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Abstract

Drone-based remote sensing is a promising new technology that combines the benefits of ground-

based and satellite-derived forest monitoring by collecting fine-scale data over relatively large areas 

in a cost-effective manner. Here, we explore the potential of the GatorEye drone-lidar system to 

monitor tropical forest succession by canopy structural attributes including canopy height, spatial 

heterogeneity, gap fraction, leaf area density (LAD) vertical distribution, canopy Shannon index (an 

index of LAD), leaf area index (LAI), and understory LAI. We focus on these variables’ 

relationship to aboveground biomass (AGB) stocks and species diversity. In the Caribbean lowlands 

of northeastern Costa Rica, we analyze nine tropical forests stands (seven second-growth and two 

old-growth). Stands were relatively homogenous in terms of canopy height and spatial 

heterogeneity, but not in their gap fraction. Neither species density or tree community Shannon 

diversity index were significantly correlated with the canopy Shannon index. Canopy height, LAI, 

and AGB did not show a clear pattern as a function of forest age. However, gap fraction and spatial 

heterogeneity increased with forest age, whereas understory LAI decreased with forest age. Canopy 

height was strongly correlated with AGB. The heterogeneous mosaic created by successional forest 

patches across human-managed tropical landscapes can now be better characterized. Drone-lidar 

systems offer the opportunity to improve assessment of forest recovery and develop general 

mechanistic carbon sequestration models that can be rapidly deployed to specific sites, an essential 

step for monitoring progress within the UN Decade on Ecosystem Restoration.

Keywords: aboveground biomass, Costa Rica, forest landscape restoration, forest structure, Leaf 

Area Density, Leaf Area Index, second-growth forest, Unmanned Aerial Vehicle (UAV).

1. Introduction

Most forest cover in human-modified tropical landscapes is now second-growth emerging from 

former agro-pastoral lands (Chazdon, 2014). Under suitable conditions, tropical  forest regrowth 

reduces the need for extensive active restoration interventions, supports local biodiversity, and 

enhances landscape functionality by supplying multiple ecosystem goods and services (Brancalion 

& Chazdon 2017; Chazdon, 2017; Chazdon et al., 2020). Natural regeneration of forest has been a 

proven, cost-effective approach to expand forest cover in landscape restoration initiatives (Lewis et 
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al., 2019). In Guanacaste Province, Costa Rica, forest cover increased from 24% to 51% from 

1986–2012 due to forest succession on abandoned pastures (Calvo et al., 2019). Similarly, in 

Brazil’s Atlantic Forest region, 2.7 M ha regenerated naturally from 1996-2015, contributing 8% of 

current forest cover (Crouzeilles et al., 2020). Increasing areas covered by second-growth forest can 

be an indicator of restoration outcomes under favorable conditions (Chazdon & Guariguata, 2016). 

However, second-growth forest patches differ in age, size, soil type, distance to seed sources, land 

use, and disturbance histories (e.g., fire, cattle grazing, logging) (Arroyo-Rodríguez et al., 2016; 

Crouzeilles et al., 2016). Tree cover established by second-growth forests in agricultural landscapes 

is, in fact, a heterogeneous mosaic of patches varying in biomass, diversity, and species 

composition (Solar et al., 2015; Poorter et al., 2016; Rozendaal et al., 2019).

The early stages of forest succession in tropical rain forests are dominated by low-stature 

pioneer trees with a relatively homogeneous canopy cover and dense understory vegetation (Nicotra 

et al., 1999, Montgomery & Chazdon, 2001). After several decades, late-successional trees 

dominate most strata of the forest, and forest biomass concentrates in large, often emergent, 

individuals that increase the complexity of the vertical structure of the forest (Ruiz-Jaen & Potvin, 

2011). While successional changes in canopy structural attributes (CSA) such as height, openness, 

leaf area, and architecture have received attention in forest ecological studies (Stark et al., 2012, 

2015; Chanthorn et al., 2016), relatively little is known about the complex interrelationship between 

the development of these attributes and forest recovery trajectories. Furthermore, these attributes 

likely have key impacts on forest function — how regenerating forests use nutrients, light, and 

water — as they age (Scheuermann et al., 2018), and may impact forest sensitivity to disturbances 

related to global climate change, such as severe, prolonged drought (Laurance, 2004).

