
A Comparative Evaluation of
Matlab, Octave, FreeMat, Scilab, and R on Tara

Sai K. Popuri, Andrew M. Raim, Matthew W. Brewster, and Matthias K. Gobbert*

Department of Mathematics and Statistics, University of Maryland, Baltimore County

*Corresponding author: gobbert@umbc.edu, www.math.umbc.edu/∼gobbert

Technical Report HPCF–2012–7, www.umbc.edu/hpcf > Publications

Abstract

Matlab is the most popular commercial package for numerical computations in
mathematics, statistics, the sciences, engineering, and other fields. Octave, FreeMat
and Scilab are free numerical computational packages that have many of the same
features as Matlab. R is a free Statistical package. Although R does not belong
to the same line of products as Matlab, it is similar to Matlab in its computational
capabilities. These packages are available to download on the Linux, Windows, and
Mac OS X operating systems. We investigate whether they are viable alternatives to
Matlab for uses in research and teaching. We compare the results on the cluster tara in
the UMBC High Performance Computing Facility with 86 nodes, each with two quad-
core Intel Nehalem processors and 24 GB of memory. The tests focused on usability
lead us to conclude that the package Octave is the most compatible with Matlab, since
it uses the same syntax and has the native capability of running m-files. Both FreeMat
and Scilab were hampered by somewhat different syntax or function names and some
missing functions. The tests focused on efficiency show that Matlab and Octave are
fundamentally able to solve problems of the same size and with equivalent efficiency
in absolute times, except in one test dealing with a very large problem. FreeMat and
also Scilab exhibit significant limitations on the problem size and the efficiency of the
problems they can solve in our tests. The syntax of R is significantly different from that
of Matlab, Octave, FreeMat, and Scilab. R too exhibited certain limitations on the size
of problems it could solve for and its performance was similar to that of FreeMat and
Scilab. In summary, we conclude that Octave is the best viable alternative to Matlab
because it was not only fully compatible (in terms of syntax) with Matlab in our tests,
but it also performed very well.

1 Introduction

1.1 Overview

There are several numerical computational packages that serve as educational tools and are
also available for commercial use. Matlab is the most widely used such package. The focus
of this study is to introduce the three additional numerical computational packages Octave,
FreeMat, and Scilab, and the statistical package R, and provide information on which package
is most compatible to Matlab users. Section 1.3 provides more detailed descriptions of these
packages. To evaluate GNU Octave, FreeMat, and Scilab, a comparative approach is used

1

based on a Matlab user’s perspective. To achieve this task, we perform some basic and
some complex studies on Matlab, GNU Octave, FreeMat, Scilab, and R. The basic studies
include basic operations solving systems of linear equations, computing the eigenvalues and
eigenvectors of a matrix, and two-dimensional plotting. The complex studies include direct
and iterative solutions of a large sparse system of linear equations resulting from finite
difference discretization of an elliptic test problem. This report extends the report [3] by
adding the package R to the comparison. That report was based on [8,10], which considered
the usability of software packages in a home computer setting, and extends them substantially
by more substantive efficiency comparisons.

In Section 2, we perform the basic operations test using Matlab, GNU Octave, FreeMat,
Scilab, and R. This includes testing the backslash operator, computing eigenvalues and
eigenvectors, and plotting in two dimensions in all the packages except R, which follows
a significantly different syntax and functions. The backslash operator works identically
for all of the packages (except R) to produce a solution to the linear system given. The
command eig has the same functionality in Octave and FreeMat as in Matlab for computing
eigenvalues and eigenvectors, whereas Scilab uses the equivalent command spec to compute
them. Plotting is another important feature we analyze by an m-file containing the two-
dimensional plot function along with some common annotations commands. Once again,
Octave and FreeMat use the exact commands for plotting and similar for annotating as
Matlab whereas Scilab requires a few changes. For instance in Scilab, the pi command is
defined using %pi and the command grid on from Matlab is replaced with xgrid or use the
translator to create conversion. To overcome these conversions, we find that we can use the
Matlab to Scilab translator, which takes care of these command differences for the most part.
The translator is unable to convert the xlim command from Matlab to Scilab. To rectify
this, we must manually specify the axis boundaries in Scilab using additional commands in
Plot2d. This issue brings out a major concern that despite the existence of the translator,
there are some functions that require manual conversion.

Section 3 introduces a test problem, given by the Poisson equation with homogeneous
Dirichlet boundary conditions, and discusses the finite discretization for the problem in two
dimensional space. In the process of finding a solution, we use a direct method, Gaussian
elimination, and an iterative method, the conjugate gradient method. To be able to analyze
the performance of these methods, we solve the problem on progressively finer meshes. The
Gaussian elimination method built into the backslash operator successfully solves the prob-
lem up to a mesh resolution of 4,096×4,096 in both Matlab and Octave, while the Gaussian
elimination method built into the backslash operator in FreeMat successfully solves the prob-
lem up to a mesh resolution of 2,048×2,048. However, in Scilab and R, it is only able to solve
up to a mesh resolution of 1,024 × 1,024. The conjugate gradient method is implemented
in the pcg function, which is stored in Matlab and Octave as a m-file. This function is also
available in Scilab as a sci file. The matrix free implementation of the conjugate gradient
method allows us to solve a mesh resolution up to 8,192 × 8,192 for Matlab and Octave.
Scilab is able to solve the system for a resolution up to 4,096× 4,096. In FreeMat and R, we
wrote our own cg function because they do not have a built in pcg function. In FreeMat we
were able to solve the system for a resolution of 2,048 × 2,048 and in R for a resolution of

2

4,096× 4,096. The existence of the mesh in Matlab, Octave, and Scilab allows us to include
the three-dimensional plots of the numerical solution and the numerical error. However,
in FreeMat, mesh does not exist and we had to use plot3, which results in a significantly
different looking plot. In R too, mesh does not exist and we had to use the perp function.

The syntax of Octave is identical to that of Matlab in our tests. However, we found during
our tests that FreeMat lacks a number of functions, such as kron for Kronecker products,
pcg for the conjugate gradient method, and mesh for three-dimensional plotting. Otherwise,
FreeMat is very much compatible with Matlab. Even though Scilab is designed for Matlab
users to smoothly utilize the package and has a m-file translator, it often still requires manual
conversions. The tests focused on usability lead us to conclude that the packages Octave
and FreeMat are most compatible with Matlab, since they use the same syntax and have
the native capability of running m-files. Among these two packages, Octave is a significantly
more mature software and has significantly more functions available for use.

The results of the numerical experiments on the complex test problem in Section 3 are
clearly somewhat surprising. Fundamentally, Matlab and Octave turn out to be able to solve
problems of the same size, as measured by the mesh resolution of the problem they were able
to solve. More precisely, in the tests of the backslash operator, it becomes clear that Matlab
is able to solve the problem faster, which points to more sophisticated internal optimization
of this operator. However, considering absolute run times, Octave’s handling of the problem
is acceptable, except for very large cases. What is surprising is that FreeMat and also Scilab
exhibit significant limitations on the problem size they are able to solve by the backslash
operator. The tests using the iterative conjugate gradient method also give some surprising
results. Whether the function for this method is supplied by the package or hand-written,
only basic matrix-vector operations are used by the method. Therefore, it is not clear why
FreeMat and Scilab are less effective at solving the problems. R too exhibited limitations on
the size of problems it could solve for. Specifically, R could only solve for resolutions until
1,024 using Gaussian elimination as it ran out of the allocated memory. Matlab and Octave
both took about the same time to solve the problem, thus confirming the conclusions from
the other tests. The data that these conclusions are based on are summarized in Tables 3.1,
3.2, 3.3, 3.4, and 3.5.

The next section contains some additional remarks on features of the software packages
that might be useful, but go beyond the tests performed in Sections 2 and 3. Sections 1.3
and 1.4 describe the four numerical computational packages in more detail and specify the
computing environment used for the computational experiments, respectively.

1.2 Additional Remarks

1.2.1 Ordinary Differential Equations

One important feature to test would be the ODE solvers in the packages under considera-
tion. For non-stiff ODEs, Matlab has three solvers: ode113, ode23, and ode45 implement an
Adams-Bashforth-Moulton PECE solver and explicit Runge-Kutta formulas of orders 2 and
4, respectively. For stiff ODEs, Matlab has four ODE solvers: ode15s, ode23s, ode23t, and

3

ode23tb implement the numerical differentiation formulas, a Rosenbrock formula, a trape-
zoidal rule using a “free” interpolant, and an implicit Runge-Kutta formula, respectively.

According to their documentations, Octave and Scilab solve non-stiff ODEs using the
Adams methods and stiff equations using the backward differentiation formulas. These are
implemented in lsode in Octave and ode in Scilab. The only ODE solver in FreeMat is
ode45 which solves the initial value problem probably by a Runge-Kutta method. In R, two
packages can be used to solve ODEs: deSolve for initial value problems and bvpSolve for
boundary value problems. Many of the functions in the deSolve package use both Adams
and Runge-Kutta methods. These functions are implemented based on FORTAN’s LSODA

implementation that switches automatically between stiff and non-stiff systems [11].
It becomes clear that all software packages considered have at least one solver. Matlab,

Octave, Scilab and R have state-of-the-art variable-order, variable-timestep methods for both
non-stiff and stiff ODEs available, with Matlab’s implementation being the richest and its
stiff solvers being possibly more efficient. FreeMat is clearly significantly weaker than the
other packages in that it does not provide a state-of-the-art ODE solver, particularly not for
stiff problems.

1.2.2 Parallel Computing

Parallel Computing is a well-established method today. It takes in fact two forms: shared-
memory and distributed-memory parallelism.

