


APPROVAL SHEET

Title of Dissertation: Topological Time-series Classification

Name of Candidate: Joseph Robert Collins
Doctor of Philosophy, 2022

Dissertation and Abstract Approved:

Dr. David Chapman

Assistant Professor

Department of Computer Science
and

Electrical Engineering

Date Approved:




ABSTRACT

Title of dissertation: TOPOLOGICAL

TIME-SERIES

CLASSIFICATION

Joseph Robert Collins, Doctor of Philosophy, 2022
Dissertation directed by: David Chapman

Department of Computer Science and
Electrical Engineering

We establish a strong connection between Topological Data Analysis (TDA)
and the field of time-series classification. This is accomplished via two novel contri-
butions. The first is a method for extracting topological information from a time
series in a manner which circumvents the expensive computation normally required.
The second is an adaption of an existing topological summary to create an efficient
topological time-series pooling operator. Taken together, these insights enable a
new classifier, TopRocket (Topological Random Convolutional Kernel Transform).
Using standard comparison methods, TopRocket ranks second among all univariate
time-series classifiers. Further, TopRocket is the best performing scalable classifier.
As a final contribution, we provide the fastest available implementation of the algo-
rithm for computing time-series sublevel set persistence. This provides a foundation
for further investigation of TDA for time-series classification.

This work lies at the intersection of TDA and machine learning, where suc-

cess is dependent on efficiently extracting topological information from data and



using that information with downstream models. For this purpose, we develop an
efficient, data-based, topological summary, the Betti pooling operator. We rigor-
ously demonstrate the utility of TopRocket by evaluating its performance against
the University of California Riverside (UCR) Time Series Archive, a widely used
benchmark collection of data sets. TopRocket is the first TDA-based classifier to
obtain state-of-the art results on any similarly competitive problem. We strongly

believe that TDA will play a central role in the future of machine learning.
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Chapter 1: Introduction

Topological data analysis for time-series classification is not an immediately
obvious or intuitive choice. The line of work presented here originated for the
purposes of network analysis and cybersecurity applications. Specifically, it began
as an investigation into the use of persistent homology over topological spaces formed
by computer networks. That work, in turn, was motivated by promising network
anomaly detection results over the Enron email dataset [6] [7]. The core idea behind
that work is to identify major events in the Enron scandal time-line, based only on
the email graph of who communicated with whom in a given week. The use of
persistent homology over a derived topological space of the communication graph
provides accurate results.

That motivated further investigation of using TDA for applications where
the data is naturally represented as a graph. One such domain is cybersecurity,
where such techniques may be able to detect various types of network failures or
cyber attacks. The initial goal was to analyze network anomalies in a broad range
of computer networks. However, in many environments it is not possible to have
complete visibility into the full network topology. Therefore, the work was restricted

to analyzing network traffic which passes through key ingress and egress points.



The data available at these points is not naturally represented as a graph,
and more closely resembles a times series. Given the past success of TDA for the
Enron problem, it was decided to also apply persistent homology to this resulting
time-series classification problem. This led directly to highly competitive results for
identifying internet of things (IOT) devices from encrypted traffic [5]. Specifically,
the TDA-based model classifies solely based on the persistent homology of the inter-
packet arrival time of packets passing through a router. Inter-packet arrival time
is always available, regardless of encryption. The sequence of inter-packet arrival
times forms a time series, which is then classified. This result was obtained by
classifying the persistence images of the sub-level set persistence of the time-series
using a convolutional neural network.

Given this initial success, it is a natural next step to investigate TDA for
general time-series classification. Ideally, a time-series classifier should be domain
agnostic. The datasets and statistical framework used for this task are provided
by the University of California Riverside (UCR) time-series archive. This archive
provides a common reference point against which to compare competing classifiers.
This is the motivating problem for the work presented here, maximizing performance

on the UCR archive.

1.1 Challenges

There are several key challenges which accompany this line of research. A few

of these challenges are unique to TDA or time series classification, while others arise



at the intersection of both. TopRocket overcomes each of these challenges.

1.1.1 How Should Time-series Classifiers be Compared?

The cornerstone of modern time-series classification research is the UCR archive.
There are two reasons this archive is useful. First, the common datasets ensure that
competing classifiers are performing an identical task. Second, the common com-
parison methods ensure that classification results over the entire archive are fairly
compared. The datasets contained in the archive and the accompanying comparison

methods are explored in Section 2.1.

1.1.2 How Can Topological Information be Efficiently Extracted?

A fundamental tool of TDA is persistent homology, which intuitively gives a
notion of shape across scales. Persistent homology has many convenient properties,
explored in Section 2.3. In the general case, the naive algorithm for computing per-
sistent homology runs in O(N?) time, which is too slow for time series classification.
It is possible to compute features of the persistent homology of a time series, with-
out explicitly computing the fully persistent homology. One such useful approach is
presented in Section 3.2. For classifiers which require the full persistent homology of
a time series, we present the fastest known algorithm implementation for computing

it in Appendix A.2.



1.1.3 How Can Topological Information be Compared?

The most natural representation of persistent homology is as a multiset of
tuples, representing the half-open intervals where homology classes are born and
die, called a persistence diagram. Unfortunately, this representation is not easily
compared. The Bottleneck and Wasserstein distances are the most intuitive methods
for comparing diagrams, and are detailed in Section 2.3.4. These distances are
inefficient to compute, due to a brute force bipartite graph matching problem which
must be solved as part of computing the distance.

There are many ways to compare persistence diagrams without using these
distances. Most methods involve transforming the persistence diagram in to a vec-
torization or representation which can be compared more efficiently. These transfor-
mations are covered in Section 2.3.5. Through a detailed understanding of how these
transformations are computed, it is possible, in some cases, to directly compute the

transformation from the data, without first finding the persistent homology.

1.1.4 How Can TDA be used to Augment Existing Classifiers?

Given a good vectorization of persistence diagrams, it is straightforward to
create classifiers using kernel and clustering methods. Some vectorizations are espe-
cially well suited for neural networks. However, over the course of evaluating such
approaches, two main issues arise. First, computing the persistent homology and
vectorization is too slow. Second, these purely topological classifiers do not perform

well, as shown in Section 3.1.



We address the first issue by optimizing tools from TDA for time series. Specif-
ically, we provided the fastest implementation, to our knowledge, of the algorithm
for finding the 0-dimensional sublevel-set persistence of a time series. We avoid the
need to compute full persistence, when it can be avoided, by exploiting properties of
a given persistence representation. We overcome the second issue by using topologi-
cal information to augment existing classifiers designed for time-series classification.
The competition over the UCR archive is fierce and the field is mature, so it is

reasonable to make use of existing work.

1.2 Thesis Statement

This research will develop topological, univariate, time-series classification

methods which are fast, accurate, reproducible, and rigorously evaluated.

1.3 Objectives

The primary goal of this work is to explain how and why TopRocket works.
The secondary, and almost as important goal, is to explain the attempts which
ultimately motivate the development of TopRocket. These attempts are guided
by the overarching belief that topological features provide information which is
orthogonal, in some sense, to the features used by existing classifiers. In other
words, TDA can provide an edge.

The design of TopRocket is not arbitrary. In the search for topological fea-

tures useful for general time-series classification, many attempts are made using a



wide variety of techniques. Ultimately, the Betti curves used in TopRocket perform
exceptionally well, while the other methods do not outperform MultiRocket. As we
will demonstrate, these other topological classifiers are not competitive on the UCR
dataset. It is our belief that TDA has more to offer machine learning, especially in

the context of time-series classification.

1.4 Contributions

The primary contribution of this work is TopRocket, which is the first TDA-
based classifier to achieve state-of-the-art results on any similarly competitive prob-
lem. Two innovations enable TopRocket. The first is the insight that information
about the persistent homology of a time series can be extracted without explic-
itly computing the persistent homology. Rocket classifiers are known for speed, so
maintaining that speed is a primary constraint, behind maximizing accuracy. The
second key novel idea is computing the Betti curve of a time series at fixed values
derived from the underlying data. The Betti curve is a convenient representation
of persistent homology, presented in Section 2.3.5.1. In past work, Betti curves are
scaled according to the persistence information of the underlying data, but never
explicitly compute a select set of data-based values. These two insights combine to
make TopRocket possible.

TopRocket shortcuts the calculation of persistent homology by computing val-
ues of the Betti curve directly from a given time series. This improves accuracy

while maintaining speed and providing a firm basis in Topological Data Analysis.



The Betti curve is a special case of a similar construction called the persistence
curve, explained in Section 2.3.7. All other known persistence curves require cal-
culation of the full persistent homology of a time series. In order to enable further
research in this direction, we also present the fastest known implementation of the

algorithm for computing the persistent homology of a time series.

1.5 Overview

We begin by presenting the necessary background in time-series classifica-
tion and topological data analysis in Chapter 2. This includes a description of the
time-series classification problem, the UCR archive, and the associated statistical
machinery. Accuracy can be used to compare classifier performance over a single
dataset. Over many datasets, comparison is more difficult and greater care must be
taken.

We then provide an overview of the useful tools from TDA. These tools include
persistent homology and its associated constructions. Additionally, the relevant
persistence diagram vectorizations and representations are defined. The persistence
curve framework is presented, as it is a generalization of the Betti curve used in
TopRocket.

With the proper foundation in place, we build upon the existing research in
Chapter 3. The novel techniques attempted in this section are first motivated by
experiments over a wide array of existing topological methods. These experiments,

failing to provide sufficient accuracy, provide the motivation for hybrid topological



methods. Properly motivated, hybrid topological Rocket classifiers are presented in
Section 3.2. Most of these classifiers fail to provide the desired boost in accuracy.
Still, the creation of these classifiers involves the development of algorithms which
may be of some interest. Additionally, the results are useful for attempting a similar
line of investigation. Chapter 3 concludes with a description of TopRocket and its
variations.

We finish with Chapter 4, which aims to accomplish two things. First, we
present a call to action for TDA and time-series classification researchers alike. On
the TDA side, techniques from time-series related papers are not compared using
the rigorous methods developed for the UCR archive. While the existing body
of TDA work related in this domain lays the ground work for TopRocket, future
research should aim to meet the standards of the UCR archive. On the time-series
classification side, TDA provides a rich and mostly untapped set of tools which
appear to be especially useful in this domain. Second, several of the research paths

remain unexplored, but would absolutely be worthy of further investigation.



Chapter 2: Background and Related Work

We begin by reviewing the UCR archive and the associated comparison tech-
niques. The archive sets the standard of rigor in the field of time-series classification.
We then review the significant classifiers in the field. These include the baseline and
the state-of-the-art classifiers. The selected classifiers are chosen as a basis for later
discussion and experiments. Additionally, the set of classifiers selected forms a good
foundation for further investigation.

We conclude this section with a review of TDA. Our goal is to provide an
intuition for the tools of TDA, and motivate why the tools might be useful for
time-series classification. TDA is deeply rooted in mathematics, with a rich body
of highly active research. We review only what is necessary for understanding the

topological classifiers in Chapter 3.