The methods currently used to monitor tropical forest succession are based on labor-

intensive inventory field plots that rarely cover more than a few hectares. Relative to the millions of 

hectares in the tropics undergoing regrowth (Crouzeilles et al., 2019; Nanni et al., 2019), plot-based 

monitoring is a limited (though valuable for certain purposes) approach, particularly given the 

challenge of accessing remote regions. While detailed ground-based measurements remain the gold 

standard for measuring species diversity and carbon storage, remote sensing approaches are 

beginning to offer complementary advantages even at the plot-scale, such as the ability to measure 

structural attributes like leaf area index and canopy height, without the need for destructive 

sampling (Calders et al., 2015). Remote sensing approaches based on satellite imagery have been 

used to map forest regeneration (Hansen et al., 2013; Almeida et al., 2019a), but the coarse spatial 

resolution and 2D images limits their utility to monitor successional change or meaningfully 
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differentiate among tree cover types (e.g., natural regeneration vs. monoculture plantations) that are 

finely interwoven in mosaic landscapes (Hickey et al., 2019). 

Active remote sensor lidar (light detection and ranging), in particular, is the best option for 

measuring three-dimensional structural parameters of the forest canopy (Almeida et al., 2019a). 

Lidar emits hundreds of thousands of electromagnetic waves per second in the near-infrared (~900 

nm wave-length). These pulses hit forest targets (ground, branches, and leaves), and, by analyzing 

the time delay from pulse emission to return, makes it possible to build an accurate three-

dimensional model of the forest. One of the main advantages of this system is that some pulses can 

penetrate the forest canopy, recording information about the subcanopy, understory, and ground 

vegetation. Thus, lidar delivers a three-dimensional cloud of points that represent the physical 

structure of the forest. Successional changes could be characterized using lidar-derived metrics such 

as mean canopy height, gap fraction, and leaf area, enabling robust monitoring of both forest 

development and degradation (Caughlin et al., 2016; Almeida et al., 2019b).

Drone-based remote sensing is a promising new technology that provides fine-scale data 

over relatively large areas (hundreds and thousands of hectares) at a relatively low cost (Anderson 

et al., 2013; Zahawi et al., 2015). However, typical vegetation indices (e.g., NDVI), derived from 

multispectral imaging optical sensors, saturate in dense forests (Turner et al., 1999) and do not offer 

clear information about the detailed structural configuration of the canopy. Because lidar systems 

can penetrate the canopy, they provide detailed information on vegetation beneath the forest 

canopy, as well as general information about forest height and spatial arrangement of leaf area 

(Almeida et al., 2019c).

The application of drone-borne lidar data for monitoring restoration remains poorly 

explored and underdeveloped relative to its potential to reveal detailed functional and ecological 

information about the drivers of structure and function in regenerating tropical forests. Drone-borne 

lidar could significantly advance and broaden the monitoring of forest regeneration (Almeida et al., 

2019c), particularly in tropical regions where multiple ambitious restoration commitments have 

been recently established in an effort to mitigate climate change and conserve biodiversity 

(Brancalion et al., 2019). Here, we explore the potential of a drone-borne lidar system (GatorEye 

Unmanned Flying Laboratory) to monitor tropical forest succession by assessing canopy structural 

attributes, which are otherwise difficult to measure with traditional forest inventories. We also 

investigate the relationships between canopy structural attributes and aboveground biomass and 

species diversity. 

2. Material and methods
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2.1. Study Area

The study was conducted in nine forested plots in Sarapiquí, Heredia Province, in the Caribbean 

lowlands (50-220 m a.s.l.) of northeastern Costa Rica (Table 1; Figure 1). Mean annual rainfall is 

3800 mm, and mean annual temperature is 26°C at the nearby La Selva Biological Station (McDade 

et al., 1994);  the natural vegetation is classified as Tropical Moist Forest (sensu Holdridge et al., 

1975). Soils are derived from weathered basalt and are classified as ultisols (Sollins et al., 1994). 

All plots are located in a landscape consisting of second- and old-growth forest patches immersed in 

a matrix of pastures and agricultural fields. Seven plots are in stands between 22 and 45 yrs old, and 

two others are in a nearby old-growth forest (>100 yr). All second-growth forest plots were 

previously used for pasture. Many studies of forest succession have been previously published using 

these plots (Chazdon et al., 2005; 2006; 2010; Dubayah et al., 2010; Becknell et al., 2018).

