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Abstract 
The advent of direct high-resolution global surface measurements of CO2 from the recently 
launched NASA Orbiting Carbon Observatory (OCO-2) satellite offers an opportunity to improve 
the estimate of Net Ecosystem Exchange (NEE) over land. Long-term measurements of CO2 flux 
obtained from eddy covariance instruments on Flux towers show large annual differences with 
NEE calculated by inverse methods using Land Surface Photosynthetic models. This suggests 
consideration of alternative approaches for calculating seasonal to annual global CO2 flux over 
land. Recent advances in deep machine learning models, including recurrent neural nets, have been 
successfully applied to many inverse measurement problems in the Earth and space sciences. We 
present evaluations of two deep machine learning models for estimating CO2 flux or NEE using 
station tower data acquired from the DOE Atmospheric Radiation Measurement (ARM), 
AmeriFlux and Fluxnet2015 station datasets. Our results indicate that deep learning models 
employing Recurrent Neural Networks (RNN) with the Long Short Term Memory (LSTM) 
provide significantly more accurate predictions of CO2 flux (~22% -28% improvements) than Feed 
Forward Neural Nets (FFNN) in terms of Root Mean Square Errors, correlation coefficients and 
anomaly correlations with observations. It was found that using heat flux as input variables also 
produce more accurate CO2 flux or NEE predictions. A non-intuitive machine learning 
metaphysical result was observed by the omission of CO2 concentrations as an input variable. 
Neural net models, in most cases, produce comparable accuracies of CO2 flux or NEE inferences, 
when trained with and without CO2 for the same station data. 

Plain Language Summary 
Vegetation annually removes 40% of global CO2 emitted to the atmosphere by natural and 
anthropogenic processes through photosynthetic absorption of CO2 (sinks) and CO2 respiration 
(sources). Scientists have developed ecosystem surface models employing photosynthetic and 
respiratory processes to infer the annual absorption of CO2 by plants in order to account for the 
influence of factors that affect the amount of CO2 that remains in the atmosphere. However, these 
model predictions are largely inconsistent with station measurements. In this study, we apply deep 
machine learning models to train neural nets to predict the turbulent CO2 flux or NEE based on 
station data from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM), 
AmeriFlux and Fluxnet2015 for different ecosystem sites. We used Recurrent Neural Networks 
(RNN) with the Long Short Term Memory (LSTM), which produced ~22% - 28% more accurate 
predictions than a more common Feed Forward Backward Propagation Neural Net.  

1 Introduction 

The successful launch of the NASA Orbiting Carbon Observatory-2 and its multi-year availability 
of high spatial resolution of CO2 concentration and Sun-Induced Fluorescence (SIF) provide a new 
source of input for arriving at improved estimates of the global annual CO2 uptake over land. The 
capacity of continents to take up CO2 is largely affected by climate variability. Natural sinks over 
land seen in Figure 1 to have grown in response to the increasing emissions, but appears relatively 
level in the last decade, though year-to-year variability is large (Le Quéré et al., 2016). The large 
2015 El Niño is suspected of producing the most significant anomalous low in the local estimate 
of continental CO2 uptake over the past 60-year record. The annual global budget estimate of 
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carbon sink over land has varying levels of uncertainty since it is calculated as a residual difference 
between the net of CO2 emissions of fossil fuel and land cover change from the net growth rate of 
CO2 in the atmosphere and the ocean sink (Le Quéré et al., 2016). Thus, improvements in the direct 
calculation of CO2 flux over land has the potential of mitigating the largest uncertainty among the 
above individual components of the global CO2 budget estimates (Li, W. et al. 2016). Machine 
learning algorithms trained on the network of CO2 flux stations hold the promise of leading to 
better continental estimates of annual CO2 flux uptake.   
The total global sink of CO2 is estimated to remove about 55% of all CO2 emissions for the period 
2000-2008, while terrestrial CO2 sinks account for removal of 29% of all anthropogenic emissions 
for the same period (Land 53%). Investigations of mid to high latitude atmospheric CO2, shows 
growing amplitude in seasonal variations over the past several decades (Graven H.D. et. al.,2013; 
Piao et al.2017;Bousquet et al.2000;Bala G et al. 2013). Land surface ecosystem models poorly 
predict the net annual CO2 flux exchange (NEE) (Keenan, T.F et al. 2012; Chen, B, 2008;Piao, S. 
et al. 2009). The Atmospheric Radiation Measurement (ARM) program of the ARM, AmeriFlux 
and Fluxnet2015 stations have been making long-term collections of CO2flux measurements (in 
addition to CO2 concentration and an array of other meteorological quantities) at several towers 
and mobile sites located around the globe at half-hour and hour frequencies. In addition, since the 
mid 90’s, the DOE, NASA, NOAA and the US Forest service have sponsored over 75 flux tower 
CO2 measurement stations distributed over the contiguous US, Canada, Alaska, Brazil and now 
throughout North and South American continents.  
Yet, inverse ecosystem model inferences of continental scale annual CO2 flux by assimilating the 
Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) CO2 
satellite observations have been shown to be largely inconsistent (2x - 4x factor) with station 
observations (M. Reuter et. al., 2017), as well as inverse climate ecosystem models (Ott, L. E., et 
al. 2015). High-resolution satellite surface measurements of CO2 concentration are now available 
for 4 years from the NASA OCO -2providing a global view of the seasonal cycles and spatial 
patterns of atmospheric CO2 (Eldering, A et al. 2017). Recent advances in computing technologies 
have enabled significant improvements in the performance and accuracies of deep learning 
algorithms. We present in this paper, the evaluation of hyper parameters such as list of input 
variables, learning rate, number of layers and neurons etc.) of the Feed Forward and Recurrent 
Neural Net algorithms for determining the best learned parameters (optimized weights of neural 
network models) to employ for application with micro meteorological tower station data for 
inferring annual turbulent CO2 flux from station towers at different latitudes and ecosystem types. 

