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Abstract

Predicting violent storms and dangerous weather conditions with current mod-

els can take a long time due to the immense complexity associated with weather

simulation. Machine learning has the potential to classify tornadic weather

patterns much more rapidly, thus allowing for more timely alerts to the pub-

lic. To deal with class imbalance challenges in machine learning, different data

augmentation approaches have been proposed. In this work, we examine the

wall time difference between live data augmentation methods versus the use

of preaugmented data when they are used in a convolutional neural network

based training for tornado prediction. We also compare CPU and GPU based

training over varying sizes of augmented data sets. Additionally we examine

what impact varying the number of GPUs used for training will produce given

a convolutional neural network on wall time and accuracy. We conclude that

using multiple GPUs to train a single network has no signficant advantage over

using a single GPU. The number of GPUs used during training should be kept as

small as possible for maximum search throughput as the native keras multi-GPU

model provides little speedup with optimal learning parameters.
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TensorFlow, Keras, GPUs

1. Introduction

Forecasting storm conditions using traditional, physics based weather models

can pose difficulties in simulating particularly complicated phenomena. These

models can be inaccurate due to necessary simplifications in physics or the

presence of some uncertainty. These physically based models can also be com-5

putationally demanding and time consuming. In the cases where the use of

accurate physics may be too slow or incomplete using machine learning to cat-

egorize atmospheric conditions can be beneficial [1]. Machine learning has been

used to accurately forecast rain type [1, 2], clouds [2], hail [3], and to perform

quality control to remove non-meteorological echos from radar signatures [4].10

A forecaster must use care when using binary classifications of severe weather

such as those which are provided in this paper. The case of a false alarm

warning can be harmful to public perception of severe weather threats and has

unnecessary costs. On the one hand, an increased false alarm rate will reduce the

public’s trust in the warning system [5]. On the other hand, a lack of warning15

in a severe weather situation can cause severe injury or death to members of

the public. Minimizing both false alarms and missed alarms are key in weather

forecasting and public warning systems.

With advances in deep learning technologies, it is possible to accurately and

quickly determine whether or not application data is of a possibly severe weather20

condition like a tornado. Specifically one can use an supervised neural network

such as a convolutional neural network (CNN) for these binary classification

scenarios. However these CNNs must be heavily tuned and hardened to prevent

false positives, or worse, false negatives from being produced. These CNNs

require large amounts, hundreds of thousands and even millions, of data samples25

to learn from. Without an ample amount of data to learn from a CNN has no

hope of achieving accurate predictions on anything except the original training

data provided. Of the 183,723 storms in the data set used in this work only
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around 9,000 entries have conditions which lead to tornadic behavior in the

future [6]. This imbalance of tornado versus no tornado results in a situation30

where a machine is very good at predicting no potential tornado but is very bad

at predicting when there is a tornado imminent leading to false negatives.

It is for these reasons that there is a real motivation to acquire more data

that would result in tornadic conditions however one cannot simply go outside

hoping to collect storm data that result in these conditions. This heralds the35

need of synthetic data to bolster the amount of data used for training a neural

network. Synthetic data must be generated such that it is indistinguishable from

real data and can be used in conjunction with the natural data to train a neural

network on a more balanced data set which produces fewer if any false nega-

tives. To train and tune a neural network of this nature is very time consuming40

and resource intensive taking anywhere from several hours to several days given

enough data. In order to quickly tune, train, and test the validity of a neural

network with several different hyperparameter combinations, a variation of the

parallel framework originally introduced in [7] to train many networks simulta-

neously with varying hyperparameter values in a high performance computing45

environment is used.

In addition to training multiple networks simultaneously, each on a different

GPU, it is also possible to train a single network across multiple GPUs. We

therefore explore the question of whether it is more efficient to train several

networks simultaneously, or to parallelize the training of a single network. In50

addition we examine the effect that using multiple GPUs during training has

on the network’s accuracy. This discussion of accuracy constitutes an extension

of the original special session paper [8].

This paper has several contributions. (1) Benchmarking of two data augmen-

tation approaches and their effects to deep learning training times. Through the55

benchmarking, we examine their differences in terms of the effective use of re-

sources. (2) Benchmarking of MPI-based parallel deep learning hyperparameter

tuning. This is done with a custom framework that allows for in-depth exam-

ination of all possible hyperparameter configurations in an HPC environment.
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(3) Benchmarking of CPU and GPU based parallel deep learning hyperparame-60

ter tuning. (4) Lastly, investigation of the effect of multiple GPUs on accuracy.

