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ABSTRACT
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We establish a strong connection between Topological Data Analysis (TDA)

and the field of time-series classification. This is accomplished via two novel contri-

butions. The first is a method for extracting topological information from a time

series in a manner which circumvents the expensive computation normally required.

The second is an adaption of an existing topological summary to create an efficient

topological time-series pooling operator. Taken together, these insights enable a

new classifier, TopRocket (Topological Random Convolutional Kernel Transform).

Using standard comparison methods, TopRocket ranks second among all univariate

time-series classifiers. Further, TopRocket is the best performing scalable classifier.

As a final contribution, we provide the fastest available implementation of the algo-

rithm for computing time-series sublevel set persistence. This provides a foundation

for further investigation of TDA for time-series classification.

This work lies at the intersection of TDA and machine learning, where suc-

cess is dependent on efficiently extracting topological information from data and



using that information with downstream models. For this purpose, we develop an

efficient, data-based, topological summary, the Betti pooling operator. We rigor-

ously demonstrate the utility of TopRocket by evaluating its performance against

the University of California Riverside (UCR) Time Series Archive, a widely used

benchmark collection of data sets. TopRocket is the first TDA-based classifier to

obtain state-of-the art results on any similarly competitive problem. We strongly

believe that TDA will play a central role in the future of machine learning.
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For my grandfather RCB Jr., a great American. I learned a few

things about the wavy lines.
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Chapter 1: Introduction

Topological data analysis for time-series classification is not an immediately

obvious or intuitive choice. The line of work presented here originated for the

purposes of network analysis and cybersecurity applications. Specifically, it began

as an investigation into the use of persistent homology over topological spaces formed

by computer networks. That work, in turn, was motivated by promising network

anomaly detection results over the Enron email dataset [6] [7]. The core idea behind

that work is to identify major events in the Enron scandal time-line, based only on

the email graph of who communicated with whom in a given week. The use of

persistent homology over a derived topological space of the communication graph

provides accurate results.

That motivated further investigation of using TDA for applications where

the data is naturally represented as a graph. One such domain is cybersecurity,

where such techniques may be able to detect various types of network failures or

cyber attacks. The initial goal was to analyze network anomalies in a broad range

of computer networks. However, in many environments it is not possible to have

complete visibility into the full network topology. Therefore, the work was restricted

to analyzing network traffic which passes through key ingress and egress points.
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The data available at these points is not naturally represented as a graph,

and more closely resembles a times series. Given the past success of TDA for the

Enron problem, it was decided to also apply persistent homology to this resulting

time-series classification problem. This led directly to highly competitive results for

identifying internet of things (IOT) devices from encrypted traffic [5]. Specifically,

the TDA-based model classifies solely based on the persistent homology of the inter-

packet arrival time of packets passing through a router. Inter-packet arrival time

is always available, regardless of encryption. The sequence of inter-packet arrival

times forms a time series, which is then classified. This result was obtained by

classifying the persistence images of the sub-level set persistence of the time-series

using a convolutional neural network.

Given this initial success, it is a natural next step to investigate TDA for

general time-series classification. Ideally, a time-series classifier should be domain

agnostic. The datasets and statistical framework used for this task are provided

by the University of California Riverside (UCR) time-series archive. This archive

provides a common reference point against which to compare competing classifiers.

This is the motivating problem for the work presented here, maximizing performance

on the UCR archive.

1.1 Challenges

There are several key challenges which accompany this line of research. A few

of these challenges are unique to TDA or time series classification, while others arise
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at the intersection of both. TopRocket overcomes each of these challenges.

1.1.1 How Should Time-series Classifiers be Compared?

The cornerstone of modern time-series classification research is the UCR archive.

There are two reasons this archive is useful. First, the common datasets ensure that

competing classifiers are performing an identical task. Second, the common com-

parison methods ensure that classification results over the entire archive are fairly

compared. The datasets contained in the archive and the accompanying comparison

methods are explored in Section 2.1.

1.1.2 How Can Topological Information be Efficiently Extracted?

A fundamental tool of TDA is persistent homology, which intuitively gives a

notion of shape across scales. Persistent homology has many convenient properties,

explored in Section 2.3. In the general case, the naive algorithm for computing per-

sistent homology runs in O(N3) time, which is too slow for time series classification.

It is possible to compute features of the persistent homology of a time series, with-

out explicitly computing the fully persistent homology. One such useful approach is

presented in Section 3.2. For classifiers which require the full persistent homology of

a time series, we present the fastest known algorithm implementation for computing

it in Appendix A.2.
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1.1.3 How Can Topological Information be Compared?

The most natural representation of persistent homology is as a multiset of

tuples, representing the half-open intervals where homology classes are born and

die, called a persistence diagram. Unfortunately, this representation is not easily

compared. The Bottleneck and Wasserstein distances are the most intuitive methods

for comparing diagrams, and are detailed in Section 2.3.4. These distances are

inefficient to compute, due to a brute force bipartite graph matching problem which

must be solved as part of computing the distance.

There are many ways to compare persistence diagrams without using these

distances. Most methods involve transforming the persistence diagram in to a vec-

torization or representation which can be compared more efficiently. These transfor-

mations are covered in Section 2.3.5. Through a detailed understanding of how these

transformations are computed, it is possible, in some cases, to directly compute the

transformation from the data, without first finding the persistent homology.

1.1.4 How Can TDA be used to Augment Existing Classifiers?

Given a good vectorization of persistence diagrams, it is straightforward to

create classifiers using kernel and clustering methods. Some vectorizations are espe-

cially well suited for neural networks. However, over the course of evaluating such

approaches, two main issues arise. First, computing the persistent homology and

vectorization is too slow. Second, these purely topological classifiers do not perform

well, as shown in Section 3.1.
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We address the first issue by optimizing tools from TDA for time series. Specif-

ically, we provided the fastest implementation, to our knowledge, of the algorithm

for finding the 0-dimensional sublevel-set persistence of a time series. We avoid the

need to compute full persistence, when it can be avoided, by exploiting properties of

a given persistence representation. We overcome the second issue by using topologi-

cal information to augment existing classifiers designed for time-series classification.

The competition over the UCR archive is fierce and the field is mature, so it is

reasonable to make use of existing work.

1.2 Thesis Statement

This research will develop topological, univariate, time-series classification

methods which are fast, accurate, reproducible, and rigorously evaluated.

1.3 Objectives

The primary goal of this work is to explain how and why TopRocket works.

The secondary, and almost as important goal, is to explain the attempts which

ultimately motivate the development of TopRocket. These attempts are guided

by the overarching belief that topological features provide information which is

orthogonal, in some sense, to the features used by existing classifiers. In other

words, TDA can provide an edge.

The design of TopRocket is not arbitrary. In the search for topological fea-

tures useful for general time-series classification, many attempts are made using a
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wide variety of techniques. Ultimately, the Betti curves used in TopRocket perform

exceptionally well, while the other methods do not outperform MultiRocket. As we

will demonstrate, these other topological classifiers are not competitive on the UCR

dataset. It is our belief that TDA has more to offer machine learning, especially in

the context of time-series classification.

1.4 Contributions

The primary contribution of this work is TopRocket, which is the first TDA-

based classifier to achieve state-of-the-art results on any similarly competitive prob-

lem. Two innovations enable TopRocket. The first is the insight that information

about the persistent homology of a time series can be extracted without explic-

itly computing the persistent homology. Rocket classifiers are known for speed, so

maintaining that speed is a primary constraint, behind maximizing accuracy. The

second key novel idea is computing the Betti curve of a time series at fixed values

derived from the underlying data. The Betti curve is a convenient representation

of persistent homology, presented in Section 2.3.5.1. In past work, Betti curves are

scaled according to the persistence information of the underlying data, but never

explicitly compute a select set of data-based values. These two insights combine to

make TopRocket possible.

TopRocket shortcuts the calculation of persistent homology by computing val-

ues of the Betti curve directly from a given time series. This improves accuracy

while maintaining speed and providing a firm basis in Topological Data Analysis.
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The Betti curve is a special case of a similar construction called the persistence

curve, explained in Section 2.3.7. All other known persistence curves require cal-

culation of the full persistent homology of a time series. In order to enable further

research in this direction, we also present the fastest known implementation of the

algorithm for computing the persistent homology of a time series.

1.5 Overview

We begin by presenting the necessary background in time-series classifica-

tion and topological data analysis in Chapter 2. This includes a description of the

time-series classification problem, the UCR archive, and the associated statistical

machinery. Accuracy can be used to compare classifier performance over a single

dataset. Over many datasets, comparison is more difficult and greater care must be

taken.

We then provide an overview of the useful tools from TDA. These tools include

persistent homology and its associated constructions. Additionally, the relevant

persistence diagram vectorizations and representations are defined. The persistence

curve framework is presented, as it is a generalization of the Betti curve used in

TopRocket.

With the proper foundation in place, we build upon the existing research in

Chapter 3. The novel techniques attempted in this section are first motivated by

experiments over a wide array of existing topological methods. These experiments,

failing to provide sufficient accuracy, provide the motivation for hybrid topological
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methods. Properly motivated, hybrid topological Rocket classifiers are presented in

Section 3.2. Most of these classifiers fail to provide the desired boost in accuracy.

Still, the creation of these classifiers involves the development of algorithms which

may be of some interest. Additionally, the results are useful for attempting a similar

line of investigation. Chapter 3 concludes with a description of TopRocket and its

variations.

We finish with Chapter 4, which aims to accomplish two things. First, we

present a call to action for TDA and time-series classification researchers alike. On

the TDA side, techniques from time-series related papers are not compared using

the rigorous methods developed for the UCR archive. While the existing body

of TDA work related in this domain lays the ground work for TopRocket, future

research should aim to meet the standards of the UCR archive. On the time-series

classification side, TDA provides a rich and mostly untapped set of tools which

appear to be especially useful in this domain. Second, several of the research paths

remain unexplored, but would absolutely be worthy of further investigation.

8



Chapter 2: Background and Related Work

We begin by reviewing the UCR archive and the associated comparison tech-

niques. The archive sets the standard of rigor in the field of time-series classification.

We then review the significant classifiers in the field. These include the baseline and

the state-of-the-art classifiers. The selected classifiers are chosen as a basis for later

discussion and experiments. Additionally, the set of classifiers selected forms a good

foundation for further investigation.

We conclude this section with a review of TDA. Our goal is to provide an

intuition for the tools of TDA, and motivate why the tools might be useful for

time-series classification. TDA is deeply rooted in mathematics, with a rich body

of highly active research. We review only what is necessary for understanding the

topological classifiers in Chapter 3.

2.1 UCR Time Series Archive

The current univariate UCR archive contains 128 datasets from a wide variety

of domains [8]. All datasets, and information regarding the datasets, are publicly

available [9]. The goal of the archive is to provide a common benchmark against

which to compare classifiers. There is an open solicitation from the maintainers of
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the archive for additional dataset contributions.

The original archive is much smaller, but has grown over the years to its

current size. As the archive changes, the variety and nature of the datasets change

as well. Most significantly, in the early iterations, all time series are z-normalized.