1.1 Prediction using neural networks 

Can the deep learning models contribute to improved assessments of environmental and 
atmospheric variances in CO2 flux or NEE estimation? An investigation of how the biosphere has 
reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-
vegetation feedbacks. Further, given longer-term extreme climate events such as El Nino’s, can 
regional changes of CO2 affect positive regional ecosystem feedbacks? The monitoring and 
understanding of carbon sinks and sources can be inferred from the amount of carbon dioxide 
(CO2) fluxes into and out of the atmosphere. Thus, global or regional season to annual 
investigations into new approaches for calculating CO2 flux should improve the prediction of 
annual NEE. 
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Figure 1 Global CO2 flux sources and sinks. Source: Global carbon budget 2016(Le Quéré et al, 

2016) 

Studies show that CO2 fluxes are correlated with the energy fluxes and environmental variables 
such as temperature, moisture, heat and others non-linear processes (HeHonglin, 2006). Artificial 
neural networks (ANNs) are often better candidates for modeling the non-linear process based on 
data driven input than other statistical methods. ANNs, Feed Forward Backward Propagation 
Neural Net are being used for the simulation of CO2 fluxes using atmospheric CO2 and other 
variables (Melesse, A.M, 2005; Papale, D.; HeHonglin, 2006; Tramontana, G., 2016).There have 
been prior efforts to map fluxes across North America with machine learning regression tree 
models by Xiao et al and globally by Jung et al. For example, Papale and Valentini, 2003 proposed 
a new methodology involving Feed Forward Neural Network to provide spatial (1 km×1 km) and 
temporal (weekly) estimates of carbon fluxes of European forests at continental scale. First a 
separate neural network was used to predict the daily Net Ecosystem Exchange (NEE) at each of 
16 different European sites. The dataset used in this study consisted of measurements of CO2 flux 
taken at those 16 sites using the eddy covariance technique. The inputs of the network trained for 
each site were air temperature, air relative humidity, photo synthetically active radiation (PAR) 
and two series of four fuzzy sets (month of the year and time of day). The original data from each 
site consisted of about 13,573 samples (one measurement every half an hour) but the dataset was 
composed only of those examples with complete input and output data. Results were very good 
with Root Mean Square Errors (RMSE) of 1.149 and Mean Absolute Errors (MAE) of 0.859. The 
second part of the work involved using another ANN for an assessment of European NEE. The 
network specifications were twelve input variables, one hidden layer of 5 nodes and one output 
node of mean NEE expressed in grams Carbon per day (g C day−1). Results of this part were an 
annual estimate of 0.47 Gigatons of Carbon per year (Gt C yr−1), which is within the range of 
Europe’s 0.2 - 0.7 Gt C yr−1 estimate in (Schulze, E.D., et al., 2001). 
Melesse, A.M. and Hanley, R.S, 2005 showed that using a Feed Forward Neural Network (FFNN) 
to predict CO2 flux over large areas is a promising technique which can be used instead of the eddy 
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covariance method at a single point (Baldocchi, D., 2014). However, the study was limited to a 
very short period of data observations as well as the number of flux towers.  

