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Combining Remote and In-situ Sensing for
Autonomous Underwater Vehicle Localization and
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Abstract—Scientists continue to study the red tide and fish-kill
events happening in Florida. Machine learning applications using
remote sensing data on coastal waters to monitor water quality
parameters and detect harmful algal blooms are also being
studied. Unmanned Surface Vehicles (USVs) and Autonomous
Underwater Vehicles (AUVs) are often deployed on data collection
and disaster response missions. To enhance study and mitigation
efforts, robots must be able to use available data to navigate
these underwater environments. In this study, we compute
a satellite-derived underwater environment (SDUE) model by
implementing a supervised machine learning model where remote
sensing reflectance (Rrs) indices are labeled with in-situ data
they correlate with. The models predict bathymetry and water
quality parameters given a recent remote sensing image. In our
experiment, we use Sentinel-2 (S2) images and in-situ data of
the Biscayne Bay to create an SDUE that can be used as a
Chlorophyll-a map. The SDUE is then used in an Extended
Kalman Filter (EKF) application that solves an underwater
vehicle localization and navigation problem.

Index Terms—remote sensing, machine learning, water quality,
linear regression, estimation, autonomous underwater vehicle,
chlorophyll-a, robots

I. INTRODUCTION

Localization in underwater environments is a central prob-
lem for autonomous vehicles (AUV), and it is a prerequi-
site needed for applications such as conservation of marine
species, environmental monitoring, and infrastructure mainte-
nance. However, traditional sensing modalities used for state
estimation in outdoor robotics (e.g., GPS, compasses, LIDAR,
and Vision) may be compromised in underwater scenarios.
Our goal is to compute a satellite-derived underwater environ-
ment (SDUE) model (e.g., 3-D Chlorophyll and Bathymetry
Map) and use it to solve an underwater robot localization and
navigation problem. The AUV will rely on the widely used
Extended Kalman filter (EKF) [1] to fuse information from
the SDUE, GPS, and other sensors.

Figure 1 shows a flow chart illustrating our approach. We
attempt to enhance the available in-situ data with remote
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Fig. 1. Overview of our method for satellite-assisted robot localization.

sensing images captured by Sentinel-2 (S2) made available
by the European Space Agency (ESA) and Sinergise Sentinel
Hub for use in a supervised machine learning application. Our
approach has the following caveat; we test our methodology
using in-situ data without samples collected during a harmful
water event. We also do not correct predicted values based on
other water quality parameters such as turbidity.

II. RELATED WORK

Studies by Gholizadeh et al. [2], Nazeer et al. [3], Hafeez
et al. [4], Cruz et al. [5] examine several approaches to
applying statistical methods and machine learning algorithms
with in-situ and remote sensing data and report metrics such
as cross-validation accuracy scores and root-mean-square error
(RMSE).

A. Satellite-Derived Bathymetry

Caballero et al. [6] derive bathymetry using S2 images
of South Florida by calculating the pseudo-satellite-derived
bathymetry or pSDB, labeling pSDB with bathymetry refer-
ence charts, and a linear regression model.

pSDB =
log(1000πRrs(560))

log(1000πRrs(492))
(1)
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Caballero et al. [7] further evaluate pSDB and study how
water quality parameters such as turbidity and Chlorophyll-a
affects the maximum predicted water column depth.

B. Satellite-Derived Chlorophyll-a

Mishra et al. [8] present the Normalized Difference Chloro-
phyll Index (NDCI) to estimate chlorophyll-a using remote
sensing images of estuaries and coastal turbid waters.

NDCI =
Rrs(704)−Rrs(665)

Rrs(704) +Rrs(665)
(2)

Caballero et al. [9] were able to use S2 images and NDCI
to detect algal blooms in coastal waters, but use in-situ data to
be able to detect harmful algal blooms caused by toxic algae
species.

C. Satellite-Assisted Robot Navigation

Kodgule et al. [10] show how to use remote sensing and
in-situ data in a Markov Decision Process for robot planetary
exploration. The method relies on the spectral unmixing of
lower resolution satellite data using higher resolution in-situ
data collected during robot path navigation.

D. Underwater Localization

Due to the lack of GPS signals, accurate navigation con-
tinues to be a significant difficulty for any platforms traveling
underwater [11]. Errors in the predicted position are caused
by the process and sensor noise levels, which is crucial
for autonomous underwater navigation [12]. In this context,
the extended Kalman filter (EKF) is the most widely used
navigation method to ensure precise localization underwater
[13], [14], [15].