2.2. Field data collection

Five of the study plots were established in 1997 (LEPS, CR1, CR2, TIR, and LSUR; see Table 1), 

and four were established in 2006 (JE, FEB, SV, and LEPP; see Table 1). In each plot, all trees  5 

cm in diameter at breast height (DBH) were tagged, mapped, identified, and measured within 10×10 

m subplots. DBH was measured at 1.3 m height or above stem anomalies (buttresses or stilt roots; 

ladders were used when needed). Vouchers were collected for identification and compared with 

specimens in the La Selva Herbarium. Every year through 2017, the plots were remeasured, and 

new recruits were tagged, measured, and identified.

2.3. Drone lidar data collection

Plots were overflown using the GatorEye Unmanned Flying Laboratory over the course of two 

weeks in August 2017. The sensor suite was comprised of a Phoenix Scout system (hardware 

system that integrates lidar and other sensors with inertial and georeferencing systems to data 

collection and preparing), a Velodyne VLP-16 Puck Lite laser scanner (lidar sensor), an onboard 

single-antenna global navigation satellite system (GNSS) receiver (that performs georeferencing of 

data), and a STIM300 inertial measurement unit (IMU) (which measures the drone's multi-

directional movements and orientation, and assists in increasing the accuracy of data 
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georeferencing). A ground base station X900S-OPUS GNSS receiver collected static GNSS data 

during the flight, which were used to calculate a post-processed kinematic (PPK) trajectory via 

Novatel Inertial Explorer software (which enables the high accuracy and precision of data 

geolocation). More details can be found at the GatorEye website (www.gatoreye.org). Absolute 

point accuracy has been tested using ground-surveyed checkpoints, showing a root mean square 

error (RMSE) of 5 cm (Wilkinson et al., 2019). The autonomous flight was programmed to take 

place at a speed of 8 m/s at 60 m above ground. The transects were spaced 15 meters apart (Figure 

2), producing a high-density point cloud (458 ± 170 pts.m-2; mean±SD).

2.4. Data processing and analysis

We filtered the drone-derived lidar point clouds to eliminate spurious returns, as described by 

Almeida et al. (2019c). A digital terrain model (DTM) with 0.5 m resolution was created for each 

site from the interpolation of ground returns. The algorithm by Zhang et al. (2016) was used for 

ground classification, as implemented in the “lidR” package of R (Roussel et al., 2019). This DTM 

was used to normalize the drone-lidar point cloud (i.e., calculate heights above ground), and also to 

interpolate a canopy height model (CHM) with 0.5-m resolution. The CHM and normalized lidar 

point clouds were clipped based on the polygons of the georeferenced field plots. The four corners 

of each rectangular plot were georeferenced using a handheld Garmin 60x GNSS unit (2 m 

precision through waypoint averaging).

From the normalized point clouds at each plot, we computed the leaf area density (LAD) 

profiles and leaf area index (LAI). The LAD is the area of leaves found in one unit of canopy 

volume. It can be seen as the decomposition of the LAI among the vertical strata of the forest 

canopy (more details in Almeida et al., 2019d). We computed LAD and LAI based on the 

MacArthur-Horn equation (MacArthur & Horn, 1969) as described in Almeida et al. (2019d). This 

method provides a basis to estimate variation in vegetation density from optical transmission rates. 

LAD profiles were calculated from 1 m above the ground (to avoid possible ground returns - lidar 

cloud points that represent the ground but can be erroneously quantified as vegetation), using 4 m3 

voxels (three-dimensional pixels). The voxels had 2 × 2 m horizontal resolution and 1 m vertical 

resolution. Only first returns within 5° of the scan nadir view angle were considered in the 

computation. We fixed K = 1 (MacArthur-Horn equation; see details in Almeida et al., 2019d) to 

calculate the “effective LAD” and “effective LAI”, which are hereafter referred to as simply LAD 
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and LAI, for convenience. At each plot, LAI was calculated as the sum of LAD values obtained 

along with the profile. For visual comparisons, we also calculated a mean leaf area density (LAD, 

m2 m−3) profile of all the LAD profiles calculated within each plot. We also carried out a forest gap 

analysis from the CHM (Silva et al., 2019) to compute the gap fraction. We considered as a forest 

gap any group of pixels with a height lower than 5 m and an area of at least 10 m2 (see also Stark et 

al., 2012). 