This is properly motivated in most contexts, but is still a pre-processing decision

independent of any classifier operations. The latest additions to the archive are not

z-normalized. For the classifiers presented here, it can be assumed that the time

series are processed as is, without any additional pre-processing, unless otherwise

noted.

2.1.1 Methods of Comparison

Given a single dataset, it is straightforward to compare different classifiers

using accuracy or related statistics. However, over a large number of datasets the

methods of comparison and evaluation are less clear. The following methods assess

the performance of classifiers over the entire archive.

2.1.1.1 Critical Difference Diagrams

A critical difference diagram compares a set of classifiers across the entire

archive. The construction of the critical difference diagram is carried out in two

main steps. First, the average rank of each classifier is calculated. For each dataset,

the rank is calculated by ordering classifiers according to accuracy with lower being

better (i.e. 1.0 is first place). Ties are broken with fractional ranks, so two classifiers
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tied for second place would both be ranked 2.5. For each classifier, the average is

taken over all datasets to obtain the average rank. This average rank is plotted

along a horizontal scale, as shown in Figure 2.1.

Critical Difference Diagram - Baseline Classifiers

Figure 2.1: The baseline UCR archive classifiers are compared. There are no black
bars connecting the classifiers, indicating that each classifier passed all pairwise
significance tests.

Next, the statistical significance of the ranking is calculated. It is possible

that one classifier might have a better rank than another, without significantly out

performing it in terms of accuracy on any dataset. Significance is tested pairwise

using the Wilcoxon Signed Rank test with Holm correction and α = .05 [10, 11].

Visualizing the classifiers as nodes, classifiers are connected by an edge when the test

fails. This leads to the notion of statistically similar cliques, which are represented

as black bars in the critical difference diagram.

The black bars indicate that the connected classifiers are not statistically sig-

nificantly different. While convenient for comparison at a glance, the bars require a

nuanced interpretation in some cases when there is significant overlap. Additionally,

the ranking is dependent on the classifiers included in the analysis. Specifically, it is

possible that cliques do not respect the average rank order, in which case bars will

cross over classifiers not included the clique. This situation is always made clear by
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the additional bars in the diagram, and will always be accompanied by additional

explanation. All critical difference diagrams presented here are created using an

eponymous standard open-source library [12].

2.1.1.2 Win/Tie/Loss Graph

In many cases, it is useful to directly compare the performance of two classifiers

in a more detailed way. This presents difficulty in comparing performance across

all datasets. For this comparison, the Win/Tie/Loss graph is the standard method.

Points are plotted for each data set, with accuracy for the first and second competing

classifiers along the horizontal and vertical axis, respectively. Additionally, the

Win/Tie/Loss count with respect to the first classifier is included as the title.

An example of this method is shown in Figure 3.7. Any points below the

diagonal indicate datasets in which the first classifier performed better and points

above indicate the second classifier is better. Additionally, lines are included y =

x − .05 and y = x + .05 to make it clear when there is a difference in accuracy of

over 5%.

2.1.1.3 Texas Sharpshooter Plot

This plot is particularly relevant for new time-series distances used in conjunc-

tion with k-nearest neighbor (k-NN) classifiers. It takes its name from the Texas

Sharpshooter Fallacy, in which a sharpshooter shoots randomly at a blank wall and

then draws targets around each hole after the fact. By analogy, not formulating a
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hypothesis, prior to testing, calls the results into question.

In the context of time-series classification, it is not enough that a new distance

performs better, it must also be known that it will perform better before evaluation

over the test set. Knowing when a classifier will perform well is critical for applica-

tions to new datasets. This is one method of preventing overfitting to the archive.

Another method, discussed in Section 2.2.3.1, is to only develop the classifiers over

a subset of the archive.

For time-series classifiers, the hypothesis is taken as the expected accuracy

gain over a baseline classifier. Expected accuracy is the leave-one-out accuracy of

the classifier over the training set. Actual accuracy is the classifier accuracy over

the test set. Accuracy gain is the ratio of the given accuracy (expected or actual)

to the baseline actual accuracy.

Definition 2.1 (Accuracy Gain) G = Anew/Abaseline

The Texas Sharpshooter Plot is formed by plotting the actual accuracy gain

against the expected accuracy gain, for each dataset. Ideally, all points would fall

in the blue quadrants shown in Figure 3.2, indicating that the performance of the

new classifier is predictable.

2.2 Time-series classification

The field of time-series classification is highly competitive with new state-of-

the-art classifiers being published on a regular basis. In the past, it was exceptionally

difficult to evaluate the general performance of different classifiers, as datasets and
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classifier implementations are not publicly shared. The UCR archive addresses this

issue, and it is now possible to rigorously compare different time-series classifiers.

2.2.1 Motivation

Time-series classification is a problem arising across domains. There is a time-

series classification problem associated with almost every sensor. A wide range of

domains and tasks are represented by the UCR archive.

Creating fast and effective classifiers for these problems has a high impact.

Identification of classes in some noteworthy domains within the UCR archive include:

• Medical

– Electrooculography (EOG) [13]

– Electrocardiography (ECG) [14]

• Environmental Science and Agriculture

– Image-based leaf species [15]

– Audio-based insect species [16]

– Satellite image-based crop identification [17]

– Spectrographs of food samples for quality control [18] [19]

• Industrial Diagnostics

– Semiconductor wafer production [14]

– Electricity usage [20]
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These are just a select few of the many applications for which time-series clas-

sification can be used. For each domain and application, there are unique features

which may be useful for aiding classification. The goal of classifying over the entire

archive is to create methods which extract useful features across domains. In order

to ensure applicability to new tasks, time-series classifiers should be domain agnos-

tic. Additionally, it is always possible to incorporate domain specific knowledge

down stream of a general purpose classifier.

Several criticisms have been levied against the UCR archive. Importantly,

the datasets in the archive are relatively small, which may impact applicability

for real-world problems. The largest dataset, StarLightCurves, only has 9236 time

series. Contrast this with the popular image dataset ImageNet, which contains

approximately 1.2 million images [21]. Even with its shortcomings, the UCR archive

is the only collection of its kind, and continues to facilitate the rapid growth in time-

series classification.

2.2.2 Baseline Classifiers

There are three baseline classifiers provided with the UCR archive. Euclidean

Distance (ED), constrained Dynamic Time Warping (cDTW) (with a window size

of 100), and learned cDTW are used as time-series distances for 1-nearest neighbor

(1-NN) classifiers. These baseline methods are used in Section 3.1 to evaluate the

effectiveness of existing topological approaches. These classifiers are fast, intuitive,

and difficult to outperform using a naive strategy.
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Assume we have two time series, x and y, of length n. Euclidean Distance and

cDTW both provide a distance which can be used to assess how similar x is to y.

Euclidean Distance between two time series is also the most constrained version of

dynamic time warping. The Euclidean Distance between two time series is simply

the absolute value of the pairwise difference of the aligned points. The time series

must be the same length in order to use Euclidean Distance.

Definition 2.2 (Time-series Euclidean Distance) ED(x, y) =
√∑n

i (x[i]− y[i])2

Euclidean Distance is very fast to compute, but is the least accurate of the

baseline classifiers. It is overly sensitive to small shifts in otherwise similar time

series. This issue is addressed by DTW, which allows for a dynamic pairing of

points, instead of a fixed pairing as used with Euclidean Distance. Instead of a

one-to-one mapping, DTW utilizes a one-to-many mapping.

Let D be the distance matrix between x and y, such that Di,j = |x[i]− y[j]|.

Let W be a contiguous path from D0,0 to Dn−1,n−1, where the kth element of W is

W [k] = |x[i]− y[k]|. The total cost of the optimal path Wmin is the DTW distance.

Definition 2.3 (Time Series Dynamic Time Warping Distance) DTW (P,Q) =∑n
i Wmin[i]

This is the unconstrained version of DTW, as Wmin can be any contiguous

path through D. Unconstrained DTW places ahead of Euclidean Distance, rank-

ing second place among the three baseline classifiers. The third and final baseline

classifier is constrained DTW (cDTW).
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Computing cDTW works identically to DTW, with the one difference being

that the path W is constrained. Specifically, a window parameter ω specifies the

degree of warping the path W is allowed to apply. In practice, this means that W

cannot deviate from the diagonal of D by more than ω cells. Unconstrained DTW

uses ω =∞. Figure 2.2 shows a comparison of Euclidean distance and cDTW.

The choice of ω significantly impacts classification accuracy. The baseline

cDTW classifier chose ω on a per dataset basis, using cross-validation over the

training set. This is the best performing baseline method.

17



Euclidean Distance and Dynamic Time Warping

Figure 2.2: Note the warping between (a) and (b). The diagonal lines in (c) indicate

a constraint on the path W [1].

2.2.3 State-of-the-art Classifiers

There are many types of time-series classifiers, with more being released on

a consistent basis. With this in mind, we restrict our coverage of additional classi-
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fiers to the top five (5) current state-of-the-art classifiers, and their close variants.

Additionally, because TopRocket is a Rocket family classifier, we cover the Rocket

methodology in detail. While interesting in their own right, HIVE-COTE 2.0, In-

ceptionTime, and TS-CHIEF are presented only to facilitate comparison to Rocket

family classifiers. This list is based on the ranking used in MultiRocket [22]. As

we will show, TopRocket replaces MultiRocket as the top ranked scalable classifier,

claiming second place in the ranking. Excluding TopRocket, the current ranking is:

1. HIVE-COTE 2.0

2. MultiRocket

3. InceptionTime

4. TS-CHIEF

5. MiniRocket

2.2.3.1 Rocket Classifiers

The Rocket (Random Convolutional Kernel Transform) family of classifiers

consists of three sequentially published methods, each improving on its predecessor.

The Rocket family is known for being very fast and accurate. These classifiers

extract a large number of simple features from the time series. These features are

then used for classifying the time series, usually using a linear regression model.

Specifically, all of the Rocket classifiers presented here utilize a ridge regression
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classifier, with the regularization parameter selected by cross-validation over the

training set [23].

All Rocket methods first convolve the time series with a large set of kernels.

This results in a large number of transformed time series. Very fast pooling opera-

tors are used to extract features from these transformed time series. These pooled

values are concatenated into a (high dimensional) vector and used for classifica-

tion. The classifiers primarily differ in how the convolution is carried out and which

pooling operators are applied. TopRocket is an extension of this family, which uses

a topological pooling operator in conjunction with existing conventional pooling

operators.

Notably, all Rocket family classifiers are publicly available and open source.

This keeps with the spirit of the UCR archive, and is instrumental in the devel-

opment of TopRocket. Over the long term, the online locations of these classifiers

may be subject to change. The interested reader is referred to the relevant, original

Rocket papers for the latest location of the classifiers.

With all Rocket classifiers, it is possible to specify the desired dimension of the

output vector. The number of kernels and dilations used are automatically changed

to the feature vector length. This means that the methods can be easily scaled to

accommodate different hardware constraints. We summarize the key points of the

three primary Rocket family classifiers, as follows.