2.1 UCR Time Series Archive

The current univariate UCR archive contains 128 datasets from a wide variety
of domains [8]. All datasets, and information regarding the datasets, are publicly
available [9]. The goal of the archive is to provide a common benchmark against

which to compare classifiers. There is an open solicitation from the maintainers of



the archive for additional dataset contributions.

The original archive is much smaller, but has grown over the years to its
current size. As the archive changes, the variety and nature of the datasets change
as well. Most significantly, in the early iterations, all time series are z-normalized.
This is properly motivated in most contexts, but is still a pre-processing decision
independent of any classifier operations. The latest additions to the archive are not
z-normalized. For the classifiers presented here, it can be assumed that the time
series are processed as is, without any additional pre-processing, unless otherwise

noted.

2.1.1 Methods of Comparison

Given a single dataset, it is straightforward to compare different classifiers
using accuracy or related statistics. However, over a large number of datasets the
methods of comparison and evaluation are less clear. The following methods assess

the performance of classifiers over the entire archive.

2.1.1.1 Critical Difference Diagrams

A critical difference diagram compares a set of classifiers across the entire
archive. The construction of the critical difference diagram is carried out in two
main steps. First, the average rank of each classifier is calculated. For each dataset,
the rank is calculated by ordering classifiers according to accuracy with lower being

better (i.e. 1.0 is first place). Ties are broken with fractional ranks, so two classifiers
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tied for second place would both be ranked 2.5. For each classifier, the average is
taken over all datasets to obtain the average rank. This average rank is plotted

along a horizontal scale, as shown in Figure 2.1.

Critical Difference Diagram - Baseline Classifiers

6 5 4 3 2 1
1 ) ] ) ) 1 1 ) ]
TAKENS’ @ L1914 oDTW (learned)
SLSp 412 L 249 oDTW (w=100)
SLSP (Optimized) 28822 31562 ED (w=0)

Figure 2.1: The baseline UCR archive classifiers are compared. There are no black
bars connecting the classifiers, indicating that each classifier passed all pairwise
significance tests.

Next, the statistical significance of the ranking is calculated. It is possible
that one classifier might have a better rank than another, without significantly out
performing it in terms of accuracy on any dataset. Significance is tested pairwise
using the Wilcoxon Signed Rank test with Holm correction and « = .05 [10, 11].
Visualizing the classifiers as nodes, classifiers are connected by an edge when the test
fails. This leads to the notion of statistically similar cliques, which are represented
as black bars in the critical difference diagram.

The black bars indicate that the connected classifiers are not statistically sig-
nificantly different. While convenient for comparison at a glance, the bars require a
nuanced interpretation in some cases when there is significant overlap. Additionally,
the ranking is dependent on the classifiers included in the analysis. Specifically, it is
possible that cliques do not respect the average rank order, in which case bars will

cross over classifiers not included the clique. This situation is always made clear by
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the additional bars in the diagram, and will always be accompanied by additional
explanation. All critical difference diagrams presented here are created using an

eponymous standard open-source library [12].

2.1.1.2 Win/Tie/Loss Graph

In many cases, it is useful to directly compare the performance of two classifiers
in a more detailed way. This presents difficulty in comparing performance across
all datasets. For this comparison, the Win/Tie/Loss graph is the standard method.
Points are plotted for each data set, with accuracy for the first and second competing
classifiers along the horizontal and vertical axis, respectively. Additionally, the
Win/Tie/Loss count with respect to the first classifier is included as the title.

An example of this method is shown in Figure 3.7. Any points below the
diagonal indicate datasets in which the first classifier performed better and points
above indicate the second classifier is better. Additionally, lines are included y =
x — .05 and y = = + .05 to make it clear when there is a difference in accuracy of

over 5%.

2.1.1.3 Texas Sharpshooter Plot

This plot is particularly relevant for new time-series distances used in conjunc-
tion with k-nearest neighbor (k-NN) classifiers. It takes its name from the Texas
Sharpshooter Fallacy, in which a sharpshooter shoots randomly at a blank wall and

then draws targets around each hole after the fact. By analogy, not formulating a
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hypothesis, prior to testing, calls the results into question.

In the context of time-series classification, it is not enough that a new distance
performs better, it must also be known that it will perform better before evaluation
over the test set. Knowing when a classifier will perform well is critical for applica-
tions to new datasets. This is one method of preventing overfitting to the archive.
Another method, discussed in Section 2.2.3.1, is to only develop the classifiers over
a subset of the archive.

For time-series classifiers, the hypothesis is taken as the expected accuracy
gain over a baseline classifier. Expected accuracy is the leave-one-out accuracy of
the classifier over the training set. Actual accuracy is the classifier accuracy over
the test set. Accuracy gain is the ratio of the given accuracy (expected or actual)

to the baseline actual accuracy.

Definition 2.1 (Accuracy Gain) G = A,/ Apasetine

The Texas Sharpshooter Plot is formed by plotting the actual accuracy gain
against the expected accuracy gain, for each dataset. Ideally, all points would fall
in the blue quadrants shown in Figure 3.2, indicating that the performance of the

new classifier is predictable.

2.2 Time-series classification

The field of time-series classification is highly competitive with new state-of-
the-art classifiers being published on a regular basis. In the past, it was exceptionally

difficult to evaluate the general performance of different classifiers, as datasets and
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classifier implementations are not publicly shared. The UCR archive addresses this

issue, and it is now possible to rigorously compare different time-series classifiers.

2.2.1 Motivation

Time-series classification is a problem arising across domains. There is a time-
series classification problem associated with almost every sensor. A wide range of
domains and tasks are represented by the UCR archive.

Creating fast and effective classifiers for these problems has a high impact.

Identification of classes in some noteworthy domains within the UCR archive include:

e Medical

— Electrooculography (EOG) [13]

— Electrocardiography (ECG) [14]

e Environmental Science and Agriculture

— Image-based leaf species [15]

— Audio-based insect species [16]

Satellite image-based crop identification [17]

Spectrographs of food samples for quality control [18] [19]

e Industrial Diagnostics

— Semiconductor wafer production [14]

— Electricity usage [20]

14



These are just a select few of the many applications for which time-series clas-
sification can be used. For each domain and application, there are unique features
which may be useful for aiding classification. The goal of classifying over the entire
archive is to create methods which extract useful features across domains. In order
to ensure applicability to new tasks, time-series classifiers should be domain agnos-
tic. Additionally, it is always possible to incorporate domain specific knowledge
down stream of a general purpose classifier.

Several criticisms have been levied against the UCR archive. Importantly,
the datasets in the archive are relatively small, which may impact applicability
for real-world problems. The largest dataset, StarLightCurves, only has 9236 time
series. Contrast this with the popular image dataset ImageNet, which contains
approximately 1.2 million images [21]. Even with its shortcomings, the UCR archive
is the only collection of its kind, and continues to facilitate the rapid growth in time-

series classification.

2.2.2 Baseline Classifiers

There are three baseline classifiers provided with the UCR archive. Euclidean
Distance (ED), constrained Dynamic Time Warping (¢cDTW) (with a window size
of 100), and learned cDTW are used as time-series distances for 1-nearest neighbor
(1-NN) classifiers. These baseline methods are used in Section 3.1 to evaluate the
effectiveness of existing topological approaches. These classifiers are fast, intuitive,

and difficult to outperform using a naive strategy.
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Assume we have two time series, x and y, of length n. Euclidean Distance and
cDTW both provide a distance which can be used to assess how similar x is to y.
Euclidean Distance between two time series is also the most constrained version of
dynamic time warping. The Euclidean Distance between two time series is simply
the absolute value of the pairwise difference of the aligned points. The time series

must be the same length in order to use FEuclidean Distance.

Definition 2.2 (Time-series Euclidean Distance) ED(x,y) = /> ; (z[i] — yli])?

Euclidean Distance is very fast to compute, but is the least accurate of the
baseline classifiers. It is overly sensitive to small shifts in otherwise similar time
series. 'This issue is addressed by DTW, which allows for a dynamic pairing of
points, instead of a fixed pairing as used with Euclidean Distance. Instead of a
one-to-one mapping, DTW utilizes a one-to-many mapping.

Let D be the distance matrix between x and y, such that D;; = |z[i] — y[j]|.
Let W be a contiguous path from Dy to D,,_1,_1, where the k" element of W is

W k] = |z[i] — y[k]|. The total cost of the optimal path Wy, is the DTW distance.

Definition 2.3 (Time Series Dynamic Time Warping Distance) DTW (P, Q) =

22 Wnini]

This is the unconstrained version of DTW, as Wy, can be any contiguous
path through D. Unconstrained DTW places ahead of Euclidean Distance, rank-
ing second place among the three baseline classifiers. The third and final baseline

classifier is constrained DTW (¢cDTW).
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Computing ¢cDTW works identically to DTW, with the one difference being
that the path W is constrained. Specifically, a window parameter w specifies the
degree of warping the path W is allowed to apply. In practice, this means that W
cannot deviate from the diagonal of D by more than w cells. Unconstrained DTW
uses w = oo. Figure 2.2 shows a comparison of Euclidean distance and cDTW.

The choice of w significantly impacts classification accuracy. The baseline
cDTW classifier chose w on a per dataset basis, using cross-validation over the

training set. This is the best performing baseline method.
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Euclidean Distance and Dynamic Time Warping

(a) Euclidean (b) DTW

N
i,
_\S\

(¢) warping path

Figure 2.2: Note the warping between (a) and (b). The diagonal lines in (c) indicate

a constraint on the path W [1].

2.2.3 State-of-the-art Classifiers

There are many types of time-series classifiers, with more being released on

a consistent basis. With this in mind, we restrict our coverage of additional classi-
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fiers to the top five (5) current state-of-the-art classifiers, and their close variants.
Additionally, because TopRocket is a Rocket family classifier, we cover the Rocket
methodology in detail. While interesting in their own right, HIVE-COTE 2.0, In-
ceptionTime, and TS-CHIEF are presented only to facilitate comparison to Rocket
family classifiers. This list is based on the ranking used in MultiRocket [22]. As
we will show, TopRocket replaces MultiRocket as the top ranked scalable classifier,

claiming second place in the ranking. Excluding TopRocket, the current ranking is:

1. HIVE-COTE 2.0

2. MultiRocket

3. InceptionTime

4. TS-CHIEF

5. MiniRocket

2.2.3.1 Rocket Classifiers

The Rocket (Random Convolutional Kernel Transform) family of classifiers
consists of three sequentially published methods, each improving on its predecessor.
The Rocket family is known for being very fast and accurate. These classifiers
extract a large number of simple features from the time series. These features are
then used for classifying the time series, usually using a linear regression model.

Specifically, all of the Rocket classifiers presented here utilize a ridge regression
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classifier, with the regularization parameter selected by cross-validation over the
training set [23].

All Rocket methods first convolve the time series with a large set of kernels.
This results in a large number of transformed time series. Very fast pooling opera-
tors are used to extract features from these transformed time series. These pooled
values are concatenated into a (high dimensional) vector and used for classifica-
tion. The classifiers primarily differ in how the convolution is carried out and which
pooling operators are applied. TopRocket is an extension of this family, which uses
a topological pooling operator in conjunction with existing conventional pooling
operators.