1.2 Objectives  

Recent advances in deep learning (DL) models have been successfully applied to many 
applications including speed and image recognition (Hinton, G. E et al 2006;Bengio, Y., 
2006;Ranzato, M.A, 2006; Krizhevsky, I. Sutskever et al, 2012;R. K. Srivastava et al 2015; 
Buduma, N., et al. 2015), which motivated us to investigate applying DL models for prediction of 
hourly CO2 fluxes. In this study, we are going to build DL models including Feed Forward Neural 
Network (FFNN) and Recurrent Neural Network (RNN) with Long Short Term Memory (LSTM) 
models to learn the physical complexity, space and time dependency of the measurements of CO2 
concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux from 
long term measurements at Atmospheric Radiation Measurement (ARM), AmeriFlux, and 
Fluxnet2015 station data for different ecosystem sites. 
The motivation for using LSTM is to utilize the temporal dependencies or patterns within the long-
term measurements of the data. Data was separated by year into Training, Validation and Test data 
sets. These deep learning models are shown to be efficient, dependable, and very powerful and can 
be employed in predicting CO2 flux or NEE. We will also show that RMSE is lower at high latitude 
sites because there is more variation in the input data. Deep learning models can be used with 
historical data to further infer the present state of the atmosphere in the future. 

2 Methods 

Deep Learning (DL) neural networks coupled with new advances in computer technologies 
attempt to mimic the human brain activity of neurons in the neocortex. DL models can be trained 
to recognize complex patterns in digital representations of sounds, images, and other data 
(Krizhevsky, I. Sutskever, 2012). Because of advances in computer technologies, one can now 
model many more layers of virtual neurons than ever before (Y. LeCun, 2015;R. K. Srivastava, 
2015; J.C. Duchi, E. Hazan et al 2011). With deep layer architectures exploiting computational 
acceleration, new training techniques are producing remarkable advances in speech and image 
recognition; and in medicine by identifying molecules that are leading to new drugs. Recurrent 
neural networks (RNN) with the Long Short Term Memory (LSTM) model is one of the deep 
learning model, which are able to successfully learn data with long range temporal dependencies 
such as time series data, or machine translation in language modeling (S. Hochreiter et al 
1997;Sutskever, I., et al 2014). Extending DL models for applications such as Earth and space 
science as well as other science disciplines requires more conceptual breakthroughs and further 
advances in processing power. In this paper, we apply deep FFNN and RNN, LSTM to train and 
predict CO2 flux or NEE using ARM/AmeriFlux/Fluxnet2015 station tower data. 

2.1 Feed Forward Neural Network 

The FFNN model simulates and learns the relationship and interaction between input variables and 
CO2 flux (Bebis, G. and Georgiopoulos, M., 1994). The model does not need to know the 
complicated relationship and dependencies between the CO2 flux and the input variables in 
advance. We choose to use FFNN and RNN to model the CO2 flux since the relationship between 
CO2 flux and its input variables are known to be nonlinear. 
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A FFNN includes artificial neurons, which are arranged into layers (figure 2). The input layer 
consists of neurons, which takes on the input values. In this application the input values are 
variables such as temperature, sensible heat flux, latent heat flux and friction velocity, etc. The last 
layer is called output layer having neurons, which holds the output values that are the prediction 
target CO2 flux. There can be many layers in between input layer and output layer as needed by 
the DL model. Each node is only connected to a node in a prior adjacent layer. Nodes at the same 
layer are not connected with each other. 

 
Figure 2 Feed Forward Neural Network model 

Figure 2 presents the topological architecture of the multilayer FFNN. These layers are called the 
hidden layers.  Let wk

ii, be the weight of the connection between the ith neuron in the kth layer with 
the jth neuron in the k + 1th layer, xi is the value given to the ith input node and a bias value bj is 
considered as an additional input node that acts to shift the point of activation. The output value 
of the ith neuron is determined by the below equation. 

