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ARTICLE

Global connections between El Nino and
landslide impacts
Robert Emberson 1,2,3✉, Dalia Kirschbaum1 & Thomas Stanley 1,2,3

El Nino is a critical part of global inter-annual climate variability, and the intensity of El Nino

has major implications for rainfall-induced natural hazards in many vulnerable countries. The

impact of landslides triggered by rainfall is likely to be modulated by the strength of El Nino,

but the nature of this connection and the places where it is most relevant remains uncon-

strained. Here we combine new satellite rainfall data with a global landslide exposure model

to show that El Nino has far-reaching effects on landslide impacts to people and infra-

structure. We find that the impact of El Nino on landslide exposure can be greater in parts of

Southeast Asia and Latin America than that due to seasonal rainfall variability. These findings

improve our understanding of hazard variability around the world and can assist disaster

mitigation efforts on seasonal timescales.
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Landslides and associated debris flows result in devastating
impacts around the world every year, causing thousands of
fatalities1,2. Extreme, intense rainfall is a common trigger for

landslide hazards, and it is therefore crucial to understand the
changes in rainfall patterns that may drive the damage from these
hazards. Intense rainfall occurring during tropical storms or
localised convective thunderstorms can result in widespread
landsliding3,4, the incidence of which can vary on seasonal to
multi-annual timescales5. Existing work has highlighted that
during the Northern hemisphere summer, the average landslide
fatalities increase2,6, particularly in association with the peak of
the Indian Summer Monsoon and tropical cyclone seasons.
However, the degree to which landslide impacts are driven by
rainfall seasonality in many countries remains unconstrained.
The effect of multi-year changes in rainfall patterns—crucially the
El Nino Southern Oscillation (ENSO)—on landslide impacts at a
global extent is largely unknown. This is especially relevant since
ENSO drives significant changes in rainfall intensity in a range of
countries where landslides cause fatalities, including India,
Indonesia, Colombia, and the Philippines7,8. Interdecadal varia-
bility of extreme rainfall events in South America is also influ-
enced by the Interdecadal Pacific Oscillation9. ENSO variability
brings major and diverse changes to seasonal weather patterns in
many countries around the world due to teleconnections with the
equatorial Pacific Ocean. The changes in rainfall patterns in
particular can lead to highly variable agricultural outcomes10,
increases in the incidence of flooding11,12, and increased occur-
rence of fires13,14, among other impacts.

Variability in the ocean-atmosphere system occurs over several
different temporal scales. The fluctuations in sea surface tem-
peratures and related changes in terrestrial rainfall and tem-
perature are highly complex, but we make the simplifying
assumption that the associated changes relevant to landslides are

solely due to changes in rainfall. To illustrate the impact of ENSO
on rainfall patterns, in Fig. 1 we show the difference between the
peak El Nino and La Nina conditions for NASA’s IMERG
(Integrated Multi-satellitE Retrievals for GPM15) satellite rainfall
record, which stretches from June 2000-present. We show dif-
ference maps of the rainfall patterns during peak El Nino and
peak La Nina conditions over this period, for both Northern
Hemisphere summer and winter. ENSO observations are derived
from the Multivariate ENSO Index version 2 (MVEI v2)16. ENSO
changes rainfall patterns chiefly around the Pacific, but also
further afield (Fig. 1). The sign of the ENSO index changes over
timescales on the order of 2-5 years17. Much of the change in
rainfall occurs over the ocean, but major changes are also
observed in Latin America, the Caribbean, SE Asia, and India.
Many countries in these areas have high numbers of landslide-
related fatalities2,18. Prior global studies have indicated that
ENSO has significant impacts on global patterns of total rainfall,
as well as the incidence of extreme rainfall19,20.

It is important to note that the ENSO system exhibits sig-
nificant variability, with some studies showing that in addition to
the conventional ‘Cold-Tongue’ El Nino, an atypical form may
exist, variously referred to as ‘Warm-Pool’ or ‘Central Pacific’ El
Nino events21. While these two types of event are both well
characterised by the MVEI product16, they may lead to differ-
ences in precipitation variability21. In this study, we do not dif-
ferentiate between different forms of El Nino event, partly
because there are only a handful of ENSO cycles in the period of
observation, limiting the availability of data. In addition, since the
existence of this non-standard El Nino form remains debated22

and no widely accepted index for its strength exists, we suggest
that our initial findings can lay the foundations for future work to
explore the differences in landslide impact due to El Nino
variability when more data is available. The North Atlantic

