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ABSTRACT

We show that inside a multi-layer dielectric stack, consideration of higher-order, fast-oscillating interference terms
between counter-propagating waves can dramatically change the dynamics of second harmonic generation, and thus lead
to an unusual result: field confinement and overlap can be far better optimized, and conversion efficiencies further
enhanced, in the presence of a phase mismatch. One may therefore conclude that phase matching is not always a
necessary condition to provide optimized nonlinear frequency conversion efficiency.

Keywords: Non-Linear frequency conversion, multilayer stacks.

Recent work1'2 on nanotechnology-based devices has shown that it is possible to design miniaturized structures
characterized by a high efficiency/size ratio. The possibility of molding the properties of light using multilayer stacks (or
1D photonic crystals) is of great interest for a wide variety of applications. The technologies covered include
waveguides, optical fibers, micro-cavities, channel-drop filters, input/output couplers, all optical multiplexers, and low
threshold lasers, to name a few3'4. Additional considerations of nonlinear effects can lead to efficient frequency
converters, multicolor sources, and tunable delay lines5'6.

In this paper we focus our attention on materials that display a second order nonlinear response under intense
light illumination, more specifically used in devices for second harmonic (SH) generation. As described in reference (6),
the fundamental (FF) and SH fields can be made to co-propagate and overlap inside the same layers with roughly the
same effective phase index and the same group velocities. Moreover, it has already been shown that in the presence of
enhanced local fields resulting from multiple internal reflections, there are terms in the nonlinear polarization that do not
conserve momentum7'8. Those terms related to the presence of counter-propagating waves inside the structure are
generally neglected in the analysis of nonlinear optical effects because their contribution averages to zero on a length
scale of the order of a small fraction of the wavelength.

Although the idea of using multilayer stacks is not new, we wish to show here that it is possible to further
increase nonlinear frequency conversion efficiencies by an additional order of magnitude with respect to the state of art.
In reference [9] a multiple scale approach was used to derive an analytic expression for the conversion efficiency for a
generic layered structure of finite length composed of non-absorbing media. It was found that the conversion efficiency
is proportional to the square modulus ofan effective coupling coefficient, defined as:

'Jz(2)(Z)2(Z);(Z)dZ (1)

Here L is the length of the structure, and t(z) and t2(0(z) are the complex, linear field jrofiles nrmalized with respect
to a unitary input field, so that the electric field inside the structure can be written as: L1(z)= E1 (T1(z) + cc.), where

(i=l,2), and is the amplitude of input field. We emphasize that detj is a complex quantity that contains information
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regarding field distribution and localization, as well as contributions to the conversion efficiency coming from the PM
conditions. In particular, it is easy to show that for a simple case of SH generation in a bulk medium (i.e. no fied
localization effects are considered) t he s quare m odulus o f t he c oupling c oefficient b ecomes

2

[(2) ]2 [SjflC
LJ1

where Ak=k(2co)—2k(w) is the momentum mismatch. Thus, deyj contains the effect of phase mismatch in the

form of the well-known squared sinc function. The concept of maximizing the overlap integral between FF and SH field
plays a crucial role in waveguide SH . Since the guided-mode is created by interference and localization
effects, our arguments find similarities with that approach. However, our model is substantially different because in
waveguide configurations the overlap integral is calculated over the transverse coordinate, and then homogenous
propagation along the longitudinal axis is assumed. In our case we have longitudinal instead of transverse confinement,
which is born out of the multiple reflections that occur as the wave probes the structure. More details can be found in our
ref. [9].

As a first step we focus our attention to the fact that our model accurately describes results typically obtained for

high-Q doubly-resonant cavities. In particular, the calculation of our deff in a homogenous medium of length L, and

refractive index n(w), in the presence of counter-propagating waves due to multiple internal reflections can be written as:

deff [(A2C*e21Mz
+ BD*e21Mz)dz +

(2)

+2AB(C*e_21
(2w)z D*e2 (2o)z ) (A2D*e+40)+M/2)z + B2C*efb)+Mt2)z

)z]
where An = n(2a) — n(w) and A,B,C,D are constants that can be calculated by imposing bounda conditions at the input
and output interfaces. Inded, the general expressions for the normalized field profiles inside the medium are:
t,(z) = [Aetkon ((0)z Be_lkofb)z j and 2(z) = [Ce12k0n(2(0 + De_12k0n (2co)z

] • In order to get a resonant condition for the FF, L

must be at least of the order of ?J2. In so choosing L, the fast varying terms inside the integrand average to zero, leaving
only the first term on the right hand side (RHS) of Eq (2) to contribute. In spite of local field enhancement, (i.e.
magnitudes of A,B,C,D are related to the Q factor of the cavity) the first term of RHS of Eq.(2) shows that the nonlinear
dynamics is governed by the PM condition. In other words, due to material dispersion, high conversion efficiency can be
achieved only by using birefringent crystals or other PM schemes.