On multi-core processors or on multi-core compute nodes with shared memory among all
computational cores, software such as the numerical computational packages considered here
automatically use all available cores, since the underlying libraries such as BLAS, LAPACK,
etc. use them; studies for Matlab in [9] demonstrated the effectiveness of using two cores
in some but not all cases, but the generally very limited effectiveness of using more than
two cores. Since the investigations in [9], the situation has changed such that the number
of cores used by Matlab, for instance, cannot even be controlled by the user any more,
since that control was never respected by the underlying libraries anyway.1 Thus, even the
‘serial’ version for Matlab and the other numerical computational packages considered here
are parallel on the shared memory of a compute node, this has at least potential for improved
performance, and this feature is included with the basic license fee for Matlab. More recently,
Matlab has started to provide built-in support for graphics processing units (GPUs). This is
cutting-edge and should give a very significant advantage of Matlab over any other packages.

Still within the first form of parallel computing, Matlab offers the Parallel Computing
Toolbox for a reasonable, fixed license fee (a few hundred dollars). This toolbox provides
commands such as parfor as an extension of the for loop that allow for the farming out of
independent jobs in a master-worker paradigm. This is clearly useful for parameter studies,
parametrized by the for loop. The parfor extension uses all available compute nodes
assigned to the Matlab job, thus it does go beyond using one node, but each job is ‘serial’
and lives only on one node.

1Cleve Moler, plenary talk at the SIAM Annual Meeting 2009, Denver, CO, and ensuing personal com-
munication.

4

The shared-memory parallelism discussed so far limits the size of any one job also that of
a worker in a master-worker paradigm, to the memory available on one compute node. The
second form of parallelism given by distributed-memory parallelism by contrast pools the
memory of all nodes used by a job and thus enables the solution of much larger problems. It
clearly has the potential to speed up the execution of jobs over ‘serial’ jobs, even if they use all
computational cores on one node. Matlab offers the MATLAB Distributed Computing Server,
which allows exactly this kind of parallelism. However, this product requires a substantial
additional license fee that — moreover — is not fixed, but scales with the number of compute
nodes (in total easily in the many thousands of dollars for a modest number of nodes).

The potential usefulness of distributed-memory parallelism, the historically late appear-
ance of the Matlab product for it, and its very substantial cost has induced researchers to
create alternatives. These include for instance pMatlab2 that can be run on top of either
Matlab or other “clones” such as Octave. Particularly for pMatlab, a tutorial documentation
and introduction to parallel computing is available [6]. In turn, since this distributed-memory
parallel package is known to run in conjunction with Octave, this is one more reason to stir
the reader to this numerical computational package to consider as alternative to Matlab.
The statistical software R also supports parallel computing with the addition of optional
open-source packages3. In particular, the SNOW (Simple Network of Workstations) package
provides a master-worker paradigm. Functions such as clusterCall (evaluate a function
on every worker with identical arguments) and parApply (apply a function to the rows or
columns of a matrix) are used to distribute computations to workers in a cluster. Another
package Rmpi allows MPI communications to be used within R, either in master-worker or
single program multiple data (SPMD) paradigms. In addition, in recent years R has added
packages4 that target GPUs too.

1.2.3 Applicability of this Work

Numerical computational packages see usage both in research and in teaching.
In a research context, an individual researcher is often very concerned with the portability

of research code and reproducibility of research results obtained by that code. This concern
applies over long periods of time, as the researcher changes jobs and affiliations. The software
Matlab, while widely available at academic institutions, might not be available at some
others. Or even if it is available, it is often limited to a particular computer (as fixed-CPU
licenses tend to be cheaper than floating license keys). Freely downloadable packages are
an important alternative, since they can be downloaded to the researchers own desktop for
convenience or to any other or to multiple machines for more effective use. The more complex
test case in Section 3 is thus designed to give a feel for a research problem. Clearly, the use of
alternatives assumes that the user’s needs are limited to the basic functionalities of Matlab
itself; Matlab does have a very rich set of toolboxes for a large variety of applications or for
certain areas with more sophisticated algorithms. If the use of one of them is profitable or

2http://www.ll.mit.edu/mission/isr/pmatlab/pmatlab.html
3http://cran.r-project.org/web/views/HighPerformanceComputing.html
4http://gpgpu.org/2009/06/14/r-gpgpu

5

integral to the research, the other packages are likely not viable alternatives.
In the teaching context, two types of courses should be distinguished: There are courses in

which Matlab is simply used to let the student solve larger problems (e.g., to solve eigenvalue
problems with larger matrices than 4 × 4) or to let the student focus on the application
instead of mathematical algebra (e.g., solve linear system quickly and reliably in context of
a physics or a biology problem). We assume here that the instructor or the textbook (or
its supplement) give instructions on how to solve the problem using Matlab. The question
for the present recommendation is then, whether instructions written for Matlab would be
applicable nearly word-for-word in the alternative package. Thus, you would want function
names to be the same (e.g., eig for the eigenvalue calculation) and syntax to behave the
same. But it is not relevant if the underlying numerical methods used by the package are the
same as those of Matlab. And due to the small size of problems in a typical teaching context,
efficiency differences between Matlab and its alternatives are not particularly crucial.

Another type of course, in which Matlab is used very frequently, is courses on numerical
methods. In those courses, the point is to explain — at least for a simpler version — the
algorithms actually implemented in the numerical package. It becomes thus somewhat im-
portant what the algorithm behind a function actually is, or at least its behavior needs to
be the same as the algorithm discussed in class. Very likely in this context, the instructor
needs to evaluate himself/herself on a case-by-case basis to see if the desired learning goal
of each programming problem is met. We do feel that our conclusions here apply to most
homework encountered in typical introductory numerical analysis courses, and the alterna-
tives should work fine to that end. But as the above discussion on ODE solver shows, there
are limitations or restrictions that need to be incorporated in the assignments. For instance,
to bring out the difference in behavior between stiff and non-stiff ODE solvers, the ones
available in Octave are sufficient, even if their function names do not agree with those in
Matlab and their underlying methods are not exactly the same; but FreeMat’s single ODE
solver is not sufficient to conduct the desired computational comparison between methods
from two classes of solvers.

1.3 Description of the Packages

1.3.1 Matlab

“MATLAB is a high-level language and interactive environment that enables one to perform
computationally intensive tasks faster than with traditional programming languages such
as C, C++, and Fortran.” The web page of the MathWorks, Inc. at www.mathworks.

com states that Matlab was originally created by Cleve Moler, a Numerical Analyst in the
Computer Science Department at the University of New Mexico. The first intended usage of
Matlab, also known as Matrix Laboratory, was to make LINPACK and EISPACK available
to students without facing the difficulty of learning to use Fortran. Steve Bangert and Jack
Little, along with Cleve Moler, recognized the potential and future of this software, which led
to establishment of MathWorks in 1983. As the web page states, the main features of Matlab
include high-level language; 2-D/3-D graphics; mathematical functions for various fields;

6

interactive tools for iterative exploration, design, and problem solving; as well as functions
for integrating MATLAB-based algorithms with external applications and languages. In
addition, Matlab performs the numerical linear algebra computations using for instance
Basic Linear Algebra Subroutines (BLAS) and Linear Algebra Package (LAPACK).

1.3.2 GNU Octave

“GNU Octave is a high-level language, primarily intended for numerical computations,” as
the reference for more information about GNU Octave is www.octave.org. This package
was developed by John W. Eaton and named after Octave Levenspiel, a professor at Oregon
State University, whose research interest is chemical reaction engineering. At first, it was
intended to be used with an undergraduate-level textbook written by James B. Rawlings of
the University of Wisconsin-Madison and John W. Ekerdt of the University of Texas. This
book was based on chemical reaction design and therefore the prime usage of this software
was to solve chemical reactor problems. Due to complexity of other softwares and Octave’s
interactive interface, it was necessary to redevelop this software to enable the usage beyond
solving chemical reactor design problems. The first release of this package, primarily created
by John W. Eaton, along with the contribution of other resources such as the users, was on
January 4, 1993.

Octave, written in C++ using the Standard Template Library, uses an interpreter to
execute the scripting language. It is a free software available for everyone to use and redis-
tribute with certain restrictions. Similar to Matlab, GNU Octave also uses for instance the
LAPACK and BLAS libraries. The syntax of Octave is very similar to Matlab, which allows
Matlab users to easily begin adapting to the package. Octave is available to download on
different operating systems like Windows, Mac OS, and Linux. To download Octave go to
http://sourceforge.net/projects/octave. A unique feature included in this package is
that we can create a function by simply entering our code on the command line instead of
using the editor.

1.3.3 FreeMat

FreeMat is a numerical computational package designed to be compatible with other com-
mercial packages such as Matlab and Octave. The supported operating systems for FreeMat
include Windows, Linux, and Mac OS X. Samit Basu created this program with the hope
of constructing a free numerical computational package that is Matlab friendly. The web
page of FreeMat at www.freemat.org. states that some of features for FreeMat include
eigenvalue and singular value decompositions, 2D/3D plotting, parallel processing with
MPI, handle-based graphics, function pointers, etc. To download FreeMat, go to http:

//sourceforge.net/projects/freemat.