Northern Hemisphere Summer: Difference between Peak El Nino and Peak La Nina

Northern Hemisphere Winter: Difference between Peak El Nino and Peak La Nina

More rain during El Nino

More rain during La Nina

A

B

Fig. 1 Difference between rainfall during El Nino and La Nina conditions, in Northern Hemisphere summer and winter. Rainfall values calculated from
the IMERG (Integrated Multi-satellitE Retrievals for GPM) v06B rainfall product. Values shown represent the difference in average daily rainfall (mm/day)
for July–August–September (A) and November–December–January (B). The differences are calculated for the strongest El Nino and La Nina conditions on
record during the IMERG v06B record (2001-present)—peak summer El Nino is 2015, and winter is 2015–2016. Peak summer La Nina is 2010, and winter
is 2007. The pair of figures together illustrate the main regional differences in rainfall patterns resulting from the El Nino Southern Oscillation (ENSO).
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Oscillation and Pacific Decadal Oscillation are decadal-scale
changes in the ocean-atmosphere system, with less significant
effects on rainfall in landslide-prone regions. During the positive
phase of the Pacific Decadal Oscillation, rainfall increases over the
Alaskan coastal range as well as the South-Western US and
Mexico, while decreases are observed in Canada, East Siberia,
Australia and during the South Asian Summer Monsoon23, with
the inverse observed during the negative phase. PDO cycles are
much longer than those of ENSO, on the order of 20-30 years24.
PDO can also change the frequency of extreme rainfall events in
South America9. Increases in the strength of the North Atlantic
Oscillation leads to rainfall increases over northern Europe, the
eastern USA, and parts of Scandinavia, and decreases in the
northwest Atlantic and Mediterranean regions. NAO cycles are
also on the order of decades or more25.

Connecting global climate patterns with the highly localised
impacts of landslide hazards has remained challenging, in part
due to limited inventories of landslide events, particularly in
developing countries. This precludes consistent modelling of
seasonal landslide patterns around the world. Since empirical data
can be difficult to collect, model-based estimates of rainfall-
triggered landsliding can help fill in gaps26. Now that close to two
decades of consistent global satellite rainfall data at moderate
resolution are available, we can explore at a local level where
landslide exposure is most strongly modulated by the extreme
rainfall caused by multi-year climate oscillations.

In this study, we exploit this recently available data, pairing an
updated dataset of global exposure to landslide hazard with
empirical observations of several ocean-atmosphere teleconnec-
tions, including ENSO, the North Atlantic Oscillation (NAO),
and the Pacific Decadal Oscillation (PDO). We find that in many
countries there are significant shifts in the exposure of people and
infrastructure to rainfall-triggered landslide hazards depending
on the current state of ENSO. Connecting climatological changes
at the continental scale with the exposure of people and infra-
structure to landslides represents a more complete picture of
landslide hazard and exposure. Although we observe some
changes in exposure with respect to PDO and NAO, their cycles
have long timescales that are not captured by the 18-year rainfall
record, meaning no conclusions can be drawn as to the effect of
PDO and NAO on landslide exposure. We include these results in
the supplementary information. Our model estimates provide for
the first time indications of connections between the strength of
the ENSO system and the exposure of people and infrastructure
to landslide hazards.

Results
As demonstrated by other studies, the seasonal variability of
landslides is primarily set by the annual variability of dominant
rainfall regimes such as the monsoon regimes and the tropical
cyclone seasons around the world2,6. For each of the 38,257
admin-2 districts, we calculate the seasonality of exposure to
landslides for population, roads and critical infrastructure (see
Fig. 2 for examples). In order to test how strongly ENSO (or PDO
or NAO) controls exposure, we first remove the annual varia-
bility. For each month in the data, we calculate a 12-month
moving average of exposure with a window starting 12 months
prior to the month in question. The moving window starts
12 months prior to the month in question, and includes that
month. We also calculate the 12-month moving average of ENSO
for that same month. We can then plot the smoothed ENSO
index against the smoothed exposure data. The exposure output
matches the temporal frequency of the MVEI data, but since it
depends on daily rainfall data it captures the short duration,
intense rainfall events most likely to trigger landslides.

Comparing these two moving averages, we can assess both the
strength of the correlation, as well as the slope of the fit to assess
the importance of ENSO in modulating landslide exposure. We
suggest that a strong correlation indicates that ENSO is an
important control on exposure to landslides, and a steeper slope
of the fit indicates a greater overall shift in exposure with each
incremental change in ENSO. Figure 2 illustrates several examples
of this.

In the locations illustrated in Fig. 2, it is clear that ENSO can
have a significant effect on the expected exposure of people to
landslide hazard. The next step is to map this influence globally,
and illustrate the regions where there is a significant ENSO driven
effect, as well as the magnitude of that effect. We have calculated
the p-value of the relationship between 12-month smoothed
MVEI values and the modelled exposure to assess the significance
of the relationship. In Fig. 3, we show the p-value for the rela-
tionship between total monthly rainfall (Fig. 3A) and exposure
(Fig. 3B) and MVEI. In both cases, this is shown for admin-2 level
regions where the p-value is below a 0.05 threshold. We find that
there are many regions with extremely low p-values, indicating a
significant relationship between MVEI and the total rainfall, as
well as the modelled exposure.