Rocket The original classifier in this family, Rocket was the best performing clas-

sifier when published [24]. There are two sources of randomness in the model. The
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first is in the choice of kernels, the second is in the choice of bias values used to

apply the pooling operations. The two pooling operations applied to each trans-

formed time series are proportion positive value (PPV) and maximum value. Each

transformed time series is the result of the following five defining features: kernel

length, kernel weights, kernel dilation, kernel padding, and biases.

Kernel length is uniformly randomly selected from the set {7,9,11}. The

lengths are all odd, because by default the kernels are centered. The short length

of the kernels helps to ensure that Rocket is scalable for large time series. The

random choice proves to have a limited impact on accuracy, so kernels are restricted

to length 9 in later Rocket variants.

The weights of each kernel are randomly chosen from the standard normal

distribution. The randomization of the weights ensures each kernel extracts distinct

information from the time series. However, due to the random weights, it is diffi-

cult to optimize the convolution step. MiniRocket addresses this by restricting the

possible weights.

Kernel dilation specifies how much the convolution is ”spread out”. Convolu-

tion as conventionally defined has an implicit dilation of 1. A dilation of 2 means

that the weights of the kernel are convolved with every second element of the input

time series. This dilation is applied locally, as the kernel slides past each point in the

time series. Dilation allows for the same, or similar kernels, to be applied multiple

times at different scales. Dilations are randomly sampled on an exponential scale.

21



Definition 2.4 (Rocket Dilation Sampling) d = ⌊2x⌋, x ∼ U(0,max), where

max = log2
linput−1

lkernel−1
.

Padding provides a similar increase in the variety of kernels. The choice of

padding or no padding for a given kernel is uniformly randomly chosen. If padding

is used, 0’s are appended to the start and end of the base time series. Enough 0’s

are used relative to the kernel length such that each element of the base time series

is centered for a convolution. If the kernel is length l, then a padding length of

⌊((l − 1) ∗ d)/2⌋ is used, where d is the dilation. Without padding, the kernel is

never centered over the first and last ⌊l/2⌋ points of the time series.

The biases are randomly selected from U(−1, 1), but only positive biases are

used. Each kernel is paired with a single or multiple biases, depending on the model

parameters. The number of biases and dilations can be changed in order to obtain

the desired length feature vector.

After the convolution is carried out, the biases are added to the transformed

time series before the pooling operators are applied. These biases have the effect

of extracting multiple useful features from the same transformed time series. For

the result of each convolution, the maximum value and the PPV at each bias is

computed and appended to the feature vector.

The resulting feature vector of pooled features is used to classify the time series.

For Rocket, the parameters are set such that 20, 000 pooled features are extracted

from each time series. While it is possible to use a wide variety of classification

methods, ridge regression provides fast and accurate results. This classifier is used
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for all Rocket family classifiers over the UCR dataset. Logistic regression is well

suited to exceptionally large datasets, larger than any included in the UCR archive.

MiniRocket MiniRocket (MINImallyRandomConvolutionalKernelTransform)

is a faster and more accurate version of Rocket [25]. Each transform has the same

five defining features, but they vary in the following ways, improving speed and

accuracy. The randomness is removed from the construction of the kernels. Kernels

are set to a fixed length of nine elements, with values either −1 or 2. Specifically,

three elements in the kernel are chosen to be 2 and the remaining elements are set a

to −1. There are 84 such unique kernels. Due to the kernel construction, it is pos-

sible to efficiently compute the convolution using scalar multiplication and matrix

addition. This is the primary reason MiniRocket is faster than Rocket.

Instead of completely random biases, the biases are derived from the training

set. Specifically, for each kernel and dilation combination, a training sample is

randomly chosen and convolved. Biases for the kernel and dilation pair are then

set as the quantiles of the output. Aside from the random selection of a training

sample, this is an entirely deterministic process.

Similarly, the dilations are also selected deterministically, spaced evenly on

an exponential scale. This allows for additional optimizations, contributing to the

speed of MiniRocket.

Definition 2.5 (MiniRocket Dilation Sampling) d = {⌊20⌋, ..., ⌊2i⌋, ⌊2max⌋},

where max = log2
linput−1

lkernel−1
, and the exponents i are spaced evenly from 0 to max.

Due to the exponential nature of the construction, there are more smaller
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dilations than larger dilations, so small dilations are responsible for most of the

features. To prevent excessive computation for longer time series, the constraint

max ≤ 32 is applied. This constraint, as well as the length of the time series, places

a limit on the number of features that can be added by increasing the number of

dilations. If additional features are required, the difference is made up by computing

additional bias values. Padding is also deterministic, with every other kernel and

dilation combination using padding.

Under this construction, the use of two pooling operations does not improve

accuracy. For this reason, only PPV is used as a pooling operator. Unlike Rocket,

in which an arbitrary output dimension can be chosen, MiniRocket is restricted to

an output dimension which is a multiple of 84, the number of kernels used. Using

just under 10000 features (9996 = 84 ∗ 119), MiniRocket outperforms Rocket and is

significantly faster. MiniRocket ranked in third place when it was released.

MultiRocket MultiRocket is very similar to MiniRocket, but is optimized to

increase accuracy at the expense of speed. Prior to TopRocket, MultiRocket was

the most accurate scalable classifier, behind HIVE-COTE 2.0.

There are two primary differences which make MultiRocket more accurate

than MiniRocket. Features are extracted from the first order difference of the time

series, as well as the base time series. Additionally, three new pooling operators are

used, bringing the total to four. The four pooling operators are: PPV, length of the

longest positive stretch, mean positive index, and mean of positive values. These

pooling operators are computed relative to the biases. Instead of 10, 000 features,
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MultiRocket uses 50, 000 features.

Aside from these changes, MultiRocket proceeds identically to MiniRocket.

MultiRocket is about an order of magnitude slower, but significantly more accurate

than MiniRocket. TopRocket continues in this direction, with the addition of a

topological pooling operator, significantly improving accuracy.

2.2.3.2 HIVE-COTE 2.0

The latest HIVE-COTE version, HIVE-COTE 2.0 (HC2) is the current reign-

ing champion of the UCR archive, in terms of accuracy [26] [27]. HIVE-COTE is

an acronym for Hierarchical Vote Collective of Transform-based Ensembles. The

goal of this family of classifiers is to maximize accuracy over the archive, regardless

of computational cost. HC2 provides improvement in both speed and accuracy over

HIVE-COTE.

As meta-ensemble, HC2 incorporates four classifiers, two of which are novel,

and two of which are derived from existing classifiers. Each classifier is used to create

a constituent ensemble, each of which is trained separately from one another. The

results of each ensemble are combined using a bagging approach, providing excellent

accuracy. Significant effort in the design of HC2 is directed toward ensuring bounded

training time. Specifically, a time contract mechanism places limits on how long each

ensemble can be trained.

One of the notable improvements present in HC2 is Arsenal, a novel Rocket

ensemble. This approach means it is possible to incorporate new Rocket family
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classifiers into future iterations of HIVE-COTE. With this in mind, it is not un-

reasonable to expect that TopRocket might be included in the next iteration of

HIVE-COTE.

2.2.3.3 InceptionTime

Neural networks have come to dominate many areas of machine learning. No-

tably, time-series classification, and specifically the UCR archive is not one of these

domains. Even still, it is possible to obtain impressive results over the archive using

deep learning methods, as demonstrated by InceptionTime [28].

One of the most popular neural network architectures, Inception networks

provided state-of-the-art image classification when released [29]. InceptionTime

modifies and extends the Inception architecture to work with time-series data. This

runs counter to the widely-held intuition that recurrent neural networks, not con-

volutional neural networks, are better for sequential data. InceptionTime uses an

ensemble of Inception-based networks.

The intersection of TDA and neural networks is a very active area of research.

One such promising TDA tool is PersLay, a neural network layer designed to ac-

cept persistence diagrams, which are a foundational object of study in TDA [30].

Learned neural persistence representations are another potential option [31]. Given

the success of TopRocket, it may be possible to incorporate tools from this area

with InceptionTime, or similar neural classifiers.
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2.2.3.4 TS-CHIEF

Another ensemble method and the current fourth ranked classifier, TS-CHIEF

(Time Series Combination of Heterogeneous and Integrated Embedding Forest) is

similar in many ways to HC2 [32]. As the name suggests, TS-CHIEF utilizes a

decision-tree variant known as a Proximity Forest (PF) over a large number of

time-series embeddings [33]. At a high level, this method utilizes a decision forest

of k trees. Tree construction begins at the root node and proceeds recursively to

the leaf nodes, just as with a decision tree.

As it moves from the root down to the leaves, the dataset is split at each node

according to a splitting function. For each node, the splitting criteria is based on the

distance of the sample to a fixed randomly selected training sample, as measured

by several time-series distances. The leaf nodes are used for voting classification.

The innovation of TS-CHIEF is to use a set of candidate splitting functions at each

node, all of which are specifically designed for time series. The classifier uses many

candidate splitting functions derived from existing classifiers, giving a notion of

time-series ”proximity”. The best splitting function is selected at each node based

on a split purity measure, called the Gini index, which is similar to information gain

used in classical decision trees.

2.3 Topological Data Analysis

Topology is the branch of mathematics which focuses on the properties of

an object which are preserved under continuous deformations. Sometimes called
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”rubber sheet geometry,” topology allows for manipulating an object through ”nice”

continuous operations, such as stretching, shrinking, and twisting. Operations such

as gluing, tearing, and forming new holes are not allowed. The motivating question

underlying topology is: What describes the properties which remain under these

allowed operations? Intuitively, the two descriptive properties are how many holes

there are in an object, and how it is connected. The properties are formalized to

varying degrees using the ideas of homeomorphism, homotopy, homology, and many

other related concepts.

The goal of TDA is to leverage the vast array of tools from topology to better

understand data. There are several key areas of investigation with regard to TDA,

which can be summarized as follows:

1. How can data be transformed into a topological space?

2. How can useful information be extracted from the resulting topological space?

3. What are the properties of the extracted information?

4. How can the information be used for downstream analysis?

Each of these questions will be answered in turn. Additionally, we show how

the answers to the above questions can be applied to time-series data. This section

concludes with a discussion of persistence curves, a recently developed framework

with a strong connection to TopRocket.

TDA is a rich and rapidly developing field with a wide array of techniques.

We restrict our discussion to a particularly useful topological property: persistent
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homology. Further, we are only concerned with the persistent homology of a com-

putationally convenient type of topological space called a simplicial complex. Even

with this seemingly narrow view, it is possible to explore a wide area of interesting

applications in TDA.

It should also be noted that TDA is deeply rooted in algebraic topology. This

connection will likely bear additional fruit in the future, especially in the domain

of time-series classification. However, a full description of the foundations of TDA

is not required to understand the methods presented here. As much as possible, we

eschew the fundamental, yet abstract, mathematics underlying TDA. Instead, we

favor intuitive explanations, which explain how the tools of TDA work and why those

tools are useful for time-series classification. Several of the following basic definitions

are taken, at least in part, from the excellent introductory text by Eldelsbrunner

and Harrer [34].