1.3.4 Scilab

“Scilab is an open source, cross-platform numerical computational package as well as a
high-level, numerically oriented programming language.” Scilab was written by INRIA, the

7

French National Research Institution, in 1990. The web page for Scilab at www.scilab.org
states the syntax is largely based on Matlab language. This software is also intended to allow
Matlab users to smoothly utilize the package. In order to help in this process, there exists a
built in code translator which assists the user in converting their existing Matlab codes into a
Scilab code. According to Scilab’s web page, the main features of Scilab include hundreds of
mathematical functions; high-level programming language; 2-D/3-D visualization; numerical
computation; data analysis; and interface with Fortran, C, C++, and Java. Just like Octave,
Scilab is also a free software distributed under CeCILL licenses.

Scilab is fully compatible with Linux, Mac OS, and Windows platforms. Like Octave,
the source code is available for usage as well as for editing. To download Scilab go to
www.scilab.org/products/scilab/download Scilab also uses, for instance, the numerical
libraries, LAPACK and BLAS. Unlike Octave, the syntax and built-in Scilab functions may
not entirely agree with Matlab.

1.3.5 R

R is an open source, cross-platform numerical computational and statistical package as well
as a high-level, numerically oriented programming language used for developing statistical
software and data analytics. The R programming language is based on the S programming
language, which was developed at Bell Laboratories. R was not developed as a Matlab clone,
and therefore has a different syntax than the numerical analysis software packages previously
introduced. It is part of the GNU project and can be downloaded from www.r-project.org.
Add-on packages contributed by the R user community can be downloaded from CRAN (The
Comprehensive R Archive Network) at cran.r-project.org.

1.4 Description of the Computing Environment

The computations for this study are performed using Matlab R2011a , GNU Octave 3.0.4,
FreeMat v4.0, Scilab-5.3.1, and R 2.13.0 under the Linux operating system Redhat Enterprise
Linux 5. The Cluster tara in the UMBC High Performance Computing Facility (www.umbc.
edu/hpcf) is used to carry out the computations and has a total of 86 nodes, with 82 used for
computation. Each node features two quad-core Intel Nehalem X5550 processors (2.66 GHz,
8,192 kB cache per core) with 24 GB of memory.

8

2 Basic Operations Test

This section examines a collection of examples inspired by some basic mathematics courses.
This set of examples was originally developed for Matlab by the Center for Interdisciplinary
Research and Consulting (CIRC). More information about CIRC can be found at www.umbc.
edu/circ. This section focuses on the testing of basic operations using Matlab, Octave,
FreeMat, Scilab, and R. We will first begin by solving a linear system; then finding eigenvalues
and eigenvectors of a square matrix; and finally, 2-D functional plotting.

2.1 Basic operations in Matlab

This section discusses the results obtained using Matlab operations. To run Matlab on
the cluster tara, enter matlab at the Linux command line. This starts up Matlab with its
complete Java desktop interface. Useful options to Matlab on tara include -nodesktop,
which starts only the command window within the shell, and -nodisplay, which disables
all graphics output. For complete information on options, use matlab -h.

2.1.1 Solving Systems of Equations

The first example that we will consider in this section is solving a linear system. Consider
the following system of equations:

−x2 + x3 = 3

x1 − x2 − x3 = 0

−x1 − x3 = −3

where the solution to this system is (1,−1, 2)T . In order to use Matlab to solve this system,
let us express this linear system as a single matrix equation

Ax = b (2.1)

where A is a square matrix consisting of the coefficients of the unknowns, x is the vector of
unknowns, and b is the right-hand side vector. For this particular system, we have

A =

 0 −1 1
1 −1 −1
−1 0 −1

 , b =

 3
0
−3

 .

To find a solution for this system in Matlab, left divide (2.1) by A to obtain x = A\b. Hence,
Matlab use the backslash operator to solve this system. First, the matrix A and vector b are
entered using the following:

A = [0 -1 1; 1 -1 -1; -1 0 -1]

b = [3;0;-3].

9

Now use x = A\b to solve this system. The resulting vector which is assigned to x is:

x =

1

-1

2

Notice the solution is exactly what was expected based on our hand computations.

2.1.2 Calculating Eigenvalues and Eigenvectors

Here, we will consider another important function: computing eigenvalues and eigenvectors.
Finding the eigenvalues and eigenvectors is a concept first introduced in a basic Linear
Algebra course and we will begin by recalling the definition. Let A ∈ Cn×n and v ∈ Cn. A
vector v is called the eigenvector of A if v 6= 0 and Av is a multiple of v; that is, there exists
a λ ∈ C such that

Av = λv

where λ is the eigenvalue of A associated with the eigenvector v. We will use Matlab to
compute the eigenvalues and a set of eigenvectors of a square matrix. Let us consider a
matrix

A =

[
1 −1
1 1

]
which is a small matrix that we can easily compute the eigenvalues to check our results.
Calculating the eigenvalues using det(A − λI) = 0 gives 1 + i and 1 − i. Now we will use
Matlab’s built in function eig to compute the eigenvalues. First enter the matrix A and
then calculate the eigenvalues using the following commands:

A = [1 -1; 1 1];

v = eig(A)

The following are the eigenvalues that are obtained for matrix A using the commands stated
above:

v =

1.0000 + 1.0000i

1.0000 - 1.0000i

To check if the components of this vector are identical to the analytic eigenvalues, we can
compute

v - [1+i;1-i]

and it results in

ans =

0

0

10

This demonstrates that the numerically computed eigenvalues have in fact the exact integer
values for the real and imaginary parts, but Matlab formats the output for general real
numbers.

In order to calculate the eigenvectors in Matlab, we will still use the eig function by
slightly modifying it to [P,D] = eig(A) where P will contain the eigenvectors of the square
matrix A and D is the diagonal matrix containing the eigenvalues on its diagonals. In this
case, the solution is:

P =

0.7071 0.7071

0 - 0.7071i 0 + 0.7071i

and

D =

1.0000 + 1.0000i 0

0 1.0000 - 1.0000i

Calculating the eigenvector enables us to express the matrix A as

A = PDP−1 (2.2)

where P is the matrix of eigenvectors and D is a diagonal matrix as stated above. To
check our solution, we will multiply the matrices generated using eig(A) to reproduce A as
suggested in (2.2).

A = P*D*inv(P)

produces

A=

1 -1

1 1

where inv(P) is used to obtain the inverse of matrix P . Notice that the commands above
lead to the expected solution, A.

2.1.3 2-D Plotting

2-D plotting is a very important feature as it appears in all mathematical courses. Since
this is a very commonly used feature , let us examine the 2-D plotting feature of Matlab
by plotting f(x) = x sin(x2) over the interval [−2π, 2π]. The data set for this function
is given in a data file matlabdata.dat that is posted along with the tech. report [3] at
www.umbc.edu/hpcf under Publications. Noticing that the data is given in two columns,
we will first store the data in a matrix A. Second, we will create two vectors, x and y, by
extracting the data from the columns of A. Lastly, we will plot the data.

11

(a) (b)

Figure 2.1: Plots of f(x) = x sin(x2) in Matlab using (a) 129 and (b) 1025 equally spaced
data points.

A = load (’matlabdata.dat’);

x = A(:,1);

y = A(:,2);

plot(x,y)

The commands stated above result in the Figure 2.1 (a). Looking at this figure, it can be
noted that our axes are not labeled; there are no grid lines; and the peaks of the curves are
rather coarse. The title, grid lines, and axes labels can be easily created. Let us begin by
labeling the axes using xlabel(’x’) to label the x-axis and ylabel(’f(x)’) to label the
y-axis. axis on and grid on can be used to create the axis and the grid lines. The axes
are on by default and we can turn them off if necessary using axis off. Let us also create
a title for this graph using title (’Graph of f(x)=x sin(x^2)’). We have taken care of
the missing annotations and lets try to improve the coarseness of the peaks in Figure 2.1 (a).
We use length(x) to determine that 129 data points were used to create the graph of f(x).
To improve this outcome, we can begin by improving our resolution using

x = [-2*pi : 4*pi/1024 : 2*pi];

to create a vector 1025 equally spaced data points over the interval [−2π, 2π]. In order to
create vector y consisting of corresponding y values, use

y = x .* sin(x.^2);

where .* performs element-wise multiplication and .^ corresponds to element-wise array
power. Then, simply use plot(x,y) to plot the data. Use the annotation techniques men-
tioned earlier to annotate the plot. In addition to the other annotations, use
xlim([-2*pi 2*pi]) to set limit is for the x-axis. We can change the line width to 2 by
plot(x,y,’LineWidth’,2). Finally, Figure 2.1 (b) is the resulting figure with higher resolu-
tion as well as the annotations. Observe that by controlling the resolution in Figure 2.1 (b),

12

we have created a smoother plot of the function f(x). The Matlab code used to create the
annotated figure is as follows:

x = [-2*pi : 4*pi/1024 : 2*pi];

y = x.*sin(x.^2);

H = plot(x,y);

set(H,’LineWidth’,2)

axis on

grid on

title (’Graph of f(x)=x sin(x^2)

xlabel (’x’)

ylabel (’f(x)’)

xlim ([-2*pi 2*pi])

2.1.4 Programming

Here we will look at a basic example of Matlab programming using a script file. Let’s try
to plot Figure 2.1 (b) using a script file called plotxsinx.m. The extension .m indicates to
Matlab that this is an executable m-file. Instead of typing multiple commands in Matlab,
we will collect these commands into this script. The result is posted along with the tech.
report [3] at www.umbc.edu/hpcf under Publications. Now, call plotxsinx (without the
extension) on the command-line to execute it and create the plot with the annotations for
f(x) = x sin(x2). The plot obtained in this case is Figure 2.1 (b). This plot can be printed
to a graphics file using the command

print -djpeg file_name_here.jpg

2.2 Basic operations in Octave

In this section, we will perform the basic operations on GNU Octave. To run Octave on
the cluster tara, enter octave at the command line. For more information on Octave and
available options, use man octave and octave -h.