We have also calculated the p-value for the relationship
between MVEI and total monthly rainfall, number of days with
extreme rainfall (>95th percentile) per month, and number of
hazard ‘nowcasts’ issued by the LHASA model per month. This
allows us to assess where MVEI is most significantly associated
with extreme rainfall, hazard, and exposure, to highlight where
each of these model components are most important. Figures
illustrating the global distribution of p-values for these model
outputs are shown in the supplementary information. We find
that total rainfall and extreme rainfall are significantly associated
with MVEI values in many parts of the world, with the most
significant relationships in Northern South America, Southern
Brazil and Uruguay, Central Asia, Northern Australia and South
East Asia (Fig. 3A and Supplementary Fig. 1, respectively). The
areas where landslide hazard is significantly associated with
MVEI are similar, although nowcasts and exposure have smaller
p-values in mountainous regions (Supplementary Figs. 3 and 4).

A significant relationship between MVEI and the model out-
puts does not necessarily indicate that MVEI creates large
changes. Simply put, even small changes can have significant
relationships with MVEI if other climatological trends do not
occlude the relationship. However, we are interested in the areas
where ENSO causes the largest changes in exposure. As such, we
must look at the slope of the relationship between MVEI and
exposure—see, for example, the middle set of figures in Fig. 2,
where a unit increase in MVEI results in a reduction of 100,000
person days per month.

In Fig. 4, we show the magnitude of the change driven by a unit
shift in MVEI index. We calculate this based on linear least-
squared regression. We choose to fit a linear relationship to all of
the districts to ensure consistency, and because it seems to
describe the relationship between MVEI and model outputs in
areas where ENSO is known to be important (e.g., Fig. 2). Fig-
ure 4 therefore shows the areas where we model a statistically
significant impact of MVEI that leads to major changes in the
fraction of population exposed to landslides. By looking at the
fraction of the population exposed, we can consistently compare
areas with varying population density.

Since there are only a handful of isolated areas where ENSO
has an effect that is both significant and of a large magnitude, in
Fig. 4 we show two of the key locations—SE Asia, and the
northern part of Latin American.

Using these two key regions to illustrate our findings, we can
see that as the ENSO shifts to an El Nino state, it is likely to
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reduce the exposure to landslides in Colombia, the Philippines,
and Indonesia to a major extent. In the Planadas district of
Colombia (Fig. 2), for example, the change in exposure can be
nearly as large as the seasonal variations in exposure (by com-
paring the top and bottom figures for Planadas in Fig. 2, we can
see that ENSO-driven changes are on the order of 60,000 change
in Popexp, with seasonal variability on the order of 100,000 change
in Popexp). The Philippines, Indonesia and Colombia are coun-
tries where rainfall-triggered landslides cause many fatalities18,27.
In Fig. 5, we show the relative change in exposure due to a unit
change in MVEI relative to the monthly average exposure; the
areas where ENSO leads to large magnitude changes also show
large relative changes, but there are also parts of Mexico,
Southern Brazil, and Central Asia that show large relative
increases during El Nino periods. The results shown here provide
the first quantitative model to connect ENSO variability and
landslide exposure over large areas, showing that a more positive
El Nino condition leads to lower landslide exposure in these
areas. In South-East China, we show that the converse

relationship exists; a stronger El Nino leads to greater landslide
exposure, again in line with rainfall patterns observed in Fig. 1.

Discussion
These results raise the question of why there are such strong
relationships between ENSO and exposure in the highlighted
locations. We can explore the impact of each part of the model by
contrasting the significance of the relationships between MVEI
value and each of: total rainfall, extreme rainfall, hazard nowcasts
and exposure. In Fig. 3A, we show the p-values for each district
for the relationship between total rainfall and MVEI. It is clear
that there are already strong relationships between ENSO and
total rainfall in locations where we model large changes in
exposure due to ENSO (i.e., South East Asia and Central America
and northern South America). To determine whether considering
only the extreme rainfall leads to stronger relationships, we
compare the p-values for total rainfall and extreme rainfall rela-
tionships with MVEI; this is shown below in Fig. 6. In some
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Fig. 2 Landslide exposure for 3 illustrative administrative districts for the period 2001-2019. The series of plots labelled A show the sum total of Popexp
for each month in the administrative district. This is the total number of people exposed to elevated landslide hazard in that district for each month to show
seasonality. The blue-to-red colour scheme shows the corresponding value for the MultiVariate El Nino Southern Oscillation (ENSO) Index version 2
(MVEI), with red colours indicating stronger El Nino, and blue showing La Nina conditions. The size of the point also corresponds to the intensity of either
El Nino or La Nina conditions, to highlight the major differences between the two end-members. The series of plots labelled B show the relationship
between the 12-month moving average of MVEI and landslide exposure, which removes the annual precipitation cycle. Each of the three regions illustrate
differences in the strength of seasonal impacts, as well as the sign of the relationship between MVEI and Popexp. The map labelled C shows the location of
each of the administrative districts. It is important to note the differences in seasonal variability: Kinnaur has a singular rainy season peak, and almost no
other landslide activity; Planadas has a spring and autumn peak, while Chenzhou has much more limited seasonal variability, suggesting ENSO is the
primary control.
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geographical areas including parts of Central Asia, Mexico, Iran,
China, Luzon, and parts of Thailand, Cambodia and Vietnam, the
relationship between MVEI and extreme rainfall is stronger
(extreme rainfall p-value is lower than total rainfall) suggesting
that the impact of ENSO on extreme rainfall is more significant
than on total rainfall in these locations. This is in line with other
studies of ENSO-induced rainfall changes28,29, including global
studies based on gauge data19 and earlier studies using TRMM
and GPCP rainfall data20. However, the impact of ENSO on
extreme rainfall is weaker than on total rainfall in critical areas in