2.3.1 Motivation

The seminal work in TDA is primarily concerned with the properties of point

clouds [35]. There are an ever-increasing number of data streams, and often times

the data is very high dimensional. Additionally, data is often naturally represented

as a point cloud in high dimensional space. The initial working assumption is that

the topological properties of point clouds, which occur across scales, provide useful

information about process underlying the point cloud.

The core idea is to construct topological spaces at different scales, and analyze
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how the topological properties of the spaces change as the scale varies. Homology is

an especially useful topological property. While not perfect, in a rigorous sense as we

will show, homology is relatively fast to compute and yields a good representation of

the ”holes” in a space. Tracking how homology changes across scales directly leads

to the idea of persistent homology.

2.3.2 Topological Spaces From Data - Simplicial Complexes

The simplicial complex is a central idea in applied topology. This is the pri-

mary object studied using persistent homology. As a baseline intuition, it is useful

to think of a simplicial complex as a higher dimension analog of a graph. In ad-

dition to vertices and edges, a simplicial complex can have 2-dimensional faces,

3-dimensional filled spaces, and n-dimensional hyper-faces. We proceed by defining

simplices, simplicial complexes, and abstract simplicial complexes (ASCs).

Let U = u0, ..., u1, ..., uk be a set of points in Rd. A convex combination over

U is x =
∑
λiui such that

∑
λi = 1 and λi ≥ 0∀i. The convex hull of U is the set

of all such combinations.

Definition 2.6 (k-Simplex) The convex hull of k + 1 affinely independent points

is a k-simplex.

A 0-simplex, 1-simplex, 2-simplex, and 3-simplex correspond to a vertex, line

segment, filled triangle, and tetrahedron, respectively. A face of simplex is the

convex hull of a non-empty subset of U , and is also a simplex. A proper face is the

convex hull of a proper non-empty subset of U . If τ is a face of σ, we write τ ≤ σ,
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or τ < σ if τ is a proper face. The boundary of a simplex is the union of its proper

faces. Each simplex with k ≥ 1 is bounded by k − 1 simplices. The set of vertices

of a k simplex has 2k+1 − 1 faces. A simplicial complex is a collection of simplices

which obey the rules of a topological space, as seen in Figure 2.3.

Definition 2.7 (Simplicial Complex) Let K be a collection of simplices. K is

simplicial complex if:

1. For simplices σ ∈ K and τ , if τ ≤ σ, then τ ∈ K.

2. If simplex σ, σ0 ∈ K, then σ ∩ σ0 is either empty, or a face of both σ and σ0.

A simplicial complex is inherently tied to an underlying space, in this case Rn.

For computational purposes, it is better to describe a simplicial complex in purely

combinatorial terms. This is the role of the abstract simplicial complex.

Definition 2.8 (Abstract Simplicial Complex) A finite collection of sets, A,

is an abstract simplicial complex if α ∈ A and β ⊆ α then β ∈ A.

There are several methods for constructing an ASC from point-cloud data. We

focus on the Vietoris-Rips (VR) complex, because it is efficient to compute. The

Vietoris-Rips is based on the idea of placing a ball of radius r around each vertex in

a set S. Two vertices are connected by an edge if the radius r ball of each intersect

each other. The cliques of the graph are included in the abstract simplicial complex

as higher dimensional simplices.
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Simplices and Simplicial Complexes

Figure 2.3: An example of low-dimensional simplices and how they can combine to

form a simplicial complex [2]

Definition 2.9 (Vietoris-Rips Complex) VRr(S) = {σ ⊆ S|d(u, v) ≤ r,∀u ̸=

v ∈ σ}

The Vietoris-Rips complex allows us to construct a topological space from a

point cloud of data, but the choice of the radius parameter is often not obvious. In

fact, for many applications, there may be no clear choice of radius. Instead, we are

interested in how the ASC changes as r changes. This is the purpose of persistent

homology.
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Vietoris-Rip Filtered Complex

Figure 2.4: A sequence of Vietoris-Rip complexes formed from an underlying 2-

dimensional point cloud [3]

2.3.3 Extracting Useful Information - Persistent Homology

Intuitively, persistent homology tracks how ”holes” form and close in a topo-

logical space across scales. It is one of the primary tools of TDA. We make this

definition more rigorous by first defining homology, and then persistence. We are

only concerned with the persistent homology of ASCs, although the idea applies

more generally.

2.3.3.1 Homology

The homology of an ASC, S, is defined in terms of boundaries and cycles within

S. A homological hole is a cycle in S which is not the boundary of some higher
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dimensional simplex in S. S can contain holes of different dimensions, depending

on the dimension of the cycles and boundaries involved.

We begin by formally defining cycles and boundaries of an ASC. In order to

detect cycles and boundaries, we need a way of combining simplices within S. This

is accomplished by constructing chains over S.

Definition 2.10 (p-Chain) The formal sum of the p-simplices in S, c =
∑
αiσi,

with coefficients αi ∈ F2, is a p-chain of S.

The coefficients indicate whether a given simplex is included in the chain, with

αi = 1 indicating membership. In general, coefficients can be taken from any field,

but for this work, and computational topology in general, Z2 is used to simplify

computation. Component-wise addition is used to add two p-chains. If c =
∑
αiσ

and c1 =
∑
βiσi, then c+ c1 =

∑
(α+ βi)σi. Together with this addition operator,

the p-chains of S form an abelian group Cp(S) or just Cp when the ASC is clear

from context. The boundary of a p-simplex, σ, is the chain of its (p−1)-dimensional

faces.

Definition 2.11 (Simplex Boundary) ∂pσ =
∑p

i=0[u0, ..., ûj, ..., up] is boundary

of the p-simplex σ.

The simplex [u0, ..., ûj, ..., up] is the (p − 1)-simplex formed from σ by removing

vertex uj. The boundary operator ∂p is a homomorphism from Cp to Cp−1. The

sequence of chain groups of S connected by the boundary homomorphism is the

chain complex of S.
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It is now possible to define cycles and boundaries in terms of chains. A p-cycle

is a p-chain with a boundary of 0. The p-cycles form an abelian subgroup Zp ≤ Cp.

A p-chain is a p-boundary if it is the boundary of a chain in Cp+1. All p-boundaries

are p-cycles. The p-boundaries also form an abelian subgroup Bp ≤ Zp ≤ Cp. The

boundary group Bp is the image of boundary operator Bp+1.

Definition 2.12 (The Fundamental Lemma of Homology) ∂p∂p+1d = 0 for

every integer p and every (p+ 1)-chain d.

As Bp is a subgroup of Zp, every element is a cycle, meaning the boundary of

every element is 0. Now that we have a formal definition of cycles and boundaries,

we recall the intuitive definition of ”holes” as cycles which are not the boundaries

of some higher dimensional simplex. This notion is made precise by the definition

of homology.

Definition 2.13 (Simplicial Homology) The pth homology group is the pth cycle

group modulo the pth boundary group, Hp = Zp/Bp, and is abelian.

The pth Betti number is the rank of Hp, and corresponds to the number of

p-dimensional ”holes.” We now have a way to count the number of holes in an

ASC. The 1st Betti number corresponds to holes bounded by edges, the 2nd to voids

bounded by triangles, and so on. Somewhat counter-intuitively, the 0th Betti number

is the number of connected components in the ASC. The number of connected

components of an ASC is particularly relevant for time-series applications, as will

be shown.
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Computing the pth Betti number of an ASC is accomplished via a simple

matrix reduction algorithm. The p-boundary matrix is a binary matrix which com-

pletely describes the boundary operator ∂p over ASC. The matrix Dp consists of

rows corresponding to (p−1)-chains and columns corresponding to (p)-chains, where

D[i, j] = 1 indicates the ith (p− 1)-chain is in the boundary of the jth p-chain. This

reduction algorithm transforms the boundary into a form from which the Betti num-

bers can be read. This process is extended in the following section to capture how

the Betti numbers change across scales.

2.3.3.2 Persistence

As shown in Section 2.3.2, constructing an ASC from data often involves a

parameterization. In the case of the VR complex, the important parameter is the

radius r. This naturally leads to the question: How does the homology of a VR

complex change as r changes? Persistent homology seeks to answer this question.

Instead of working with a single ASC, we now turn our attention to a sequence

of complexes, called a filtered abstract simplicial complex. The corresponding se-

quence of homology groups is a filtration, and the object which persistent homology

describes. Let f be a monotonic real-valued function over the simplices of an ASC,

f : S → R. In this case f is monotonic with respect to the order of the faces in S,

meaning if σ ≤ τ then f(σ) ≤ f(τ). Let Sa = f−1(−∞, a], the sub-complex of all

σ ∈ S such that f(σ) ≤ a.

Definition 2.14 (Filtered Abstract Simplicial Complex) The sequence of in-
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creasing sub-complexes of S, ∅ = S0 ⊆ Sa1 ⊆ ... ⊆ San = S, where 0 ≤ a1 ≤ ... ≤ an,

is a filtered ASC.

For every ai ≤ aj, there is an inclusion map from Sai to Saj . These inclusion

maps induce a homomorphism over the filtered homology groups, f
ai,aj
p : Hp(Sai)→

Hp(Saj)∀p. The filtration of S with respect to f is the resulting sequence of homology

groups: 0 = Hp(S0)→ Hp(Sa1)→ ...→ Hp(San) = Hp(S), where 0 ≤ a1 ≤ ... ≤ an.

Definition 2.15 (Persistent Homology) The pth persistent homology groups are

the images of the induced homomorphisms, H
ai,aj
p = im f

ai,aj
p , 0 ≤ ai ≤ aj ≤ an.

Betti numbers are similarly extended to persistent Betti numbers, B
ai,aj
p =

rankH
ai,aj
p . The equivalence classes of H

ai,aj
p represent the p-dimensional holes of

Sai which still exist in Saj . Now, it is possible to track when holes are born and die

over the course of the filtration. The persistent Betti numbers can be used to provide

precisely this information. Let µ
ai,aj
p = (B

ai,a(j−1)
p −Ba(i−1),a(j−1)

p )− (B
a(i−1),a(j−1)
p −

B
a(i−1),aj
p ), where 0 ≤ ai ≤ aj ≤ an. Each µai,aj is the number of holes which are

born in complex Sai and died entering Saj .

Definition 2.16 (Persistence Diagram) The multiset of all points (ai, aj) with

multiplicity µai,aj , for fixed dimension p, is the pth persistence diagram of the filtra-

tion, denoted Dgmp(f).

By the Fundamental Lemma of Persistent Homology, the Dgmp(f) contains

all information about the pth persistent homology groups [34]. While persistent

homology may appear significantly more complicated than homology, it is nearly
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just as straightforward to compute. There are two major differences in the con-

struction of the persistent boundary matrix. First, the matrix includes all simplices

of S represented by both the rows and columns. Second, the simplices are ordered

(monotonically increasing) by both simplex order (coface relationship) and filtration

order. Applying a simple reduction algorithm and subsequent read off procedure to

this matrix yields the persistence diagram. The algorithm is detailed in Appendix

A.1.

