 99 80 | 99 83.00 93.00 10.00

Greater Poland (PL) - - 100 | 98 100 | 100 99.00 99.00 0.00
Lower Silesian (PL) - - 99 | 93 100 | 100 96.00 99.00 3.00

Thessaly (GR) - - 98 | 99 100 | 94 97.00 98.00 1.00
Central Macedonia (GR) - - 93 | 92 100 | 93 92.00 92.00 0.00

Nitra (SK) - - 96 | 99 100 | 98 97.00 98.00 1.00
Canakkale (TR) - - 97 | 93 89 | 84 94.00 95.00 1.00
Obukhiv (UA) - - 97 | 95 96 | 98 92.00 95.00 3.00
Brasov (RO) - - 96 | 99 74 | 100 96.00 97.00 1.00

Sofia, Pernik, Samokov and
Dupnitsa (BG) - - 100 | 97 100 | 100 71.00 74.00 3.00

Southern Vojvodina (RS) - - 97 | 68 100 | 100 92.00 98.00 6.00
Cases divided by All Cases Sum of Cases (horizontal addition)

Cases of lower accuracy (60–75%) - - 0.00 | 3.84 3.84 |0.00 3.84 | 3.84
Failures (accuracy < 60%) - - 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

Table 9. GCLC (CLC, GLOB, GIOS or GLC) is presented, which achieves higher accuracy (UA and
PA) in mapping the respective land cover per study area. Cases, where more than one GCLCs are
performing equally, are presented by listing more than one GCLC at a time.

Study Area

Class

Artificial Agriculture Forest Water

GCLC Achieving Higher Accuracy Based on Weighted User’s | Producer’s Accuracy

Giant Mountains (CZ) GIOS | GIOS CLC, GLOB |
GLOB

CLC, GLOB, GIOS
| GLC GLC | GIOS

Třebíč-Znojmo-Brno (CZ) GIOS | GLOB GLOB | GLOB GIOS | GIOS GLC | CLC, GLOB,
GLC

Prague metropolis (CZ) GLOB | CLC CLC, GLOB |
GLOB GLOB | GLC GLOB | GLC

Greater Poland (PL) GIOS | GIOS GLOB | CLC,
GLOB

GLC | CLC, GLOB,
GIOS

CLC, GLOB, GIOS,
GLC | CLC, GLC

Lower Silesian (PL) CLC, GLOB |
GIOS GLOB | GLOB GLC | GIOS CLC, GIOS, GLC |

GLC

Thessaly (GR) GIOS | GLOB CLC, GLOB | CLC CLC, GLOB, GLC
| GLC

GLOB, GIOS, GLC
| CLC

Central Macedonia (GR) GIOS | GIOS GLOB | GLOB GLOB | GIOS,
GLC

GLOB, GIOS, GLC
| GLOB

Nitra (SK) GLOB, GIOS |
GLOB, GIOS CLC | GLOB CLC | GLC GIOS, GLC | GLC

Canakkale (TR) GIOS | GLOB GLOB | GLOB GLC | GLOB CLC | CLC
Obukhiv (UA) GLOB | GLOB GLOB | GLOB GLC | GLC GLOB | GLC

Brasov (RO) GLOB | GIOS GLOB | GLOB GLOB, GIOS, GLC
| GLC

GIOS | CLC,
GLOB, GIOS, GLC

Sofia, Pernik, Samokov and Dupnitsa (BG) CLC | GIOS CLC | CLC, GLOB GLC | GIOS GLC | GLOB, GLC
Southern Vojvodina (RS) GIOS | CLC GLOB | GLOB GLC | GIOS GLC | GIOS, GLC

3.2. Comparison between Weighted and Standard overall Accuracy Metrics

In this section, a comparison between the OA and weighted OA is presented based on the
resulting accuracy levels by integrating the confidence levels that were assigned by the experts during
the photo-interpretation. In Tables 5–8, the OA, weighted OA and the calculated differences between
them are presented. Generally, the wOA increased in all cases by an average 2%. In certain cases,
while the confidence level reduced, the OA reduced as well. Representative examples are the cases of
Prague and Brasov where this observation is valid for all the GCLC datasets. This is expected, because
confidence level 2 and 3 observations refer to difficult photo-interpretation cases. Usually, these were
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observed in regions with complex terrain or for points lying on the edge of a class or on the borders of
two classes and therefore they are mostly associated with classification errors.