𝑦𝑦𝑗𝑗𝑘𝑘 = 𝑓𝑓(𝜃𝜃𝑗𝑗 , 𝑥𝑥𝑖𝑖) = 𝑓𝑓(∑𝑤𝑤𝑖𝑖𝑗𝑗
𝑘𝑘 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) (1) 

If we use 𝜃𝜃𝑗𝑗  as a vector, then the output of the node is modeled as a function 𝑓𝑓(𝜃𝜃𝑗𝑗 , 𝑥𝑥𝑖𝑖) where x and 
y are the input and the output. These weights show the important nature of the connections in the 
network and the ability of solving the problem with a neural network depending on finding the 
optimal weights and the parameter value. The 𝑓𝑓(𝜃𝜃𝑗𝑗 , 𝑥𝑥𝑖𝑖) function applied to the neuron is known as 
the activation function. The sigmoid function, 𝜎𝜎(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
 which is differentiable, monotonic, 

non-linear and is often used as the activation function. Non-linearity is fit to model non-linear 
patterns in our training dataset. The elu activation function, an Exponential Linear Unit, 

𝜎𝜎(𝑥𝑥) = �α. ( 𝑒𝑒𝑥𝑥 –  1), 𝑥𝑥 < 0
𝑥𝑥, 𝑥𝑥 ≥ 0 

converge cost to zero faster and produce more accurate results. The training process will find the 
𝜃𝜃𝑗𝑗  vector, which produces the output 𝑓𝑓�𝜃𝜃𝑗𝑗 , 𝑥𝑥𝑖𝑖�, namely, the prediction value that is close to the 
desired output value y. In other words, given a set of inputs and their desired outputs, we try to 
find 𝜃𝜃𝑗𝑗 , which minimizes the difference between the desired outputs and the neural network 
outputs, for all of data points in the training dataset. The RMSE is used to measure the differences. 
Gradient-based methods such as Adaptive Gradient Algorithm (Adagrad) (J.C. Duchi 2011) are 
used to find the optimization weights and bias. 
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𝐸𝐸(𝜃𝜃,𝑋𝑋𝑋𝑋) = � � (𝑦𝑦𝑖𝑖 − 𝑓𝑓(θ, 𝑥𝑥𝑖𝑖))2
𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖∈𝑋𝑋𝑋𝑋

 

XY is the training set and 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the input and the desired output training values and 𝑓𝑓(θ,𝑥𝑥𝑖𝑖) 
the neuron network output. A back propagation gradient descent training algorithm was performed 
using RMSE as error function to adjust the weight of neurons. We also use R2, the coefficient of 
determination between true observation and model’s prediction to measure the performance of the 
models.   

The modeling dataset is divided into three groups: (i) a training dataset used to determine the 
weights during neural network training; (ii) a test dataset used during network training to calculate 
the errors to prevent overtraining; and (iii) a validation dataset used to assess the network’s 
performance with ‘new’ data, which removes the possibility of the network over-fitting on training 
and test datasets. This is the case when the neural network models very well on training dataset 
and predicts poorly on unseen test dataset.  

2.2 Recurrent Neural Network 
 
A Long Short Term Memory (LSTM) network is a Recurrent Neural Network (RNN) where 
connections between units in a layer form a directed graph along a sequence (see figure 3). This 
RNN architect exhibits dynamic temporal behavior for a time sequence. Unlike FFNN, where 
input variables at particular times are trained independently and there are no connections within or 
between two adjoining layers of a network, RNN enables the insertion of state operations or gates 
between layers. Thus, when learning the model for a particular time using FFNN, there is no 
consideration of the historical data from prior times. The RNNs can use their internal state 
(memory in LSTM unit) to process sequences of inputs. For example, in this application, 12 input 
measurements of CO2 concentration, humidity, pressure, temperature, wind speed, etc have been 
observed by every half hour forming a time sequence. Time dependency can be learned by LSTM. 
It can selectively learn when to remember or forget things by controlling information flow through 
block conditions in each LSTM unit state called gates. There are three types of gates in each LSTM 
unit. The Forget Gate decides which information to discard from the block. The Input Gate 
conditionally makes decision on which values from the input will be used to update memory state. 
The output Gate will conditionally decide which value will be output based on the input and the 
memory of the block. Gates of the LSTM units have weights that are learned during the training 
procedure. LSTM units are often implemented in deep multiple layer architects. This model 
capability is one of the advances made in deep machine learning models, which can be applied to 
solve difficult sequence problems in machine learning. It has been successfully implemented 
(Sutskever, I., et al 2014). The detail of LSTM units and the architecture of this model are 
referenced in (Hochreiter, J., and Schmidhuber, J.,1997;Sutskever, I., et al 2014).  
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Figure 3 Recurrent neural network with LSTM model 