A filtration of a VR complex can be created by using the radius r in the filtering

function, as shown in Figure 2.4. Specifically, for a VR filtration, f(σ) = rmin, where

rmin is the smallest radius such that σ ∈ VRrmin(S). While not always fast, the VR

filtration tends to at least be tractable over reasonably large point clouds. Significant

effort is dedicated to speeding up the computation of persistent homology over VR

filtrations [36].

Persistence diagrams are the primary focus of much of TDA, especially at the

intersection with machine learning. Given that the diagram is a multiset of points,

it is not immediately clear how it can be used with downstream machine learning

models. In order to do this, we first explore the properties of persistence diagrams

and methods of comparison.

2.3.4 Properties of Persistence - Distances and Stability

With the heavy lifting of computing the persistent homology out of the way,

we must now make sense of the resulting information. We first review the two basic
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distances for comparing persistence diagrams, and then present the idea of stability,

which guarantees the distances are representative of the underlying data. This

section serves to motivate other methods for extracting and comparing persistence

information, as the basic distances are very costly to compute.

2.3.4.1 Wasserstein and Bottleneck Distances

The Bottleneck and Wasserstein distances between persistence diagrams are

closely related. Both involve taking the l∞ norm between pairings of points of two

diagrams. The Bottleneck distance makes use of this norm without any additional

steps. The Wasserstein is a generalization of the Bottleneck distance.

Bottleneck Distance of 0-dimensional SLSP

Figure 2.5: Two curves and persistence diagrams are shown, colored red and grey.

The red curve contains fewer peaks and valleys, and correspondingly fewer persis-

tence points than the grey curve. All red points are paired, while most of the gray

points are noise induced and paired with the diagonal. This provides an intuition

for stability. [4]
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AssumeX and Y are two persistence diagrams. Let these diagrams have points

X = (x11 , x12), ..., (xm1 , xm2) and Y = (y11 , y12), ..., (yn1 , yn2). The first coordinate

of each point corresponds to when a persistent homology class (a hole) was born,

and the second coordinate refers to when it died. It is convenient to use xi =

(xi1 , xi2). Computing the distance between the diagrams is accomplished by finding

a minimum unique pairing, or more formally a bijection, from the points of X to the

points of Y . The Manhattan distance between the pair of most separated points,

within the overall minimal total pairing, is the Bottleneck distance. Let η : X → Y

be a bijection between X and Y , where η(x) ∈ Y is the point paired with x ∈ X.

This pairing process for the 0-dimensional persistence of a time series is shown in

Figure 2.5.

Definition 2.17 (Bottleneck Distance) Given persistence diagrams X and Y ,

W∞(X, Y ) = inf
η:X→Y

sup
x∈X
∥x− η(x)∥∞ is the Bottleneck distance between X and Y.

As noted above, the number of points in X and Y might be different. As a

computational trick, it is assumed that there are an infinite number of points along

the diagonal. Any unpaired points for a given bijection are paired to the diagonal

to compute the overall distance. It is possible to compute the Bottleneck distance

without these points, but in practice it simplifies the computation, so the extra

points are always included. The Bottleneck distance is somewhat constrained and

insensitive because the final distance is ultimately just the distance between a single

selected pair of points. The Wasserstein distance addresses this by incorporating

the distance between all pairs in the minimal bijection. As q goes to infinity, the
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q-Wasserstein distance approaches the Bottleneck distance.

Definition 2.18 (Wasserstein Distance) Wq(X, Y ) =

[
inf

η:X→Y

∑
x∈X
∥x− η(x)∥q∞

]1/q
,

is the Wasserstein distance between persistence diagrams X and Y .

Given two similar filtering functions f and g over an ASC, S, it is reasonable

to assume the Dgmp(f) would be similar to Dgmp(g). This desirable property is

called stability, and is formalized using the Bottleneck and Wasserstein distances.

Definition 2.19 (Bottleneck Stability) Let S be a simplicial complex with two

monotonic filtering functions f and g. For each p, the l∞ distance between f and

g bounds the distance between X = Dgmp(f) and Y = Dgmp(g). W∞(X, Y ) ≤

∥f − g∥∞.

Stability is an important property in TDA, because for constructions such as

the VR filtration, small changes in the underlying point cloud are equivalent to small

changes in the filtering function. In effect, stability establishes a useful connection

between data and the topological features extracted from it. The q-Wasserstein

distance is similarly stable, given a few mild constraints on the filtering functions

and the values of q.

The stability of these distances suggests uses in downstream machine learning,

such as a k-NN classifier, or similar. For larger diagrams, however, these distances

are not very useful in practice. This is due to a costly problem hidden in the

definition of both distances. Namely, in order to find the optimal bijection, the

bipartite graph matching between the points inX and Y must be brute forced. Even
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with optimizations, this is too slow for many machine learning applications. This

issue motivates the development of vectorizations and representations of persistence

diagrams, which allow computationally more efficient comparison.

2.3.5 Utilizing the Information - Vectorizations and Representations

The following methods are used in the initial investigation of TDA for time-

series classification. Each vectorization is utilized in conjunction with a 1-NN clas-

sifier in an attempt to outperform DTW. As will be shown in Section 3.1, none of

these representations succeeded in beating DTW. These representations are chosen

as a selection of the most commonly available representations available to TDA prac-

titioners. Specifically, each representation described is implemented in the widely

used Python TDA library Giotto [37].

When designing a new vectorization, there are two primary considerations.

First, are the computational concerns, such as ensuring it is tractable to compute

and compare the representation. In order to accommodate different computing

trade-offs, all of the following methods include parameters to scale the size of the

representation. The second consideration is stability. With the exception of Betti

curves, each representation is stable with respect to either the Bottleneck or Wasser-

stein distance or, in some cases, both. This means that the distance between the

representations of the persistence diagrams is bounded by either the Bottleneck or

Wasserstein distances. As the Bottleneck and Wasserstein distances are also sta-

ble, this serves to reinforce the connection between the underlying data and the
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persistence representation.

For the following examples, we refer to the points in an example persistence

diagram D as (b, d) or (bi, di). This is to emphasize that the persistence points refer

to the birth and death of holes in the filtration, which provides intuition for the

different representations. In the following representations, t refers to a ”time” in

the filtration, for instance a specific radius in a VR filtration. This matches the

intuition about the birth and death of holes. Each representation can be compared

using the Minkowski distance over its discretized elements.

2.3.5.1 Betti Curves

The Betti curve over a persistence diagram is the most basic form of a per-

sistence curve [38]. Betti curves, and by extension persistence curves, form the

foundation of TopRocket, and are covered in more detail in Section 2.3.7.

Definition 2.20 (Betti Curve) β(t) =
∑

(b,d)∈Dt
1, b < t < d.

In practice, values of t are discretized into n bins from the minimum birth

to the maximum death in the diagram. The distance between discretized curves

B(t)n ∈ Rn is taken using the Minkowski distance. TopRocket takes a different

approach which, to our knowledge, is novel. TopRocket implicitly calculates β(t)

for a discrete values of t, without having to first calculate the persistence diagram.
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2.3.5.2 Persistence Images

This technique results in a 2-dimensional discrete vectorization of the input

persistence diagram [39]. The diagram is first converted to birth-life coordinates,

(b, d) 7→ (b, d− b), so that all points lie in the first quadrant. This transformation of

a persistence diagram contains the same information, but is better suited to down-

stream machine learning tasks. In birth-death coordinates, all of the points are

above the diagonal (a hole must be born before it dies). Converting a birth-death

plot to a square image means that half of the pixels will always be blank. Birth-life

coordinates fix this problem by spreading the persistence points across the entire

quadrant.

A differentiable probability distribution is centered at each point in the dia-

gram, creating a persistence surface, which is then discretized to create a persistence

image. It is possible to weight the persistence surface before discretizing under some

mild conditions, but only the trivial weighting function is used in this work. Given

a few mild constraints on the distribution used, persistence images are stable with

respect to both the Bottleneck and Wasserstein distance. This means that when the

same filtration method is applied to similar data, the resulting persistence images

will be similar, as shown in Figure 2.6.

For the experiments, as is most often done in practice, a 2-dimensional nor-

malized symmetric Gaussian with standard deviation σ is used and the surface is

discretized into a square grid. The bins parameter specifies the side length of the

square image. For bins = n, the image will have n2 pixels.
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Persistence Images of 0-dimensional SLSP

Figure 2.6: A collection of persistence images from a set of closely related time

series [5].

2.3.5.3 Heat Kernels

In many ways the heat kernel is similar to a persistence image. This repre-

sentation creates a vectorization in the same way using a square grid, but differs in

underlying surface. The intuitive idea behind a heat kernel is to treat the persistence

points as the initial condition for a heat diffusion problem. The underlying surface

used for the kernel is then the solution to the heat equation at time t > 0 [40].

In practice, the heat kernel is computed much the same way as a persistence

image, but the points are left in birth-death coordinates. The difference of the sur-

face of the persistence diagram, and the surface of the persistence diagram reflected

along the diagonal yields a surface which is discretized to give the heat kernel vector-

ization. Both surfaces are created using a 2-dimensional symmetric Gaussian with

standard deviation σ =
√
2t.
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2.3.5.4 Persistence Landscapes

A persistence landscape is a set of functions {λk}, k ∈ N, where λk : R → R̄,

where λk(t) is the kth largest value of {Λi(t)}.

Λi(t) = max{0,min{t− bi, di − t}} (2.1)

Each λk is considered a layer in the landscape. The layers are discretized to

yield a vector representation [41].

2.3.5.5 Silhouettes

This representation is similar to a persistence landscape. A weighted silhouette

is effectively the weighted first layer of the corresponding persistence landscape [42].

Let the weighting function be wi = |di − bi|ρ, where ρ ∈ (0,∞] is distinct from the

distance parameter p shown in Table 3.1. The ρ-power weighted silhouette is:

ϕ(t) =

∑
i∈I wiΛi(t)∑

i∈I wi

(2.2)

2.3.6 Persistent Homology of Time Series

We have shown how it is possible to construct a filtration from a point cloud

using a sequence of VR complexes. In this section, we show how persistent homology

can be applied to time-series data. There are several methods for accomplishing this,

two of which are presented here.
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First, applying a sliding window embedding to the time series transforms it

into a point cloud. Persistent homology (of any dimension) can then be applied

using a VR filtration, or similar. The second is to directly construct a simplicial

complex from the time series, and then use a sublevel set filtration. This approach

results in the sublevel set persistence (SLSP) of the time series. As will be shown,

SLSP bears a striking resemblance to the methods used in Rocket family classifiers.

Let x be a time series of length n, x := [x1, ..., xn]. A point cloud can be created

from x using Takens’ embedding [43]. Takens’ embedding was initially developed

for analysing dynamical systems. It requires three parameters: a lag τ , a dimension

d, and a stride s.

Definition 2.21 (Takens’ Embedding) The set of points in Rd, χ(x, τ, d, s) =

[xi, xi+τ , . . . , xi+(d−1)τ ], with i ∈ (0, 2s, 3s, . . . ) as the stride, is Takens’ embedding

of x, also called the sliding window embedding.