III. PROBLEM FORMULATION

A. Satellite-Derived Underwater Environment

We consider our ocean work environment as a 3-D environ-
ment denoted as W ⊂ R3. Our workspace is then divided into
a set of 2-D water layers at different depths. Assuming that the
total number of water layers is denoted as L, the workspace
W can be described as

W = w1 ∪ w2 ∪ · · · ∪ wL (3)

At each layer l ∈ {1, . . . , L}, the workspace wl is modelled
as wl ⊂ R2 and we discretize the workspace into a 2-D grid.
The free water space at each layer is denoted as

El = wl \Ol (4)

where Ol ⊂ R2 is considered an inaccessible region for the
underwater vehicle. Therefore, the free workspace is defined
in terms of the entire workspace W as

E = E1 ∪ E2 ∪ · · · ∪ EL (5)

Let C be the collection of all 2-D cells within a bounding
convex polygon P where P ⊆ w1 represents our area of
interest (AOI). Each cell has a center in the form of WGS84

coordinates denoted as (x, y, l), where x, y ∈ R describe
longitude and latitude, and l with 0 ≤ l ≤ L describes
water depth in meters. Each geographic coordinate (x, y) pair
represents the center of an equal-sized grid tile that covers the
resolution of the remote sensing data. Each unit of l values
covers 1 meter in water depth.

Let Q = (d, b, i,m) be a satellite query configuration where
d is a satellite identifier and b, i,m are lists of requested Rrs

bandwidths, indices, and metadata respectively. Remote sens-
ing data is denoted as ρ : C×Q×T1 → Rk, where T1 = [0, t1)
is the collection time interval data and k = |b| + |i| + |m| is
the total number of variables.

Let β : T2 → Rn be the collection of all available in-
situ data, where T2 = [0, t2) represents the collection time
interval and n is the number of in-situ sensors. The in-situ
data collected on the surface by USVs is denoted as βu.

Let S : W → Rj be an SDUE computed by a supervised
machine learning model, which uses the maps provided by
ρ and βu where values in ρ are labeled with values in βu
that share the same coordinates and a negligible difference
in collection time and j is the number of predicted water
parameters. The values labeled in ρ are in the form of a
ratio or index that highly correlates to the in-situ data. At
the center of each cell in the 3-D SDUE are the estimated
in-situ measurements over a 10× 10 meter area of one layer
contained in P

Problem 1: Given an ocean work environment W of in-
terest, a bounding convex polygon P , a satellite configuration
Q, a collection of remote sensing data ρ, and a collection of
in-situ data β, compute an SDUE S.

B. Vehicle Model

Our domain will have an AUV A at starting position
x0 = (x0, y0, 0) ∈ W . A collects in-situ data denoted as
βa. A can traverse E and move freely between layers. The
AUV can be described by a discretized, non-linear system
such that f(xk,uk) + qk is the motion model of the vehicle
where xi is the state vector, and uk input control vector,
also the next state are related by xk+1 = f(xk,uk) + qk

being x0 the initial position of the vehicle. h(xk) + rk is the
observation model of the vehicle, qk and rk are additive, zero-
mean noise to account for model and sensing imperfections
for each iteration k. We assume that A can be modeled as
a rigid body and moves slowly at a constant speed v so
that we can safely neglect its dynamics. We also assume that
the water current is irrotational, having only horizontal linear
velocity components. The sensors of A are composed of GPS,
IMU (gyros, accelerometers), depth sensors, and water quality
sensors. We describe A as a discretized, non-linear system as

xk+1 = f(xk,uk) + qk

zk = h(xk) + rk
(6)

such that f(xk,uk) is the motion model of the vehicle,
h(xk) is the observation model of the vehicle and zk is the
observation obtained by A at step k.
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C. Motion Model

We assumed that the underwater vehicle can be modeled as
a rigid body and that it is moving slowly at a constant speed v.
Let X be the state space, i.e. the set of all possible states, and
U be the action space, which represents the set of all possible
actions. Therefore, at any given instant k, the vehicle can be
described by

xk = (x, y, l, ψ, v)⊤ ∈ X
uk = (v, ul, ω)