The pattern is similar when the comparison is made between OA and weighted OA per GCLC
layer of all studied areas (Figures S2–S4). In Figure 6, one can observe the calculated difference (∆)
between standard OA and weighted OA. For all the cases the metric increased by 3.3–4.7% following
the incorporation of the confidence levels in the accuracy assessment. The greater increase occurs for
the OA of CLC (by 4.7%) and GIOS (by 4.5%) and the smallest for the GLC and GLOB (by ~3.3%).
That variability is due to the fact that a large number of commission errors attributed with a confidence
level of #2 or #3, was eliminated when the weighted OA was calculated; because of the lower weight
given in the confidence level #2 and #3 observations during the calculations.

Figure 6. Overall Accuracy (OA) and weighted OA (wOA) per land cover map for the selected study
areas in SCERIN.

4. Discussion

4.1. CLC

CLC is the flagship land cover mapping product of the European Copernicus program delivered
to the public through the Copernicus land services (https://land.copernicus.eu/pan-european). In the
case of CLC the accuracy can be influenced by minimal mapping unit that is set on 25 hectares for
areal phenomena and a minimum width of 100 m for linear phenomena. The pixel size of IRS P6
LISS III data that is used for CLC 2012 classification is 24 × 24 m. This resolution could enable
more precise mapping without the generalization caused by MMU use [47,48]. The programmatic
aim for the thematic accuracy of the product was set to 85% OA and this aim was achieved at the
European reporting level based on independent validation [14]. Specifically, the OAs obtained for
CLC were 83.6% for the blind analysis and 89.7% for the plausibility analysis (double check of the
misclassification cases by the experts). In this study, except three cases (Central Macedonia, Canakkale
and Sofia, Pernik, Samokov and Dupnitsa), the 85% aim was confirmed in each case study area at
the defined level of class aggregation. However, the great variability of OA values is visible in the
results and ranges from 73% in Central Macedonia to 97% in Greater Poland. Regional variability
of OAs was also reported in the EEA validation [14], in general being the lower in Anatolian and
Black Sea region (e.g., Turkey—78.61%, Romania—78.9%) and tends to be higher in the continental
region (e.g., Poland—92.06%) [13]. Several reasons could explain these differences in our study.
The misclassification reasons refer to the complexity of the CLC nomenclature and class definition
what might resulted in several interpretations for a given land unit. Misclassifications of forest are well
known and are also reported in the EEA validation report [13], where authors stated that this is mainly
because of complicated class definition of ‘Transitional Woodland,’ which might characterize both the
physiognomic state of the vegetation or a dynamic aspect of the vegetation, which may lead to possible
confusion with forest according to the forest growing (311 ‘Broad-Leaved Forest’/312 ‘Coniferous
Forest’/313 ‘Mixed Forest’) or 321 ‘Natural Grassland’/323 ‘Sclerophylous Vegetation’ in clear cut areas
and abandoned lands. In addition, production of CLC and resulted omission and commission error

https://land.copernicus.eu/pan-european
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rates of 324 vary a lot across countries. This was also the case in the Thessaly and Central Macedonia
study areas, where high omission rates of forests are registered. Furthermore, landscape complexity
described by the fine-grained structure and occurrence of small patches of land units of different
land covers and high minimal mapping unit (MMU) of CLC can justify the regional differences of the
accuracy performance of CLC. This type of landscape is included in so called “aggregated” classes in
CLC (e.g., 242, 243 ‘Heterogeneous Agricultural Areas,’ including the ‘Complex Cultivation Pattern’
and the land principally occupied by ‘Agriculture with Significant Areas of Natural Vegetation’).
These classes in general were underestimated in the CLC production [14]. Though they belong to
agricultural classes at higher hierarchical level of classification, they might include substantial portion
of forests (small forest patches in complex agricultural areas), shrubs (both natural shrubs in Central
Macedonia, Sofia, Pernik, Samokov and Dupnitsa or abandoned overgrown pastures, vineyards and
orchards in Nitra and Canakkale study areas), artificial surfaces (sparse residential areas within the
complex agricultural areas in Central Macedonia, Třebíč-Znojmo-Brno, Greater Poland and Lower
Silesian). In general, if proportion of heterogeneous agriculture areas is high in CLC production,
the underestimation of forests, shrubs or artificial surfaces might be likely the case.