Six canopy structural attributes (CSA) were derived from the lidar data: three from the 

CHM and three from the normalized cloud. For each plot, we computed: (i) canopy height (mean of 

the CHM); (ii) gap fraction (proportion of area with gaps); (iii) spatial heterogeneity (CHM 

standard deviation); (iv) leaf area index (sum of LAD); (v) understory LAI (LAIunderstory; the sum of 

LAD between 1–5 m above the ground); (vi) the leaf area height volume (LAHV, Eq. 1). LAHV 

was calculated as the sum of the products of height and mean LAD at that height, for each of the 1 

m height intervals i in the LAD profile. LAHV was introduced for the first time in Almeida et al. 

(2019b), who found that LAHV has the potential to estimate forest biomass in forests with different 

allometric relationships (i.e., height and AGB ratio). Biologically, the assumptions are that leaf area 

and basal area are directly proportional, while cross-sectional area of branches are approximately 

constant over branching generations, and the number of branching generations increases linearly 

with height (West et al., 1997). Thus, LAHV is positively correlated with forest AGB (see the 

model in Stark et al., 2015).

                                                                                      (1)���� =  ∑(� ×  ����)
where i (i = 1, 2, 3, …, maximum height) is the height within the canopy, and LADi is the horizontal 

mean of leaf area densities at that respective height (Figure 3).

Using the data measured in the field (inventory data of all trees with DBH   5 cm), we calculated 

the aboveground dry woody biomass (agb, in kg) of each tree, using the formula of Chave et al. 

(2014):

agb = exp(-1.803-0.976*E+0.976*ln(wd)+2.673*ln(d)-0.0299*[ln(d)]2)                     (2)

where E is a measure of environmental stress, wd is the species-specific wood density, and d is the 

DBH of each tree. The E coefficient for the study area (E = -0.0625) was obtained using the 

retrieve_raster function developed by Rejou-Mechain & Chave (2014) for accessing their datasets 

in R (R Core Team 2019). Wood density data were collected from trees within the plots (Plourde et 

al., 2015). For species with no local wood density data, values from the “Global Wood Density 

Database” (Zanne et al., 2009) were used. For each plot, we totaled the agb of all trees to calculate 

the density of aboveground biomass (AGB, in Mg∙ha-1) in that forest area.
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We related the six CSAs and the estimated AGB to forest age using a linear model (for gap fraction 

and spatial heterogeneity, Eq. 3) or an exponential model (for AGB, canopy height, LAI, and LAI 

understory, Eq. 4):

                                                                                            (3)��� = �0 + �1 ��� 

where β0 and β1 are the intercept and slope of the model, respectively.  

                                                               (4)  ��� = � + (� ―  �) ��� (
―(���)γ )

where alpha is the asymptote of the model representing CSA, betha is the intercept of the model, 

and gamma is related to the rate of change in CSA with increasing age. The model was fit with a 

nonlinear least-squares method, and its significance tested with a Fisher’s test. Assuming that 100 

years would be enough to reach forest structural maturity, the old-growth forests were assigned an 

age of 100 years for all analyses involving age (Guariguata et al., 1997). To identify and eliminate 

outliers, we used t-tests based on studentized residuals implemented using the function outlier.test 

in R package “car” (Fox and Weisberg 2011). 

We further estimated AGB from lidar-derived canopy height, gap fraction, spatial 

heterogeneity, and LAHV using ordinary least squares linear regression. The assessment of model 

accuracy was performed by a leave-one-out cross-validation (LOOCV) procedure, which re-

calculates the model for each set of n-1 observations and uses that model to predict the omitted 

observation. The relationship between the observed (measured) and predicted (via LOOCV) values 

was evaluated by testing their 1:1 correspondence under the null hypothesis that their regression 

intercept and slope were 0 and 1 respectively (Valbuena et al., 2017).