The resulting point cloud is then processed using any common filtration method,

most often a VR filtration. The p-dimensional persistent homology of the resulting

filtration can be calculated, for any dimension p.

Takens’ embedding is a fundamental technique in TDA [44]. There are sev-

eral drawbacks, however, namely computation cost (due to the VR filtration) and

choice of parameters. There are well established methods for choosing the embed-

ding parameters based on properties of the data. For a fixed stride, the stride is

optimized through a process which selects a value that minimizes the time-delayed

mutual information within samples [45]. Fixing the stride and the lag, a similar
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nearest-neighbor test is used to select embedding dimension [46]. Optimizing these

parameters and computing the VR filtration introduces significant computational

cost. Furthermore, most often in practice, only the 0 or 1-dimensional persistent

homology is utilized, as including higher dimensions classification tasks tends to

have diminishing returns.

SLSP obviates the need for a point cloud embedding by directly computing

the persistence of the time series. Specifically, a time series can be interpreted

as a piecewise linear function, with lines between sample points. The lines between

samples become 1-simplices (edges) and the samples points as 0-simplices (vertices),

yields a simplicial complex. The ASC corresponding to this graph is very similar to

a path graph.

Definition 2.22 Let T (x) be the ASC constructed from x, a time series of length

n. T (x) = {{v1}, ...{vn}, {v1, v2}, ..., {vn−1, vn}}.

A sequence of complexes can be created by adding in simplices from least to

greatest, in order of the time series. In this case, the edges are added to the complex

once both vertices are present. Recall that 0-dimensional persistent homology corre-

spond to the number of connected components in an ASC. Starting with the empty

ASC T (X)0, the number of connected components will change as more simplices

are added. Formally, the filtration is taken with respect to a sublevel set filtering

function.

Definition 2.23 (Sublevel Set Filtration of Time Series) f(T (X)) = max(x(τ))∀i ≤

σ∀σ ∈ T (X), where τ are vertices of the ASC, and x(τ) is the value of the corre-
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sponding point of the time series.

This resulting 0-dimensional persistent homology of the time series is the SLSP.

Intuitively, this process corresponds to scanning a horizontal line from the bottom of

the time series to the top, and counting the number of connected components below

the line. Due to the nature of the Rocket pooling operators, TopRocket actually

computes the partial SLSP of the negative of the time series, which is the same as

filtering from the top down instead. Computing the SLSP of a time series is more

straightforward to optimize than the general persistent homology.

An algorithmically fast queue-based method is available through the Teaspoon

library [47] [48]. In practice, the implementation of this algorithm leaves room for

improvement. For all of the experiments presented in Section 3.1, the standard

persistence algorithm provided by the Dionysus 2 library is used [49]. Additionally,

in Appendix A.2 we include an exceptionally fast implementation of the standard

persistence algorithm which is heavily optimized for time series. The algorithm

makes use of the just-in-time Python compiler Numba, as well as Python hash

maps, to exploit the constrained nature of SLSP [50]. To our knowledge, this is the

fastest method for computing the 0-dimensional SLSP of a time series.

2.3.7 Persistence Curves

The primary novel contribution of TopRocket is the computing of the Betti

curve of a time-series SLSP, without computing the full SLSP. This ensures that

the classifiers remains fast, and provides a natural way to incorporate persistence
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information. The Betti curve is a special case of a persistence curve [38]. Existing

work on persistence curves requires a complete persistence diagram, and bins the

curve into a histogram. Our method is different in that we do not need to compute

the persistence diagram, and we directly use the value of the Betti curve at a certain

fixed set of filtration values.

The only other TDA-based classifier run against the UCR archive utilizes

a hybrid DTW/persistence curve method [51]. Using this approach, the authors

are able to outperform learned DTW on 64 out of 128 datasets. The full results

and the critical difference diagrams of these experiments are not published, so it is

difficult to make a fair assessment of the technique. It should be noted that DTW

is significantly less accurate than even the most basic Rocket classifier.
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Sub-diagram Cut Example

Figure 2.7: An example persistence diagram with sub-diagram D4 shaded in blue.

There two persistence points within the sub-diagram, so β(4) = 2.

The persistence curve is based on ”cuts” of different filtering function values

for t. Specifically, a sub-diagram Dt can be cut from a diagram D by taking all

points which are already born and have not died before t, as shown in Figure 2.7.

In other words, Dt contains all of the points which are ”alive” at time t.

Definition 2.24 (Persistence Diagram Cut) The cut of persistence diagram D

at time t is the multiset Dt = {(b, d) ∈ D|b ≤ t < d}.

In the persistence curve framework, the Betti curve can be defined as the

magnitude of Dt as t varies. Critically, computing values of the Betti curve does not

necessarily require the birth/death pairs provided by a persistence diagram. This
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fact is implicitly stated in the literature, but is not utilized. Instead, the past focus

has always been on computing the Betti curve over an entire persistence diagram,

or in some cases a truncated range.

Definition 2.25 (Betti Curve in Persistence Curve Framework) β(t) = #Dt =∑
(b,d)∈Dt

1.

There are two operations in the definition of the Betti curve which can be

generalized. The first is the sum over the persistence pairs, which is denoted T .

The second is an implicit function, denoted ψ, which maps every persistence pair

in the sum to 1. Specifically, for the Betti curve ψ(b, d) = 1. Generalizing these

operations yields the persistence curve. The choice of T and ψ specifies the type of

persistence curve.

Definition 2.26 (Persistence Curve) P (D,ψ, T ) = T ([ψ(D; b, d, t)|(b, d) ∈ Dt]).

While not explored in this work, it is likely that other persistence curve features

can be used in conjunction with Rocket family, or other, classifiers. As presented

in the original work, there are currently 11 different types of persistence curves. Of

these, the Betti curve, life entropy curve, persistence diagram threshold curve, and

persistence landscape already existed, but are subsumed by the framework [52] [53]

[41]. The remaining seven curves are introduced along with the framework. Some

of the curves, such as persistence landscapes, are stable. Others are conditionally

stable, have as of yet unknown stability, or are not stable. Betti curves are not

stable. However, Betti curves are the only curves which can be computed without

knowing the pairing of the birth and death times at time t.
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This computational trick is the property currently exploited by TopRocket.

Given our exceptionally fast algorithm implementation for computing SLSP of a

time series, it may be possible to sacrifice a small amount of speed in favor of

potential accuracy gains from using other curves. There are currently 11 curves,

but there is no reason in the context of time-series classification to limit the search

to just those curves. This presents an exceptionally large solution space, which we

will endeavor to explore in future work, and encourage others to do the same.
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Chapter 3: TDA for Time-series Classification

Having provided the proper foundation, we now explore the application of

TDA for time-series classification. We begin this section by reviewing TDA based

1-NN classifiers designed to outperform DTW. The goal of these experiments is to

assess the current state of TDA-based time-series classification. As will be shown,

none of these attempted methods outperform learned cDTW.

Having assessed the current available options, we shift our attention to im-

proving existing classifiers using TDA. MultiRocket is a clear choice for two rea-

sons. First, the way bias values are used in conjunction with the pooling operators

is evocative of sublevel set filtration. Second, MultiRocket is (or rather was, before

TopRocket) the state-of-the-art scalable classifier over the UCR archive, so improv-

ing it empirically proves TDA can provide an edge for difficult machine learning

problems.

3.1 Motivation for New Techniques

We begin the investigation of TDA for time-series classification by design-

ing experiments around the persistence representations presented in Section 2.3.5.

Specifically, we aim to create a TDA-based 1-NN classifier which outperforms learned
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cDTW over the full UCR archive. For pre-processing, all time series are first

z-normalized. In the very limited instances where a time series is constant, z-

normalization is invalid, so a zero-fill time series of the same length is used instead.

Importantly, z-normalization is idempotent, so this step has no effect on the datasets

which are already normalized. For these experiments, all computations are carried

out with Giotto, with the exception of SLSP, which is done with Dionysus 2 (our

SLSP implementation would have been a faster choice, but it did not exist at the

time these experiments were carried out).

Before choosing from the previously listed five representations, a filtration must

first be chosen. Specifically, we must choose between a VR filtration over Takens’

embedding or SLSP. In order to do this, we computed the persistence diagrams of

the entire archive using both methods.

Attempting to compute Takens’ embedding over the entire archive consumes

significant resources and time. As a result, given current hardware and time con-

straints, it is not feasible to compute the VR filtration of Takens’ embedding as

previously described. With this in mind, we place several mild constraints in or-

der to reduce the computational load. A stride of s = 1 is used, unless χ(x, τ =

1, d = 2, s = 1) > 1000, in which case the stride is increased until the number of

points is less than 1000. This is done to ensure the VR filtration for each sample, in

each dataset, can be computed in a reasonable amount of time. Once the stride is

selected, τ is selected by minimizing time-delayed mutual information, and d is se-

lected using the false nearest neighbors heuristic [45,46]. To further ensure that the

filtration can be quickly computed, we utilize principal component analysis (PCA)
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to create a 3-dimensional point cloud. The 1-dimensional persistent homology is

then computed over the resulting point cloud for each sample.

SLSP is fast to calculate and non-parametric. It is therefore computed over

the entire archive as previously described using Dionysus 2. In order to select

between the two, we must choose a representation. The Betti curve is the fastest

and simplest representation we have at our disposal, and is therefore used to create

1-NN classifiers from the VR and SLSP persistence diagrams. Specifically, we use

a discretized Betti curve with 100 bins. The result is treated as a 100-dimensional

vector, and classified using the 1-NN, with distance measured as the p = 2Minkowski

distance. SLSP significantly outperforms Takens’ embedding, as shown in Figure

3.1.

In order to improve accuracy, we now optimize the persistence representation

used in conjunction with SLSP. This is done by choosing the representation and

parameters which are most accurate on the training set, for each data set. The

range of parameters for each representation are shown in Table 3.1. This leads to

134 unique 1-NN classifiers for each of the 128 datasets. These parameters were

chosen in order to fairly assess each representation while also balancing resource

constraints. It is always possible to conduct a more thorough grid search of the

parameters, but we believe any expansion will have diminishing returns.

The results of the initial SLSP and Taken’s classifiers, the optimized SLSP

classifier, and the baseline UCR classifiers are compared via a critical difference

diagram in Figure 3.1. The diagram clearly shows that, even with an optimized

representation, SLSP cannot compete with the worst performing baseline approach.
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Table 3.1: Grid Search Parameters. Parameter p refers to the Minkowski dis-
tance

Parameters

Betti Curve

p 1,2

bins 10,50,100,250,500

Persistence Image

p 1,2

bins 4,8,16,32

σ .001, .01, .1, 1.0, 10

Heat

p 1,2

bins 4,8,16,32

σ .001, .01, .1, 1.0, 10

Landscape

p 1,2

bins 10,50,100

layers 1,2

Silhouette

p 1,2

bins 10,50,100

power 1,2
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Critical Difference Diagram - 1-NN Classifiers

Figure 3.1: Purely topological methods compared to the three baseline methods of
UCR archive. SLSP performs better than Takens’ embeddings, and is improved by
optimization of the representation parameters. Even optimized, it falls short of the
baseline methods.