Colombia, Indonesia, and the Southern Philippines, all key
locations where we model significant relationships between ENSO
and landslide exposure. This suggests that the impact of ENSO on
total rainfall, rather than extreme rainfall, may be the main driver
of changes in exposure in many locations.

At the same time, ENSO-driven changes in extreme rainfall
clearly play a significant role in places like Southern Brazil,
Mexico, Eastern China, and parts of Central Asia. Small changes
in total rainfall are observed in Central Asia (Fig. 1) but large
shifts in exposure are modelled in Tajikistan and Kyrgyzstan,
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Fig. 4 Global map of where El Nino Southern Oscillation (ENSO) most strongly impacts population exposure to landslide hazards. The global map (C)
of admin-2 level regions shows the shift in exposure for a unit shift in Multi-variate ENSO index. The inset figures highlight areas of Latin-America/
Caribbean (A) and SE Asia (B) where the ENSO—population exposure relationship is significant (p-value <0.05), coloured by the gradient of that
relationship. Blue colours indicate that the La Nina state leads to more landslide exposure, and red colours that the El Nino state leads to greater landslide
exposure. The units here are changes in average number of days each person is exposed to a hazard nowcast per month for a unit change in multi-variate
ENSO index.
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Fig. 3 Map of the connection between El Nino Southern Oscillation (ENSO) and satellite rainfall data. These two maps show admin-2 level districts
around the world, coloured by the p-value of the relationship between monthly Multivariate ENSO Index and total rainfall (A) and modelled population
exposure (B) (both smoothed using a 12-month moving average). Areas shown in white have p-values of greater than 0.05, and are not deemed significant.
More intense red and pink colours indicate the areas where changes in ENSO are more strongly correlated with changes in total rainfall (A) and frequency
of extreme rainfall events (B).
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likely linked to changes in extreme rainfall (Fig. 6); this is in line
with other studies of ENSO-induced rainfall changes28,29. Inter-
estingly, these are the areas where El Nino conditions lead to
greater modelled landslide exposure (highlighted most clearly in
Fig. 5), while the areas where total rainfall seems to be more
relevant are those where La Nina conditions lead to greater
impacts (parts of northern South America and Indonesia, high-
lighted in Fig. 4). This suggests that the two modes of the ENSO
system may lead to changes in landslide impact due to differing
effects.

We have also compared the strength of relationship for hazard
nowcasts and extreme rainfall, and exposure and hazard now-
casts, to test where adding each model input strengthens and
weakens the relationship with MVEI (Supplementary Figs. 9 and
10, respectively). While there are broader geographical regions
where consideration of extreme rainfall increases or decreases the
strength of the relationship, adding the susceptibility and popu-
lation data has smaller and less regionally consistent effects. This
suggests that total rainfall, and to a lesser extent extreme rainfall,
is most strongly linked to ENSO, and that the modelled rela-
tionship with landslide hazard and exposure is not significantly
strengthened or weakened by the addition of susceptibility and
population data in the locations we highlight in Figs. 4 and 5. Our
outputs are thus relatively insensitive to LHASA model parameter
choices, and supports the robustness of the findings. Changes in
the strength of the relationship between MVEI and exposure and
hazard differ most strongly from the relationships for extreme
rainfall in the flat, low population areas of the Tibetan plateau
and Amazon rainforest.

There remain some uncertainties and challenges in this type of
analysis. Since LHASA model outputs depend on rainfall
exceeding the historical 95th percentile, the model is only sensi-
tive to ENSO-induced changes in the frequency of those extreme
events, but not to an increase in intensity of extreme events.
Studies have shown ENSO-driven changes in rainfall extreme

values in South America5 and the United States of America;30 as
such, our results may miss some impacts where this is the case.
However, other studies have shown that ENSO affects extreme
rainfall frequency rather than the peak intensity9, suggesting that
any effect on extremes may vary region to region. Increases in the
intensity of events exceeding the 95th percentile may lead to
increased impact from landslides. Our model outputs will provide
the same hazard and exposure estimate regardless of the intensity
over the 95th percentile, and so if ENSO leads to an increase in
peak intensity we may underestimate the impacts on population
and infrastructure.