Figure 3 shows the following structure of the RNN with LSTM model we will employ. Each 
observed time step consists of an observation of 12 input variables, and the number of time steps 
in each LSTM unit can be configured. A time step=3, means that the current observation is learned 
using two previous observations of the 12 input variables. The two layers of 20 LSTM units each 
are thus configured. A batch of 32 such input observations can be specified and trained at each 
LSTM. The Flatten unit is used to produce single output, which is the prediction of CO2 flux. The 
DropOut technique is used for training to improve the performance of the neural network. On 
training, it drops x% of units in each layer (Baldi, Pierre and Sadowski, Peter, 2014). All de-
activate units would not participate in the training propagation. This technique will block the error 
values from in each layer to the output level. The dropout technique only applies on the training 
phase. Advanced gradient algorithm such as SGD and AdaGrad (J.C. Duchi, E. Hazan, and Y. 
Singer, 2011) will be used to train the models. 

3 Data description 

AmeriFlux, Fluxnet2015 and Atmospheric Radiation Measurement (ARM) tower data at different 
sites have been used in this study. The site name, siteID, latitude, longitude, type, and date time 
ranges are showed in figure 4 and table 1. The half an hour and hourly data have been used for 
experiments. 
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Two sets of input variables have been used. The first set uses heat fluxes including net radiance at 
the top of the atmosphere (W m-2), latent heat (W m-2), sensible heat (W m-2), soil heat flux (W 
m-2), air and soil temperatures (deg C). The second set of input variable does not use the heat 
fluxes since they are not typically available globally. In this case, we have incoming shortwave 
radiation (W m-2), outgoing shortwave radiation (W m-2), Carbon Dioxide (CO2) mole fraction 
in wet air (µmolCO2 mol-1), Air temperature (deg C), and Precipitation (kPa) have been used as 
input variables. The output of both FFNN and RNN models predict CO2 flux (Carbon Dioxide 
(CO2) turbulent flux (µmolCO2 mol-1) for dataset at ARM/AmeriFlux or NEE (umolCO2 m-2 s-
1) for dataset at Fluxnet2015. Figure 5 plots some of the variables of AmeriFlux tower data at 
MMS site from Jan 1, 1999 to April 12, 2018 including Temperature (deg C), CO2 Flux (µmolCO2 
m-2 s-1), Shortwave Radiation incoming (W m-2), Shortwave Radiation Outgoing (W m-2), Net 
Radiation (W m-2), CO2 (µmolCO2 mol-1), Precipitation (mm), Latent Heat (W m-2), Sensible 
Heat (W m-2), Soil Heat Flux (W m-2), Soil Temperature (deg C). As seen in figure 5, there are 
more variances in radiation, temperature, sensible heat flux and latent heat flux corresponding to 
the CO2 flux. 
CO2 flux with reasonable accuracies. The preprocessing of the data includes two parts: filtering 
row data and normalizing all input variable data. Row data with filled values, which have flags 
'y' and out of normal CO2 flux ranges were filtered. Since the input variables have different value 
ranges (see fig. 5), which vary significantly, all input data are normalized to scale between 0 and 
1 to improve the time to reach convergence.  
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Figure 4 the map of ARM, AmeriFlux, Fluxnet all tower location used in this study 

The input dataset needs to be preprocessed and cleaned in order for the neural nets to infer the The 
normalized equation is as follows: 
 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑥𝑥 − 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛

𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥 − 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛
 