Let us begin by solving a system of linear equations. Just like Matlab, Octave defines the
backslash operator to solve equations of the form Ax = b. Hence, the system of equations
mentioned in Section 2.1.1 can also be solved in Octave using the same commands:

A = [0 -1 1; 1 -1 -1; -1 0 -1];

b = [3;0;-3];

x= A\b

which results in

x =

1

-1

2

13

Clearly the solution is exactly what was expected. Hence, the process of solving the system
of equations is identical to Matlab.

Now, let us consider the second operation of finding eigenvalues and eigenvectors. To find
the eigenvalues and eigenvectors for matrix A stated in Section 2.1.2, we will use Octave’s
built in function eig and obtain the following result:

v =

1 + 1i

1 - 1i

This shows exactly the integer values for the real and imaginary parts. To calculate the
corresponding eigenvectors, use [P,D] = eig(A) and obtain:

P =

0.70711 + 0.00000i 0.70711 - 0.00000i

0.00000 - 0.70711i 0.00000 + 0.70711i

D =

1 + 1i 0

0 1 - 1i

After comparing this to the outcome generated by Matlab, we can conclude that the solutions
are same but they are formatted slightly differently. For instance, matrix P displays an extra
decimal place when generated by Octave. The eigenvalues in Octave are reported exactly
same as the calculated solution, where as Matlab displays them using four decimal places for
real and imaginary parts. Hence, the solution is the same but presented slightly differently
from each other. Before moving on, let us determine whether A = PDP−1 still holds.
Keeping in mind that the results were similar to Matlab’s, we can expect this equation to
hold true. Let us compute PDP−1 by entering P*D*inv(P). Without much surprise, the
outcome is

ans =

1 -1

1 1

An important thing to notice here is that to compute the inverse of a matrix, we use the
inv command. Thus, the commands for computing the eigenvalues, eigenvectors, inverse of
a matrix, as well as solving a linear system, are the same for Octave and Matlab.

Now, we will look at plotting f(x) = x sin(x2) using the given data file. The load

command is used to store the data in the file into a matrix A. use x = A(:,1) to store the
first column as vector x and y = A(:,2) to store the second column as vector y. We can
create a plot using these vectors via entering plot(x,y) command in the prompt. Note that
to check the number of data points, we can still use the length command. It is clear that this
process is identical to the process in Section 2.1.3 that was used to generate Figure 2.1 (a).
It would not be incorrect to assume that the figure generated in Octave could be identical
to Figure 2.1 (a).

14

(a) (b)

Figure 2.2: Plots of f(x) = x sin(x2) in Octave using (a) 129 and (b) 1025 equally spaced
data points.

Clearly, the Figure 2.2 (a) is not labeled at all; the grid is also not on; as well as the coarse-
ness around the peaks exists. Therefore, the only difference between the two graphs is that
in Figure 2.2 (a) the limits of the axes are different than in Figure 2.1 (a). The rest appears
to be same in both of the plots. Let us try to label the axes of this figure using the label

command and create the title using the title command. In order to create a smooth graph,
like before; we will consider higher resolution. Hence, x = [-2*pi : 4*pi/1024 : 2*pi];

can be used to create a vector of 1025 points and y = x .* sin(x.^2); creates a vector
of corresponding nfunctional values. By examining the creation of the y vector, we notice
that in Octave .* is known as the “element by element multiplication operator” and .^ is
the “element by element power operator.” After using the label to label the axes; title to
create a title; and grid on to turn on grid. We obtain Figure 2.2 (b).

Clearly, Figure 2.2 (b) and Figure 2.1 (b) are identical. We can simply put together all
the commands in a script file exactly the way described in Section 2.1.4 and generate the
Figure 2.1 (b). This results in the same m-file plotxsinx.m, which is posted along with the
tech. report [3] at www.umbc.edu/hpcf under Publications. One additional command we can
use to print the plot to a graphics file is

print -djpeg file_name_here.jpg

2.3 Basic operations in FreeMat

In this section, we perform the basic operations in FreeMat. To run FreeMat on tara, you have
to load two modules first by entering module load qt/4.5.2 and module load freemat

at the command line. Then start FreeMat by FreeMat. A useful option to Scilab on tara
is -noX, which starts only the command window within the shell. For complete information
on options, use matlab -help.

15

We will begin by first solving a linear system. Let us consider matrix A as defined in
Section 2.1.1. We can use the same commands a Matlab to produce a result.

A = [0 -1 1; 1 -1 -1; -1 0 -1];

b = [3;0;-3];

x = A\b

which results in

x =

1

-1

2

as we had expected. Like Matlab and Octave, FreeMat also uses the backslash operator to
solve linear systems.

Now, we will consider the second important operation, computing eigenvalues and eigen-
vectors. For our computations, let us use matrix A stated in Section 2.1.2. We will use
FreeMat’s built in function eig and obtain the following result:

P =

0.7071 + 0.0000i 0.7071 - 0.0000i

0.0000 - 0.7071i 0.0000 + 0.7071i

D =

1.0000 + 1.0000i 0

0 1.0000 - 1.0000i

The outcome is identical to Matlab’s results. Just to confirm, we compute A = PDP−1

which results in the matrix A as following:

ans =

1.0000+0.0000i -1.0000+0.0000i

1.0000+0.0000i 1.0000+0.0000i

A key point here is that FreeMat uses inv to compute inverse of matrices. So the commands
used to solve systems of operations, calculate eigenvalues and eigenvectors, and computing
matrix inverse are same as Matlab.

Now we would hope to see an agreement in the plotting and annotation commands. To
examine the plotting feature of FreeMat, we will consider f(x) = x sin(x2). Let us begin
by examining the load command. Just like Matlab and Octave, we can load the data in
a matrix A with A = load(’matlabdata.dat’) command and use x = A(:,1) to create
vector x and y = A(:,2) to create y. Now, use plot(x,y) to generate Figure 2.3 (a) using
vector x and y. Clearly, the load command and plot command have same functionality as
in Matlab.

Without much surprise, Figure 2.3 (a) and Figure 2.1 (a) are same. To annotate Fig-
ure 2.3 (a), we will use the same commands as Matlab. So to label the axes use label

16

(a) (b)

Figure 2.3: Plots of f(x) = x sin(x2) in FreeMat using (a) 129 and (b) 1025 equally spaced
data points.

command, grid on create grid lines, title command to create title. To create a smooth
graph, we will create another vector x consisting of more equally spaced data points and a
vector y for the corresponding functional values. Use x = [-2*pi : 4*pi/1024 : 2*pi];

to create x and y = x .* sin(x.^2); to create vector y. As in the earlier sections, we
hope that higher resolution will improve our plot. Let us plot this data using plot(x,y);.
Applying the annotation techniques, we generate Figure 2.3 (b). Like in Matlab, we can also
put together these commands in an m-file. This results in the same m-file plotxsinx.m,
which is posted along with the tech. report [3] at www.umbc.edu/hpcf under Publications.
Use

print(’file_name_here.jpg’}

to print the plot to a graphics file.

2.4 Basic operations in Scilab

In this section, we will perform the basic operations in Scilab. To run Scilab on tara, enter
scilab at the command line, which opens its command window. A useful option to Scilab
on tara is -nogui, which starts only the command window within the shell. For complete
information on options, use matlab -h.

Once again, let us begin by solving the linear system from Section 2.1.1. Scilab follows
the same method as GNU Octave and Matlab in solving the system of equations, i.e., it uses
the backslash operator to find the solution using the system mentioned in Section 2.1.1, we
use the following commands in Scilab:

A = [0 -1 1; 1 -1 -1; -1 0 -1];

b = [3;0;-3];

x= A\b

to set up the matrix A and vector b. Using the backslash operator, we obtain the result:

17

(a) (b)

Figure 2.4: Plots of f(x) = x sin(x2) in Scilab using (a) 129 and (b) 1025 equally spaced
data points.

x =

1.

-1.

2.

Once again, the result is exactly what is obtained when solving the system using an aug-
mented matrix.

Now, let us determine how to calculate the eigenvalues and eigenvectors for the matrix
A stated in Section 2.1.2. Scilab uses the spec command which has the same functionality
as eig command to compute eigenvalues. Hence, v = spec(A) results in

v =

1. + i

1. - i

Clearly, the outcome is exactly what we had expected but the outcome is formatted slightly
different from Matlab. When we calculate the a set of corresponding eigenvectors using
[P,D] = spec(A) and the following result is obtained:

D =

1 + i 0

0 1 - 1i

P =

0.7071068 0.7071068

-0.7071068i 0.7071068i

By comparing P , the matrix of eigenvectors computed in Scilab, to P , the matrix in Sec-
tion 2.1.2, we can see that both packages produce same results but they are formatted
differently. Let us check our solution by computing PDP−1 using the inv command to
compute the inverse of the matrix.

18

P*D*inv(P)

ans =

1. - 1.

1. 1.

which is our initial matrix A. Note that one important factor in computing the eigenvalues
and eigenvectors is the command used in these computations, spec, and that the eigenvectors
found in Scilab and Matlab agree up to six decimal places.