There are also other areas where it might be anticipated that
ENSO would lead to increased propensity for landsliding, but
where the model outputs show no effect—in particular the West
coast of the USA. The Western USA has documented relation-
ships between landsliding and El Nino11, but no evidence of this
is seen in our results. The limited satellite rainfall record also
prevents us from including the 1997-1998 El Nino event, which
was amongst the largest on record. The accuracy of satellites
precipitation estimates for extreme rainfall is known to be limited
in some scenarios including orographically-enhanced rainfall,
short-duration but high-intensity events31, or mixed rain and
snow events that often dominate winter to spring landslide
activity in the Northwest coast of the USA. As such there may be
limitations in resolving these rainfall effects, potentially affecting
the representation of ENSO-induced changes in the overall
rainfall difference maps (Fig. 1). We suggest this is an important
topic for future research.

Limitations of the model may also affect the scope of our
results. The LHASA model works best for shallow landslide
events triggered by short-duration rainfall, but it is less suited to
assess slow-moving or deep-seated landslides where long-term
accumulation of water, influenced by seasonal changes in rainfall,
may be important. In addition, extremely short duration (sub-
hourly) rainfall events that exceed local intensity-duration
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thresholds that do not lead to total daily rainfall exceeding the
historical 95th percentile will not be detected. However, the
intensity of this kind of rainfall event necessary to trigger land-
sliding is likely on the order of 10–100 mm/h4, which is greater
than the daily 95th percentile of historical rainfall across most of
the continental surface26. As such, if these events are captured by
the satellite, they will likely lead to a model hazard nowcast. Given
the large spatial scale of our model, we are not able to resolve the
small local changes in population or infrastructure exposure that
may occur within the record period. We suggest that our results
provide an overview of areas in which future study could focus on
these more locally specific questions. In addition, while we make
the simplifying assumption that changes in ENSO impacts are
solely related to rainfall, it is possible that ENSO may affect other
landslide-relevant factors, including land cover32. We suggest that
further analysis of the impact of ENSO-driven land cover changes
on landslide exposure represent valuable future research topics
once homogenous global month-to-month land cover datasets
become available.

In addition, while the observed relationships between total
rainfall and frequency of extreme rainfall and ENSO result from
analysis of rainfall observations, the connections between hazard
and exposure depend on model parameter choices. The para-
meters used in the LHASA model are not empirically defined, and
so have been calibrated based on distance to perfect classification
of the NASA Global Landslide Catalog27, which gives a false
positive rate of 1% and a true positive rate of between 20 and 50%
depending on the time interval used for landslide analysis. The
exposure and hazard connections to ENSO must therefore be
viewed as model outputs rather than direct observations.

Our model results do not account for lead-lag relationships
between the MVEI values and the resulting changes in rainfall
patterns. A 12-month moving average for comparison of ENSO
to exposure helps smooth out seasonal variability. However, it is
possible that if a peak in local rainfall lags behind the peak in
ENSO this may reduce the correlation between the two. Evidence
for a landslide activity peaking several months after ENSO in
India has been shown by previous research33, while lead-lag
relationships between ENSO and rainfall have been documented
in South Africa34. This suggests that this kind of lead-lag beha-
viour may explain why no strong connections are observed in
India in the current analysis. We suggest exploring lead-lag
relationships represents an important avenue for future research.

While there is significant variability associated with ENSO in a
number of key locations, similar effects are not clearly observed
for the NAO or PDO (despite some studies showing links
between landslides and NAO index35, and others demonstrating
links between extreme rainfall variability and PDO9). We suggest
that the timespan 2001–2018 is too short to capture the full
rainfall variability due to multi-decadal PDO and NAO cycles; we
suggest future studies may be able to address this more fully. It is
not possible to draw any conclusions about the impact of NAO or
PDO on landslide exposure here. All data for ENSO, NAO and
PDO exposure is available in the supplementary information.

It is important to assess whether the model outputs derived
here have any reflection in observational data on landslide
impacts. We are not aware of globally consistent temporal data-
sets of exposure to landslides that can be directly used to compare
with our model outputs. However, fatalities resulting from
landslides have been recorded between 2004 and 2016 by Froude
and Petley18 around the world. Froude and Petley consider that
their Global Fatal Landslide Dataset (GFLD) likely captures the
majority of fatal landslides, with only 15% underestimation2. In
order to compare this data with our model outputs, we have
subdivided the landslides leading to fatalities by country. Given
that the GFLD contains fewer than 5000 landslide events, there is