Finally, we examined the relationship between tree species diversity and forest structure. We 

considered two measures of tree species diversity: (1) species density (number of species per area 

using a fixed area); and (2) tree community Shannon diversity index (entropy of species’ 

proportional stem-wise abundances). The potential of lidar to provide a proxy for tree diversity was 

examined with an additional variable, the structure-based “canopy Shannon index”, based on the 

mean LAD profile of a plot (Stark et al., 2012; Valbuena et al., 2012). The canopy Shannon Index 

increases with the number of heights having vegetation present and with the equitability of LAD 

among those vegetated heights (see more details in Almeida et al., 2019b). Spearman correlations 

were calculated for the canopy Shannon index as a function of each of these two aspects of tree 

biodiversity.

3. Results

3.1. Canopy structural attributes and forest age
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Canopy structural attributes differed in their between-plot coefficients of variation (CV) (Table 2). 

Plots were relatively homogenous in terms of canopy height (10.6%) and spatial heterogeneity 

(26.2%) but not in their gap fraction (100.1%). In fact, the gap fraction was the structural attribute 

that showed the highest variability among plots, ranging between 0.0% and 3.9%. LAI was, on 

average 7.24 ± 0.36 (mean±SD) (Table 2), and all plots had an LAI between 6.6 and 7.6 (Figure 3). 

However, each plot showed a distinct LAD profile (Figure 3). In general, LAI varied among plots 

(CV=5%), and was more variable in the understory (CV=23.7%) (Table 2).

Gap fraction (r² = 0.72, p = 0.008), and spatial heterogeneity (r² = 0.83, p = 0.002) were 

positively associated with forest age, while LAIunderstory was negatively associated with forest age (r² 

= 0.52, p = 0.045; Figure 4). However, none of these variations showed a significant correlation 

when the two old-growth plots were eliminated from the regression (p-values > 0.005). LAI, AGB, 

and canopy height did not show any pattern with forest age (Figure 5). In our analysis, the old-

growth forests were assigned an age of 100 years (enough to reach the forest's structural maturity); 

however, the results were similar when we performed the analysis with a 200 year forest maturity 

value.

3.2. Predicting biomass and diversity

Canopy height (lidar-derived) significantly predicted AGB (r2 = 0.80, p = 0.001, Figure 6). LAHV, 

gap fraction and spatial heterogeneity showed no significant linear correlation with AGB (Figure 

S1). Neither species density nor tree community Shannon diversity index were significantly 

correlated (Spearman correlation) with lidar-derived canopy Shannon index (p = 0.168 and p = 

0.385, respectively; Figure S2). 

4. Discussion

Our study demonstrates the potential of drone-borne lidar to assess the structure and biomass of 

tropical forests at different successional stages. To our knowledge, this is the first study to use this 

technology to study or monitor tropical forest succession. Forest age was positively correlated with 

spatial heterogeneity and gap fraction, and negatively with understory LAI. The accuracy of AGB 

estimates from lidar-derived variables (canopy height and LAHV) was high and supports other 

reports considering primary and disturbed tropical forests (Longo et al., 2016). The canopy structure 

attributes observed with lidar were not clearly related to taxonomic diversity but may be related to 
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forest structure and function variables necessary for monitoring forest recovery. Below, we briefly 

review these likely connections to highlight frontiers for further exploring the capacity of lidar to 

monitor successional changes in forest structure, function, and ecosystem services. 

4.1. Canopy structural attributes and forest age

Previous studies have investigated the use of drone-borne lidar systems in restoration plantations in 

the Brazilian Atlantic Forest (Almeida et al. 2019c) and in natural forests in Arizona (Sankey et al. 

2017). For the first time, this study describes canopy structural attributes and foliage-height profiles 

for a series of nine tropical forest plots with a range of ages, allowing a quantitative analysis of 

successional changes in structure. Almeida et al. (2019c), also using the GatorEye system, found 

LAD profiles with a monomodal shape (leaf area concentrated in a single vertical stratum) in forest 

restoration plantations in Brazil’s Atlantic Forest. This monomodal pattern seems to be 

characteristic of relatively young even-aged plantations (less than 20 years old), even when the 

species are highly diverse (Almeida et al., 2019b). The natural regeneration studied here showed a 

LAD with more evenly distributed vegetation along the vertical profile (i.e., without a concentration 

of lidar returns at any given height), or with multiple peaks corresponding to vegetation 

stratification (Figure 3). This characteristic appears to be more typical of old-growth forests, or 

advanced stages of natural regeneration, and likely results from the development of an uneven age 

structure related to natural establishment and gap formation and closure dynamics (occupying 

multiple vertical positions in the canopy) (Stark et al., 2012; Valbuena et al., 2012; Almeida et al., 

2016, 2019b). 