Where 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑒𝑒𝑛𝑛 is the normalized value of input variable, 𝑋𝑋𝑛𝑛𝑛𝑛𝑥𝑥 is the maximum value of the 
input variable and 𝑋𝑋𝑛𝑛𝑖𝑖𝑛𝑛 is the minimum value of the input variable.The only output variable of the 
learning model is CO2 flux and it is de-normalized into original data ranges. 
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Figure 5 AmeriFlux hourly data at AmeriFlux at Morgan-Monroe, Indiana (MMS) Temperature, 
CO2 Flux, Shortwave RadiationIn, Shortwave RadiationOut, NetRadiation, CO2, Precipitation, 
Latent Heat, Sensible Heat, Soil Heat Flux, Soil Temperature from Jan 1, 1999 to April 12, 2018. 
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4 Experimental Results 

In section 4.1, we present the experiments for the comparison of FFNN and RNN/LSTM models 
for predicting CO2 flux from both the ARM and Ameriflux station data and predictions of NEE 
from the Fluxnet2015 stations. Neural net training and test results depend on a variety of selected 
hyperparameters. We use an algorithm, WEKA, that applies principal component analysis for the 
ranking of the input variables based on the station data. Slight differences in the rankings can occur 
for different AmeriFlux, ARM and Fluxnet2015 stations. Experimental results are presented 
utilizing a common set of input variables that are the highest or near highest ranked station 
variables obtained from WEKA for both FFNN and LSTM. The input variables selected for all the 
experiments in section 4.1 consisted of: net radiation, latent heat, sensible heat, soil heat flux, air 
and soil temperatures. It should be noted that CO2 observations are not among the above input 
variables used in these experiments. When heat fluxes are not available at any station, the 
following set of input variables are used to predict CO2 flux: shortwave radiation (incoming), 
shortwave radiation (outgoing), air temperature, and precipitation. These variables also appeared 
in the WEKA rankings. Again, CO2 is not an input variable for both FFNN and RNN models for 
predicting CO2 flux. Similar findings for calculating NEE without CO2 as an input variable were 
obtained by Papali and Valentini, 2003 and Medlyn et. al., 2005. We show below that Recurrent 
Neural Networks (RNN) with the Long ShortTerm Memory (LSTM) improvements in the 
prediction of CO2 flux by ~22%  to 28% in terms of RMSE and R2 scores, and 28% improvements 
in anomaly correlations. Section 4.2 shows the influence of selecting WEKA rankings of variables 
as input for both FFNN and LSTM. We also show that both neural nets are dependent on the 
influence of latitudinal variations of CO2 flux and NEE station data. Both FFNN and LSTM 
produce their lowest CO2 flux scores at high latitudes while stations near or at the equator produce 
the largest RMSE errors. We suspect this variability in performance is influenced by the variability 
of the input variables, i.e. larger seasonal variations temperature and net radiation occur at high 
latitudes and have less variability at low latitudes near or at the equator. 

4.1 Comparison of FFNN and RNN models. 

Table 2 reports the comparisons between FFNN and RNN models using RMSE and R2 correlation 
metrics. These experiments use net radiation, latent heat, sensible heat, and soil heat  flux, air and 
soil temperatures as input variables and predict CO2 flux for ARM and AmeriFlux stations and 
predict NEE for the Fluxnet2015 tower stations. The dataset is divided into three groups: (i) 80% 
of dataset has been used to determine the weights during neural network training; (ii) 10% of 
dataset has been used during network training to calculate the errors to prevent overtraining; and 
(iii) 10% of dataset is used as validation dataset to assess the network’s performance with ‘new’ 
data. FFNN model used in this section was configured to run using 10 layers to 20 layers, 20 
neurons each layer. RNN models used 2 layers each have 20 LSTM units. Both models were 
trained using back propagation gradient descent algorithm with ‘elu’ activation. The mean 
improvement for the 20 stations is 22% and the correlation improvement is 20%. Experiments also 
show that for the 14 stations with data having longer records than a decade, the mean improvement 
for the LSTM with respect to FFNN is 28% and the R2 correlation score is 27%. This is indicative 
of the influence of incorporating the time variations into the machine learning algorithm of RNNs.   
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The Morgan Monroe State Forest station in Indiana, having the longest continuous record available 
to 2018, was selected for investigating the performance of Neural Nets using anomaly correlation 
metrics. Figure 7 shows a plot of the anomaly for the observed CO2 flux for years 2011 to 2013, 
where the mean of the monthly data for the years 1999 to 2010 are removed. Superimposed are 
the predicted CO2 flux anomalies for FFNN and LSTM anomalies with the same observed monthly 
means removed. The image shows that the LSTM fits the observed anomaly better for positive 
anomalies, but one cannot infer the values of the LSTM for negative anomalies form this image. 
Thus, in table 3, we present the anomaly correlation metrics for the above MMS station as well as 
two additional stations, one in Finland and the other in France.  The anomaly correlation of three 
stations (Ameri- US- MMS, FLX-FI-Hyy, FLX-FR-Pue) shows that LSTM produces about ~29% 
improvements in the anomaly correlation metric compared with FFNN. This result is consistent 
with the mean performance improvements obtained in section 4.1 for the 20 station sites. 
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Figure 6Comparison of FFNN and RNN using Fluxnet2015, FLX-FI-Hyy station 