insufficient data to split them into admin-2 districts as we have
for the model output. In each country, we compare the average
frequency of fatal landslides for MVEI intervals with the average
landslide exposure we model. There are only 26 countries in the
GFLD with more than 30 recorded events, so we exclude other
countries as we suggest data is too limited to draw conclusions.
From these 26, we exclude Bhutan, Italy, Japan, Sri Lanka, Tai-
wan, and Turkey from further discussion as these show limited or
negligible trends in observations and predictions, and further
analysis would lead to spurious results using the analysis method
used here. The figures for these excluded countries are provided
in the supplementary information. In the remaining countries,
model performance varies. An example for Colombia is shown in
Fig. 7; in the top part of the figure, the histograms of modelled
exposure and fatalities are shown normalised to the maximum
value for each parameter. Below, the relative ratio of the two is
shown; a consistent value of 1 would indicate perfect predictive
performance.
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Fatal landslides (GFLD) vs modeled exposure for Colombia, n= 129
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Fig. 7 Comparison of model data to recorded fatalities in Colombia.
A Histogram of average fatal landslide events in Colombia split by Multi-
variate El Nino Southern Oscillation (ENSO) index (MVEI) are shown in red;
in blue, a histogram of the average modelled landslide exposure split by
MVEI value. In the lower figure (B), the relative ratio of these two values is
shown. A value of 1 in panel B indicates that the model perfectly matches
the fatality data relative to the maxima of each; lower values indicate that
the model over-predicts fatalities.
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For most of the analysed countries (11 of 20), the ENSO
intervals where the model estimates show the highest average
landslide exposure match the ENSO interval where fatal land-
slides were greatest, but the exposure estimates are also generally
less variable than the fatality data. In Fig. 8, we show the results
for Guatemala, where the fatality data is far more variable than
the exposure model estimates. We suggest that with larger
numbers of recorded events, the variability in fatality data may
show less noise, but this also suggests that the model outputs tend
toward the mean exposure to a greater extent than is reflected in
reality—in other words, the model may be overly conservative in
estimating the impacts, perhaps suggesting that increases in the
peak rainfall intensity are being missed by the model at present.
Despite this regression to the mean, the model shows strong
similarity to the patterns of landslide impacts in most of the
assessed countries, suggesting that our results are a useful first-
order estimate of the connection between ENSO and landslide

impacts. We calculate the standard deviation of the ratio of the
model estimates and fatality data (lower part of Figs. 7 and 8, see
Supplementary Dataset 5 for full table) as a way to quantify how
closely the data correspond; the lowest deviations are seen in
Indonesia, China, Mexico, and Uganda, with the largest varia-
bility (suggesting worse predictive skill) in Thailand, Myanmar,
and India (notably countries where the South Asian Monsoon
plays an important role). Assessing the specific relationships
within individual countries represents an important topic for
future research.

Fatality data is not exactly equivalent to modelled exposure,
since fatalities resulting from landslides will also depend on the
vulnerability of the impacted area to loss. Since our model is
calculated based on a single static set of susceptibility and
exposure parameters (i.e., population and susceptibility do not
change), landslide fatality data may be affected by such changes.
However, by assessing the fatality data for MVEI value intervals
rather than over time, temporal changes in population are less
likely to introduce systematic errors. In addition, the shorter time
span over which the GFLD is recorded (2004–2016) compared to
our model estimates (2000-2019) does not provide a complete
comparison. ENSO may lead to some changes in population
vulnerability, as shown by studies in South America36. However,
we suggest that this remains the best possible comparison of our
model outputs with real data based on currently available data-
sets, and in several critical countries provides a strong qualitative
validation.

With the LHASA model, we can for the first time provide
globally consistent estimates of where, and how strongly, ENSO
may drive extreme rainfall that triggers landslides, resulting in
profound and widespread impacts to people and infrastructure.
Medium-term forecasting of ENSO conditions is possible with
some degree of accuracy37, allowing for 1st order estimates of
landslide impact to be similarly forecasted around the world.
Combined with the seasonality data generated here, this poten-
tially provides a nuanced seasonal forecast for landslides around
the world. It will be crucial for future work to validate these
findings with specific data on landslide damage and fatalities. We
also suggest that using retrospective data may be possible to
generate a ‘baseline’ level of exposure, which can be used to
contextualise future changes in population impacts. This may
require a longer rainfall time-series than is currently available, but
represents a useful future direction for analytical work. In addi-
tion, we lack data covering the major ENSO event during 1997-
1998, where significant landsliding was triggered in the
Americas38. A longer term analysis would provide a more com-
prehensive test of the model outputs and capture more of the
variability inherent in ENSO cycles.

On longer time-scales, rainfall patterns are expected to change
both in intensity and distribution under different scenarios of
anthropogenic climate change39–41. Recent work has shown that
changes in rainfall under future climate are likely to affect land-
sliding in the Himalayas in 210042, and we also expect changes in
landslide patterns in other locations. Increases in global tem-
perature due to climate change are likely to impact ENSO cycles,
although modelled predictions suggest ENSO strength may wax
and wane in different locations under certain climate change
scenarios40. We stress that any study considering changes in the
future impacts of landsliding due to climate change should also
consider the connection with ENSO that we have
highlighted here.