The decline of understory LAI in old-growth forests has also been observed in other studies 

(Almeida et al., 2019b). This pattern is clearly driven by the old-growth forest data. These results 

are consistent with theories of competition for light in tropical forests, which show that recruitment 

declines due to growth of smaller trees into the intermediate canopy strata and the closure of the 

upper canopy (Rüger et al., 2009). For example, while carrying out field inventories for this study, 

it was clear that the understory of old-growth forests are much easier to walk through than in 

second-growth forests, in agreement with the lidar results. Metrics of light transmission, with 

varying degrees of realism, can also be modeled from vegetation profiles to help explain forest 

successional dynamics (Stark et al., 2012). In the same study area featured here, Montgomery & 

Chazdon (2001), found that understory (one to four meters high) light availability was higher in 

old-growth than in 15-20 yr old second-growth forests, and was reduced in second-growth forests 

by the higher density of saplings and shrubs.
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Forest canopy variables are fundamental to understanding many ecological processes. 

Forest structure, including foliage density, canopy cover, and stratification, influence light 

availability and consequently affect light use and ecosystem productivity (Nicotra et al., 1999; 

Montgomery & Chazdon, 2001; Ishii et al., 2004). The quantity and distribution of foliage drive the 

rates of energy, water, and nutrient flux, which are directly related to forest succession (Feldpausch 

2005). Differences in vertical and horizontal distribution of LAD may provide insights into the 

relationship between tree LAI and ecosystem functions, especially hydrological processes such as 

water storage (Lorens & Gallart 2000; Keim & Link 2018) and kinetic energy dissipation of 

raindrops (Geißler et al., 2013; Song et al., 2018). 

Not all forest canopy variables in our study showed clear age-related trends. Differences in 

AGB, canopy height, and LAI across sites were not explained by stand age. We believe the cause 

for this is that the youngest forests in this study were already 22 years old, which is sufficient time 

for significant structural and biomass formation. Furthermore, the presence of larger remnant trees 

within some of the second-growth forests may have obscured the effects of stand age in the 

chronosequence analysis (Chazdon et al., 2014). Becknell et al. (2018), using airborne lidar, showed 

that chronosequence results are robust at the landscape scale, and the sample area required to 

produce estimates of canopy height and AGB approximating the landscape-scale mean is larger 

than the typical area sampled in second-growth forest chronosequence studies. The relationship 

between forest age and AGB is apparent when we analyze long-term changes within each plot 

(Figure S3). Regression results support ground-level research in the same study area that concluded 

that old-growth forests have a higher gap fraction and spatial heterogeneity than young second-

growth forests (Nicotra et al., 1999; Montgomery & Chazdon, 2001). Nicotra et al. (1999) in the 

same study area, found that 15-20 yr old second-growth forest canopies are more homogeneous (or 

have less gap) than old-growth canopies. Another study using lidar measurements also found higher 

spatial heterogeneity in old-growth forests than in second-growth forests in the Brazilian Atlantic 

Forest biome (Almeida et al., 2019b). 

One of the main limitations of the present study is the low number of samples (nine plots), 

which limits model development and testing. A valuable approach would be to use a much larger 

set of plots and try to develop more complex models using multivariate regression or machine 

learning (Valbuena et al., 2016). In addition, we found outliers in some models. The outlier found 

for gap fraction, spatial heterogeneity, and understory LAI corresponds to the 35-yr old “Tirimbina” 

plot. The lidar point cloud for this plot (Figure S4) shows large gaps (and consequent higher spatial 

heterogeneity and understory LAI), when compared, for example, with the similarly aged (40 yrs.) 
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“LEP Secondary” plot. These gaps are caused by the mortality of large-crowned canopy trees of 

Vochysia ferruginea, that dominate this plot. 