⊤ ∈ U
(7)

in which (x, y) is the underwater horizontal position of the
vehicle, l is the depth, ψ is the vehicle’s heading, v is the
vehicle’s translational velocity, and ω is the angular velocity.
Considering that ul is an action that directly affects a change
in depth, i.e l̇ = ul, the simplified kinematic model of the
vehicle is defined as

xk+1 = Axk +Buk + qk (8)

where the state transition matrix A, the input matrix B are
given by

A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , B =


∆t cos(ψ) 0 0
∆t sin(ψ) 0 0

0 ∆t 0
0 0 ∆t
1 0 0

 (9)

and qk is zero-mean noise distributed as qk ∼ N (0,Qk)
with covariance given by

Qk =

12 0 0
0 12 0

0 0
(

π
360

)2


D. Observation Model

We assume that the vehicle sensors are composed of GPS,
IMU (gyros, accelerometers), depth sensor, and water quality
sensor (chlorophyll-a sensor) and that the vehicle can observe
its state with uncertainties due to sensor imperfections and
the dynamic nature of the underwater environment. Defining
the observation space Z as the set of all possible sensor
observations zk ∈ Z at iteration k, the observation model
h(xk) at the surface level given GPS and depth sensor readings
are available can be represented by

zk = h(xk) =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

xk + rk (10)

where rk is zero-mean noise distributed as rk ∼ N (0,Rk)
with covariance given by

Rk =

52 0 0
0 52 0
0 0 0.52

 .
When the vehicle is underwater, we use the 3-D SDUE

to map chlorophyll-a measurements to locations given

chlorophyll-a sensor data is available. Because of the uncer-
tainty associated with the 3-D SDUE map construction, the
deeper the vehicle descents, the higher the uncertainty is. In
addition to that, there could be many zk possible locations
which have similar values to the measurements leading to
inaccurate estimations. To address this issue, we consider
a constrained (regularized) optimization problem to provide
a reasonable candidate, let S the 3-D SDUE and mk the
measurement collected at step k and state xk. We define
g : W −→ W and g(xk) as the solution to the optimization
problem

min
x∈W

||S(x)−mk||22

s.t. (x− xk)
⊤M−1(x− xk) ≤ 1.

(11)

The matrix M is a positive definite matrix, which leads to
a restriction in the sense of a Mahalanobis distance. In this
case, we consider it a diagonal matrix. This restriction means
that we are looking for places in the SDUE map whose
measurements are close to the ones collected by the agent mk

within an ellipsoid centered at xk. We compute zk in the same
way as using the function h. Finally, it is possible to assume
that g is a differentiable function by virtue of the implicit
function theorem and the nature of the implied functions in
Equation (11); nonetheless, its Jacobian was calculated using
a finite difference scheme to estimate each partial derivative.

E. Extended Kalman Filter Framework

Consider the nonlinear system described in (6). The approx-
imation used by the extended Kalman filter algorithm is based
on truncated Taylor series expansion with the assumption that
higher-order terms are negligible. The approximation of f(x)
is defined as

f(x,u) ≈ f(x̂,u) + Fx̃ (12)

where F and Fk are the Jacobian derivatives of f respect
to x evaluated at (x̂,u) and (xk,uk)

F =
∂f

∂x

∣∣∣
(x̂,u)

, Fk =
∂f

∂x

∣∣∣
(xk,uk)

. (13)

Also, x̃ = x− x̂ is the error from the Taylor series expansion.
The EKF algorithm has two main steps: prediction and update.

1) EKF Prediction Phase: Given a previous state estimate
x̂k−1|k−1, the a priori estimate is defined as

x̂k|k−1 = f(x̂k−1|k−1,uk) (14)

and the estimation error is

x̃k|k−1 ≜ x̂k|k−1 − xk

= f(x̂k−1|k−1,uk)− f(xk−1,uk)− qk

≈ Fkx̃k−1|k−1 − qk.