The aim of this letter is to show that the situation dramatically changes when we consider multilayer stacks with
layer thicknesses of the order of 2J4 or less. We consider a structure made by alternating two types of layers, one
nonlinear (of high refractive index n2(w)) and the other linear (n1(w)), of thicknesses oh and öl respectively, so that
A=h+M is the size of the elementary cell, and L=NA, where N is the number of periods. To provide a link between PM
conditions and field's overlap, as a first approximation the complex linear field profiles can be decomposed as a
superposition of forward and backward waves:

(z)=[A(z)e" +B(z)e]; and 2c)(z)=[C(z)e12kontr(2u))z+D(z)e_12k02)]; (3)

where n eff S the effective index of refraction as defined in ref. [6], and A(z), B(z), C(z),and D(z), are slowly varying,
envelope functions. Substituting Eqs.(3) into the expression for the coupling coefficient, and taking 2(z)=O everywhere
except within the nonlinear layers we obtain:

N jA+dh
'eff = — (2) J (A2(z)c* (z)e2'" + B2 (z)D* (z)e21 z)d +

L 1=0 1A

N jA+dh
(4)

+ 2 J A(_)B(z)(C* ()e2'' (2w)z + D* ()e2' (2c0)z) th +
j0 jA

N 1A+dh

.1 (A2(z)D*(z)e+41
(V)+L\Jj/2)z + /2)z )d

j0 jA
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where 'eJj 11eff(20) _ fleff(W)
• The last sum on the right hand side (RHS) of Eq.(4) can be neglected because all terms

have a spatial frequency equal to kej((O) ). We have verified numerically that this term generally gives a
contribution much smaller compared to the other terms, unless the integration length (or nonlinear layer thickness) is on
the order of ?J8 or less, where X is the pump wavelength. However, for such small layer thickness the conversion
efficiency has already dropped considerably, and so we choose to optimize conversion rates based on the two leading
terms. The first sum on the RHS contains two terms that may be spatially slowly varying depending on the amount of
effective phase mismatch. Finally, the terms inside the second sum on the RHS have a spatial frequency equal to

Thus, if the optical thickness of the nonlinear layer h is chosen to be less than a X/2 with respect to the SH
field (roughly a quarter-wavelength with respect to the pump field) and the spacing (61) between the nonlinear layers is
also properly adjusted, it is then possible to maximize the value of the overall sum in one of two ways, namely, by
having either the first or the second term contribute.

Fig. 1 : Real (solid) and Imaginary (dashed) part ofthe argument ofthe overlap integral when the FF is tuned at the first band edge
resonance, and the SH field is also tuned at the first order band edge resonance.

Inset: transmission spectrum vs frequency at normal incidence. FF and SH tuning are indicated by the arrows.