In this study, we have for the first time connected major ocean-
atmosphere teleconnections—in particular ENSO—with the
impacts associated with rainfall-triggered landslide hazards at a
global scale. This is a clear demonstration of what we can learn by
combining multiple different data types, from satellite rainfall
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Fig. 8 Comparison of model data to recorded fatalities in Guatemala.
A Histogram of average fatal landslide events in Guatemala split by Multi-
variate El Nino Southern Oscillation (ENSO) index (MVEI) are shown in red;
in blue, a histogram of the average modelled landslide exposure split by
MVEI value. In the lower figure (B), the relative ratio of these two values is
shown. A value of 1 indicates that the model perfectly matches the fatality
data relative to the maxima of each; lower values indicate that the model
over-predicts fatalities.
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data, ENSO index estimates, and openly available exposure
datasets. Our model results indicate that La Nina conditions lead
to greater landslide exposure in a diverse range of settings, with
the largest increases seen in northern South America, Central
America and the Caribbean, as well as Indonesia, Papua New
Guinea and the Philippines. While El Nino conditions seem to
lead to fewer areas with increases in exposure in comparison,
there are still increases in Central Asia, parts of Eastern China,
and Mexico. We suggest that future validation of these results
with comparison to landslide event data will be important, and
supports a need for comprehensive landslide inventories.

These results are also important when considering where
landslides may cause fatalities and damage infrastructure in
coming decades under climate change scenarios. In addition,
by considering the current ENSO state, our findings allow a range
of stakeholders, from disaster response professionals to resource
management and planning experts, to qualitatively assess
regions where exposure to landsliding may be higher than a
typical year. We suggest that similar studies could link flood
hazards with ENSO variability at a global extent to provide a
more holistic consideration of global hazards in line with the
Sendai Goals43.

Methods
To assess where ENSO affects rainfall-induced landslide impacts most, we combine
landslide exposure data derived by Emberson and coauthors44 with monthly time
series of indices that provide a proxy for the strength and direction of ENSO
provided by NOAA45. Proxy data is available in Supplementary Dataset 1. The
landslide exposure data are estimated by combining an 18-year record of landslide
hazard with three socioeconomic datasets to represent potential exposed elements.
The landslide hazard data are derived from an updated version of the NASA
Landslide Hazard Assessment for Situational Awareness (LHASA) model26. The
updated model has revised the underlying global susceptibility map to account for
recent changes in deforestation46, (although other model parameters are unchan-
ged) and extends the latitude range from 50°N and S to 60°N and S by making use
of the GPM IMERG v06B rainfall data15. The susceptibility model used by the
LHASA model uses a heuristic weighting of input parameters including slope, land
cover, distance to road networks, and lithology. The susceptibility model has been
validated using the NASA Global Landslide Catalog, with nearly 5000 recorded
landslide events used for validation. The LHASA model takes the IMERG satellite-
based 7-day accumulated rainfall as an input with an exponential weighting toward
more recent rainfall (exponent= 2). When it exceeds the historic 95th percentile
(calculated over the GPM IMERG data period, 2001-2019) and has a value greater
than a minimum threshold of 6.6 mm to remove predominately arid regions, a
landslide hazard ‘nowcast’ is output at 30 arc-second resolution at a daily time-step.
Nowcasts are excluded if the susceptibility of the pixel is lower than ‘moderate’,
using susceptibility classes defined by Stanley & Kirschbaum;47 moderate or greater
susceptibility covers approximately 20% of global land area. Several combinations
of weighting coefficients and spatial windows were tested, and the best predictor of
landslides was selected on the basis of distance to perfect classification. We con-
sider these ‘nowcasts’ as a proxy for landslide hazard. While this binary classifi-
cation of hazard is coarse on a daily basis, aggregated on monthly time-scales it
provides a more nuanced perspective on changes in hazard.

The hazard outputs can be combined with exposure data for three elements:
population, roads, and critical infrastructure. Population estimates are derived
from the Gridded Population of the World, Version 4 (GPWv4) dataset48, roads

from the Global Roads Inventory Project (GRIP)49, and infrastructure from
OpenStreetMap (OSM)50. Each of these datasets are open-access, global in extent,
and recently updated. While OpenStreetMap has some variability in completeness
between different countries51, the open availability and global extent represents an
excellent data source. We can account for changes in completeness by normalising
the estimates of infrastructure exposure by the total infrastructural elements – i.e.,
the exposed fraction. We do not use dynamic values for population, roads, and
infrastructure (i.e., we use a single value for each point in the raster for the entire
18-year analysis period). This means our model results can only be considered as
representing changes in exposure relative to the specific time-period for these
exposure datasets. We use the 2015 data for roads and population, and a snapshot
of OSM data for July 2018.

To convert the linear GRIP data and point OSM data to raster density maps, we
calculate the road-length in km per cell, and point density per cell respectively. This
provides global rasters of population, road density, and infrastructure density that
can be multiplied by the number of monthly nowcasts per cell to obtain an estimate
of exposure. The units for each of these estimates are shown in Table 1.