Now, we will plot f(x) = x sin(x2) in Scilab. To load the text file matlabdata.dat

into a matrix, we use the Scilab command A = fscanfMat(’matlabdata.dat’). This is
specifically a command to read text files, while Scilab’s load command is only for reading
binary files; by contrast, Matlab uses load for both purposes. Then we use x = A(:,1)

to store the first column vector as x and y = A(:,2) to store the second column as a
vector y. We can create a plot using these vectors via entering plot(x,y). Notice that the
Figure 2.4 (a) is not labeled and it is rather coarse. Let us improve our resolution by creating
vector x using

x = [-2*%pi : 4*%pi/1024 : 2*%pi]

and let y = x .* sin(x.^2) to create a corresponding y vector. Unlike Matlab and Octave,
we have to use %pi to enter π in Scilab. In addition, .* and .^ are still performing the
element-wise operations called the “element-wise operators” in Scilab. Another factor that
remains unchanged is the length command. We can generate the plot using the plot(x,y)

command which creates the Figure 2.4 (a). Once again, we can use xlabel and ylabel to
label the axes; title(’Graph of f(x)=x sin(x^2)’) to create a title; and xgrid to turn on
grid. To plot and create x-axis bounds, use

plot2D(x,y,1,’011’,’’,[-2*%pi,y(1),2,*%pi,y($)])

Notice that we can put together these commands into a sci-file in Scilab to generate a
plot. The resulting script for creating the a plot is as follows:

x = -2*%pi:(4*%pi)/1024:2*%pi;

y = x .* sin(x.^2);

plot2d(x,y,1,’011’,’’,[-2*%pi,y(1),2*%pi,y($)])

set(gca(),"axes_visible","on")

set(gca(),"grid",[1,1])

title("Graph of f(x) = x sin(x^2)")

xlabel("x")

ylabel("f(x)")

Notice that some of the Matlab commands are not compatible with Scilab. One easier
approach to handle this issue is to use the “Matlab to Scilab translator” under the Ap-
plications menu or by using mfile2sci command. The translator is unable to convert
xlim([-2*pi 2*pi]); which we can take care of replacing the plot with plot2d command

19

stated earlier. The converted code using the translator is referred to as plotxsinx.sci and
is posted along with the tech. report [3] at www.umbc.edu/hpcf under Publications. Using
this script file, we obtain Figure 2.4 (b) which is similar to Figure 2.1 (b). To send these
graphics to jpg file, we can use

xs2jpg(gcf(),’file_name_here.jpg’)

2.5 Basic operations in R

In this section, we will perform the basic operations in R. To run R on the cluster tara, enter R
at the Linux command line. This starts up the command window of R. For the complete list of
options available with the command R, type R --help at the Linux command line. One useful
command in R is help(), which provides a detailed description and usage of commands. For
example, to view the usage of the command source in R, type help("source"). To quit
the R interface, type quit(), which will ask if you wish to save the workspace you have been
working on. Typing y will save all the commands you have typed in the session. These saved
commands will be available next time you open R. Please refer to http://cran.r-project.

org/manuals.html to learn about the R language.
Once again, let us begin by solving the linear system from Section 2.1.1. R has a command

called solve to solve the linear system of equations Ax = b. The command takes two
matrices A and b as arguments and returns x as a matrix. To solve the system mentioned
in Section 2.1.1, we use the following commands in R:

A = array(c(0,1,-1,-1,-1,0,1,-1,-1),c(3,3))

b = c(3, 0, -3)

to set up the matrix A and vector b, respectively. The c() function is prevalent in R code,
and concatenates its arguments into a vector. The vector may be used to enumerate the
elements of an array, as we have done here. In R, vectors are not the same as matrices.
In order to instruct R to treat the above vector b as a column vector, we use the following
command:

dim(b) = c(3,1)

This command sets the dimension of the vector b to 3 rows and 1 column. We have used the
array() command to create the A matrix. The first argument to this command is a vector
containing the data and the second argument is again a vector containing the number of
rows and columns of the matrix we want to create. When creating matrices, R follows the
column-ordering scheme, that is, the entries in c(0,1,-1,-1,-1,0,1,-1,-1) list the entries
of A along the columns; notice that this is different than the treatment of command-line
input in Matlab and other packages. Using the solve command, we obtain the result

solve(A, b)

[,1]

[1,] 1

[2,] -1

[3,] 2

20

Once again, the result is exactly what is obtained when solving the system using an aug-
mented matrix.

In R, matrices can also be created using the matrix command. The above system can
also be solved using the following commands:

A <- matrix(c(0,1,-1,-1,-1,0,1,-1,-1), nrow=3)

b <- matrix(c(3,0,-3))

solve(A, b)

[,1]

[1,] 1

[2,] -1

[3,] 2

Although both the approaches work in this example, it is advisable to use the matrix

command when working with matrices in R. Also, notice that we have used = assignment
operator in the first method and <- operator in the second method. Both are assignment
operators in R. However, = cannot be used to assign values inline unless the assignment is a
named parameter. In other words, = can only be used as part of an independent top level
expression or a sub-expression in a list of braced expressions. <-, on the other hand, can be
used for inline assignments too, but has a potentially undesirable effect of either overwriting
an existing variable with the same name in the workspace or creating a new variable with
the same name if it does not exist5. The common practice is to use <- for assignments,
= for named parameters and to altogether avoid inline assignments. Since the features of
R language is outside the scope of this report, we will not focus on exploring such subtle
differences. Interested users should refer to R manuals for language specific details.

Now, let us determine how to calculate the eigenvalues and eigenvectors for the matrix A
stated in Section 2.1.2. R uses the eigen command to compute eigenvalues and eigenvectors.
The command returns a data structure that holds both eigenvalues and eigenvectors. The
return value can be captured into a variable as eig = eigen(A). Eigenvalues can then be
accessed as eig$values and eigenvectors can be accessed as eig$vectors. So, eigenvalues
and eigenvectors can be calculated and displayed as

A <- matrix(c(1,1,-1,1),nrow=2)

eig <- eigen(A)

eig$values

[1] 1+1i 1-1i

eig$vectors

[,1] [,2]

[1,] 0.7071068+0.0000000i 0.7071068+0.0000000i

[2,] 0.0000000-0.7071068i 0.0000000+0.7071068i

5Another assignment operator <<- in R assigns values in global scope if the variable does not exist or
overwrites the global variable if it exists. Keeping these operator behaviors in mind, one can argue that the
= operator is probably safer to use. However, we will continue to use <- as it is the common practice to
assign values in R

21

Clearly, the outcome is exactly what we had expected but the format of the outcome is
slightly different from that of Matlab. Notice that Matlab’s eig command returns both
eigenvalues and eigenvectors in matrix form, with diagonal matrix D and an invertible matrix
P , where D consists of eigenvalues as diagonal elements and P consists of eigenvectors as
columns. By contrast, R returns a heterogeneous list data structure encapsulating both
eigenvalues and eigenvectors that can be accessed using the operator $. It is common practice
in R to return composite data structures from functions that need to return multiple values
and to use the access operator $ as shown above to access individual components in the data
structure returned. But matrices D and P can be easily formed from these data structures,
for example to verify that the diagonalization yields A again:

D <- diag(eig$values)

P <- eig$vectors

P %*% D %*% solve(P)

[,1] [,2]

[1,] 1+0i -1+0i

[2,] 1+0i 1+0i

Notice that the output of PDP−1 is same as the matrix A. In the above command, %*% is
used to perform matrix multiplications and the solve() command is used to calculate the
inverse of the non-singular matrix P (note that in R,the solve() command is also used to
solve a linear system when called using two arguments A and b, as shown at the beginning
of this section).

Now, we will plot f(x) = x sin(x2) in R. To load the text file matlabdata.dat into a
matrix, we use the R command pd = read.table(’matlabdata.dat’). There are several
ways one can load data into R. Some of the commands provided by R are read.csv (to read
comma-delimited files), scan, etc. R also has database/source specific commands such as
read.dta (to load Stata binary files), read.octave (to load text files saved in the Octave
format), etc. We use the command read.table to read rectangular data into an R variable.
Rectangular data is read into R as data frames, which look like matrices and their elements
can be accessed using [, and ,] operators. Below we plot the data using R’s plot command.

x <- pd[,1]

y <- pd[,2]

plot(x, y, xlab="x", ylab="y")

dev.new()

dev.new() instructs R to generate plots in seperate windows and not to overwrite the current
plot with future plots (notice how we have used = operator for named parameters in the
plot command). Notice that the Figure 2.5 (a) is not labeled and it is rather coarse. Also
notice that by default, R uses circular markers instead of line markers as used in other
packages. This behavior can be interpreted as R’s distinguishing feature as a statistical
package compared to other numerical packages. Let us improve the resolution by creating
vector x using

22

(a) (b)

Figure 2.5: Plots of f(x) = x sin(x2) in R using (a) 129 and (b) 1025 equally spaced data
points.

x <- seq(-2*pi, 2*pi, 4*pi/1024)

and let y <- x * sin(x^2) to create a corresponding y vector. Unlike Matlab and Octave,
we have to use %pi to enter π in R. Unlike Matlab, Octave, and Scilab, we do not need to
use .* and .^ operators to perform element-wise operations. Instead, we simply use * and
^.

We now plot using the new x and y values again using the plot command, but with
additional arguments:

plot(x,y, type="l",xlab="x", ylab="f(x)", col="blue",

main="Graph of f(x)=x sin(x^2)", lwd=2)

grid(nx=NULL,ny=NULL, lty=2, lwd=1, col="gray60", equilogs=TRUE)

The grid command above generates a fine grid against the plot. Note that R can handle
line breaks in the code, as shown in the plot command above. However, users should ensure
that the interpreter knows that the broken line is “to be continued”. For example:

y <- 1 + 2 + 3 +

4 + 5

z <- 1 + 2 + 3

+ 4 + 5

would correctly assign the value of 15 to y, but would assign 6 to z which is probably not
desired. Notice that the difference between the two assignment statements is that in the
first command, the + operator appears at the end of the command, indicating to R that you

23

intend to continue the command to the following line. The above plot command generates
the Figure 2.5 (b) which is similar to Figure 2.1 (b). Notice that compared to Figure 2.5 (a),
Figure 2.5 (b) shows solid line markers in the line plot. This is achieved with the argument
type="l". To send these graphics to jpg file, we can use

savePlot("file_name_here.jpg", type = "jpeg")

We can save all the above commands to a text file with extension .R or .r. The file can
then be executed in R, similar to Matlab’s m-files.