 

Figure 7 Anomaly correlation comparisons between FFNN and RNN, LSTM 

Figure 6 shows that both FFNN and RNN models produce good predictions at a high latitude 
station with a long data history.   
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Figure 8 shows the LSTM model predictions of CO2flux at the Ameriflux-US-Ro1 station, where 
the crop is rotated yearly between a C3 and C4 plant. The RMS error for the test is 3.22 and the 
model produces a good R2 correlation with observation of 0.81. The purpose of this image is to 
show that the inferences of CO2 flux are comparable for both crops. 
 

 
Figure 8 prediction of CO2 flux using Ameri-US-Ro1 C3 and C4 rotation station 

4.2 The influence of input variables on model prediction 
 
We used WEKA (a data mining tool) to perform a principal component analysis (PCA) in 
conjunction with a Ranker search which ranks attributes by their individual evaluations of the top 
eigen value on some of the selected sites. This software encapsulates a collection of Machine 
Learning techniques and provides a nice graphical user interface for quick exploration of those 
techniques on user’s provided dataset. The output of the PCA was a set of components formed by 
means of linear combinations of the correlated attributes.  
 

 
 
The results from WEKA’s PCA and Ranker attribute selector in table 4 showed the following set 
of variables to have the highest rank. The following variables had higher ranking attributes and 
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were selected for experiments with both FFNN and LSTM in section 4.1 and 4.2: net radiation 
(NETRAD) (shortwave radiation incoming- SW_IN, outgoing- SW_OUT), temperature, latent 
heat (LE), sensible heat (H), soil heat (G), soil temperature(TS), pressure (PA),CO2, H2O, 
precipitation (P). 
Since heat fluxes are not always available and they are a derived data product calculated from 
algorithms, we designed the experiments using the following two sets of input variables for 
evaluating the influence of variables for model prediction. The results are presented in table 5 and 
figure 9. 

− Input variables with using heat fluxes (HF all):  net radiation, latent heat, sensible heat, and 
soil heat flux, air and soil temperatures.  

− Input variables without using heat fluxes (HF all except heat fluxes with CO2):  Shortwave 
radiation (incoming), Shortwave radiation (outgoing), Carbon Dioxide (CO2) mole fraction in 
wet air, Air temperature, and Precipitation. 

− Input variables without using heat fluxes (HF all except heat fluxes without CO2):  Shortwave 
radiation (incoming), Shortwave radiation (outgoing), Air temperature, and Precipitation. 
 

 
 