The outputs from this assessment are daily landslide exposure estimates, which
we sum up for each month to generate 216 monthly estimates (January 2001
through December 2018) of global landslide exposure at 30 arc-second grid
resolution for population, roads, and critical infrastructure. We focus on popu-
lation exposure in the discussion below, but all data generated are available in the
supplementary information for this study. These monthly data are then com-
parable with the monthly MVEI values. The monthly values for each admin-2
level district are available in supplementary dataset 2. The population, road and
infrastructure counts in each admin-2 district are available in supplementary
dataset 3.

While climatic trends are generally considered on timescales of 30 years or
greater, this 18-year exposure dataset is the longest available based on consistent
satellite rainfall data. We utilise the newly reprocessed IMERG version 6B
rainfall product, which merges and homogenises data from NASA’s Global
Precipitation Measurement (GPM) mission with its predecessor Tropical
Rainfall Measurement Mission (TRMM)52. The use of satellite rainfall data
allows a globally homogenous estimate of landslide hazard and exposure,
rather than relying on recorded landslide events where spatial and temporal
biases in reporting may be significant53. Model estimates are dependent on
parameter choice, and we discuss model assumptions in more detail below.
These monthly estimates of exposure to rainfall-induced landslides can be
directly compared with the monthly estimates of ENSO. To establish whether
the model results are a useful approximation of exposure, we have compared
our results with fatality dataset derived from the dataset of Froude & Petley
(2018). Comparison data with the fatality data are found in Supplementary
Dataset 4.

While we calculate exposure as a 30 × 30 arc-second pixel raster, we have
chosen to aggregate our estimates to administrative districts. The GPW v4
population data is presented at 1 km resolution, although in some less-developed
parts of the world the census data used to generate the data is not of fine enough
resolution to distinguish 1 km-scale differences54. We suggest that by providing
model outputs at a level-2 administrative district level (e.g. county, municipality,
prefecture level), we avoid drawing attention to single pixels where extreme local
rainfall or extremely dense population could bias any comparison with tele-
connection indices. We derive the admin-2 areas from the GADM (Global
Admin - https://gadm.org/about.html) project data for administrative districts.
The admin-2 level areas are generally small enough to preserve local detail;
larger areas (e.g. defined by national borders) may extend across areas with
diverse ENSO effects (e.g. Mexico – Fig. 1). In addition, these outputs can be
easily understood by disaster mitigation policy-makers. These admin-2 level data
can be easily aggregated by end-users to national level estimates. Many admin
districts are not tied to topography or climate, and where admin regions include
diverse landscapes (e.g., mountains and flat areas), it may be more difficult to
pinpoint key locations for exposure. If exposure estimates are aggregated in such
districts, a signal of a relationship between exposure and ENSO may be masked

Table 1 Explanation of exposure units derived in this study.

Parameter Specific Unit Descriptive term
(shorthand used in
this study)

Explanation

Population
exposure

Days exposed to landslide hazard x
person x. Yr−1 / 30 × 30 arc-
second cell

Popexp The exposure is estimated as number of Nowcasts (i.e. days exposed to
elevated modelled hazard) per year in each 30 × 30 arc-second cell
multiplied by the population in that 30 × 30 arc-second cell.

Road
exposure

Days exposed to landslide
hazard.km.yr−1/ 30 × 30 arc-
second cell

Roadexp Sum of Nowcasts per square km multiplied by km of road in that 30×30
arc-second cell.

Infrastructure
exposure

Days exposed to landslide
hazard.element.yr−1/ 30 × 30 arc-
second cell

Infrexp Includes the following critical infrastructure categories: hospitals,
schools, fuel stations, power generation and transmission
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by noise or conflicting signals from a different part of the area. Smaller admin
districts are less likely to merge conflicting signals, and we suggest that the
admin-2 level offers the best balance of global reproducibility and small scale to
allow for a focus on local effects.

For each year, we can express the exposure estimates Ej for each admin district j
as follows:

Ej ¼ ∑
n

i¼1
RiSiPið Þj ð1Þ

Where Ri is the number of days when rainfall exceeds the historical 95th percentile
in cell i, Si is the susceptibility of that cell (1 if the cell has susceptibility greater than
medium, 0 otherwise), and Pi is the population across that cell. Summed for all cells
1-n in district j, this gives a final unit of person-days/year, expressing the average
exposure for that district. This can then be normalised by the total population in
region j (e.g., Fig. 4) or by the long term monthly average exposure (e.g., Fig. 5) to
allow for intercomparison.

Data availability
All data associated with this study is available in the supplementary information. A
shapefile containing all p-values and slope of relationships calculated here is a large file
(~1GB) and at time of submission we are obtaining permission to share this in a public
repository. Requests for this data can be made directly to the corresponding author and
will be fulfilled as soon as possible.
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