Notably, all Rocket family classifiers are publicly available and open source.
This keeps with the spirit of the UCR archive, and is instrumental in the devel-
opment of TopRocket. Over the long term, the online locations of these classifiers
may be subject to change. The interested reader is referred to the relevant, original
Rocket papers for the latest location of the classifiers.

With all Rocket classifiers, it is possible to specify the desired dimension of the
output vector. The number of kernels and dilations used are automatically changed
to the feature vector length. This means that the methods can be easily scaled to
accommodate different hardware constraints. We summarize the key points of the

three primary Rocket family classifiers, as follows.

Rocket The original classifier in this family, Rocket was the best performing clas-

sifier when published [24]. There are two sources of randomness in the model. The
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first is in the choice of kernels, the second is in the choice of bias values used to
apply the pooling operations. The two pooling operations applied to each trans-
formed time series are proportion positive value (PPV) and maximum value. Each
transformed time series is the result of the following five defining features: kernel
length, kernel weights, kernel dilation, kernel padding, and biases.

Kernel length is uniformly randomly selected from the set {7,9,11}. The
lengths are all odd, because by default the kernels are centered. The short length
of the kernels helps to ensure that Rocket is scalable for large time series. The
random choice proves to have a limited impact on accuracy, so kernels are restricted
to length 9 in later Rocket variants.

The weights of each kernel are randomly chosen from the standard normal
distribution. The randomization of the weights ensures each kernel extracts distinct
information from the time series. However, due to the random weights, it is diffi-
cult to optimize the convolution step. MiniRocket addresses this by restricting the
possible weights.

Kernel dilation specifies how much the convolution is ”spread out”. Convolu-
tion as conventionally defined has an implicit dilation of 1. A dilation of 2 means
that the weights of the kernel are convolved with every second element of the input
time series. This dilation is applied locally, as the kernel slides past each point in the
time series. Dilation allows for the same, or similar kernels, to be applied multiple

times at different scales. Dilations are randomly sampled on an exponential scale.
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Definition 2.4 (Rocket Dilation Sampling) d = |2%]|,z ~ U(0,max), where

Padding provides a similar increase in the variety of kernels. The choice of
padding or no padding for a given kernel is uniformly randomly chosen. If padding
is used, 0’s are appended to the start and end of the base time series. Enough 0’s
are used relative to the kernel length such that each element of the base time series
is centered for a convolution. If the kernel is length [, then a padding length of
(I = 1) %xd)/2] is used, where d is the dilation. Without padding, the kernel is
never centered over the first and last [[/2]| points of the time series.

The biases are randomly selected from U(—1, 1), but only positive biases are
used. Each kernel is paired with a single or multiple biases, depending on the model
parameters. The number of biases and dilations can be changed in order to obtain
the desired length feature vector.

After the convolution is carried out, the biases are added to the transformed
time series before the pooling operators are applied. These biases have the effect
of extracting multiple useful features from the same transformed time series. For
the result of each convolution, the maximum value and the PPV at each bias is
computed and appended to the feature vector.

The resulting feature vector of pooled features is used to classify the time series.
For Rocket, the parameters are set such that 20,000 pooled features are extracted
from each time series. While it is possible to use a wide variety of classification

methods, ridge regression provides fast and accurate results. This classifier is used
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for all Rocket family classifiers over the UCR dataset. Logistic regression is well

suited to exceptionally large datasets, larger than any included in the UCR archive.

MiniRocket MiniRocket (MINImally Random Convolutional Kernel Transform )
is a faster and more accurate version of Rocket [25]. Each transform has the same
five defining features, but they vary in the following ways, improving speed and
accuracy. The randomness is removed from the construction of the kernels. Kernels
are set to a fixed length of nine elements, with values either —1 or 2. Specifically,
three elements in the kernel are chosen to be 2 and the remaining elements are set a
to —1. There are 84 such unique kernels. Due to the kernel construction, it is pos-
sible to efficiently compute the convolution using scalar multiplication and matrix
addition. This is the primary reason MiniRocket is faster than Rocket.

Instead of completely random biases, the biases are derived from the training
set. Specifically, for each kernel and dilation combination, a training sample is
randomly chosen and convolved. Biases for the kernel and dilation pair are then
set as the quantiles of the output. Aside from the random selection of a training
sample, this is an entirely deterministic process.

Similarly, the dilations are also selected deterministically, spaced evenly on
an exponential scale. This allows for additional optimizations, contributing to the

speed of MiniRocket.

Definition 2.5 (MiniRocket Dilation Sampling) d = {[2°],..., [2¢], |2™*]},

linput -1

where max = logs e and the exponents i are spaced evenly from 0 to mazx.
erne

Due to the exponential nature of the construction, there are more smaller
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dilations than larger dilations, so small dilations are responsible for most of the
features. To prevent excessive computation for longer time series, the constraint
max < 32 is applied. This constraint, as well as the length of the time series, places
a limit on the number of features that can be added by increasing the number of
dilations. If additional features are required, the difference is made up by computing
additional bias values. Padding is also deterministic, with every other kernel and
dilation combination using padding.

Under this construction, the use of two pooling operations does not improve
accuracy. For this reason, only PPV is used as a pooling operator. Unlike Rocket,
in which an arbitrary output dimension can be chosen, MiniRocket is restricted to
an output dimension which is a multiple of 84, the number of kernels used. Using
just under 10000 features (9996 = 84 % 119), MiniRocket outperforms Rocket and is

significantly faster. MiniRocket ranked in third place when it was released.

MultiRocket MultiRocket is very similar to MiniRocket, but is optimized to
increase accuracy at the expense of speed. Prior to TopRocket, MultiRocket was
the most accurate scalable classifier, behind HIVE-COTE 2.0.

There are two primary differences which make MultiRocket more accurate
than MiniRocket. Features are extracted from the first order difference of the time
series, as well as the base time series. Additionally, three new pooling operators are
used, bringing the total to four. The four pooling operators are: PPV, length of the
longest positive stretch, mean positive index, and mean of positive values. These

pooling operators are computed relative to the biases. Instead of 10,000 features,
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MultiRocket uses 50, 000 features.

Aside from these changes, MultiRocket proceeds identically to MiniRocket.
MultiRocket is about an order of magnitude slower, but significantly more accurate
than MiniRocket. TopRocket continues in this direction, with the addition of a

topological pooling operator, significantly improving accuracy.

2.2.3.2 HIVE-COTE 2.0

The latest HIVE-COTE version, HIVE-COTE 2.0 (HC2) is the current reign-
ing champion of the UCR archive, in terms of accuracy [26] [27]. HIVE-COTE is
an acronym for Hierarchical Vote Collective of Transform-based Ensembles. The
goal of this family of classifiers is to maximize accuracy over the archive, regardless
of computational cost. HC2 provides improvement in both speed and accuracy over
HIVE-COTE.

As meta-ensemble, HC2 incorporates four classifiers, two of which are novel,
and two of which are derived from existing classifiers. Each classifier is used to create
a constituent ensemble, each of which is trained separately from one another. The
results of each ensemble are combined using a bagging approach, providing excellent
accuracy. Significant effort in the design of HC2 is directed toward ensuring bounded
training time. Specifically, a time contract mechanism places limits on how long each
ensemble can be trained.

One of the notable improvements present in HC2 is Arsenal, a novel Rocket

ensemble. This approach means it is possible to incorporate new Rocket family
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classifiers into future iterations of HIVE-COTE. With this in mind, it is not un-
reasonable to expect that TopRocket might be included in the next iteration of

HIVE-COTE.

2.2.3.3 InceptionTime

Neural networks have come to dominate many areas of machine learning. No-
tably, time-series classification, and specifically the UCR archive is not one of these
domains. Even still, it is possible to obtain impressive results over the archive using
deep learning methods, as demonstrated by InceptionTime [28].

One of the most popular neural network architectures, Inception networks
provided state-of-the-art image classification when released [29]. InceptionTime
modifies and extends the Inception architecture to work with time-series data. This
runs counter to the widely-held intuition that recurrent neural networks, not con-
volutional neural networks, are better for sequential data. InceptionTime uses an
ensemble of Inception-based networks.

The intersection of TDA and neural networks is a very active area of research.
One such promising TDA tool is PersLay, a neural network layer designed to ac-
cept persistence diagrams, which are a foundational object of study in TDA [30].
Learned neural persistence representations are another potential option [31]. Given
the success of TopRocket, it may be possible to incorporate tools from this area

with InceptionTime, or similar neural classifiers.
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2.2.3.4 TS-CHIEF

Another ensemble method and the current fourth ranked classifier, TS-CHIEF
(Time Series Combination of Heterogeneous and Integrated Embedding Forest) is
similar in many ways to HC2 [32]. As the name suggests, TS-CHIEF utilizes a
decision-tree variant known as a Proximity Forest (PF) over a large number of
time-series embeddings [33]. At a high level, this method utilizes a decision forest
of k trees. Tree construction begins at the root node and proceeds recursively to
the leaf nodes, just as with a decision tree.

As it moves from the root down to the leaves, the dataset is split at each node
according to a splitting function. For each node, the splitting criteria is based on the
distance of the sample to a fixed randomly selected training sample, as measured
by several time-series distances. The leaf nodes are used for voting classification.
The innovation of TS-CHIEF is to use a set of candidate splitting functions at each
node, all of which are specifically designed for time series. The classifier uses many
candidate splitting functions derived from existing classifiers, giving a notion of
time-series ”proximity”. The best splitting function is selected at each node based
on a split purity measure, called the Gini index, which is similar to information gain

used in classical decision trees.

2.3 Topological Data Analysis

Topology is the branch of mathematics which focuses on the properties of

an object which are preserved under continuous deformations. Sometimes called
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"rubber sheet geometry,” topology allows for manipulating an object through ”nice”
continuous operations, such as stretching, shrinking, and twisting. Operations such
as gluing, tearing, and forming new holes are not allowed. The motivating question
underlying topology is: What describes the properties which remain under these
allowed operations? Intuitively, the two descriptive properties are how many holes
there are in an object, and how it is connected. The properties are formalized to
varying degrees using the ideas of homeomorphism, homotopy, homology, and many
other related concepts.

The goal of TDA is to leverage the vast array of tools from topology to better
understand data. There are several key areas of investigation with regard to TDA,

which can be summarized as follows:

1. How can data be transformed into a topological space?

2. How can useful information be extracted from the resulting topological space?

3. What are the properties of the extracted information?

4. How can the information be used for downstream analysis?

Each of these questions will be answered in turn. Additionally, we show how
the answers to the above questions can be applied to time-series data. This section
concludes with a discussion of persistence curves, a recently developed framework
with a strong connection to TopRocket.

TDA is a rich and rapidly developing field with a wide array of techniques.

We restrict our discussion to a particularly useful topological property: persistent
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homology. Further, we are only concerned with the persistent homology of a com-
putationally convenient type of topological space called a simplicial complex. Even
with this seemingly narrow view, it is possible to explore a wide area of interesting
applications in TDA.