24

3 Complex Operations Test

3.1 The Test Problem

Starting in this section, we study a classical test problem given by the numerical solution with
finite differences for the Poisson problem with homogeneous Dirichlet boundary conditions [1,
4, 5, 12], given as

−4u = f in Ω,
u = 0 on ∂Ω.

(3.1)

This problem was studied before in, among other sources, [1,4,7,8,10,12]. Here ∂Ω denotes
the boundary of the domain Ω while the Laplace operator is defined as

4u =
∂2u

∂x2
+

∂2u

∂y2
.

This partial differential equation can be used to model heat flow, fluid flow, elasticity, and
other phenomena [12]. Since u = 0 at the boundary in (3.1), we are looking at a homogeneous
Dirichlet boundary condition. We consider the problem on the two-dimensional unit square
Ω = (0, 1)× (0, 1) ⊂ R2. Thus, (3.1) can be restated as

−∂2u
∂x2 − ∂2u

∂y2 = f(x, y) for 0 < x < 1, 0 < y < 1,

u(0, y) = u(x, 0) = u(1, y) = u(x, 1) = 0 for 0 < x < 1, 0 < y < 1,
(3.2)

where the function f is given by

f(x, y) = −2π2 cos(2πx) sin2(πy)− 2π2 sin2(πx) cos(2πy).

The problem is designed to admit a closed-form solution as the true solution

u(x, y) = sin2(πx) sin2(πy).

3.2 Finite Difference Discretization

Let us define a grid of mesh points Ωh = (xi, yj) with xi = ih, i = 0, . . . , N + 1, yj = jh, j =
0, . . . , N + 1 where h = 1

N+1
. By applying the second-order finite difference approximation

to the x-derivative at all the interior points of Ωh, we obtain

∂2u

∂x2
(xi, yi) ≈

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2
. (3.3)

If we also apply this to the y-derivative, we obtain

∂2u

∂y2
(xi, yi) ≈

u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
. (3.4)

25

Now, we can apply (3.3) and (3.4) to (3.2) and obtain

− u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2

− u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
≈ f(xi, yj).

(3.5)

Hence, we are working with the following equations for the approximation ui,j ≈ u(xi, yj):

−ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1 = h2fi,j i, j = 1, . . . , N
u0,j = ui,0 = uN+1,j = ui,N+1 = 0

(3.6)

The equations in (3.6) can be organized into a linear system Au = b of N2 equations for
the approximations ui,j. Since we are given the boundary values, we can conclude there are
exactly N2 unknowns. In this linear system, we have

A =

S −I
−I S −I

.

−I S −I
−I S

 ∈ RN2×N2

,

where

S =

4 −1
−1 4 −1

.

−1 4 −1
−1 4

 ∈ RN×Nand I =

1

1
. . .

1
1

 ∈ RN×N

and the right-hand side vector bk = h2fi,j where k = i+(j−1)N . The matrix A is symmetric
and positive definite [4,12]. This implies that the linear system has a unique solution and it
guarantees that the iterative conjugate gradient method converges.

To create the matrix A in Matlab effectively, we use the observation that it is given by a
sum of two Kronecker products [4, Section 6.3.3]: Namely, A can be interpreted as the sum

A =

T

T
. . .

T
T

 +

2I −I
−I 2I −I

.

−I 2I −I
−I 2I

 ∈ RN2×N2

,

where

T =

2 −1
−1 2 −1

.

−1 2 −1
−1 2

 ∈ RN×N

26

and I is the N ×N identity matrix, and each of the matrices in the sum can be computed
by Kronecker products involving T and I, so that A = I ⊗ T + T ⊗ I. These formulas are
the basis for the code in the function setupA shown in driver_ge.m, which is posted along
with the tech. report [3] at www.umbc.edu/hpcf under Publications.

One of the things to consider to confirm the convergence of the finite difference method is
the finite difference error. The finite difference error is defined as the difference between the
true solution u(x, y) and the numerical solution uh defined on the mesh points by uh(xi, yj) =
ui,j. Since the solution u is sufficiently smooth, we expect the finite difference error to
decrease as N gets larger and h = 1

N+1
gets smaller. Specifically, the finite difference theory

predicts that the error will converge as ‖u− uh‖L∞(Ω)
≤ C h2, as h → 0, where C is a

constant independent of h [2, 5]. For sufficiently small h, we can then expect that the ratio
of errors on consecutively refined meshes behaves like

Ratio =
‖u− u2h‖
‖u− uh‖

≈ C (2h)2

C h2
= 4 (3.7)

Thus, we will print this ratio in the following tables in order to confirm convergence of the
finite difference method.

3.3 Matlab Results

3.3.1 Gaussian Elimination

Let us begin solving the linear system arising from the Poisson problem by Gaussian elimina-
tion in Matlab. We know that this is easiest approach for solving linear systems for the user
of Matlab, although it may not necessarily be the best method for large systems. To create
matrix A, we make use of the Kronecker tensor product, as described in Section 3.2. This
can be easily implemented in Matlab using the kron function. The system is then solved
using the backslash operator. Figure 3.1 shows the results of this for a mesh with N = 32.
Figure 3.1 (a) shows the mesh plot of the numerical solution vs. (x, y). The error at each
mesh point is computed by subtracting the numerical solution from the analytical solution
and is plotted in Figure 3.1 (b). Notice that the maximum error occurs at the center. The
code to solve this system for N = 32 and produce the plots is contained in driver_ge.m,
which is posted along with the tech. report [3] at www.umbc.edu/hpcf under Publications.

Table 3.1 (a) shows the results of a study for this problem using Gaussian elimination
with mesh resolutions N = 2ν for ν = 1, 2, 3, . . . , 13. The table lists the mesh resolution N ,
the number of degrees of freedom (DOF) N2, the norm of the finite difference error ‖u− uh‖ ,
the ratio of consecutive error norms (3.7), and the observed wall clock time in HH:MM:SS. To
create this table, we use a version of driver_ge.m with the graphics commands commented
out.

The norms of the finite difference errors clearly go to zero as the mesh resolution N
increases. The ratios between error norms for consecutive rows in the table tend to 4, which
confirms that the finite difference method for this problem is second-order convergent with
errors behaving like h2, as predicted by the finite difference theory. By looking at this table,

27

(a) (b)

Figure 3.1: Mesh plots for N = 32 in Matlab (a) of the numerical solution and (b) of the
numerical error.

it can be concluded that Gaussian elimination runs out of memory for N = 8,192. Hence,
we are unable to solve this problem for N larger than 4,096 via Gaussian elimination. This
leads to the need for another method to solve larger systems. Thus, we will use an iterative
method known as the conjugate gradient method to solve this linear system.

3.3.2 Conjugate Gradient Method

Now, we use the conjugate gradient method to solve the Poisson problem [1, 12]. This
iterative method is an alternative to using Gaussian elimination to solve a linear system
and is accomplished by replacing the backslash operator by a call to the pcg function. We
use the zero vector as the initial guess and a tolerance of 10−6 on the relative residual of
the iterates. This is implemented in a Matlab code driver_cg.m that is posted along with
the tech. report [3] at www.umbc.edu/hpcf under Publications. This code is equivalent to
driver_ge.m from above, with the backslash operator replaced by a call to the pcg function.

The system matrix A accounts for the largest amount of memory used by the conjugate
gradient method. Hence, to solve the problem for larger meshes, we can use a so-called
matrix-free implementation of the method that avoids storing A. The only place, where A
enters into the iterative method is the matrix-vector multiplication q = A p in each iteration.
Hence, for a matrix-free implementation, instead of supplying A itself, the user supplies a
function that computes the matrix-vector product q = A p directly for a given input vector
p without ever storing a system matrix A. Thus, the matrix-free implementation returns
a vector q for the input vector p by performing the component-wise product on p and the
matrix A using the knowledge of the components of A. Thus, we can expect to save memory
significantly. This is implemented in the funtion Ax at the bottom of the code driver_cg.m.

Table 3.1 (b) shows results of a study using the conjugate gradient method with this
matrix-free implementation of the matrix-vector multiplication. The column #iter lists the
number of iterations taken by the iteration method to converge. The finite difference error

28

Table 3.1: Convergence results for the test problem in Matlab using (a) Gaussian elimination
and (b) the conjugate gradient method. The tables list the mesh resolution N , the number of
degrees of freedom (DOF), the finite difference norm ‖u− uh‖L∞(Ω)

, the ratio of consecutive
errors, and the observed wall clock time in HH:MM:SS.