The remainder of this paper is organized as follows. Section 3 gives a basic

introduction to convolution neural networks and the problem of data augmenta-

tion. Section 4 introduces the natural data used for training the neural networks

and the preprocessing method used on the data prior to training. Section 565

discusses hyperparameters and their importance in training and the parallel

framework used for hyperparameter tuning in a high performance computing

environment. Section 6 presents the effect of various hyperparameter configura-

tions on the wall time for training as well as on accuracy of the training. Lastly

Section 7 collects the conclusions of this work.70

2. Related Work

There are a plethora of papers and textbooks on deep learning and neural

networks that go over methods for solving data imbalances. These texts, such as

[9], [10], and [11] all talk about the importance of data augmentation to prevent

bias, overfitting of the network, and more. Pundits and blogs may talk about75

the use of live augmentations as a cure all to an imbalanced data set because

tools are readily available to do this task however there is little consideration for

the possible performance benefits of using data that has been augmented apriori

to run time. This work seeks to demonstrate that there is a clear difference in

training time with regards to preaugmented data and live augmented data even80

in the case of an idle CPU during GPU training sessions rather than discuss the

benefits of augmentation versus not.

There are several tools that exist for hyperparameter searching yet they do

not solve all of the problems presented for tuning in our HPC environment or do

not solve them adequately enough. Two mainstream frameworks are Talos and85

sklearn’s GridCVSearch. Talos aims to the fix the clunky interface of sklearn

by replacing the Keras fit method with a method that takes dictionary inputs

and automatically searches over them during fitting. However both these frame-
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works are limited to a single node and as such would not automatically fully

utilize a HPC system if given the resources to do so. The framework mentioned90

Section 5.2, from [7, 6], exists to solve that problem by creating an HPC based

framework for hyperparamter searching. This framework has innate limitations

like a lack of in-depth analytics on a hyperparameter by hyperparameter ba-

sis, lacks support for live data augmentation, and only has one type of parallel

schema available. This work creates a parallel framework which solves all of the95

aforementioned problems.

There are a slew of technical reports and papers that talk about the impor-

tance of benchmarking and improving parallel timings such as [12], [13], and

[14]. Texts which deal specifically with training neural networks even go so far

as to mandate GPUs for training like in [9]. In the case where one may have100

access to many mid to high end GPUs, or may be considering a purchase of

them, how many is too many? This work aims cover, in a high level manner,

how use case is an important factor for the number of GPUs that should be

used for optimal training times.

3. Deep Learning with Convolutional Neural Networks105

The general idea and information behind neural networks is that when given

a set of inputs and known outputs we train a neural network to make predictions

about future data inputs whose output is unknown. In order to gauge how

accurate the network has become we provide data that was not in the learning

data set and the CNN uses the knowledge gained from training to guess the110

outcome of data that it has not seen before [9]. We test against a testing set

of data where our outputs are still known but the answers are not provided

to the network. We then grade its accuracy based on the correctness of these

predictions. A general neural network is made of three phases as seen in [10].

There is the input layer where the data is pushed into the network. Then there115

are some number of hidden layers which are responsible for digesting the input

data and learning from it. Then finally the output layer whose output meaning
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is predetermined by the context of the problem. For example the output can

be a binary classification of the input data, maybe even a new image entirely,

but whatever output is produced, the network itself has no understanding of120

what the output truly means. In the context of tornado prediction consider

a 32 × 32 grid of data points where each data point contains the composite

reflectivity, 10 meter west-east wind component, and the 10 meter south-north

wind component as the data used to predict future conditions. Then the mean

future vertical wind velocity will serve as the indicator that a tornado will occur125

[7, 6]. A single input to the neural network would be a 32 × 32 × 3 array

with each variable in its own grid. This data would then be evaluated by the

first hidden layer whose result would be pushed into the second hidden layer,

and so on until the final result is put into the output layer. The output layer

would contain an integer, specifically 0 or 1 in this case. A binary classifier in130

the context of mean future vertical wind velocity might seen nonsensical with

regards to the question: what is the mean future vertical wind velocity given

these input conditions? However the network is not attempting to, nor is it

capable of, answering that question. With this binary classification the network

provides an answer to: is the mean future vertical wind speed large enough135

to be considered tornadic? With regards to this question the network sensibly

outputs either 0 for no or 1 for yes. These three weather conditions from a

storm snapshot can be made into images as seen in Figure 1 which predicts if

the winds result in a future tornado. With the lack of natural data available

researchers must turn to synthetic data.140

There are several methods to acquire synthetic data for fitting a CNN. The

current method, outside of machine learning, is through storm simulation mod-

els. These are very computationally expensive often taking days for only a few

hours of simulated data. On top of that there are variations between each of the

models used to simulate these storms each with their own meaningful results145

and possible drawbacks. The computational expensive of these models and the

time taken to generate the synthetic data is what gives machine learning an

edge. If a storm can be predicted without the need for simulations, because
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the neural network takes raw satellite data and quickly produces a prediction,

then solving the data imbalance for the initial training gives CNN’s a clear ad-150

vantage. Similarly, if we can train the CNN using quickly generated synthetic

data we can forgo the need for these expensive simulations alltogether in the

prediction process.

An alternative to simulated data would be using primitive duplication meth-

ods like data reflection and data rotation which can be used to fill out an existing155

data set rather than generating strictly new data. If the conditions present on

the data grid can cause a tornado then simply reflecting the data grid over an

axis results in a technically different storm that also results in a tornado. When

only five percent of the data is storms that result in a tornado you would need

to augment every entry in 19 unique ways to balance the data set to a perfect160

fifty-fifty balance of tornadic versus not tornadic.