In Ref.[6] we studied the linear and nonlinear properties of finite structures by defining effective PM conditions to
combine material index dispersion, geometrical dispersion, and field localization. We also showed that the effective PM
condition was consistent with the commonly used Bloch wave vector matching for infinite periodic structures. Therefore,
we are now claiming that this procedure, as well as all the procedures based on Bloch theory, are equivalent to
maximizing the magnitude and importance of only the first term in Eq. (4). Terms due to counter-propagating waves can
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indeed enhance frequency conversion rates, in contrast to ordinary rules that apply to standard PM. As an example of a
case where conversion efficiency can be further enhanced by at least one order of magnitude compared to a phase
matched case we choose a structure with mixed quarter-wave/half-wave geometry and 20 periods. The nonlinear material
(2J4 optical thickness) has a refractive index n2(WFF )=1 .428 at the FF frequency; for simplicity, the linear material (A12
optical thickness) is assumed to be air, with n1=1 . The reference wavelength used to calculate the optical paths of the
layers is 1 m, corresponding to an angular frequency w =1 .88* 1015 Assuming normal incidence, this simple
geometrical arrangement allows us to rather easily tune the FF and SH fields to the two resonance peaks each located
near two consecutives band gaps of the transmission spectrum, where field localization effects are maximized. We tune
the FF at the first order band edge resonance (XFF1 .69 im which corresponds to 0)FFO.592o, as labeled by the arrow
in the inset of Fig.(1)). Once layer thicknesses have been chosen, one may add dispersion by varying the index of
refraction at the SH frequency (WSH 1 .1 84u0 ) to tune the field to any desired frequency near the band edge. For
example, if dispersion is neglected, n2(osH)n2(oFF), and the SH field is tuned to the 4th resonance transmission peak
away from the band edge. Increasing the value of n2(WSH) redshifts the band structure, and so it is possible to tune the SH
closer to the band edge. Although it is an artifice, varying the refractive index in this fashion makes it possible to find the
optimized parameters as a function of one degree of freedom, and to distinguish the role played by phase matching and
by local field enhancement during the conversion process. In Fig.(1) we depict the real and imaginary parts of the
integrand of Eq. (3) when a suitable index dispersion to the high index material is considered. In particular we have
n2(cosH)=l .676, which effectively tunes the SH to the band edge resonance, as indicated by the arrow in the inset of Fig
(1). It is evident that in this case the fast varying contributions to the integral inside the nonlinear layers do not average to
zero. Indeed they never change sign inside each nonlinear layer for both real (dashed line) and imaginary (solid) parts.
Moreover, all the contributions from each single layer sum coherently to maximize the magnitude of the square modulus
of the integral. The expectation of higher conversion efficiencies is fully confirmed by our numerical simulations.

+

wavelength (nm)

Fig.2: a) (thick solid line): Enhancement factor deff /(2)2 n2(cosH); (thin solid line): Phase matching contribution given by the

expressiqn: 5flC(L\kejyLI2)2 vs. n2(osH). (right y axis); (dashed line): SH transmission as a function of n2(osH). (left y axis).

b) Cleff (2) vs. FF wavelength for the optimized 20 period structure, öh==O.175 .tm and öl=O.5 .tm. The parameters used are n11,

n2(21 .333 +O.28/22 — O.O25I2 with 2 expressed in rim.
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In Fig.(2a) we depict the value of the square modulus of dif / (2) as a function of the refractive index 112(WSH)

when the pump field remains tuned at the band edge resonance (thick solid line). Changing the refractive index at the
frequency )5H 5 equivalent to changing the tuning conditions only for the field at osH (see transmission spectrum for SH
in fig.2a —dashed line). Using only effective index considerations, maximum conversion efficiency is expected to be
achieved when the second harmonic field is tuned at the second resonance and the ratio 17. (2)2 s described by the

function Isinc(AkefjLI22 [8] plotted in Fig. (2a) (thin line). Comparing the two curves we note that we have only a
relative maximum of dejy 1 when effective PM is fulfilled. On the other hand, maximum enhancement is achieved

when the second harmonic field is tuned to the first band edge resonance, where the effective mismatch is AflefjO.°6. We
predict that in this case the conversion efficiency will be oie order of magnitude greater compared to the case of exact,

effective PM. Finally we show the tuning curve (deff/(2) vs. FF wavelength) for our optimized structure (Fig 2b). The

amount of dispersion introduced, i.e., n2(cosH)- n2(coFF) =0.248, is not atypical of common materials. As a concrete
example, an anangement of 2 1 .5 periods of A1N (l4Onm)/GaN(94nm) tune the FF at 1068nm, and the SH at 534nm as
indicated in the inset of Fig. 1 . Here, when ?FF=l .69 rim, the enhancement factor is more than 3 orders of magnitude
larger compared to the out-of-resonance case, with a usable bandwidth of approximately 4nm.

In conclusion, the dynamics of nonlinear frequency conversion is driven by the effective PM conditions only if
the field localization is not optimized to enhance the nonlinear interaction. It is possible to achieve higher SH generation
conversion efficiency when the fast varying terms in the nonlinear polarization related to the presence of counter-
propagating w ayes a re n ot n egligible, a nd b y p roperly t ailoring the s ize a nd d istribution of the n onlinear 1 ayers. T he
overlap i ntegral p lays a crucial role on the conversion efficiency enhancement. It retains the information on effective
phase matching but, under appropriate conditions, it can drastically change the dynamics of fields with respect to the
case of exact, effective phase matching conditions.
Two ofus (MC. and GD.) wish to acknowledge the U.S. Army European Research Office for partial financial support.
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