(a) Gaussian Elimination
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 <00:00:01
256 65,536 4.9807e-5 3.9685 <00:00:01
512 262,144 1.2501e-5 3.9843 00:00:01

1,024 1,048,576 3.1313e-6 3.9923 00:00:31
2,048 4,194,304 7.8362e-7 3.9959 00:00:27
4,096 16,777,216 1.9610e-7 3.9960 00:02:07
8,192 out of memory

(b) Conjugate Gradient Method
N DOF ‖u− uh‖ Ratio #iter Time
32 1,024 3.0128e-3 N/A 48 <00:00:01
64 4,096 7.7811e-4 3.8719 96 <00:00:01

128 16,384 1.9765e-4 3.9368 192 <00:00:01
256 65,536 4.9797e-5 3.9690 387 00:00:02
512 262,144 1.2494e-5 3.9856 783 00:00:40

1,024 1,048,576 3.1266e-6 3.9961 1,581 00:05:47
2,048 4,194,304 7.8019e-7 4.0075 3,192 00:50:26
4,096 16,777,216 1.9353e-7 4.0313 6,452 07:46:24
8,192 67,108,864 4.7400e-8 4.0829 13,033 69:42:45

shows the same behavior as in Table 3.1 (a) with ratios of consecutive errors approaching
4 as for Gaussian elimination; this confirms that the tolerance on the relative residual of
the iterates is tight enough. To create this table, we use a version of driver_cg.m with the
graphics commands commented out.

Tables 3.1 (a) and (b) indicate that Gaussian elimination is faster than the conjugate
gradient method in Matlab, whenever it does not run out of memory. For problems greater
than 4,096, the results show that the conjugate gradient method is able to solve for larger
mesh resolutions.

29

(a) (b)

Figure 3.2: Mesh plots for N = 32 in Octave (a) of the numerical solution and (b) of the
numerical error.

3.4 Octave Results

3.4.1 Gaussian Elimination

In this section, we will solve the Poisson problem discussed in Section 3.2 via Gaussian elim-
ination method in Octave. Just like Matlab, we can solve the equation using the backslash
operator. Using the same m-file we used in Matlab, driver_ge.m,which is posted along with
the tech. report [3] at www.umbc.edu/hpcf under Publications, we create Figure 3.2 which
is identical to Figure 3.1.

The numerical results in Table 3.2 (a) are identical to the results in the Table 3.1 (a),
but the timing results show that Matlab is significantly faster than Octave when solving a
system of linear equations using the method of Gaussian elimination.

3.4.2 Conjugate Gradient Method

Now, let us try to solve the problem using the conjugate gradient method in Octave. Just
like Matlab, there exists a pcg.m function. The input requirements for the pcg function are
identical to the Matlab pcg function. Once again, we use the zero vector as the initial guess
and the tolerance is 10−6 on the relative residual of the iterations. We can use the m-file
driver_cg.m which, is posted along with the tech. report [3] at www.umbc.edu/hpcf under
Publications.

Just like in Matlab, Tables 3.2 (a) and (b) indicate that Gaussian elimination is faster
than the conjugate gradient method in Octave, whenever it does not run out of memory. For
problems greater than 4,096, the results show that the conjugate gradient method is able to
solve for larger mesh resolutions.

Comparing Table 3.2 (b) to Table 3.1 (b), we see that the conjugate gradient method in
Octave solves a problem faster than Matlab.

30

Table 3.2: Convergence results for the test problem in Octave using (a) Gaussian elimination
and (b) the conjugate gradient method. The tables list the mesh resolution N , the number of
degrees of freedom (DOF), the finite difference norm ‖u− uh‖L∞(Ω)

, the ratio of consecutive
errors, and the observed wall clock time in HH:MM:SS.

(a) Gaussian Elimination
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 <00:00:01
256 65,536 4.9807e-5 3.9685 <00:00:01
512 262,144 1.2501e-5 3.9843 00:00:02

1,024 1,048,576 3.1313e-6 3.9922 00:00:16
2,048 4,194,304 7.8362e-7 3.9959 00:01:57
4,096 16,777,216 1.9610e-7 3.9960 00:15:37
8,192 out of memory

(b) Conjugate gradient method
N DOF ‖u− uh‖ Ratio #iter Time
32 1,024 3.0128e-3 N/A 48 <00:00:01
64 4,096 7.7811e-4 3.8719 96 <00:00:01

128 16,384 1.9765e-4 3.9368 192 <00:00:01
256 65,536 4.9797e-5 3.9690 387 00:00:03
512 262,144 1.2494e-5 3.9856 783 00:00:27

1,024 1,048,576 3.1266e-6 3.9961 1,581 00:04:23
2,048 4,194,304 7.8019e-7 4.0075 3,192 00:40:07
4,096 16,777,216 1.9353e-7 4.0313 6,452 05:52:11
8,192 67,108,864 4.6797e-8 4.1355 13,033 40:44:32

3.5 FreeMat Results

3.5.1 Gaussian Elimination

Once again, we will solve the Poisson problem via Gaussian elimination method, but using
FreeMat this time. To create the system matrix A using setupA, we need to write our own
implementation of the kron function, since it is not implemeneted in FreeMat. Furthermore,
mesh does not exist in FreeMat, so we used the plot3 command to create Figure 3.3 (a) the
plot3 of the numerical solution vs. (x, y) and Figure 3.3 (b) the plot3 of the error vs. (x, y).
Despite the view adjustments for these figures using the view command, Figure 3.3 (b) is
still very hard to study. The code to solve this system for N = 32 and produce the plots
is contained in freemat_ge.m, which is posted along with the tech. report [3] at www.umbc.
edu/hpcf under Publications.

31

(a) (b)

Figure 3.3: Plot3 plots for N = 32 in FreeMat (a) of the numerical solution and (b) of the
numerical error.

The numerical results in Table 3.3 (a) are identical to the results in Tables 3.1 (a)
and 3.2 (a) for the mesh resolutions that FreeMat can solve for. However, Gaussian elimina-
tion in FreeMat ran significantly slower than Octave, which in turn ran slower than Matlab,
in those cases. Moreover, Gaussian elimination in FreeMat could only solve the problem up
to N = 2,048 and ran out of memory already for N = 4,096.

3.5.2 Conjugate Gradient Method

Unlike Matlab and Octave, a pcg function does not exist in FreeMat. To address this
issue, we wrote our own cg function to use in FreeMat. The code to solve this system for
N = 32 is contained in freemat_cg.m, which is posted along with the tech. report [3] at
www.umbc.edu/hpcf under Publications. To create the table of results for larger N , we used
a version of this function with graphics commands commented out.

We encountered some issues in FreeMat when we were solving for a mesh resolution
of 4,096 × 4,096, namely the time it took to solve the problem was excessively long. We
predicted that the code would run for approximatley 195 hours or 8 days. We determined
this by having the code display the error every 100 iterations. After fifteen hours of running
the code only 500 iterations had been completed. Using this knowledge we calculated that
an iteration occured every 1.8 minutes. So to solve the system for a mesh resolution of
4,096 × 4,096 it would take approximately eight days to compelete the calculations. Due
to the length of time needed to complete the calculations we did not collect the all of the
results, but because the error was printing in the correct trend and appearing every 100
iterations we were able to guarantee that the code was working correctly and the computer
was not running out of memory.

The numerical results in Table 3.3 (b) are identical to the results in Tables 3.1 (b)
and 3.2 (b) for the mesh resolutions that FreeMat can solve for. However, the conjugate
gradient method in FreeMat ran significantly slower than Octave and Matlab in those cases.
As explained in the previous paragraph, simulations with N > 2,048 would take an excessive
amount of time, and we did not run them to completion.

32

Table 3.3: Convergence results for the test problem in FreeMat using Gaussian elimination.
The tables list the mesh resolution N , the number of degrees of freedom (DOF), the finite
difference norm ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors, and the observed wall clock
time in HH:MM:SS.

(a) Gaussian Elimination
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 <00:00:01
256 65,536 4.9807e-5 3.9685 00:00:04
512 262,144 1.2501e-5 3.9843 00:00:28

1,024 1,048,576 3.1313e-6 3.9922 00:03:15
2,048 4,194,304 7.8362e-7 3.9959 00:14:29
4,096 out of memory
8,192 out of memory

(b) Conjugate Gradient Method
N DOF ‖u− uh‖ Ratio #iter Time
32 1,024 3.0128e-3 N/A 48 <00:00:01
64 4,096 7.7810e-4 3.8719 96 00:00:03

128 16,384 1.9765e-4 3.9368 192 00:00:23
256 65,536 4.9797e-5 3.9689 387 00:03:07
512 262,144 1.2494e-5 3.9856 783 00:15:21

1,024 1,048,576 3.1266e-6 3.9961 1,581 03:24:25
2,048 4,194,304 7.8019e-7 4.0075 3,192 03:52:24
4,096 excessive time requirement
8,192 excessive time requirement

3.6 Scilab Results

3.6.1 Gaussian Elimination

Once again, we will solve the Poisson equation via Gaussian elimination, this time using
Scilab. Scilab also uses the backslash operator to solve the linear system. To compute the
Kronecker tensor product of matrix X and Y in Scilab, we can use the X.*.Y command when
setting up the system matrix A. Figure 3.4 (a) is a mesh plot of numerical solution for a mesh
resolution of N = 32, and Figure 3.4 (b) is a plot of the error associated with the numerical
solution. The mesh plots are equivalent to the Matlab mesh plots in Figure 3.1. The code to
solve this system for N = 32 and produce the plots is contained in driver_ge.sci, which
is posted along with the tech. report [3] at www.umbc.edu/hpcf under Publications. The
initial version of this Scilab sci-file is obtained using the “Matlab to Scilab translator” under

33

(a) (b)

Figure 3.4: Mesh plots for N = 32 in Scilab (a) of the numerical solution and (b) of the
numerical error.

the Applications menu or by using mfile2sci command in Scilab.
To create the tables in Scilab we used a version driver_ge.sci with the graphics com-

mands commented out. The Scilab code used to create the tables also utilizes the Scilab
command stacksize("max"). The stacksize("max") command allows Scilab to use all
available memory when running the code. The numerical results in Table 3.4 (a) are identi-
cal to the results in Tables 3.1 (a) and 3.2 (a) for the mesh resolutions that Scilab can solve
for. However, Gaussian elimination in Scilab ran significantly slower than Octave, which in
turn ran slower than Matlab, in those cases. Moreover, Gaussian elimination in Scilab can
only solve the problem up to N = 1,024 and runs out of memory already for N = 2,048,
despite the use of stacksize("max"). In fact, without stacksize("max"), Scilab can only
solve the problem up to N = 256 and runs out of memory already for N = 512.