(15)

The a priori covariance error is then calculated as

Pk|k−1 = E
[
x̃k|k−1x̃

⊤
k|k−1

]
= FkPk−1|k−1F

⊤
k +Qk

(16)
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2) EKF Update Phase: For the update phase, the measure-
ment model is approximated by a linear system. The desired
structure is given by

x̂k|k = x̂k|k−1 +Kk

[
zk − h(x̂k|k)

]
. (17)

Considering that the a priori estimate error is uncorrelated
with the measurement noise, the a posteriori covariance is
obtained by

Pk|k = Pk|k−1 +KkE
[(
h(xk)− E

[
h(xk)

])
x̃⊤
k|k−1

]
(18)

As in the prediction phase, h(xk) is linearized through
Taylor series expansion around x̂k|k−1 to obtain

h(xk) ≈ h(x̂k|k−1)−Hkx̃k|k−1 (19)

Equation (18) is then rewritten as

Pk|k = Pk|k−1+KkHkPk|k−1 = (I−KkHk)Pk|k−1 (20)

and the Kalman gain is given by

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (21)

To predict the system state using the EKF filter, it is suffi-
cient to know the initial estimate and covariance, x0 and P0,
the noise covariance, Qi, and the state transition model. The
estimation process is initialized with the vehicle on the surface
where it is possible to use GPS and the covariance matrix P0

is initialized based on sensor uncertainties. When the vehicle
is underwater, the state is updated by dead-reckoning assuming
that an SDUE map is provided. The initial state of the system
is given by x0 = (x0, y0, l0, ψ0, v0)

⊤ and the covariance is
initialized as P0 = I5×5.

The EKF requires the additional calculation of the Jacobian
of the state transition function Fk and the Jacobian of the
observation model Hk. The EKF procedure to compute the
state estimate is described in Algorithm 1, which is called at
each timestep of the simulation.

Algorithm 1 EKF(x̂k−1|k−1,Pk−1|k−1, zk)
Input: x̂k−1|k−1: current state estimate, Pk−1|k−1: covariance
matrix, zk: current measurement vector
Initialization: x̂0|k ∈ Rd, P0|k ∈ Rd×d

1: Prediction
2: x̂k|k−1 = f(x̂k−1|k−1,uk−1|k−1) + qk−1|k−1

3: Fk = ∂f
∂x

∣∣∣
x̂k−1|k−1

4: Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk

5: Update
6: Hk = ∂h

∂x

∣∣∣
x̂k|k−1

7: Kk = Pk|k−1H
⊤
k

(
HkPk|k−1H

⊤
k +Rk

)−1

8: x̂k|k = x̂k|k−1 +Kk(zk − hk(x̂k|k))
9: Pk|k =

(
I−KkHk

)
Pk|k−1

10: return x̂k|k,Pk|k

EKF initialization
via GPS

Surface
level?

Position estimation
by GPS

Position estimation by
Dead Reckoning and
Chlorophyll-a map

Yes No

Fig. 2. EKF Framework

Fig. 3. Ocean work environment with mission locations

Problem 2: Given an ocean work environment W , an
SDUE S, and the desired trajectory τ , compute an estimated
trajectory τ̂ that minimizes the tracking error.

IV. METHODS

A. Data Collection

We begin by deploying a USV on a data collection mission.
The in-situ data collected βu is the ground truth for the
labeling of the remote sensing data ρ. Figure 3 depicts our
ocean work environment W with two markers representing
the locations in-situ data on January 27th, 2022. The USV
deployed is a YSI HYCAT that can measure several water
quality parameters and is shown in Figure 4a and the areas in
which in-situ data were collected are shown in Figure 4b.

Next, we create a satellite configuration that requests an S2
scene captured on the day closest to the in-situ collection date
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(a) (b)

Fig. 4. Data collection mission. (a) The USV deployed on a data collection
mission (b) The lines where in-situ data were collected are shown in yellow

(a) (b)

Fig. 5. Remote sensing data retrieval. (a) The AOI as a bounding convex
polygon within the ocean work environment; (b) A recent True Color (RGB)
S2 image of the AOI with 10-meter pixel resolution and atmospherically
corrected via ACOLITE.

with minimal cloud contamination and all available bands and
metadata information over W . In our case, we download an
S2 scene of the Biscayne Bay captured on January 30th, 2022
with 0% cloud coverage. Figure 5a shows the AOI as P and
Figure 5b depicts the AOI rendered using the red, green, and
blue (RGB) bands of an S2 scene.