This would not necessarily be an issue if SLSP performed in a highly predictable way.

Unfortunately, as shown in Figure 3.2, for a given dataset it cannot be predicted

from the training set if optimized SLSP will perform better than the baseline SLSP.

This indicates that SLSP-based distances are not well suited for use on the UCR

archive. Even after a thorough search, the performance is lacking and unpredictable.

While it may be possible to create better TDA-based distances to use with a 1-

NN classifier, it is not immediately obvious how that might be done. The presented

experiments use the most commonly available tools from TDA. Seeking to address

this lack of performance, we instead focus our attention on Rocket family classifiers,

which in some ways mirror SLSP.

3.2 TopRocket

TopRocket is an extension of MultiRocket, adding a new topological pooling

operator to the existing set of four operators. Recall that for each combination of

kernel/bias/dilation/padding, MultiRocket extracts four features from a given time

series. These features are: PPV, the length of the longest stretch above the bias,
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SLSP Texas Sharpshooter Plot

Figure 3.2: Optimized SLSP compared to baseline SLSP. For all points x >= 1,
which indicates that the training dataset performance for optimized SLSP is at
least as good as the baseline SLSP. The points, however, are almost evenly split by
y = 1, indicating performance over training data does a poor job of predicting test
performances.

the average value of the points above the bias, and the mean index of the points

above the bias. The same features are extracted from the transformation of the first

order difference of the time series, yielding an additional four features.

Recall further, that for each combination of kernel/dilation/padding, multi-

ple bias values are computed from the quantiles of a random training set sample.

Each bias is effectively a horizontal line which cuts through the transformed time

series. The four MultiRocket pooling operators solely evaluate the portion of the

transformed time series above the line. This process is highly evocative of the

0-dimensional persistent homology provided by SLSP, in which the number of con-

nected components below a horizontal line is tracked, as the line sweeps from the

bottom to the top of the time series. However, there is not an efficient or an intuitive

way to incorporate the full SLSP process into MultiRocket.

Instead, we compute the number of connected components above the hori-

zontal line specified by a bias value and include this as the fifth feature: the Betti
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pooling operator. This is precisely the value of the Betti curve of the negative of the

transformed time series taken at the negative bias value. Using the negative bias

value and negative time series is a small adjustment in order to count the number

of components above the horizontal line specified by b, instead of below it as with

normal SLSP.

Definition 3.1 (Betti Pooling Operator) Let x be a time series and xmin ≤

b ≤ xmax a bias value. B(−b) = #D−b is the Betti pooling operator, where D is the

0-dimensional persistence diagram of ASC, T(-x).

In practice this value is very efficient to compute, only requiring a small change

to MultiRocket, while significantly improving accuracy. Specifically, to extract the

four preexisting features, MultiRocket already loops over the values of each trans-

formed time series for each bias value. This is the inner most loop of the algorithm

used. In order to create TopRocket, we simply add an additional condition to this

loop to check how many times the transformed time series crosses the bias. It should

also be noted that many pooling operators and combinations of operators were at-

tempted when initially designing MultiRocket, so is difficult to find a new operator

which does not impede performance.

This is a fast, linear-time process which integrates seamlessly with Multi-

Rocket. In fact, because TopRocket requires fewer transformed time-series than

MultiRocket, it is about that 5% faster. This speedup is verified on a test system

using an AMD Ryzen Threadripper 1920X, with 12 parallel Numba threads, by

averaging the time each classifier takes to run over all 30 splits. MultiRocket takes
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an average of 346.9 seconds, while TopRocket only takes 326.7 seconds. This means

TopRocket provides better results in less time.

We now present several results to support our claim that TopRocket is state-of-

the-art and an improvement over MultiRocket. For this, we use the same experiment

design as MultiRocket. Specifically, we run TopRocket over 30 different splits of 109

of the UCR datasets, and average the accuracy over all 30 runs. The results for

the same experiment for the current top five classifiers are published as part of

MultiRocket. These results are publicly available, and hosted with the code for

the MultiRocket. Additionally, the selection of 109 datasets and 30 splits are also

publicly available. Only 109 datasets are evaluated due to various constraints of

each of the top five classifiers. For instance, MultiRocket only works with datasets

that have fixed length time series.

We also adhere to the development practices used when designing the previous

Rocket family classifiers, and only use 40 of the datasets as ”development” datasets,

used to tune the hyperparameters of the model. This is done in order to avoid

overfitting to the UCR archive, which reduces its overall utility in the long run. The

only hyperparameter to tune, with respect to TopRocket, is the choice of pooling

operators. For all experiments we follow MultiRocket and fix the length of the

feature vector as 50, 000. As we use five pooling operators, we only require 5, 000

(50000/(2 ∗ 5)) kernel/bias/dilation/padding combinations, where as MultiRocket

requires 6250 (50000/(2 ∗ 4)).

As we have already revealed, TopRocket uses all of the original MultiRocket

pooling operators. We verify this is the right choice by running all combinations of
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the existing features with the Betti pooling operator over the development set. The

resulting ranking shown in Table 3.2 shows that using all four MultiRocket features

plus the Betti pooling operator is the best choice.

Table 3.2: TopRocket Feature Choice Ranking: All classifiers use the Betti
pooling operator. The number represents which MultiRocket features are used:
PPV(1), length of max positive stretch (2), mean positive value (3), and mean
index (4). Ranking is taken over the standard 40 development sets.

1 TopRocket - 1234 6.2125

2 TopRocket - 134 6.3375

3 TopRocket - 124 6.9500

4 TopRocket - 234 7.1375

5 TopRocket - 14 7.4500

6 TopRocket - 123 7.7375

7 TopRocket - 13 7.7875

8 TopRocket - 1 8.4500

9 TopRocket - 34 8.6625

10 TopRocket - 12 8.8500

11 TopRocket - 3 9.0125

12 TopRocket - 23 9.4125

13 TopRocket - 24 9.7000

14 TopRocket - 4 10.0875

15 TopRocket - Betti Only 10.9625

16 TopRocket - 2 11.2500

Now we present the core result, the critical difference diagrams of the state-of-

the-art classifiers, including TopRocket. Figure 3.3 shows that TopRocket displaces

MultiRocket in the rankings. The critical difference diagram requires special at-

tention to read, as the black bars surrounding MultiRocket, TopRocket, and HC2
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may be confusing. Specifically, there is a bar between TopRocket and HC2 indi-

cating that the two are not statistically significantly different. There is also a bar

between MultiRocket and HC2, indicating the same. However, there is not a bar

between TopRocket and MultiRocket, indicating TopRocket is significantly better.

The bar connecting MultiRocket to HC2 may appear to indicate a clique including

all three classifiers in question, but it does not. This is evidenced by the need for

the clarifying bar between TopRocket and HC2, and can be independently verified

by examining the pairwise statistical tests using the results provided.

Critical Difference Diagram - New Top Five

Figure 3.3: TopRocket outperforms MultiRocket, removing MiniRocket from the
top five. TopRocket does not form a clique with MultiRocket.

The added performance of TopRocket is made even more clear when Multi-

Rocket is replaced with TopRocket. Figure 3.4 shows the original critical difference

diagram of the top five classifiers. Figure 3.5 shows the same diagram, but with

TopRocket replacing MultiRocket. Notice that the bar spanning from Inception-

Time to MultiRocket is not present in the new diagram.

Additionally, TopRocket has superior performance when competing directly

against HC2, winning on 45 datasets, more than MultiRocket’s 43 wins for the

same task. When put head-to-head, TopRocket wins against MultiRocket on 63

datasets. These results are visualized in the Win/Tie/Loss graph in Figures 3.6 and
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Critical Difference Diagram - Original Top Five

Figure 3.4: Note the clique formed between Inception Time and MultiRocket.

Critical Difference Diagram - Replaced by TopRocket

Figure 3.5: TopRocket only forms a clique with HC2.

3.7

These results rigorously show that TopRocket is now the best performing scal-

able time-series classifier over the UCR archive. Additionally, TopRocket empirically

proves that TDA-based features can be used to provide an edge on highly competi-

tive machine learning tasks. Additionally, we demonstrate that this benefit can be

obtained without incurring the high computational costs typically associated with

methods from TDA.
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TopRocket vs. HIVE-COTE 2.0 Win/Tie/Loss: 45/6/58

Figure 3.6: TopRocket does not outperform HC2, but it is the closest competitor.
Points outside the dotted lines indicate a greater than 5% accuracy difference.

TopRocket vs. MultiRocket Win/Tie/Loss: 63/8/38

Figure 3.7: TopRocket outperforms MultiRocket by a significant margin. Each
point is a data set, plotted by the accuracy of the respective classifiers. There are
63 points above the diagonal, indicating TopRocket wins on 63 of the 109 datasets.
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Chapter 4: Conclusion

We set out to design and rigorously evaluate a fast, accurate, and reproducible

TDA-based time-series classification method. With TopRocket, we accomplish this

goal. Furthermore, we establish a clear path for further work in this direction.

The connection of TopRocket, and specifically the Betti pooling operator, to the

persistence curve framework serves to firmly connect the fields of TDA and time

series classification.

While the connection between persistence curves and time series classification

already existed via a hybrid DTW distance, we provide several key novel additions

which reinforce this connection. The first is a method for extracting information

about the Betti curve of a time series without having to compute persistent homol-

ogy. The second is the method of incorporating this Betti curve SLSP information

into an existing classifier framework. Taken together, these contributions provide

state-of-the-art results over the UCR archive. Additionally, we provide a very fast

implementation of the SLSP algorithm, which can be used in future work to incor-

porate additional persistence curves.

With this, we conclude with a call to action for TDA practitioners. The

field of time-series classification will benefit from the additional attention of TDA
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experts. There is significant work in TDA dedicated towards understanding SLSP

and Takens’ embedding of time series. Persistent development and application of

this work, using the UCR archive as a rigorous benchmark, is likely to yield wholly

new and useful results.
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Appendix A: Algorithms

A.1 Persistent Homology Algorithm

Let ∂ be the filtered boundary matrix of a filtered simplicial complex over an

ASC K. ∂ is an n×n square matrix, where n is the number of simplices in K.

The rows and columns of partial correspond to the simplices sorted ascending by

filtration order, and subsequently coface relation if needed for simplices added at

the same filtration time. ∂[i, j] = 1 if simplex i is a proper coface of one dimension

lower of simplex j, 0 otherwise.

Algorithm 1 Persistent Homology Reduction
Ensure: x ≥ 0
1: procedure ComputePersistentHomology(∂)
2: function Low(j) ▷ Last coface of j to enter the filtration

return Row index of lowest entry containing a 1 of column j.
3: end function
4: function Reduce(∂)
5: R← ∂
6: for j=1 dom
7: while there exists j0 < j with Low(j0) = Low(j) do
8: add column j0 to column j
9: end while

10: end for
11: return R
12: end function
13: end procedure

For each non-zero column of R, j, if i = low(j) ̸= 0 and σi is a (p−1)-simplex,
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where σj is a p-simplex, there is a persistent homology class born at time ai which

dies entering time aj. In other words, given some mild conditions, each non-zero

column R describes a chain which bounds a whole. The last simplex added to that

chain, σi, is the simplex that formed the hole. Meaning the hole formed at the time

σi was added, ai.