4.2. Predicting biomass and species diversity

In our analysis, AGB was well explained by canopy height, in agreement with many previous 

studies (e.g., Longo et al., 2016; Valbuena et al., 2017; Almeida et al., 2019c, 2019e). Here, the 

LAHV, did not significantly improve AGB prediction. This likely happened because we analyzed 

one forest type only, and for this forest type, the allometric relationship between AGB and canopy 

height did not show much variation. Almeida et al. (2019b), however, found great potential of 

LAHV in AGB prediction when comparing forest types with greater structural differences (old- and 

second-growth forests, monoculture plantations, and high-diversity plantations). 

In this study, we failed to find significant relationships between tree species density and 

canopy structure measures. While Almeida et al. (2019b) found a weak relationship between the 

canopy Shannon index and the tree species Shannon index, the canopy complexity of second- and 

old-growth tropical forests seems to saturate at a relatively low species density. Other studies have 

shown the combination of lidar and hyperspectral data to be a promising path to assess tree diversity 

(Asner et al., 2015; Sankey et al., 2017). Due to the difficulty and complexity of finding clear 

relationships between canopy structures (and their possible combinations) with diversity, new 

machine learning tools (Valbuena et al., 2016) could be good alternatives for exploring these 

relationships and creating efficient models. However, these approaches usually require a relatively 

high number of samples (many more than we have in the present study). Most studies of second-

growth forests are based on much smaller plots and have larger sample sizes when compared to the 

present study. It is not clear what the best spatial scale is to detect these relationships. In the same 

study plots featured here, Lasky et al. (2014) found that the relationship between species richness 

and biomass change was not significant in the mid-successional and old-growth stands when 100 m2 

quadrats were sampled. 

4.3. Implications for monitoring tropical forest succession using drone-borne lidar systems

Canopy structural metrics are important attributes that may evince forest changes through time. Our 

findings provide insights into forest structure development and ecological processes occurring in the  

naturally regenerating forests. Other links between forest structure and function could be derived 

directly from combining the three-dimensional data opening new opportunities for mapping more 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

complex variables such as leaf chlorophyll and N content, and even ecosystem functions such as 

photosynthetic performance (Eitel et al., 2010, 2011; Magney et al., 2014). In this way, lidar could 

provide meaningful information for developing ecological models and forest change monitoring, in 

both naturally regenerated and planted forests. As a high resolution, non-destructive, and efficient 

tool, lidar systems are increasingly applied for reliable three-dimensional data acquisition and 

comparison in forest inventories (Song et al., 2018).

We highlight the usefulness of drone-based lidar to monitor and estimate the structural 

parameters of trees from the forest stand level to landscape with three-dimensional structure 

information (Asner et al., 2011, Baccini et al., 2012). Our field data came from a long-term study of 

tropical forest succession in wet lowland forests of Costa Rica (Chazdon et al., 2010), so it would 

not necessarily be suitable for calibrating lidar-derived biomass calculations in other regions. Field 

data required to calibrate models of lidar-derived biomass estimates may be available for other 

regions or forest types. In this sense, we need systematic analyses bringing together lidar data from 

plots around the world, across degradation gradients to see what patterns emerge when we include 

more complete data.

Despite the great practicality and autonomy that drone systems provide, the price and 

accessibility of complex systems with lidar and hyperspectral sensors are still limited. Drone-lidar 

and drone-lidar-hyperspectral systems still have very high prices (~ US $ 100,000 - US $ 450,000; 

The GatorEye falls within that range) when compared to drone systems with conventional RGB 

(red, green and blue channels) cameras (~ US $ 1,500). However, we expect that this type of 

technology will become much less expensive in the coming years. Also, it is necessary to keep in 

mind that these systems are quite fragile and require a high degree of technical knowledge for their 

operation. However, 3D photogrammetry techniques (a.k.a. Structure from Motion) (Cruzan et al., 

2016; Swinfield et al., 2019) make it possible to obtain highly accurate digital surface models. 

However, this technique has two major limitations: the first is the high computational cost for 

processing 3D photogrammetry data. Most commercial structure from motion software companies 

(e.g., Pix4D and Dronedeploy) now have these processing features through cloud-based computing 

and at a reasonable cost. That greatly reduces the need to have powerful desktop computers, as 

images are essentially uploaded in batches and processed remotely.  The second is that this 

technique cannot calculate leaf area density profiles and the ground elevation below the forest (like 

lidar does). Therefore, to calculate the canopy height, it is necessary to have a priori knowledge of 

the ground elevation (Zahawi et al., 2015).  