B. Data Processing

The Bathymetry measurements are corrected using NOAA
tide information and the magnetic declination of the area.
The S2 image is processed via the ACOLITE atmospheric
correction application with sun glint correction enabled. The
corrected scene is then loaded into the ESA Sentinel Appli-
cation Platform (SNAP) to mask pixels with land, calculate
indices, and extract pixels where in-situ data were calculated.
We calculate NDCI and pSDB to be labeled with chlorophyll-

a and bathymetry in-situ data respectively. The in-situ data
is co-located with the remote sensing data using the SNAP
Pixel extraction tool and is used to train two linear regression
models to predict chlorophyll-a and bathymetry. Pixels that are
contaminated by land are filtered out. To reduce the effects of
outliers, the S2 10m resolution ensures that each pixel is co-
located with multiple in-situ measurements. Negative estimates
are replaced with the minimum positive in-situ measurement.
Another satellite query configuration is then created to request
the latest S2 scene available over P . The second image is then
corrected with ACOLITE before calculating the indices. The
NDCI and pSDB calculated for each pixel are used as the input
for the models to predict the surface level chlorophyll-a and
bathymetry. To create the SDUE and solve problem 1, we use
a simple exponential decay function to predict chlorophyll-a
measurement of the layers below the surface level up to the
maximum predicted depth.

V. RESULTS

A. Predictions

TABLE I
IN-SITU DATA COLLECTED

Water Parameter Instrument In-situ Samples
Bathymetry SonTek HydroSurveyor M9 3893∗

Chlorophyll-a YSI EXO2 Sonde 3802∗

∗Unprocessed and collected across two missions carried out on January
27th, 2022.

TABLE II
CO-LOCATED DATA

Water Parameter Count Min Max Mean Negative*
Bathymetry 3671 0.92 7.01 3.97 0

Chlorophyll-a 3600 0.05 5.68 1.83 1
∗Number of negative in-situ data values.

Table I shows the number of in-situ bathymetry and
chlorophyll-a samples collected. Table II shows the number
of in-situ samples that were co-located to remote sensing data
of water that is not contaminated by land along with a basic
statistical analysis. Figure 6 shows the predicted bathymetry
given the S2 image captured on April 25th, 2022 shown in
Figure 5b. Land pixels default to 0. Water pixels predicted
to have negative water depth are set to a depth of one while
pixels that were predicted to be too deep were set to the largest
in-situ sample found incremented by one. Most water pixels
with outlier estimates are from small bodies of water outside
of P or close to many land pixels. In Figure 5b, the deepest
predicted depths are the corrected pixels on the bottom left
and top right which appear to be artifacts from atmospheric
correction and are actually land pixels. Most water pixels are
predicted to be over three meters deep. The closer the pixels
are to the land, the more likely the predicted depth is about one
to two meters deep. Figure 7 shows the predicted Chlorophyll-
a levels of the first four layers of the SDUE.
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B. Path Tracking Simulation

In this section, we propose two different vehicle trajectories
based on the framework presented in Figure 2. For simulation
purposes, we consider that the GPS signal is no longer
available below 30 cm from the surface in both scenarios.
The first desired trajectory is presented in Figure 8 (a). The
vehicle moves at a constant forward speed at surface level for
half of the simulation time and then it goes underwater in a
sinusoidal descent for the rest of the simulation until reaching
5 meters deep. The dead-reckoning position error and EKF-
based estimation error are shown in Figures (c) and (d), respec-
tively. As we expected, the EKF-based approach minimizes the
tracking error not only at the surface level but also underwater
with the chlorophyll-a SDUE map information when compared
to dead-reckoning tracking. The second desired trajectory is
presented in Figure 8e. In this scenario, the heading angle is
kept constant for the entire simulation while the vehicle moves
at a constant forward speed and performs a sinusoidal path.
Again, the EKF-based approach minimizes the tracking error

when compared to dead-reckoning.

VI. CONCLUSIONS AND FUTURE WORK

The results reported are based on actual ocean model pre-
diction data that demonstrate the applicability of our method.
We co-located remote-sensing and in-situ data and applied it to
a robot localization and navigation problem using a supervised
machine learning model and EKF solution. With the available
in-situ data, the SDB predictions are able to show a downward
trend the closer a water pixel is to a land pixel. The model
can be further improved by gathering additional in-situ sam-
ples of deeper waters in W , incorporating higher resolution
hyperspectral data and spectral unmixing in real time [10],
making adjustments to the indices and masks used, changing
Chlorophyll-a to one or more water parameters, leveraging
other water quality measurements for estimate correction [7],
and other avenues.
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