We attempted to see if we could get better results by switching to UMFPack or TAUCS
as alternative linear solvers available in Scilab. These solvers can be accessed by replac-
ing the backslash operator in the linear solve. This is the only difference in the files
driver_UMFPack_solver.sci driver_TAUCS_solver.sci, respectively, compared to the
driver_ge.sci. These files are posted along with the tech. report. The results for UMF-
Pack and TAUCS in Tables 3.4 (c) and (d), respectively, show that neither UMFPack nor
TAUCS were able to solve for N = 2, 048 either, but they were both much faster than the
default backslash operator that was used in Table 3.4 (a). At this point, we hope to solve a
larger system using the conjugate gradient method.

3.6.2 Conjugate Gradient Method

Let us use the conjugate gradient method to solve the Poisson problem in Scilab. Here,
we will use Scilab’s pcg function. In order to solve, the initial guess is the zero vector
and the tolerance is 10−6 on the relative residual of the iterates. We can use the sci-file
driver_cg.sci which is posted along with the tech. report [3] at www.umbc.edu/hpcf under

34

Table 3.4: Convergence results for the test problem in Scilab using (a) Gaussian elimination
and (b) the conjugate gradient method. The tables list the mesh resolution N , the number of
degrees of freedom (DOF), the finite difference norm ‖u− uh‖L∞(Ω)

, the ratio of consecutive
errors, and the observed wall clock time in HH:MM:SS.

(a) Gaussian elimination
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 00:00:11
256 65,536 4.9807e-5 3.9685 00:03:19
512 262,144 1.2500e-5 3.9846 00:39:04

1,024 1,048,576 3.1313e-6 3.9920 08:32:20
2,048 out of memory
4,096 out of memory
8,192 out of memory

(b) Conjugate gradient method
N DOF ‖u− uh‖ Ratio #iter Time
32 1,024 3.0128e-3 N/A 48 <00:00:01
64 4,096 7.7811e-4 3.8719 96 <00:00:01

128 16,384 1.9765e-4 3.9368 192 <00:00:01
256 65,536 4.9797e-5 3.9690 387 00:00:04
512 262,144 1.2494e-5 3.9856 783 00:00:36

1,024 1,048,576 3.1266e-6 3.9960 1,581 00:06:57
2,048 4,194,304 7.8018e-7 4.0075 3,192 00:48:12
4,096 16,777,216 1.9353e-7 4.0313 6,452 06:03:43
8,192 out of memory

(c) UMFPack Gaussian elimnation
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 <00:00:01
256 65,536 4.9807e-5 3.9685 <00:00:01
512 262,144 1.2500e-5 3.9846 00:00:03

1,024 1,048,576 3.1313e-6 3.9920 00:00:27
2,048 out of memory
4,096 out of memory
8,192 out of memory

(d) TAUCS Gaussian elimination
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 <00:00:01
256 65,536 4.9807e-5 3.9685 <00:00:01
512 262,144 1.2500e-5 3.9846 00:00:01

1,024 1,048,576 3.1313e-6 3.9920 00:00:09
2,048 out of memory
4,096 out of memory
8,192 out of memory

Publications.
The numerical results in Table 3.4 (b) are identical to the results in Tables 3.1 (b)

and 3.2 (b) for the mesh resolutions that Scilab can solve for. Also the run times are
comparable for these cases. However, the conjugate gradient method in Scilab ran out of
memory for N = 8,192, despite the use of stacksize("max").

35

(a) (b)

Figure 3.5: Mesh plots for N = 32 in R (a) of the numerical solution and (b) of the numerical
error.

3.7 R Results

3.7.1 Gaussian Elimination

Once again, we will solve the Poisson equation via Gaussian elimination, this time using R.
As mentioned earlier, R uses the solve command to solve the linear system. To compute the
Kronecker tensor product of matrix X and Y in R, we have used the kronecker() command
while setting up the system matrix A. Figure 3.5 (a) is a mesh plot of numerical solution
for a mesh resolution of N = 32, and Figure 3.5 (b) is a plot of the error associated with the
numerical solution. The mesh plots are equivalent to the Matlab mesh plots in Figure 3.1.

To create the tables in R, we have used a version of the driver script driver_ge.r

with the graphics commands commented out. Comparing the results in Table 3.5 (a) with
Tables 3.1 (a), 3.2 (a), 3.3 (a), and 3.4 (a), one can say that R’s performance was similar
to Freemat’s and better than Scilab’s but worse than Matlab’s and Octave’s performances.
Also, R could not solve for the resolutions N = 2,048, 4,096, and 8,192, as it ran out of
allocated memory.

3.7.2 Conjugate Gradient Method

Unlike Matlab and Octave, R does not have a pcg function. As a result, we have written
our own cg function in R. The code is divided into two files: cg.r contains the CG method,
and driver_cg.r calls the CG function in cg.r by either setting up the sparse matrix A
or by using a function called Ax() to calculate the product of the matrix A and the column
vector x directly from the vector without setting up a matrix.

36

Table 3.5: Convergence results for the test problem in R using (a) Gaussian elimination and
(b) the conjugate gradient method. The tables list the mesh resolution N , the number of
degrees of freedom (DOF), the finite difference norm ‖u− uh‖L∞(Ω)

, the ratio of consecutive
errors, and the observed wall clock time in HH:MM:SS.

(a) Gaussian elimination
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 <00:00:01
256 65,536 4.9807e-5 3.9685 00:00:03
512 262,144 1.2500e-5 3.9843 00:00:26

1,024 1,048,576 3.1313e-6 3.9921 00:04:22
2,048 out of memory
4,096 out of memory
8,192 out of memory

(b) Conjugate gradient method
N DOF ‖u− uh‖ Ratio #iter Time
32 1,024 3.0128e-3 N/A 48 <00:00:01
64 4,096 7.7810e-4 3.8719 96 <00:00:01

128 16,384 1.9765e-4 3.9368 192 <00:00:01
256 65,536 4.9797e-5 3.9690 387 00:00:07
512 262,144 1.2494e-5 3.9856 783 00:00:53

1,024 1,048,576 3.1266e-6 3.9961 1,581 00:06:57
2,048 4,194,304 7.8019e-7 4.0075 3,192 01:05:52
4,096 16,777,216 1.9366e-7 4.0286 6,452 11:16:23
8,192 67,108,864 4.7401e-8 4.0855 13,033 109:27:24

The numerical results in Table 3.5 (b) are identical to the results in Tables 3.1 (b), 3.2 (b),
3.3 (b), and 3.4 (b). While the conjugate gradient method in R ran significantly slower than
Octave and Matlab, the performance is similar to Scilab and better than FreeMat.

After investigating the results, we found out that a significant amount of run-time was
being spent in performing matrix algebra (specifically, subtractions on sparse matrices).
There might be more efficient alternate ways in R to perform such matrix operations and
there might be a significant scope for improvement.

37

Acknowledgments

The first and second author acknowledge financial support from the UMBC High Perfor-
mance Computing Facility. The third author acknowledges financial support from the De-
partment of Mathematics and Statistics at UMBC. We are indebted to Neeraj Sharma, whose
M.S. thesis first formalized the comparison between the software packages. The hardware
used in the computational studies is part of the UMBC High Performance Computing Fa-
cility (HPCF). The facility is supported by the U.S. National Science Foundation through
the MRI program (grant no. CNS–0821258) and the SCREMS program (grant no. DMS–
0821311), with additional substantial support from the University of Maryland, Baltimore
County (UMBC). See www.umbc.edu/hpcf for more information on HPCF and the projects
using its resources.

References

[1] Kevin P. Allen. Efficient parallel computing for solving linear systems of equations.
UMBC Review: Journal of Undergraduate Research and Creative Works, vol. 5, pp. 8–
17, 2004.

[2] Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

[3] Matthew Brewster and Matthias K. Gobbert. A comparative evaluation of Matlab,
Octave, FreeMat, and Scilab on tara. Technical Report HPCF–2011–10, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2011.

[4] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[5] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations.
Cambridge Texts in Applied Mathematics. Cambridge University Press, second edition,
2009.

[6] Jeremy Kepner. Parallel MATLAB for Multicore and Multinode Computers. SIAM,
2009.

[7] Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an el-
liptic test problem on the cluster tara. Technical Report HPCF–2010–2, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2010.

[8] Neeraj Sharma. A comparative study of several numerical computational packages.
M.S. thesis, Department of Mathematics and Statistics, University of Maryland, Balti-
more County, 2010.

[9] Neeraj Sharma and Matthias K. Gobbert. Performance studies for multithreading in
Matlab with usage instructions on hpc. Technical Report HPCF–2009–1, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2009.

38

[10] Neeraj Sharma and Matthias K. Gobbert. A comparative evaluation of Matlab, Octave,
FreeMat, and Scilab for research and teaching. Technical Report HPCF–2010–7, UMBC
High Performance Computing Facility, University of Maryland, Baltimore County, 2010.

[11] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer. Package deSolve: Solving
initial value differential equations in R, CRAN R project documentation, 2010.

[12] David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition, 2010.

39