4.2. GLOB

Contrary to the CLC, GLOB has not been systematically validated at global level, since this
is a very challenging task. Instead, different independent validation studies at different scales
(reporting levels) and different landscapes had been reported in scientific literature [49]. The study
of [15] estimated 80% OA based on 8 selected study areas with differing landscapes at five different
continents. Out of these, 2 study areas belong to Europe, namely Sweden and Spain reaching OA of
81.99% and 84.73%, respectively. The authors of [12] reported OA values from 81% to 92% for 8 regions
in Italy. Applicability of GLOB for local studies had been analysed in the Thessaly Mediterranean
region, where OA reached 90% [8] and South-West Germany with OA of 85.3% [50]. In our study,
relatively good results of thematic accuracy were achieved, with OA ranging from 75% (Obukhiv)
to 98% (Greater Poland). Furthermore, there was not that big variability of OA values compared to
CLC among the study areas. Except Obukhiv and Canakkale, all study areas reached the OA above
80% and wOA greater than 87%. We think that this could be caused by the consistent approach
used for the product production in the whole region [15]. Per class assessment revealed lowest PA
performance for the class ‘Artificial,’ followed by ‘Forest.’ Latter was mainly due to the dominant
proportion of ‘Shrublands’ and ‘Natural Grasslands’ in the studied areas. Relatively lower values
of accuracies are also reported from Thessaly [8] and Ukraine [51]. In Nitra case, these were mainly
overgrown vineyards and orchards, abandoned agricultural fields in Sofia, Pernik, Samokov and
Dupnitsa and natural shrub lands in Canakkale and Central Macedonia that were mistakenly classified
as agricultural areas. This could be explained by two reasons. Firstly, GLOB production method uses
specific texture information and regular distribution pattern of cultivated lands for the agricultural
land extraction. In fact, overgrown abandoned agricultural lands may still reflect this pattern, though
they are not managed anymore and represent shrublands in reality. In Canakkale, however, it could be
explained mainly with scale effect and a situation, where small scattered cultivated lands are within
the large areas of shrublands. In comparison to the CLC, GLOB does not have specified a MMU
but the method used different scaling parameters for image segmentation in the early phase of the
classification, which may lead to aggregation of small patches with larger neighbouring objects/parcels.
This was also the reason for misclassifications of class ‘Artificial’ with ‘Agriculture’ leading to relatively
high omission rates and underestimation of residential areas in Třebíč-Znojmo-Brno, Brasov and
Greater Poland and oppositely, in high commission error rates and overestimation of residential
areas in Obukhiv and Central Macedonia study areas. Compared to CLC there were not that big
misclassifications of forests and shrublands even in the Mediterranean region. This might result from
the incorporation of NDVI time series bearing a specific phenological pattern for the classification of
natural and seminatural vegetation [15].