It should also be noted that TDA is deeply rooted in algebraic topology. This
connection will likely bear additional fruit in the future, especially in the domain
of time-series classification. However, a full description of the foundations of TDA
is not required to understand the methods presented here. As much as possible, we
eschew the fundamental, yet abstract, mathematics underlying TDA. Instead, we
favor intuitive explanations, which explain how the tools of TDA work and why those
tools are useful for time-series classification. Several of the following basic definitions
are taken, at least in part, from the excellent introductory text by Eldelsbrunner

and Harrer [34].

2.3.1 Motivation

The seminal work in TDA is primarily concerned with the properties of point
clouds [35]. There are an ever-increasing number of data streams, and often times
the data is very high dimensional. Additionally, data is often naturally represented
as a point cloud in high dimensional space. The initial working assumption is that
the topological properties of point clouds, which occur across scales, provide useful
information about process underlying the point cloud.

The core idea is to construct topological spaces at different scales, and analyze
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how the topological properties of the spaces change as the scale varies. Homology is
an especially useful topological property. While not perfect, in a rigorous sense as we
will show, homology is relatively fast to compute and yields a good representation of
the "holes” in a space. Tracking how homology changes across scales directly leads

to the idea of persistent homology.

2.3.2 Topological Spaces From Data - Simplicial Complexes

The simplicial complex is a central idea in applied topology. This is the pri-
mary object studied using persistent homology. As a baseline intuition, it is useful
to think of a simplicial complex as a higher dimension analog of a graph. In ad-
dition to vertices and edges, a simplicial complex can have 2-dimensional faces,
3-dimensional filled spaces, and n-dimensional hyper-faces. We proceed by defining
simplices, simplicial complexes, and abstract simplicial complexes (ASCs).

Let U = ug, ..., u1, ..., u; be a set of points in R?. A convex combination over
Uis x =) \u; such that Y \; = 1 and A\; > 0Vi. The convex hull of U is the set

of all such combinations.

Definition 2.6 (k-Simplex) The convex hull of k + 1 affinely independent points

18 a k-simplex.

A O-simplex, 1-simplex, 2-simplex, and 3-simplex correspond to a vertex, line
segment, filled triangle, and tetrahedron, respectively. A face of simplex is the
convex hull of a non-empty subset of U, and is also a simplex. A proper face is the

convex hull of a proper non-empty subset of U. If 7 is a face of o, we write 7 < o,
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or 7 < ¢ if 7 is a proper face. The boundary of a simplex is the union of its proper
faces. Each simplex with £ > 1 is bounded by k£ — 1 simplices. The set of vertices
of a k simplex has 281 — 1 faces. A simplicial complex is a collection of simplices

which obey the rules of a topological space, as seen in Figure 2.3.

Definition 2.7 (Simplicial Complex) Let K be a collection of simplices. K is

simplicial complex if:

1. For simplices 0 € K and 7, if Tt < o, then 7 € K.

2. If simplex 0,00 € K, then o N oq is either empty, or a face of both o and oy.

A simplicial complex is inherently tied to an underlying space, in this case R".
For computational purposes, it is better to describe a simplicial complex in purely

combinatorial terms. This is the role of the abstract simplicial complex.

Definition 2.8 (Abstract Simplicial Complex) A finite collection of sets, A,

is an abstract simplicial complex if « € A and  C « then S € A.

There are several methods for constructing an ASC from point-cloud data. We
focus on the Vietoris-Rips (VR) complex, because it is efficient to compute. The
Vietoris-Rips is based on the idea of placing a ball of radius r around each vertex in
a set S. Two vertices are connected by an edge if the radius r ball of each intersect
each other. The cliques of the graph are included in the abstract simplicial complex

as higher dimensional simplices.
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Simplices and Simplicial Complexes

X, X, X,
. 7
° ‘ X
X 4 ®
2 X, X X, A
3 X, '
Vertex Edge Triangle Tetrahedron
0-simplex 1-simplex 2-simplex 3-simplex k-simplex
[x,] X, x,) X, %, X,] [X,s X0 X5, X,] Xy Xy o X, ]
Simplices Simplicial Complex

Figure 2.3: An example of low-dimensional simplices and how they can combine to

form a simplicial complex [2]

Definition 2.9 (Vietoris-Rips Complex) VR, (S) = {o C S|d(u,v) < r,Vu #

vET}

The Vietoris-Rips complex allows us to construct a topological space from a
point cloud of data, but the choice of the radius parameter is often not obvious. In
fact, for many applications, there may be no clear choice of radius. Instead, we are
interested in how the ASC changes as r changes. This is the purpose of persistent

homology.
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Vietoris-Rip Filtered Complex

Figure 2.4: A sequence of Vietoris-Rip complexes formed from an underlying 2-

dimensional point cloud [3]

2.3.3 Extracting Useful Information - Persistent Homology

Intuitively, persistent homology tracks how ”holes” form and close in a topo-
logical space across scales. It is one of the primary tools of TDA. We make this
definition more rigorous by first defining homology, and then persistence. We are
only concerned with the persistent homology of ASCs, although the idea applies

more generally.

2.3.3.1 Homology

The homology of an ASC, S, is defined in terms of boundaries and cycles within

S. A homological hole is a cycle in S which is not the boundary of some higher
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dimensional simplex in S. S can contain holes of different dimensions, depending
on the dimension of the cycles and boundaries involved.

We begin by formally defining cycles and boundaries of an ASC. In order to
detect cycles and boundaries, we need a way of combining simplices within S. This

is accomplished by constructing chains over S.

Definition 2.10 (p-Chain) The formal sum of the p-simplices in S, ¢ = Y a,0y,

with coefficients a; € Fo, is a p-chain of S.

The coefficients indicate whether a given simplex is included in the chain, with
a; = 1 indicating membership. In general, coefficients can be taken from any field,
but for this work, and computational topology in general, Z? is used to simplify
computation. Component-wise addition is used to add two p-chains. If ¢ = > a0
and ¢; = Y B0y, then ¢+ ¢; = > (a+ f;)o;. Together with this addition operator,
the p-chains of S form an abelian group C,(S) or just C, when the ASC is clear
from context. The boundary of a p-simplex, o, is the chain of its (p— 1)-dimensional

faces.

Definition 2.11 (Simplex Boundary) 9,0 = Y 7 [uo, ..., Uj, ..., up] is boundary

of the p-simplex o.

The simplex [ug, ..., Uj, ..., up] is the (p — 1)-simplex formed from ¢ by removing
vertex u;. The boundary operator d, is a homomorphism from C, to C,_;. The
sequence of chain groups of S connected by the boundary homomorphism is the

chain complex of S.
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It is now possible to define cycles and boundaries in terms of chains. A p-cycle
is a p-chain with a boundary of 0. The p-cycles form an abelian subgroup Z, < C,,.
A p-chain is a p-boundary if it is the boundary of a chain in Cp;;. All p-boundaries
are p-cycles. The p-boundaries also form an abelian subgroup B, < Z, < C,,. The

boundary group B, is the image of boundary operator B, ;.

Definition 2.12 (The Fundamental Lemma of Homology) 0,0,.1d = 0 for

every integer p and every (p + 1)-chain d.

As B, is a subgroup of Z,, every element is a cycle, meaning the boundary of
every element is 0. Now that we have a formal definition of cycles and boundaries,
we recall the intuitive definition of "holes” as cycles which are not the boundaries
of some higher dimensional simplex. This notion is made precise by the definition

of homology.

Definition 2.13 (Simplicial Homology) The p'* homology group is the p'* cycle

group modulo the p™ boundary group, H, = Z,/B,, and is abelian.

The p** Betti number is the rank of H,, and corresponds to the number of
p-dimensional "holes.” We now have a way to count the number of holes in an
ASC. The 1% Betti number corresponds to holes bounded by edges, the 2"¢ to voids
bounded by triangles, and so on. Somewhat counter-intuitively, the 0" Betti number
is the number of connected components in the ASC. The number of connected
components of an ASC is particularly relevant for time-series applications, as will

be shown.
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Computing the p* Betti number of an ASC is accomplished via a simple
matrix reduction algorithm. The p-boundary matrix is a binary matrix which com-
pletely describes the boundary operator g, over ASC. The matrix D, consists of
rows corresponding to (p—1)-chains and columns corresponding to (p)-chains, where
Dli, j] = 1 indicates the i'® (p — 1)-chain is in the boundary of the j* p-chain. This
reduction algorithm transforms the boundary into a form from which the Betti num-
bers can be read. This process is extended in the following section to capture how

the Betti numbers change across scales.

2.3.3.2 Persistence

As shown in Section 2.3.2, constructing an ASC from data often involves a
parameterization. In the case of the VR complex, the important parameter is the
radius 7. This naturally leads to the question: How does the homology of a VR
complex change as r changes? Persistent homology seeks to answer this question.

Instead of working with a single ASC, we now turn our attention to a sequence
of complexes, called a filtered abstract simplicial complex. The corresponding se-
quence of homology groups is a filtration, and the object which persistent homology
describes. Let f be a monotonic real-valued function over the simplices of an ASC,
f 9 — R. In this case f is monotonic with respect to the order of the faces in .5,
meaning if o < 7 then f(o) < f(7). Let S, = f~!(—o00,al, the sub-complex of all

o € S such that f(o) < a.

Definition 2.14 (Filtered Abstract Simplicial Complex) The sequence of in-
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creasing sub-complezes of S, ) = Sg C Sy C ... €S, =5, where 0 < a; < ... < ay,

is a filtered ASC.

For every a; < aj, there is an inclusion map from S,, to S,;. These inclusion
maps induce a homomorphism over the filtered homology groups, f,"* : H,(S,,) —
H,(S,,;)Vp. The filtration of S with respect to f is the resulting sequence of homology

groups: 0 = H,(Sy) = H,(S4,) = ... = H,(Sa,) = Hy(S), where 0 < a; < ... < a,,.

Definition 2.15 (Persistent Homology) The p'* persistent homology groups are

the images of the induced homomorphisms, Hy,"" =1im fy** | 0 < a; < a; < ay.

Betti numbers are similarly extended to persistent Betti numbers, B,"" =
rank H,"*. The equivalence classes of H,"* represent the p-dimensional holes of
Sq; which still exist in S,;. Now, it is possible to track when holes are born and die

over the course of the filtration. The persistent Betti numbers can be used to provide

precisely this information. Let """ = (Bzi’a(jfl) — B;(Fl)’a(jfl)) — (Bg(ifl)’a(jfl)

a¢i—1),a;

B, ), where 0 < a; < a; < a,. Each p*% is the number of holes which are

born in complex S,, and died entering S, .

Definition 2.16 (Persistence Diagram) The multiset of all points (a;, a;) with
multiplicity p®%, for fized dimension p, is the p'* persistence diagram of the filtra-

tion, denoted Dgm,(f).