International accords, such as the Paris Agreement on climate change and the Convention 

on Biological Diversity, require reporting aspects of forest structure and health, including for forests 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

outside of protected areas. But there is also an urgent need to track and monitor forest recovery not 

just for carbon sequestration but also for other significant benefits, such as biodiversity, water 

recharge, and evapotranspiration (Bryan et al., 2015; Chazdon et al., 2016; Mukul et al., 2016). 

Drone-borne lidar data opens up the possibility of replacing intermittently measured field plots 

(e.g., bigplotnetwork.org), guesswork, and general models with site-specific and up-to-date data, 

and offer a critical contribution for the 2021-2030 United Nations Decade on Ecosystem 

Restoration. 
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Tables

Table 1. Descriptive information about the study plots.

Site Site id

Plot size 

(ha)

Age in 2017

(yrs)

Juan Enriquez JE 1 22

Finca El Bejuco FEB 1 22

Lindero Sur LSUR 1 32

Tirimbina TIR 1 35

LEP Secondary LEPS 1 40

Cuatro Rios I CR1 0.5 45

Cuatro Rios II CR2 0.5 45

Selva Verde SV 1 >100

LEP Primary LEPP 1 >100

Table 2 – Stand-level mean, standard deviation (SD), coefficient of variation (CV), and range of 

lidar-derived canopy structural variables for the nine plots.

 Mean±SD CV Range

Canopy Height (m) 21.91 ± 2.31 10.6 17.21 - 25.08

spatial heterogeneity (m) 5.97 ± 1.56 26.2 4.11 - 8.53

Gap fraction (%) 1.12 ± 1.13 100.1 0.00 – 3.90

LAI (m2/m2) 7.24 ± 0.36 5.0 6.61 - 7.67

LAI understory (m2/m2) 1.28 ± 0.3 23.7 0.95 - 1.66

Shannon canopy index 3.33 ± 0.12 3.6 3.09 – 3.51

LAHV 145.61 ± 33.85 23.2 81.57 - 197.53
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Figures legends

Figure 1. Study Area located in the Caribbean lowlands (50-220 m a.s.l.) of Heredia Province in 

northeastern Costa Rica. Land use classification based on satellite imagery from 2011 (Fagan et al., 

2013). 

Figure 2. Flight plan of data collection and lidar-derived metrics. Example of a single flight in 

which two plots were overflown within the maximum flight time of 15 minutes for the DJI Matrice 

600 Pro used to transport the sensor suite.

Figure 3. Lidar-derived leaf area density (LAD) profiles of nine plots in forests of different ages in 

Sarapiquí province, Costa Rica. The LAD is the area of leaves found in a unit of canopy volume. It 

can be seen as the decomposition of the leaf area index (LAI) among the vertical strata of the forest 

canopy.

Figure 4. Gap fraction, canopy spatial heterogeneity, and understory leaf area index (LAIunderstory) as 

a function of forest age. The “*” point is an outlier not included in these regressions. Old-growth 

forests were assigned an age of 100 years.

Figure 5. Field-derived aboveground dry wood biomass (ABG), lidar derived canopy height, and 

leaf area index (LAI) as a function of forest age. The parameter α is the asymptote of the model, β is 

the intercept of the model, and γ determines the rate of change. Old-growth forests were assigned an 

age of 100 years.

Figure 6. (A) Field-measured aboveground biomass (ABG) as a function of lidar-derived canopy 

height in nine forest plots in Sarapiquí, Costa Rica (r2 = 0.80, p = 0.001, RMSE = 24.9, relative 

RMSE = 9.0%). Numbers in parentheses are the standard errors for each coefficient. (B) Leave-one-

out cross-validation (LOOCV) of aboveground biomass. The solid line represents a 1:1 

correspondence, and the dashed line (virtually indistinguishable from the solid line) is the linear 

regression fit between observed and leave-one-out predicted values (obsi = α + β·predi). The values 

of α and β showed no significant difference from 0 and 1, respectively. A
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