Remote Sens. 2018, 10, 1967 17 of 21

4.3. GLC and GIOS

GIOS together with GLC ‘Tree Cover Layer’ were systematically validated by the EEA [52]. Based
on the 10% threshold of tree cover values, the GIOS product met the thematic classification accuracy
requirements (e.g., 82% PA and 89% UA) at European reporting level, while GLC tree cover layer
achieved slightly lower accuracy values (75% PA and 83% UA). In our case studies GIOS ‘Forest’
class achieved similar accuracy values ranging from 89.5%. to 99.9% PA and 64.5% to 98.9% for UA,
while GLC ‘Forest’ achieved slightly better results, specifically from 67.8%. to 99.6% PA and 77.4%
to 99.7% for UA. The EEA validation study demonstrated substantial variability from country to
country (or region), with accuracies weaker over southern Europe particularly for GLC data, a fact
that authors attributed to increased landscape complexity in these regions. Similar to CLC, accuracy
values appeared higher for central Europe [45]. The EEA validation study reported substantially lower
values for the Anatolian region (mainly Turkey), for example, 46% PA, 21% UA and Mediterranean
region (79% PA, 71% UA). In the present study however, such a big variability of accuracy values for
GLC forest layer across different study areas was not identified. In particular, accuracy performance of
both GIOS/ GLC forest layers were relatively high in Canakkale (92.4%/93% PA and 94.2%/97.5%
UA), Central Macedonia (92.4%/92.5% PA and 89.1%/93.3% UA) and Thessaly (97.7%/99.4% PA and
97.4%/98.4% UA). This could underline the fact that accuracy performance of global products at local
scale might vary substantially even at sub region level. In Canakkale case, it is assumed that forests
can be easier identified in agricultural landscape than in other parts of diverse Anatolian landscape.
Another specific misclassification was identified in Southern Vojvodina and Třebíč-Znojmo-Brno,
where high commission error of ‘Forest’ class was attributed to the misclassification with the ‘Artificial’
class (Southern Vojvodina). The error of ‘Forest’ class in Třebíč-Znojmo-Brno appeared mostly in
the deciduous forest. This type of forest was misclassified probably as ‘Grassland’ or as vegetation
not defined as ‘Forest’ (for example, shrubs). ‘Water’ class seems to be easily identified due to the
high spectral contrast with other land cover classes. Both GIOS and GLC products performed well
for the ‘Water’ class, for example, UA ranging from 70% to 100% and PA ranging from 83.5% to
100%. GIOS water layer was systematically validated by the recent EEA validation study [53] that
reported similar good performance for GIOS ‘Permanent Water’ class across Europe (target accuracy
of 90%), though they revealed lower accuracy values in southern regions with dry climatic conditions
and predominant occurrence of temporary water (e.g., in Canakkale) [46]. Similar to this study’s
result, they revealed prevailing higher values of PA compared to UA, which might result to slightly
overestimation of the water covered areas. In the present study relatively higher commission error
values of waters is revealed in Canakkale, which might be attributed to occurrence of temporary
dried areas on the reference validation image. Typical commission errors of GIOS ‘Water’ class
were defined based on the systematic validation of EEA report [53] as misclassification with liquid
dump areas, temporal water logged areas, burnt areas or coniferous forest stands in topographically
influenced areas. When automatic classification approaches are used, as it was in case of GLC water
layer, occurrence of snow and clouds on production images can influence the commission errors of
waters [54]. This could be also the case in Romania study areas, where relatively high commission errors
of water class was identified. GIOS ‘Imperviousness Layer’ was also systematically validated recently
across Europe resulting in slightly lower thematic accuracies than other GIOS classes. Specifically, only
one third of countries exceed the minimum accuracy requirement of 85% and a half exceeds an 80%
limit [55]. In the present study, thematic accuracies of the ‘Urban’ class achieved quite good results
with UA ranging from 56% to 95% and PA ranging from 54% to 97%; however, visible variability was
revealed what is assumed to be caused by local specificity rather than consistent trend across different
regions. In EEA study however, the high thematic accuracies tend to be associated with the producer´s
rather than user´s accuracy supporting the conclusion that imperviousness layer overestimates urban
areas [55]. In contradiction with the aforementioned study, the present study did not reveal this
trend and relatively had high omission errors of urban areas (Třebíč-Znojmo-Brno, Canakkale and
Southern Vojvodina). In Třebíč-Znojmo-Brno and Greater Poland the misclassification was found
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mostly related with small artificial objects (scattered residential settlements, highways and roads),
where they were mixed with vegetation types. In Canakkale study area, these misclassifications
occurred especially around the areas under development and relatively small settlements around
towns, where the differentiation of small artificial surfaces from the surrounding shrub land cover
becomes more difficult.

5. Conclusions

This study examined the credibility and validity of commonly used moderate-to-high spatial
resolution GCLCs to verify their use for decision support within the area. A jointly approved and
internationally recognized approach is followed producing comparably good results in relation with
EEA’s and literature’s targets and findings. Deviations are discussed and attributed to reasons based
on particularities of the land use and land cover specificities of the local conditions.