By the Fundamental Lemma of Persistent Homology, the Dgm,(f) contains
all information about the p'* persistent homology groups [34]. While persistent
homology may appear significantly more complicated than homology, it is nearly
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just as straightforward to compute. There are two major differences in the con-
struction of the persistent boundary matrix. First, the matrix includes all simplices
of S represented by both the rows and columns. Second, the simplices are ordered
(monotonically increasing) by both simplex order (coface relationship) and filtration
order. Applying a simple reduction algorithm and subsequent read off procedure to
this matrix yields the persistence diagram. The algorithm is detailed in Appendix
Al

A filtration of a VR complex can be created by using the radius r in the filtering
function, as shown in Figure 2.4. Specifically, for a VR filtration, f(o) = ry,,, where
T'min 18 the smallest radius such that 0 € VR;in(S). While not always fast, the VR
filtration tends to at least be tractable over reasonably large point clouds. Significant
effort is dedicated to speeding up the computation of persistent homology over VR
filtrations [36].

Persistence diagrams are the primary focus of much of TDA, especially at the
intersection with machine learning. Given that the diagram is a multiset of points,
it is not immediately clear how it can be used with downstream machine learning
models. In order to do this, we first explore the properties of persistence diagrams

and methods of comparison.

2.3.4 Properties of Persistence - Distances and Stability

With the heavy lifting of computing the persistent homology out of the way,

we must now make sense of the resulting information. We first review the two basic
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distances for comparing persistence diagrams, and then present the idea of stability,
which guarantees the distances are representative of the underlying data. This
section serves to motivate other methods for extracting and comparing persistence

information, as the basic distances are very costly to compute.

2.3.4.1 Wasserstein and Bottleneck Distances

The Bottleneck and Wasserstein distances between persistence diagrams are
closely related. Both involve taking the [, norm between pairings of points of two
diagrams. The Bottleneck distance makes use of this norm without any additional

steps. The Wasserstein is a generalization of the Bottleneck distance.

Bottleneck Distance of 0-dimensional SLSP
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Figure 2.5: Two curves and persistence diagrams are shown, colored red and grey.

The red curve contains fewer peaks and valleys, and correspondingly fewer persis-
tence points than the grey curve. All red points are paired, while most of the gray
points are noise induced and paired with the diagonal. This provides an intuition

for stability. [4]
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Assume X and Y are two persistence diagrams. Let these diagrams have points
X = (21,,%1,), oo, (Tonys Timp) a0d Y = (y1,,Y15)5 s (Unys Uny). The first coordinate
of each point corresponds to when a persistent homology class (a hole) was born,
and the second coordinate refers to when it died. It is convenient to use z; =
(x4, %s,). Computing the distance between the diagrams is accomplished by finding
a minimum unique pairing, or more formally a bijection, from the points of X to the
points of Y. The Manhattan distance between the pair of most separated points,
within the overall minimal total pairing, is the Bottleneck distance. Let n: X — Y
be a bijection between X and Y, where n(x) € Y is the point paired with z € X.
This pairing process for the 0-dimensional persistence of a time series is shown in

Figure 2.5.

Definition 2.17 (Bottleneck Distance) Given persistence diagrams X and Y,

Weo(X,Y) = inf sup|z—n(z)|« is the Bottleneck distance between X and Y.
nX—=Y pex

As noted above, the number of points in X and Y might be different. As a
computational trick, it is assumed that there are an infinite number of points along
the diagonal. Any unpaired points for a given bijection are paired to the diagonal
to compute the overall distance. It is possible to compute the Bottleneck distance
without these points, but in practice it simplifies the computation, so the extra
points are always included. The Bottleneck distance is somewhat constrained and
insensitive because the final distance is ultimately just the distance between a single
selected pair of points. The Wasserstein distance addresses this by incorporating

the distance between all pairs in the minimal bijection. As ¢ goes to infinity, the
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g-Wasserstein distance approaches the Bottleneck distance.

1/q
Definition 2.18 (Wasserstein Distance) W (X,Y) = | inf > |z —n(2)|L| .
n:X—=Y o ox

18 the Wasserstein distance between persistence diagrams X and Y .

Given two similar filtering functions f and g over an ASC, S, it is reasonable
to assume the Dgm,(f) would be similar to Dgm,(g). This desirable property is

called stability, and is formalized using the Bottleneck and Wasserstein distances.

Definition 2.19 (Bottleneck Stability) Let S be a simplicial complex with two
monotonic filtering functions f and g. For each p, the | distance between f and

g bounds the distance between X = Dgm,(f) and Y = Dgm,(g). Wi (X,Y) <

1f = glloo-

Stability is an important property in TDA, because for constructions such as
the VR filtration, small changes in the underlying point cloud are equivalent to small
changes in the filtering function. In effect, stability establishes a useful connection
between data and the topological features extracted from it. The ¢-Wasserstein
distance is similarly stable, given a few mild constraints on the filtering functions
and the values of q.

The stability of these distances suggests uses in downstream machine learning,
such as a k-NN classifier, or similar. For larger diagrams, however, these distances
are not very useful in practice. This is due to a costly problem hidden in the
definition of both distances. Namely, in order to find the optimal bijection, the

bipartite graph matching between the points in X and Y must be brute forced. Even
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with optimizations, this is too slow for many machine learning applications. This
issue motivates the development of vectorizations and representations of persistence

diagrams, which allow computationally more efficient comparison.

2.3.5 Utilizing the Information - Vectorizations and Representations

The following methods are used in the initial investigation of TDA for time-
series classification. Each vectorization is utilized in conjunction with a 1-NN clas-
sifier in an attempt to outperform DTW. As will be shown in Section 3.1, none of
these representations succeeded in beating DTW. These representations are chosen
as a selection of the most commonly available representations available to TDA prac-
titioners. Specifically, each representation described is implemented in the widely
used Python TDA library Giotto [37].

When designing a new vectorization, there are two primary considerations.
First, are the computational concerns, such as ensuring it is tractable to compute
and compare the representation. In order to accommodate different computing
trade-offs, all of the following methods include parameters to scale the size of the
representation. The second consideration is stability. With the exception of Betti
curves, each representation is stable with respect to either the Bottleneck or Wasser-
stein distance or, in some cases, both. This means that the distance between the
representations of the persistence diagrams is bounded by either the Bottleneck or
Wasserstein distances. As the Bottleneck and Wasserstein distances are also sta-

ble, this serves to reinforce the connection between the underlying data and the

42



persistence representation.

For the following examples, we refer to the points in an example persistence
diagram D as (b, d) or (b;,d;). This is to emphasize that the persistence points refer
to the birth and death of holes in the filtration, which provides intuition for the
different representations. In the following representations, ¢ refers to a ”"time” in
the filtration, for instance a specific radius in a VR filtration. This matches the
intuition about the birth and death of holes. Each representation can be compared

using the Minkowski distance over its discretized elements.

2.3.5.1 Betti Curves

The Betti curve over a persistence diagram is the most basic form of a per-
sistence curve [38]. Betti curves, and by extension persistence curves, form the

foundation of TopRocket, and are covered in more detail in Section 2.3.7.
Definition 2.20 (Betti Curve) B(t) =3, jcp, 1,0 <t <d.

In practice, values of t are discretized into n bins from the minimum birth
to the maximum death in the diagram. The distance between discretized curves
B(t), € R" is taken using the Minkowski distance. TopRocket takes a different
approach which, to our knowledge, is novel. TopRocket implicitly calculates [3(t)

for a discrete values of ¢, without having to first calculate the persistence diagram.

43



2.3.5.2 Persistence Images

This technique results in a 2-dimensional discrete vectorization of the input
persistence diagram [39]. The diagram is first converted to birth-life coordinates,
(b,d) — (b,d—1b), so that all points lie in the first quadrant. This transformation of
a persistence diagram contains the same information, but is better suited to down-
stream machine learning tasks. In birth-death coordinates, all of the points are
above the diagonal (a hole must be born before it dies). Converting a birth-death
plot to a square image means that half of the pixels will always be blank. Birth-life
coordinates fix this problem by spreading the persistence points across the entire
quadrant.

A differentiable probability distribution is centered at each point in the dia-
gram, creating a persistence surface, which is then discretized to create a persistence
image. It is possible to weight the persistence surface before discretizing under some
mild conditions, but only the trivial weighting function is used in this work. Given
a few mild constraints on the distribution used, persistence images are stable with
respect to both the Bottleneck and Wasserstein distance. This means that when the
same filtration method is applied to similar data, the resulting persistence images
will be similar, as shown in Figure 2.6.

For the experiments, as is most often done in practice, a 2-dimensional nor-
malized symmetric Gaussian with standard deviation o is used and the surface is
discretized into a square grid. The bins parameter specifies the side length of the

square image. For bins = n, the image will have n? pixels.
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Persistence Images of 0-dimensional SLSP

Figure 2.6: A collection of persistence images from a set of closely related time

series [5].

2.3.5.3 Heat Kernels

In many ways the heat kernel is similar to a persistence image. This repre-
sentation creates a vectorization in the same way using a square grid, but differs in
underlying surface. The intuitive idea behind a heat kernel is to treat the persistence
points as the initial condition for a heat diffusion problem. The underlying surface
used for the kernel is then the solution to the heat equation at time ¢ > 0 [40].

In practice, the heat kernel is computed much the same way as a persistence
image, but the points are left in birth-death coordinates. The difference of the sur-
face of the persistence diagram, and the surface of the persistence diagram reflected
along the diagonal yields a surface which is discretized to give the heat kernel vector-
ization. Both surfaces are created using a 2-dimensional symmetric Gaussian with

standard deviation o = v/2t.
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2.3.5.4 Persistence Landscapes

A persistence landscape is a set of functions {\}, k € N, where )\, : R — R,

where \i(t) is the " largest value of {A(t)}.

Ai(t) = max{0, min{t — b;,d; — t}} (2.1)

Each )\ is considered a layer in the landscape. The layers are discretized to

yield a vector representation [41].

2.3.5.5 Silhouettes

This representation is similar to a persistence landscape. A weighted silhouette
is effectively the weighted first layer of the corresponding persistence landscape [42].
Let the weighting function be w; = |d; — b;|?, where p € (0, 00] is distinct from the

distance parameter p shown in Table 3.1. The p-power weighted silhouette is:

>ier wili(t)

o(t) = S w

(2.2)

2.3.6 Persistent Homology of Time Series

We have shown how it is possible to construct a filtration from a point cloud
using a sequence of VR complexes. In this section, we show how persistent homology
can be applied to time-series data. There are several methods for accomplishing this,

two of which are presented here.
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First, applying a sliding window embedding to the time series transforms it
into a point cloud. Persistent homology (of any dimension) can then be applied
using a VR filtration, or similar. The second is to directly construct a simplicial
complex from the time series, and then use a sublevel set filtration. This approach
results in the sublevel set persistence (SLSP) of the time series. As will be shown,
SLSP bears a striking resemblance to the methods used in Rocket family classifiers.

Let x be a time series of length n, x := [x1, ..., z,]. A point cloud can be created
from z using Takens’ embedding [43]. Takens’ embedding was initially developed
for analysing dynamical systems. It requires three parameters: a lag 7 , a dimension

d, and a stride s.

Definition 2.21 (Takens’ Embedding) The set of points in R?, x(x,7,d,s) =
[T, Tigry o, Tig(a—1)7), with i € (0,2s,3s,...) as the stride, is Takens” embedding

of x, also called the sliding window embedding.

The resulting point cloud is then processed using any common filtration method,
most often a VR filtration. The p-dimensional persistent homology of the resulting
filtration can be calculated, for any dimension p.