A.2 Fast SLSP Implementation

The speed of this implementation is mainly attributed to bypassing the matrix

representation of the filtration boundary. In order to understand how this is done,

we must first understand the boundary matrix, ∂, a time series. Each edge is bound

by two vertices. Furthermore, the vertices have no boundary, so the corresponding

columns in ∂ will always be 0 and have no impact on the calculation, so can be

removed. Likewise, the edges are never the boundary of a chain, and so can be

excluded from ∂. Already this is a 3/4 space savings, as the boundary matrix size

shrinks from (n+ (n− 1))2 to n ∗ (n− 1) = n2 − n.

Examining the columns of ∂, it is clear that each only has two 1’s, correspond-

ing to the bounding vertices. The column addition operation in the persistence

algorithm will always cancel out the lowest 1 in the column being added to. De-

pending on the value of the columns being added, this will leave the column with

0, 1, or 2 1’s. We do not need the column representation to carry out these opera-

tions. We can simply track when each vertex enters each edge using lists and hash

maps. The persistence algorithm is still the same, just accelerated over these data
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structures using Numba.

Adding two columns together is a straightforward update to the lists containing

the boundaries of each edge. Several levels of indirection are required to convert

between the time in the filtration and the indices in the lists tracking the boundaries

of the edges. This additional complexity allows for a significant speedup, as shown in

Figure A.1. Additionally, it is possible to only return the k longest lived persistence

points, a valuable feature in some contexts.

The speed of this implementation is directly dependent on the use of hash

maps in Python and loop acceleration from Numba. It is not the algorithmically

fastest approach, but it is empirically the fastest. As such, we share the source code

instead of the pseudocode.
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Speed Comparison of SLSP Methods

Figure A.1: Run time comparison of three methods for computing 0-dimensional

SLSP of a time series. Random time series from length 10 − 10000 are tested,

increasing the length in steps of 100. The time is the result of averaging run time

over 50 runs.

1 # Python 3.6.9

2 import numpy as np # version 1.19.4

3 from numba import njit , uint32 # version 0.53.1

4

5 # Numbda decorator for JIT compilation

6 @njit(fastmath=True , cache=True)

7 def TimeSeriesSLSP(ts , n_points):

8 """

9 Accepts a time series a returns the n_points

10 longest lived 0-dimensional persistence pairs.

11 If the entire SLSP PD is needed , n_points

12 should be set to the length of the time series.
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13 For a time series , there is only ever on infinite

14 persistence point.

15 It corrsponds to the minimum of the time series ,

16 and is not returned.

17 This method does not return 0-life persistence points ,

18 as they do not have meaning.

19 Any 0 pairs in the output should be ignored.

20 Additionally , it assumed all value of the time series are >= 0.

21 If the time series has negative values ,

22 it should first be shifted to be positive.

23 The shift can be reversed as a post -processing step.

24

25 This approch does not use a boundary matrix.

26 Drawing out the boundary matrix for a time series

27 makes it clear that the "low" indices can be

28 computed directly from the time series.

29 """

30

31 # v is an abbreviation for vertex.

32 v_ord = np.argsort(ts)

33 rank_ord = {}

34

35 # There are library functions to find rank order , but this is

faster due to Numba.

36 for i in range(len(v_ord)):

37 rank_ord[v_ord[i]] = i

38
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39 n_edges = len(ts)-1

40

41 # e is an abbreviation for edge , the 1-simplices between sample

points.

42 e_max_val = np.zeros(n_edges)

43

44 e_birth_vert = np.zeros(n_edges).astype(uint32)

45 e_death_vert = np.zeros(n_edges).astype(uint32)

46

47 # Find the rank of when each edge was born and died.

48 for i in range(n_edges):

49 e_max_val[i] = np.max(ts[i:i+2])

50 if ts[i] > ts[i+1]:

51 e_birth_vert[i] = rank_ord[i+1]

52 e_death_vert[i] = rank_ord[i]

53 else:

54 e_birth_vert[i] = rank_ord[i]

55 e_death_vert[i] = rank_ord[i+1]

56

57 # The edges indices sorted by their maximum vertex value.

58 e_max_ord = np.argsort(e_max_val)

59

60 # The index of high vertex for each edge.

61 e_high_idx = e_birth_vert[e_max_ord]

62 # The index of low vertex for each edge.

63 e_low_idx = e_death_vert[e_max_ord]

64
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65 lows = {}

66 for i in range(n_edges +1):

67 lows[i]=-1

68

69 # Apply persistent homology reduction.

70 for i in range(n_edges):

71 while True:

72 low = e_low_idx[i]

73 low_idx = lows[low]

74 if low_idx == -1:

75 lows[low] = i

76 break

77 else:

78 cur_high = e_high_idx[i]

79 added_high = e_high_idx[low_idx]

80 if cur_high > added_high:

81 e_low_idx[i] = cur_high

82 e_high_idx[i] = added_high

83 else:

84 e_low_idx[i] = added_high

85

86 # Compute the death times.

87 death_times = e_max_val[e_max_ord]

88 # Compute the life times.

89 life_times = death_times - ts[v_ord[e_low_idx ]]

90

91 # The persistence diagram.
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92 # Ignores infinite and 0 life points.

93 pd = np.zeros((n_points ,2))

94

95 if len(life_times) == 0:

96 # return early if no persistence points.

97 return pd

98

99 # Count number of persistence points.

100 num_non_zero = 0 # This be returned to assist with downstream

calculations

101 for i in range(len(life_times)):

102 if life_times[i] != 0:

103 num_non_zero += 1

104

105 if num_non_zero == 0:

106 # return early if no persistence points.

107 return pd

108

109 # Return the persitence diagram in life/death coordainates.

110 # death -life = birth if needed.

111

112 pd_sort = np.argsort(life_times)[:: -1][: n_bars]

113 pd[:len(life_times) ,0] = life_times[pd_sort [: n_bars ]]

114 pd[:len(life_times) ,1] = death_times[pd_sort [: n_bars ]]

115

116 return pd
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Appendix B: Results

B.1 Full TopRocket Results

The full average results of TopRocket over the same 109 datasets and 30 splits

as MultiRocket. The development datasets are in bold.

Name Average Accuracy

ACSF1 0.8309999982515971

Adiac 0.8209718604882558

ArrowHead 0.9032380898793538

BME 1.0

Beef 0.7633333365122478

BeetleFly 0.8949999988079071

BirdChicken 0.903333326180776

CBF 0.9941481550534567

Car 0.9266666650772095

Chinatown 0.9667638500531515

ChlorineConcentration 0.7814149300257365

CinCECGTorso 0.9684541046619415
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Coffee 1.0

Computers 0.8547999997933705

CricketX 0.826153842608134

CricketY 0.8526495695114136

CricketZ 0.8431623816490174

Crop 0.7746706306934357

DiatomSizeReduction 0.9506535847981771

DistalPhalanxOutlineAgeGroup 0.8163069566090901

DistalPhalanxOutlineCorrect 0.8454106112321218

DistalPhalanxTW 0.7040767431259155

ECG200 0.8923333366711934

ECG5000 0.9468592564264934

ECGFiveDays 0.9953155259291331

EOGHorizontalSignal 0.864917121330897

EOGVerticalSignal 0.8162062605222066

Earthquakes 0.7489208579063416

ElectricDevices 0.9020317355791728

EthanolLevel 0.7188000023365021

FaceAll 0.9840039392312367

FaceFour 0.8939393897851308

FacesUCR 0.9693658550580343
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FiftyWords 0.8425641119480133

Fish 0.9832380970319112

FordA 0.9588383654753367

FordB 0.9331275661786397

FreezerRegularTrain 0.998409362634023

FreezerSmallTrain 0.9917894721031189

GunPoint 0.9973333338896434

GunPointAgeSpan 0.9954641401767731

GunPointMaleVersusFemale 1.0

GunPointOldVersusYoung 1.0

Ham 0.848888897895813

Haptics 0.5469696978727977

Herring 0.6104166666666667

HouseTwenty 0.9775910377502441

InlineSkate 0.49787878692150117

InsectEPGRegularTrain 1.0

InsectEPGSmallTrain 0.9973226288954417

InsectWingbeatSound 0.670824917157491

ItalyPowerDemand 0.9647230366865794

LargeKitchenAppliances 0.9378666659196218

Lightning2 0.7437158465385437
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Lightning7 0.7840182662010193

Mallat 0.964079600572586

Meat 0.9822222252686819

MedicalImages 0.8094298203786214

MiddlePhalanxOutlineAgeGroup 0.7229437271753947

MiddlePhalanxOutlineCorrect 0.8450171808401744

MiddlePhalanxTW 0.5878787795702617

MixedShapesRegularTrain 0.9807422757148743

MixedShapesSmallTrain 0.9574295540650686

MoteStrain 0.901144826412201

OSULeaf 0.9688705265522003

OliveOil 0.9077777663866679

PhalangesOutlinesCorrect 0.8590132097403208

Phoneme 0.36213079988956454

PigAirwayPressure 0.7964743574460348

PigArtPressure 0.9443910260995229

PigCVP 0.867147437731425

Plane 1.0

PowerCons 0.9751851816972097

ProximalPhalanxOutlineAgeGroup 0.8549593528111775

ProximalPhalanxOutlineCorrect 0.9071019411087036
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ProximalPhalanxTW 0.8074796775976817

RefrigerationDevices 0.7520888884862263

Rock 0.8539999902248383

ScreenType 0.669866661230723

SemgHandGenderCh2 0.9492777665456136

SemgHandMovementCh2 0.7877037008603414

SemgHandSubjectCh2 0.9285185257593791

ShapeletSim 0.9994444429874421

ShapesAll 0.9462777694066365

SmallKitchenAppliances 0.8278222203254699

SmoothSubspace 0.9791111171245575

SonyAIBORobotSurface1 0.9485302150249482

SonyAIBORobotSurface2 0.9541098316510518

StarLightCurves 0.9812489867210388

Strawberry 0.9802702705065409

SwedishLeaf 0.9739733318487803

Symbols 0.9728308200836182

SyntheticControl 0.9945555607477824

ToeSegmentation1 0.9292397697766622

ToeSegmentation2 0.9351281921068827

Trace 1.0
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TwoLeadECG 0.9977172871430715

TwoPatterns 1.0

UMD 0.9775463044643402

UWaveGestureLibraryAll 0.98406849304835

UWaveGestureLibraryX 0.8780662556489308

UWaveGestureLibraryY 0.8137632588545481

UWaveGestureLibraryZ 0.821673180659612

Wafer 0.9998053153355916

Wine 0.9129629611968995

WordSynonyms 0.7875653107961019

Worms 0.7523809512456258

WormsTwoClass 0.7995670914649964

Yoga 0.9403111080328623
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