By combining samples from all experts’ confidence levels the resulting weighted OA estimation
reached rates around 90%, while for most areas the results reached not less than 74%. Further analysis
on the PA and UA metrics identified certain classes, that is, ‘Agriculture’ and ‘Forest,’ as the most
accurate and reliably identified land covers. Lower accuracy rates were recorded for ‘Artificial surfaces,’
most probably due to local specificities rather than consistent trend across different regions. ‘Water’
class demonstrates a variable behaviour based on the study area and GCLC examined. For example,
using CLC or GLOB one shall expect high producer and low user accuracy, that is, an ‘overmapping,’
respectively; whereas this is not the case with GIOS or GLC.

Results provide benefit both for the local applications and for the regional and continental
environmental or socioeconomic analyses using the GCLC layers, as the credibility is overall high and
becomes even higher for specific classes and framework conditions. Users may now choose the most
appropriate for one’s case freely available GCLC layer and work with it. This work shall repeat itself
every few years, as new GCLC layers become available. Of special interest and anticipation are GCLC
layers to be produced by Sentinel satellites, as they provide a great opportunity for finer products
with an enhanced spatial, spectral and temporal resolution to overcome unfavourable conditions
here and there. The need for similarly valuable or even more reliable and spatially detailed decisions
is underpinned by increasing human induced pressures coupled with overpopulation and human
accelerated ones, such as the climate change. In the same context, research shall expand on usability
of GCLCs by including more land cover classes (e.g., shrublands), disaggregated land cover classes
(e.g., grasslands) or specific classes of high biodiversity values (e.g., wetlands). The advancement
of deep learning and joint multispectral and SAR analysis methods shows promising for the better
exploitation of the available non-precedent data thesaurus.
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30. Feranec, J.; Soukup, T.; Taff, G.N.; Štych, P.; Bičík, I. Overview of Changes in Land Use and Land Cover in
Eastern Europe. In Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in
1991; Springer International Publishing: Cham, Switzerland, 2017; pp. 13–33.

31. Van Vliet, J.; De Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural
land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [CrossRef]

32. Hościło, A.; Tomaszewska, M. CORINE Land Cover 2012–4th CLC inventory completed in Poland.
Geoinf. Issues 2014, 6, 49–58.

33. Copernicus Land Monitoring Service, EU-DEM v1.1; European Environmental Agency: Copenhagen, Denmark, 2017.
34. Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic

observations–The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [CrossRef]
35. Congedo, L.; Sallustio, L.; Munafò, M.; Ottaviano, M.; Tonti, D.; Marchetti, M. Copernicus high-resolution

layers for land cover classification in Italy. J. Maps 2016, 12, 1–11. [CrossRef]
36. FAO. Global Forest Resources Assessments; FAO: Rome, Italy, 2001.
37. EEA—European Environment Agency CORINE Land Cover. Available online: https://www.eea.europa.eu/

publications/COR0-landcover (accessed on 19 November 2018).
38. Foody, G.M. Sample size determination for image classification accuracy assessment and comparison. Int. J.

Remote Sens. 2009, 30, 5273–5291. [CrossRef]
39. Silva, J.; Bacao, F.; Foody, G.; Caetano, M. Automatic Selection Of Training Areas Using Existing Land Cover

Maps. In ESA Special Publication; ESA: Paris, France, 2013; p. 184.
40. Goudarzi, M.A.; Landry, R.J. Assessing horizontal positional accuracy of Google Earth imagery in the city of

Montreal, Canada. Geod. Cartogr. 2017, 43, 56–65. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2012.08.022
http://dx.doi.org/10.1016/j.isprsjprs.2017.01.016
http://dx.doi.org/10.1016/j.jag.2005.12.002
http://dx.doi.org/10.1080/014311600210191
http://dx.doi.org/10.1080/014311600210209
http://dx.doi.org/10.1080/13658810500106729
http://dx.doi.org/10.1016/0034-4257(91)90048-B
http://dx.doi.org/10.1186/s40645-017-0154-5
http://dx.doi.org/10.1016/j.apgeog.2009.07.003
http://dx.doi.org/10.1016/j.landurbplan.2014.09.001
http://dx.doi.org/10.1002/joc.3711
http://dx.doi.org/10.1080/17445647.2016.1145151
https://www.eea.europa.eu/publications/COR0-landcover
https://www.eea.europa.eu/publications/COR0-landcover
http://dx.doi.org/10.1080/01431160903130937
http://dx.doi.org/10.3846/20296991.2017.1330767