Takens’ embedding is a fundamental technique in TDA [44]. There are sev-
eral drawbacks, however, namely computation cost (due to the VR filtration) and
choice of parameters. There are well established methods for choosing the embed-
ding parameters based on properties of the data. For a fixed stride, the stride is
optimized through a process which selects a value that minimizes the time-delayed

mutual information within samples [45]. Fixing the stride and the lag, a similar
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nearest-neighbor test is used to select embedding dimension [46]. Optimizing these
parameters and computing the VR filtration introduces significant computational
cost. Furthermore, most often in practice, only the 0 or 1-dimensional persistent
homology is utilized, as including higher dimensions classification tasks tends to
have diminishing returns.

SLSP obviates the need for a point cloud embedding by directly computing
the persistence of the time series. Specifically, a time series can be interpreted
as a piecewise linear function, with lines between sample points. The lines between
samples become 1-simplices (edges) and the samples points as O-simplices (vertices),
yields a simplicial complex. The ASC corresponding to this graph is very similar to

a path graph.

Definition 2.22 Let T'(z) be the ASC constructed from x, a time series of length

n. T(x) = {{v1},..{vn}, {v1, 02}, ..., {vn_1, v }}.

A sequence of complexes can be created by adding in simplices from least to
greatest, in order of the time series. In this case, the edges are added to the complex
once both vertices are present. Recall that 0-dimensional persistent homology corre-
spond to the number of connected components in an ASC. Starting with the empty
ASC T(X)o, the number of connected components will change as more simplices
are added. Formally, the filtration is taken with respect to a sublevel set filtering

function.

Definition 2.23 (Sublevel Set Filtration of Time Series) f(7(X)) = max(z(7))Vi <
oVo € T(X), where T are vertices of the ASC, and x(7) is the value of the corre-
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sponding point of the time series.

This resulting 0-dimensional persistent homology of the time series is the SLSP.
Intuitively, this process corresponds to scanning a horizontal line from the bottom of
the time series to the top, and counting the number of connected components below
the line. Due to the nature of the Rocket pooling operators, TopRocket actually
computes the partial SLSP of the negative of the time series, which is the same as
filtering from the top down instead. Computing the SLSP of a time series is more
straightforward to optimize than the general persistent homology.

An algorithmically fast queue-based method is available through the Teaspoon
library [47] [48]. In practice, the implementation of this algorithm leaves room for
improvement. For all of the experiments presented in Section 3.1, the standard
persistence algorithm provided by the Dionysus 2 library is used [49]. Additionally,
in Appendix A.2 we include an exceptionally fast implementation of the standard
persistence algorithm which is heavily optimized for time series. The algorithm
makes use of the just-in-time Python compiler Numba, as well as Python hash
maps, to exploit the constrained nature of SLSP [50]. To our knowledge, this is the

fastest method for computing the O-dimensional SLSP of a time series.

2.3.7 Persistence Curves

The primary novel contribution of TopRocket is the computing of the Betti
curve of a time-series SLSP, without computing the full SLSP. This ensures that

the classifiers remains fast, and provides a natural way to incorporate persistence
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information. The Betti curve is a special case of a persistence curve [38]. Existing
work on persistence curves requires a complete persistence diagram, and bins the
curve into a histogram. Our method is different in that we do not need to compute
the persistence diagram, and we directly use the value of the Betti curve at a certain
fixed set of filtration values.

The only other TDA-based classifier run against the UCR archive utilizes
a hybrid DTW /persistence curve method [51]. Using this approach, the authors
are able to outperform learned DTW on 64 out of 128 datasets. The full results
and the critical difference diagrams of these experiments are not published, so it is
difficult to make a fair assessment of the technique. It should be noted that DTW

is significantly less accurate than even the most basic Rocket classifier.
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Sub-diagram Cut Example

10

Death

Birth

Figure 2.7: An example persistence diagram with sub-diagram D, shaded in blue.

There two persistence points within the sub-diagram, so (4) = 2.

The persistence curve is based on ”cuts” of different filtering function values
for t. Specifically, a sub-diagram D, can be cut from a diagram D by taking all
points which are already born and have not died before ¢, as shown in Figure 2.7.

In other words, D, contains all of the points which are "alive” at time ¢.

Definition 2.24 (Persistence Diagram Cut) The cut of persistence diagram D

at time t is the multiset Dy = {(b,d) € D|b <t < d}.

In the persistence curve framework, the Betti curve can be defined as the
magnitude of D, as ¢ varies. Critically, computing values of the Betti curve does not

necessarily require the birth/death pairs provided by a persistence diagram. This
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fact is implicitly stated in the literature, but is not utilized. Instead, the past focus
has always been on computing the Betti curve over an entire persistence diagram,

or in some cases a truncated range.

Definition 2.25 (Betti Curve in Persistence Curve Framework) [(t) = #D; =

YL

(b,d)eDy

There are two operations in the definition of the Betti curve which can be
generalized. The first is the sum over the persistence pairs, which is denoted T
The second is an implicit function, denoted 1, which maps every persistence pair
in the sum to 1. Specifically, for the Betti curve ¢(b,d) = 1. Generalizing these
operations yields the persistence curve. The choice of T" and 1 specifies the type of

persistence curve.

Definition 2.26 (Persistence Curve) P(D,y,T) = T([t)(D;b,d,t)|(b,d) € Dy]).

While not explored in this work, it is likely that other persistence curve features
can be used in conjunction with Rocket family, or other, classifiers. As presented
in the original work, there are currently 11 different types of persistence curves. Of
these, the Betti curve, life entropy curve, persistence diagram threshold curve, and
persistence landscape already existed, but are subsumed by the framework [52] [53]
[41]. The remaining seven curves are introduced along with the framework. Some
of the curves, such as persistence landscapes, are stable. Others are conditionally
stable, have as of yet unknown stability, or are not stable. Betti curves are not
stable. However, Betti curves are the only curves which can be computed without
knowing the pairing of the birth and death times at time t.
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This computational trick is the property currently exploited by TopRocket.
Given our exceptionally fast algorithm implementation for computing SLSP of a
time series, it may be possible to sacrifice a small amount of speed in favor of
potential accuracy gains from using other curves. There are currently 11 curves,
but there is no reason in the context of time-series classification to limit the search
to just those curves. This presents an exceptionally large solution space, which we

will endeavor to explore in future work, and encourage others to do the same.
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Chapter 3: TDA for Time-series Classification

Having provided the proper foundation, we now explore the application of
TDA for time-series classification. We begin this section by reviewing TDA based
1-NN classifiers designed to outperform DTW. The goal of these experiments is to
assess the current state of TDA-based time-series classification. As will be shown,
none of these attempted methods outperform learned cDTW.

Having assessed the current available options, we shift our attention to im-
proving existing classifiers using TDA. MultiRocket is a clear choice for two rea-
sons. First, the way bias values are used in conjunction with the pooling operators
is evocative of sublevel set filtration. Second, MultiRocket is (or rather was, before
TopRocket) the state-of-the-art scalable classifier over the UCR archive, so improv-
ing it empirically proves TDA can provide an edge for difficult machine learning

problems.

3.1 Motivation for New Techniques

We begin the investigation of TDA for time-series classification by design-
ing experiments around the persistence representations presented in Section 2.3.5.

Specifically, we aim to create a TDA-based 1-NN classifier which outperforms learned
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cDTW over the full UCR archive. For pre-processing, all time series are first
z-normalized. In the very limited instances where a time series is constant, z-
normalization is invalid, so a zero-fill time series of the same length is used instead.
Importantly, z-normalization is idempotent, so this step has no effect on the datasets
which are already normalized. For these experiments, all computations are carried
out with Giotto, with the exception of SLSP, which is done with Dionysus 2 (our
SLSP implementation would have been a faster choice, but it did not exist at the
time these experiments were carried out).

Before choosing from the previously listed five representations, a filtration must
first be chosen. Specifically, we must choose between a VR filtration over Takens’
embedding or SLSP. In order to do this, we computed the persistence diagrams of
the entire archive using both methods.

Attempting to compute Takens’ embedding over the entire archive consumes
significant resources and time. As a result, given current hardware and time con-
straints, it is not feasible to compute the VR filtration of Takens’ embedding as
previously described. With this in mind, we place several mild constraints in or-
der to reduce the computational load. A stride of s = 1 is used, unless x(x,7 =
1,d = 2,s = 1) > 1000, in which case the stride is increased until the number of
points is less than 1000. This is done to ensure the VR filtration for each sample, in
each dataset, can be computed in a reasonable amount of time. Once the stride is
selected, 7 is selected by minimizing time-delayed mutual information, and d is se-
lected using the false nearest neighbors heuristic [45,46]. To further ensure that the

filtration can be quickly computed, we utilize principal component analysis (PCA)
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to create a 3-dimensional point cloud. The 1-dimensional persistent homology is
then computed over the resulting point cloud for each sample.

SLSP is fast to calculate and non-parametric. It is therefore computed over
the entire archive as previously described using Dionysus 2. In order to select
between the two, we must choose a representation. The Betti curve is the fastest
and simplest representation we have at our disposal, and is therefore used to create
1-NN classifiers from the VR and SLSP persistence diagrams. Specifically, we use
a discretized Betti curve with 100 bins. The result is treated as a 100-dimensional
vector, and classified using the 1-NN, with distance measured as the p = 2 Minkowski
distance. SLSP significantly outperforms Takens’ embedding, as shown in Figure
3.1.

In order to improve accuracy, we now optimize the persistence representation
used in conjunction with SLSP. This is done by choosing the representation and
parameters which are most accurate on the training set, for each data set. The
range of parameters for each representation are shown in Table 3.1. This leads to
134 unique 1-NN classifiers for each of the 128 datasets. These parameters were
chosen in order to fairly assess each representation while also balancing resource
constraints. It is always possible to conduct a more thorough grid search of the
parameters, but we believe any expansion will have diminishing returns.

The results of the initial SLSP and Taken’s classifiers, the optimized SLSP
classifier, and the baseline UCR classifiers are compared via a critical difference
diagram in Figure 3.1. The diagram clearly shows that, even with an optimized

representation, SLSP cannot compete with the worst performing baseline approach.
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Table 3.1: Grid Search Parameters. Parameter p refers to the Minkowski dis-
tance

Parameters

Betti Curve
p 1,2
bins 10,50,100,250,500

Persistence Image

P 1,2

bins 4,8,16,32

o .001, .01, .1, 1.0, 10
Heat

P 1,2

bins 4,8,16,32

o .001, .01, .1, 1.0, 10
Landscape

P 1,2

bins 10,50,100

layers || 1,2
Silhouette

P 1,2

bins 10,50,100

power | 1,2
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Critical Difference Diagram - 1-NN Classifiers

6 5 4 3 2 1
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SLSP 40312 24922 cDTW (w=100)
SLSP (Optimized) 28822 31562 ED (w=0)

Figure 3.1: Purely topological methods compared to the three baseline methods of
UCR archive. SLSP performs better than Takens” embeddings, and is improved by
optimization of the representation parameters. Even optimized, it falls short of the
baseline methods.