Table 5 presents results of calculating CO2 fluxes at the 4 stations in table 5 for all heat flux input 
variables with and without CO2 concentration. LSTM shows less than 0.1% difference while 
FFNN shows a 10% variation in RMSE.  
Figure 9a shows the comparison of FFNN and RNN using AmeriFlux data at Morgan-Monroe 
State Forest, Indiana (MMS) using input variables: net radiation, latent heat, sensible heat, and soil 
heat flux, air and soil temperatures. The data used was from Jan 1, 1999 to Dec 31, 2014. Half of 
the data was used for training results in RMSE= 3.95 with R2 =0.70 and RMSE=2.77 with R2=0.85 
for FFNN and RNN respectively. The models tested using another half of MMS data show RMSE= 
3.93 with R2 =0.67 and RMSE=2.76 with R2=0.84 for FFNN and RNN, respectively.   
Figures 9b and 9c show the difference with and without CO2 for non-heat flux data. The input 
variables in Figure 9b for experiments using AmeriFlux data at Morgan-Monroe, Indiana (MMS) 
are: Shortwave radiation (incoming), Shortwave radiation (outgoing), CO2 concentration, Air 
temperature, and Precipitation. The hourly data from Jan 1, 1999 to Dec 31, 2014 (131,400 
samples) have been used. Half of the data was used for training results in RMSE= 5.42 with R2 
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=0.46 and RMSE=3.45 with R2=0.78 for FFNN and RNN respectively. The models tested using 
another half of MMS data show RMSE= 5.09 with R2 =0.44 and RMSE=3.34 with R2=0.76 for 
FFNN and RNN, respectively. 
The input variables in figure 9c for experiments at AmeriFlux at Morgan-Monroe, Indiana (MMS) 
are:  Shortwave radiation (incoming), Shortwave radiation (outgoing), Air temperature, and 
Precipitation. The data from Jan 1, 1999 to Dec 31, 2014 have been used. Half of the data was 
used for training results in RMSE= 4.71 with R2 =0.59 and RMSE=3.50 with R2=0.77 for FFNN 
and RNN respectively. The models tested using another half of MMS data show RMSE= 4.49 with 
R2 =0.57 and RMSE=3.36 with R2=0.76 for FFNN and RNN, respectively. The CO2 concentration 
was absent in the input variables compared to the previous experiments in the figure 9b. The 
RMSE errors for MMS with and without CO2 for RNN are 3.34 and 3.36, respectively, to the 
results for table 5.  
FFNN and LSTM produce their lowest CO2 flux scores of 2.30 and 1.75 resp., at high latitudes 
while stations near or at the equator produce the largest RMSE errors of 4.82 and 4.08. This 
variability in RMSE is a result of larger seasonal variations in temperature and net radiation at 
higher latitudes and less variability at low latitudes.  
In conclusion, our experiments show that the RNN model produces on average about 28% 
improvement in RMSE with better R2 for both CO2 fluxes (for ARM/AmeriFlux stations) and NEE 
(Fluxnet2015 stations) prediction over FFNN model. It was also found that using heat fluxes as 
input variables produce improved CO2 flux and NEE predictions. The most surprising result 
obtained from the machine learning studies was the omission of CO2 concentrations as an input 
parameter produced comparable inferences of CO2 fluxes. We refer to this property as the 
metaphysical nature of neural nets. 
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Figure 9 Comparisons of FFNN and RNN, LSTM using AmeriFlux tower data at Morgan-

Monroe, Indiana. Data from 1999 to 2014 was used. 
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5. Conclusions 
We have presented two deep learning models, FFNN and RNN (LSTM) for prediction of CO2 flux 
at annual scales. We have used micro meteorological data from ARM, AmeriFlux, and 
Fluxnet2015 sites with different vegetation and regional climates distributed globally. In addition, 
we have examined the influence of meteorological variables as input to these neural nets as well 
as the sensitivity to different C3 and C4 crop types. We also presented CO2 flux or NEE machine 
learning experiments from more than 24 distributed stations using hourly data for multiple years 
for training, testing and validity tests. The experiments show for the global distribution of station 
data with more than a decade of observations that the LSTM model produces ~ 22% to 28% 
improved predictions compared with FFNN models. 
 
We have learned from the  machine learning approach in these station experiments that (i) 
supervised learning from long historical records are critical for improved inferences of NEE and 
CO2 flux, (ii) the temporal aspect of recurrent neural nets can yield significant improvements for 
those applications where the supervised data are time dependent such as occurring in the station 
data sets and (iii) there is still considerable room for improving both neural net algorithms by 
utilizing available tools that can experiment with the full set of hyper parameters for these 
algorithms. Some of the parameters are number of layers, epochs, number of time steps in LSTM, 
sensitivity to input variables and more careful analysis of station data like gap filling, use of fuzzy 
time steps to account for seasons, daytime hours, vegetation cover maps, nighttime  stratification 
of  unexpected low eddy fluxes.   
 
A most surprising machine learning result for inferring CO2 flux was the lack of sensitivity on CO2 
concentration itself as an input variable, when training with available CO2 flux data. Whether this 
holds away from stations will require further experiments. We assume that training the data with 
CO2 flux compensates for the lack of CO2 concentration as an input variable. In conclusion, these 
techniques can be applied to tower stations to infer and evaluate the present state of net ecosystem 
exchange. In the future, we plan to use these models to predict CO2 flux from remote sensing 
observations of OCO-2. 
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