Remote Sens. 2018, 10, 1967 21 of 21

41. Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth
images in the city of Rome, Italy. Int. J. Digit. Earth 2016, 9, 342–362. [CrossRef]

42. Wang, Y.; Zou, Y.; Henrickson, K.; Wang, Y.; Tang, J.; Park, B. Google Earth elevation data extraction and
accuracy assessment for transportation applications. PLoS ONE 2017, 12, e0175756. [CrossRef]

43. Potere, D. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive. Sensors 2008,
8, 7973–7981. [CrossRef] [PubMed]

44. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201.
[CrossRef]

45. Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.;
Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy
Assessment of Global Land Cover Maps; Office for Official Publications of the European Communities:
Luxembourg, 2006.

46. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for
estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]

47. Saura, S. Effects of minimum mapping unit on land cover data spatial configuration and composition. Int. J.
Remote Sens. 2002, 23, 4853–4880. [CrossRef]

48. Rutchey, K.; Godin, J. Determining an appropriate minimum mapping unit in vegetation mapping for
ecosystem restoration: A case study from the Everglades, USA. Landsc. Ecol. 2009, 24, 1351–1362. [CrossRef]

49. Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and Applications of GlobeLand30: A Review. ISPRS Int. J. Geo-Inf.
2017, 6, 230. [CrossRef]

50. Arsanjani, J.J.; See, L.; Tayyebi, A. Assessing the suitability of GlobeLand30 for mapping land cover in
Germany. Int. J. Digit. Earth 2016, 9, 873–891. [CrossRef]

51. Kussul, N.; Shelestov, A.; Basarab, R.; Skakun, S.; Kussul, O.; Lavreniuk, M. Geospatial intelligence and data
fusion techniques for sustainable development problems. In Proceedings of the ICTERI 2015, Lviv, Ukraine,
14–16 May 2015; p. 8.

52. Sannier, C.; Pennec, A. GMES Initial Operations/Copernicus Land Monitoring Services—Validation of
Products—Comparative Validation of HRL-TCD and University of Maryland Global Forest Change Products;
European Environment Agency: Copenhagen, Denmark, 2017.

53. Dahmer, J.; Herrmann, D.; Renner, T.; Gallaun, H.; Sannier, C.; Dufourmont, H. GMES Initial
Operations/Copernicus Land Monitoring Services—Validation of Products—HRL PWB/WET 2012 Final Validation
Report; European Environment Agency: Copenhagen, Denmark, 2016.

54. Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body
dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2016,
9, 113–133. [CrossRef]

55. Smith, G. GMES Initial Operations/Copernicus Land Monitoring Services—Validation of Products—HRL Imperviousness
Degree 2012 Final Validation Report; European Environment Agency: Copenhagen, Denmark, 2017.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/17538947.2015.1031716
http://dx.doi.org/10.1371/journal.pone.0175756
http://dx.doi.org/10.3390/s8127973
http://www.ncbi.nlm.nih.gov/pubmed/27873970
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1016/j.rse.2014.02.015
http://dx.doi.org/10.1080/01431160110114493
http://dx.doi.org/10.1007/s10980-009-9387-z
http://dx.doi.org/10.3390/ijgi6080230
http://dx.doi.org/10.1080/17538947.2016.1151956
http://dx.doi.org/10.1080/17538947.2015.1026420
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	CC4
	remotesensing-10-01967-v2
	Introduction 
	Materials and Methods 
	Study Areas 
	Selection of Global and Continental Land Cover Products and Classes 
	GCLC Products’ Pre-Processing 
	Sampling Methodology 
	Ground Truth Data and Uncertainty Assessment 
	Accuracy Assessment Incorporating Confidence Level Evaluation 

	Results 
	Accuracy Assessment per GCLC 
	Comparison between Weighted and Standard overall Accuracy Metrics 

	Discussion 
	CLC 
	GLOB 
	GLC and GIOS 

	Conclusions 
	References