This would not necessarily be an issue if SLSP performed in a highly predictable way.
Unfortunately, as shown in Figure 3.2, for a given dataset it cannot be predicted
from the training set if optimized SLSP will perform better than the baseline SLSP.
This indicates that SLSP-based distances are not well suited for use on the UCR
archive. Even after a thorough search, the performance is lacking and unpredictable.

While it may be possible to create better TDA-based distances to use with a 1-
NN classifier, it is not immediately obvious how that might be done. The presented
experiments use the most commonly available tools from TDA. Seeking to address
this lack of performance, we instead focus our attention on Rocket family classifiers,

which in some ways mirror SLSP.

3.2 TopRocket

TopRocket is an extension of MultiRocket, adding a new topological pooling
operator to the existing set of four operators. Recall that for each combination of
kernel/bias/dilation/padding, MultiRocket extracts four features from a given time

series. These features are: PPV, the length of the longest stretch above the bias,
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Figure 3.2: Optimized SLSP compared to baseline SLSP. For all points x >= 1,
which indicates that the training dataset performance for optimized SLSP is at
least as good as the baseline SLSP. The points, however, are almost evenly split by
y = 1, indicating performance over training data does a poor job of predicting test
performances.

the average value of the points above the bias, and the mean index of the points
above the bias. The same features are extracted from the transformation of the first
order difference of the time series, yielding an additional four features.

Recall further, that for each combination of kernel/dilation/padding, multi-
ple bias values are computed from the quantiles of a random training set sample.
Each bias is effectively a horizontal line which cuts through the transformed time
series. The four MultiRocket pooling operators solely evaluate the portion of the
transformed time series above the line. This process is highly evocative of the
0-dimensional persistent homology provided by SLSP, in which the number of con-
nected components below a horizontal line is tracked, as the line sweeps from the
bottom to the top of the time series. However, there is not an efficient or an intuitive
way to incorporate the full SLSP process into MultiRocket.

Instead, we compute the number of connected components above the hori-

zontal line specified by a bias value and include this as the fifth feature: the Betti
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pooling operator. This is precisely the value of the Betti curve of the negative of the
transformed time series taken at the negative bias value. Using the negative bias
value and negative time series is a small adjustment in order to count the number
of components above the horizontal line specified by b, instead of below it as with

normal SLSP.

Definition 3.1 (Betti Pooling Operator) Let x be a time series and T, <
b < Tpae a bias value. B(—b) = #D_, is the Betti pooling operator, where D is the

0-dimensional persistence diagram of ASC, T(-z).

In practice this value is very efficient to compute, only requiring a small change
to MultiRocket, while significantly improving accuracy. Specifically, to extract the
four preexisting features, MultiRocket already loops over the values of each trans-
formed time series for each bias value. This is the inner most loop of the algorithm
used. In order to create TopRocket, we simply add an additional condition to this
loop to check how many times the transformed time series crosses the bias. It should
also be noted that many pooling operators and combinations of operators were at-
tempted when initially designing MultiRocket, so is difficult to find a new operator
which does not impede performance.

This is a fast, linear-time process which integrates seamlessly with Multi-
Rocket. In fact, because TopRocket requires fewer transformed time-series than
MultiRocket, it is about that 5% faster. This speedup is verified on a test system
using an AMD Ryzen Threadripper 1920X, with 12 parallel Numba threads, by

averaging the time each classifier takes to run over all 30 splits. MultiRocket takes
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an average of 346.9 seconds, while TopRocket only takes 326.7 seconds. This means
TopRocket provides better results in less time.

We now present several results to support our claim that TopRocket is state-of-
the-art and an improvement over MultiRocket. For this, we use the same experiment
design as MultiRocket. Specifically, we run TopRocket over 30 different splits of 109
of the UCR datasets, and average the accuracy over all 30 runs. The results for
the same experiment for the current top five classifiers are published as part of
MultiRocket. These results are publicly available, and hosted with the code for
the MultiRocket. Additionally, the selection of 109 datasets and 30 splits are also
publicly available. Only 109 datasets are evaluated due to various constraints of
each of the top five classifiers. For instance, MultiRocket only works with datasets
that have fixed length time series.

We also adhere to the development practices used when designing the previous
Rocket family classifiers, and only use 40 of the datasets as ”development” datasets,
used to tune the hyperparameters of the model. This is done in order to avoid
overfitting to the UCR archive, which reduces its overall utility in the long run. The
only hyperparameter to tune, with respect to TopRocket, is the choice of pooling
operators. For all experiments we follow MultiRocket and fix the length of the
feature vector as 50,000. As we use five pooling operators, we only require 5,000
(50000/(2 * 5)) kernel/bias/dilation/padding combinations, where as MultiRocket
requires 6250 (50000/(2 x 4)).

As we have already revealed, TopRocket uses all of the original MultiRocket

pooling operators. We verify this is the right choice by running all combinations of
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the existing features with the Betti pooling operator over the development set. The
resulting ranking shown in Table 3.2 shows that using all four MultiRocket features

plus the Betti pooling operator is the best choice.

Table 3.2: TopRocket Feature Choice Ranking: All classifiers use the Betti
pooling operator. The number represents which MultiRocket features are used:
PPV(1), length of max positive stretch (2), mean positive value (3), and mean
index (4). Ranking is taken over the standard 40 development sets.

1 | TopRocket - 1234 6.2125
2 | TopRocket - 134 6.3375
3 | TopRocket - 124 6.9500
4 | TopRocket - 234 7.1375
5 | TopRocket - 14 7.4500
6 | TopRocket - 123 7.7375
7 | TopRocket - 13 7.7875
8 | TopRocket - 1 8.4500
9 | TopRocket - 34 8.6625
10 | TopRocket - 12 8.8500
11 | TopRocket - 3 9.0125
12 | TopRocket - 23 9.4125
13 | TopRocket - 24 9.7000
14 | TopRocket - 4 10.0875
15 | TopRocket - Betti Only | 10.9625
16 | TopRocket - 2 11.2500

Now we present the core result, the critical difference diagrams of the state-of-
the-art classifiers, including TopRocket. Figure 3.3 shows that TopRocket displaces
MultiRocket in the rankings. The critical difference diagram requires special at-

tention to read, as the black bars surrounding MultiRocket, TopRocket, and HC2

62



may be confusing. Specifically, there is a bar between TopRocket and HC2 indi-
cating that the two are not statistically significantly different. There is also a bar
between MultiRocket and HC2, indicating the same. However, there is not a bar
between TopRocket and MultiRocket, indicating TopRocket is significantly better.
The bar connecting MultiRocket to HC2 may appear to indicate a clique including
all three classifiers in question, but it does not. This is evidenced by the need for
the clarifying bar between TopRocket and HC2, and can be independently verified

by examining the pairwise statistical tests using the results provided.

Critical Difference Diagram - New Top Five

5 4 3 2 1
| 1 | 1 f 1 . I
InceptionTime gizz ijﬁgi HIVE-GOTE 2.0
TS-CHIEF o Rockat
MultiRocket 22672 opRocke

Figure 3.3: TopRocket outperforms MultiRocket, removing MiniRocket from the
top five. TopRocket does not form a clique with MultiRocket.

The added performance of TopRocket is made even more clear when Multi-
Rocket is replaced with TopRocket. Figure 3.4 shows the original critical difference
diagram of the top five classifiers. Figure 3.5 shows the same diagram, but with
TopRocket replacing MultiRocket. Notice that the bar spanning from Inception-
Time to MultiRocket is not present in the new diagram.

Additionally, TopRocket has superior performance when competing directly
against HC2, winning on 45 datasets, more than MultiRocket’s 43 wins for the
same task. When put head-to-head, TopRocket wins against MultiRocket on 63

datasets. These results are visualized in the Win/Tie/Loss graph in Figures 3.6 and
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Critical Difference Diagram - Original Top Five

5 4 3 2 1
l L | | 1 | 1 |
MiniRocket 24308 L @M YVE-COTE 2.0
InceptionTime gzggz 26376 MultiRocket
TS-CHIEF

Figure 3.4: Note the clique formed between Inception Time and MultiRocket.

Critical Difference Diagram - Replaced by TopRocket

5 4 3 2 1
1 L | L | 1 | 1 |
MiniRocket 2850 | L 229 HVE-COTE 2.0
Ince_lg_)gocr;l"ilnE'lE 23;‘: 25413 TopRocket

Figure 3.5: TopRocket only forms a clique with HC2.

3.7

These results rigorously show that TopRocket is now the best performing scal-

able time-series classifier over the UCR archive. Additionally, TopRocket empirically
proves that TDA-based features can be used to provide an edge on highly competi-
tive machine learning tasks. Additionally, we demonstrate that this benefit can be

obtained without incurring the high computational costs typically associated with

methods from TDA.
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TopRocket vs. HIVE-COTE 2.0 Win/Tie/Loss: 45/6/58

1.0 A
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0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
HIVE-COTE 2.0

Figure 3.6: TopRocket does not outperform HC2, but it is the closest competitor.
Points outside the dotted lines indicate a greater than 5% accuracy difference.

TopRocket vs. MultiRocket Win/Tie/Loss: 63/8/38
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Figure 3.7: TopRocket outperforms MultiRocket by a significant margin. Each

point is a data set, plotted by the accuracy of the respective classifiers. There are
63 points above the diagonal, indicating TopRocket wins on 63 of the 109 datasets.
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Chapter 4: Conclusion

We set out to design and rigorously evaluate a fast, accurate, and reproducible
TDA-based time-series classification method. With TopRocket, we accomplish this
goal. Furthermore, we establish a clear path for further work in this direction.
The connection of TopRocket, and specifically the Betti pooling operator, to the
persistence curve framework serves to firmly connect the fields of TDA and time
series classification.

While the connection between persistence curves and time series classification
already existed via a hybrid DTW distance, we provide several key novel additions
which reinforce this connection. The first is a method for extracting information
about the Betti curve of a time series without having to compute persistent homol-
ogy. The second is the method of incorporating this Betti curve SLSP information
into an existing classifier framework. Taken together, these contributions provide
state-of-the-art results over the UCR archive. Additionally, we provide a very fast
implementation of the SLSP algorithm, which can be used in future work to incor-
porate additional persistence curves.

With this, we conclude with a call to action for TDA practitioners. The

field of time-series classification will benefit from the additional attention of TDA
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experts. There is significant work in TDA dedicated towards understanding SLSP
and Takens’ embedding of time series. Persistent development and application of
this work, using the UCR archive as a rigorous benchmark, is likely to yield wholly

new and useful results.
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Appendix A: Algorithms

A.1 Persistent Homology Algorithm

Let O be the filtered boundary matrix of a filtered simplicial complex over an
ASC K. 0 is an nxn square matrix, where n is the number of simplices in K.
The rows and columns of partial correspond to the simplices sorted ascending by
filtration order, and subsequently coface relation if needed for simplices added at
the same filtration time. J[i, j| = 1 if simplex i is a proper coface of one dimension

lower of simplex j, 0 otherwise.

Algorithm 1 Persistent Homology Reduction
Ensure: z >0
1: procedure COMPUTEPERSISTENTHOMOLOGY ()
2: function Low(j) > Last coface of j to enter the filtration
return Row index of lowest entry containing a 1 of column j.
end function
function REDUCE(0)
R+ 0
for j=1 dom
while there exists jo < j with Low(jo) = Low(j) do
add column jy to column j
end while
10: end for
11: return R
12: end function
13: end procedure

For each non-zero column of R, j, if i = low(j) # 0 and o; is a (p— 1)-simplex,
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where o; is a p-simplex, there is a persistent homology class born at time a; which
dies entering time a;. In other words, given some mild conditions, each non-zero
column R describes a chain which bounds a whole. The last simplex added to that
chain, o;, is the simplex that formed the hole. Meaning the hole formed at the time

o; was added, a;.

A.2 Fast SLSP Implementation

The speed of this implementation is mainly attributed to bypassing the matrix
representation of the filtration boundary. In order to understand how this is done,
we must first understand the boundary matrix, 0, a time series. Each edge is bound
by two vertices. Furthermore, the vertices have no boundary, so the corresponding
columns in 0 will always be 0 and have no impact on the calculation, so can be
removed. Likewise, the edges are never the boundary of a chain, and so can be
excluded from 0. Already this is a 3/4 space savings, as the boundary matrix size
shrinks from (n+ (n —1))> ton* (n — 1) = n? — n.

Examining the columns of 0, it is clear that each only has two 1’s, correspond-
ing to the bounding vertices. The column addition operation in the persistence
algorithm will always cancel out the lowest 1 in the column being added to. De-
pending on the value of the columns being added, this will leave the column with
0, 1, or 2 1’'s. We do not need the column representation to carry out these opera-
tions. We can simply track when each vertex enters each edge using lists and hash

maps. The persistence algorithm is still the same, just accelerated over these data
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structures using Numba.

Adding two columns together is a straightforward update to the lists containing
the boundaries of each edge. Several levels of indirection are required to convert
between the time in the filtration and the indices in the lists tracking the boundaries
of the edges. This additional complexity allows for a significant speedup, as shown in
Figure A.1. Additionally, it is possible to only return the k longest lived persistence
points, a valuable feature in some contexts.

The speed of this implementation is directly dependent on the use of hash
maps in Python and loop acceleration from Numba. It is not the algorithmically
fastest approach, but it is empirically the fastest. As such, we share the source code

instead of the pseudocode.
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Figure A.1: Run time comparison of three methods for computing 0-dimensional
SLSP of a time series.

increasing the length in steps of 100. The time is the result of averaging run time

over b0 runs.

Speed Comparison of SLSP Methods

—— Ours ae
Dionysus ~
---- Teaspoon

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time Series Length

import numpy as np # version 1.19.4

from numba import njit,

uint32 # version 0.53.1

# Numbda decorator for JIT compilation

@njit (fastmath=True,

def TimeSeriesSLSP(ts,

nmnn

cache=True)

n_points):

Accepts a time series a returns the n_points

longest lived O-dimensional persistence pairs.

If the entire SLSP PD is needed,

n_points

should be set to the length of the time series.
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13 For a time series, there is only ever on infinite

14 persistence point.

15 It corrsponds to the minimum of the time series,

16 and is not returned.

17 This method does not return O-life persistence points,
18 as they do not have meaning.

19 Any O pairs in the output should be ignored.

20 Additionally, it assumed all value of the time series are >=
21 If the time series has negative values,

22 it should first be shifted to be positive.

23 The shift can be reversed as a post-processing step.
24

25 This approch does not use a boundary matrix.

26 Drawing out the boundary matrix for a time series

27 makes it clear that the "low" indices can be

28 computed directly from the time series.

29 e

30

31 # v is an abbreviation for vertex.

32 v_ord = np.argsort(ts)

33 rank_ord = {}

34

35 # There are library functions to find rank order, but this is
faster due to Numba.

36 for i in range(len(v_ord)):

37 rank_ord[v_ord[i]] = i

38
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40

44

45

46

49

56

60

61

64

n_edges = len(ts)-1

# e is an abbreviation for edge, the 1-simplices between sample

points.

e_max_val = np.zeros(n_edges)

e_birth_vert = np.zeros(n_edges).astype(uint32)

e_death_vert np.zeros (n_edges) .astype (uint32)
# Find the rank of when each edge was born and died.
for i in range(n_edges):

e_max_val[i] = np.max(ts[i:i+2])

if ts[i] > ts[i+1]:

rank_ord [i+1]

e_birth_vert [i]

e_death_vert [i] rank_ord[i]

else:

e_birth_vert[il] rank_ord[i]

e_death_vert [i] rank_ord [i+1]
# The edges indices sorted by their maximum vertex value.

e_max_ord = np.argsort(e_max_val)

# The index of high vertex for each edge.
e_high_idx = e_birth_vert[e_max_ord]
# The index of low vertex for each edge.

e_low_idx = e_death_vert[e_max_ord]
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66

68

69

80

81

82

84

89

90

91

lows = {}
for i in range(n_edges+1):

lows[i]=-1

# Apply persistent homology reduction.

for i in range(mn_edges):
while True:
low = e_low_idx[i]
low_idx = lows[low]
if low_idx == -1:
lows[low] = i
break

else:

cur_high = e_high_idx[il]

added_high = e_

high_idx [low_idx]

if cur_high > added_high:

e_low_idx [i] = cur_high

e_high_idx[i] = added_high

else:

e_low_idx[i] = added_high

# Compute the death times.

death_times = e_max_val[e_max_ord]

# Compute the life times.

life_times = death_times -

# The persistence diagram.

ts[v_ord[e_low_idx]]
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93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

113

116

# Ignores infinite and O life points.

pd = np.zeros ((n_points,2))

if len(life_times) == O0:
# return early if no persistence points.

return pd

# Count number of persistence points.
num_non_zero = 0 # This be returned to assist with downstream
calculations
for i in range(len(life_times)):
if life_times[i] != O:

num_non_zero += 1

if num_non_zero == 0:

# return early if no persistence points.

return pd

# Return the persitence diagram in life/death coordainates.

# death-1life = birth if needed.

pd_sort = np.argsort(life_times)[::-1][:n_bars]

pd[:len(life_times) ,0] life_times[pd_sort[:n_bars]]

pdl:len(life_times) ,1] death_times [pd_sort[:n_bars]]

return pd
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Appendix B: Results

B.1 Full TopRocket Results

The full average results of TopRocket over the same 109 datasets and 30 splits

as MultiRocket. The development datasets are in bold.

Name Average Accuracy
ACSF1 0.8309999982515971
Adiac 0.8209718604882558
ArrowHead 0.9032380898793538
BME 1.0

Beef 0.7633333365122478
BeetleFly 0.8949999988079071
BirdChicken 0.903333326180776
CBF 0.9941481550534567
Car 0.9266666650772095
Chinatown 0.9667638500531515
ChlorineConcentration 0.7814149300257365
CinCECGTorso 0.9684541046619415
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Coffee

1.0

Computers 0.8547999997933705
CricketX 0.826153842608134

CricketY 0.8526495695114136
CricketZ 0.8431623816490174
Crop 0.7746706306934357
DiatomSizeReduction 0.9506535847981771

DistalPhalanxOutlineAgeGroup

0.8163069566090901

DistalPhalanxOutlineCorrect

0.8454106112321218

DistalPhalanxTW 0.7040767431259155
ECG200 0.8923333366711934
ECG5000 0.9468592564264934
ECGFiveDays 0.9953155259291331
EOGHorizontalSignal 0.864917121330897

EOGVerticalSignal 0.8162062605222066
Earthquakes 0.7489208579063416
ElectricDevices 0.9020317355791728
EthanolLevel 0.7188000023365021
FaceAll 0.9840039392312367
FaceFour 0.8939393897851308
FacesUCR 0.9693658550580343
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FiftyWords

0.8425641119480133

Fish 0.9832380970319112
FordA 0.9588383654753367
FordB 0.9331275661786397
FreezerRegularTrain 0.998409362634023
FreezerSmallTrain 0.9917894721031189
GunPoint 0.9973333338896434
GunPointAgeSpan 0.9954641401767731
GunPointMaleVersusFemale 1.0
GunPointOldVersusYoung 1.0

Ham 0.848888897895813
Haptics 0.5469696978727977
Herring 0.6104166666666667
HouseTwenty 0.9775910377502441
InlineSkate 0.49787878692150117

Insect EPGRegularTrain

1.0

InsectEPGSmallTrain 0.9973226288954417
InsectWingbeatSound 0.670824917157491
ItalyPowerDemand 0.9647230366865794

LargeKitchenAppliances

0.9378666659196218

Lightning?2
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0.7437158465385437




Lightning7

0.7840182662010193

Mallat 0.964079600572586
Meat 0.9822222252686819
Medicallmages 0.8094298203786214

MiddlePhalanxOutlineAgeGroup

0.7229437271753947

MiddlePhalanxOutlineCorrect

0.8450171808401744

MiddlePhalanxTW

0.5878787795702617

MixedShapesRegularTrain

0.9807422757148743

MixedShapesSmallTrain

0.9574295540650686

MoteStrain 0.901144826412201
OSULeaf 0.9688705265522003
OliveOil 0.9077777663866679

PhalangesOutlinesCorrect

0.8590132097403208

Phoneme 0.36213079988956454
PigAirwayPressure 0.7964743574460348
PigArtPressure 0.9443910260995229
PigCVP 0.867147437731425
Plane 1.0

PowerCons 0.9751851816972097

ProximalPhalanxOutlineAgeGroup

0.8549593528111775

ProximalPhalanxOutlineCorrect
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0.9071019411087036




ProximalPhalanxTW

0.8074796775976817

RefrigerationDevices 0.7520888884862263
Rock 0.8539999902248383
ScreenType 0.669866661230723

SemgHandGenderCh2 0.9492777665456136
SemgHandMovementCh2 0.7877037008603414
SemgHandSubjectCh2 0.9285185257593791
ShapeletSim 0.9994444429874421
ShapesAll 0.9462777694066365

SmallKitchenAppliances

0.8278222203254699

SmoothSubspace

0.9791111171245575

SonyAIBORobotSurfacel

0.9485302150249482

Sony AIBORobotSurface2

0.9541098316510518

StarLightCurves 0.9812489867210388
Strawberry 0.9802702705065409
SwedishLeaf 0.9739733318487803
Symbols 0.9728308200836182
SyntheticControl 0.9945555607477824
ToeSegmentationl 0.9292397697766622
ToeSegmentation2 0.9351281921068827
Trace 1.0

80




TwoLead ECG

0.9977172871430715

TwoPatterns

1.0

UMD

0.9775463044643402

UWaveGestureLibrary All

0.98406849304835

UWaveGestureLibrary X 0.8780662556489308
UWaveGestureLibraryY 0.8137632588545481
UWaveGestureLibraryZ 0.821673180659612

Wafer 0.9998053153355916
Wine 0.9129629611968995
WordSynonyms 0.7875653107961019
Worms 0.7523809512456258
WormsTwoClass 0.7995670914649964
Yoga 0.9403111080328623
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