4. Data

The data set used in this analysis was obtained from the Machine Learning

in Python for Environmental Science Problems AMS Short Course, provided

by David John Gagne from the National Center for Atmospheric Research [15].165

Each file contains the reflectivity, 10 meter U and V components of the wind

field, 2 meter temperature, and the maximum relative vorticity for a storm

patch, as well as several other variables. These files are in the form of 32×32×3

images describing the storm. We treat the underlying data as an image and

push it through the CNN as if it were a normal RGB image. This allows170

our findings to generalize to other non-specialized CNNs. Figure 1 shows two

examples image from one of these files. Storms are defined as having simulated

radar reflectivity of 40 dBZ or greater as seen in Figure 1 (b). Reflectivity,

in combination with the wind field, can be used to estimate the probability of

specific low-level vorticity speeds. In the case of Figure 1 (a), the reflectivity and175

wind field were not sufficient enough to cause future low-level vorticity speeds.

The dataset contains nearly 80,000 convective storm centroids across the central

7



(a) (b)

Figure 1: Sample images of radar reflectivity and wind field for a storm which (a) does not

and (b) does produce future tornadic conditions.

United States.

We preprocessed the original NCAR storm data containing 183,723 distinct

storms, each of which consists of 32×32×3 grid points, and extracted composite180

reflectivity, 10 m west-east wind component in meters per second, and 10 m

south-north wind component in meters per second at each grid point giving

approximately 2 GB worth of data. We use the future vertical velocity as the

output of the network. This gives us 3 layers of data per storm entry producing

a total data size of 183,723× 32× 32× 3 floats to feed into the neural network.185

We use 138,963 storms for training the model and 44,760 storms for testing the

accuracy of the model. We track the total wall time for training and testing

over both image sets.
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5. Parallelism of Hyperparameter Tuning

5.1. Hyperparameters190

As the popularity and depth of deep networks continues to grow, efficiency

in tuning hyperparameters, which can increase total training time by many

orders of magnitude, is also of great interest. Efficient parallelism of such tasks

can produce increased accuracy, significant training time reduction and possible

minimization of computational cost by cutting unneeded training.195

We define hyperparameters as anything that can be set before model training

begins. Such examples include, but are not limited to, number of epochs, num-

ber and size of layers, types of layers, types and degree of data augmentation,

batch size, learning rates, optimizer functions, and metrics. The weights that

are assigned to each node within a network would be considered a parameter,200

as opposed to a hyperparameter, since they are only learned through training.

With so many hyperparameters to vary, and the near infinite amount of combi-

nations and iterations of choices, hyperparameter tuning can be a daunting task.

Many choices can be narrowed down by utilizing known working frameworks and

model structures, however, there is still a very large area to explore even within205

known frameworks. This is compounded by the uniqueness of each dataset and

the lack of a one-size-fits all framework that is inherent with machine learning.

Section 5.2 talks about the new MPI based framework which used the Dask

framework in [7] as a baseline conceptually but many aspects, including how

analytics are handled, have been improved or redesigned entirely.210

5.2. MPI Framework for Parallelized Training

The Dask framework for hyperparamter tuning in an HPC environment from

[7, 6] was used as a baseline for the new framework. We replace Dask with

MPI by using the latest mpi4py. Dask had predetermined configurations for

a SLURM based master-worker setup. With MPI we created two parallelism215

setups. The first is a typical master-worker configuration. The master-worker

system allows one master process to distribute a specific combination of hyper-

parameters to each process. This allows for the most optimal load balancing
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Figure 2: The preaugmented data is saved to disk before training begins. It is then loaded

from disk to be used during training.

scheme at the cost of using one node for book keeping. The master node dis-

tributes a hyperparameter configuration to a worker node, waits for the work to220

finish, then collects all timing results and other metrics from the worker node

and saves the results into a collection of JSON files.

The second parallelism configuration is the fully sychronized setup. We cre-

ated a custom combination generator that takes in a dictionary full of all possible

hyperparameters values and a process id and returns a dictionary that contains225

a specific combinations of hyperparameters. At a higher level this generator al-

lows all combinations of hyperparameters to be indexed without actually being

generated until they are needed by the workers. This generator also attempts

to balance the loads by distributing the more theoretically intensive jobs evenly

among all processes such that each process gets heavy and light work periodi-230

cally throughout the training process.

By replacing Dask with these systems we have enabled a method which

allows us to measure the effects of every single hyperparameter combination

rather than just viewing things grouped by batch size. We now have the ability

to group by any arbitrary hyperparameter and examine how each one plays a235

role in the training time and accuracy of the model. We also changed the base

CNN used for testing to use multiple GPUs by using Keras’ multi_gpu_model

wrapper. TensorFlow will always allocate memory on all GPUs but may not

bother to use the any additional GPUs provided. By using multi_gpu_model

Keras duplicates the network on every GPU and trains each network with mini-240
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batches of the original batch and then computes new weights based on the each

of the mini-batches. In this way Keras does all high level management for

multiple GPUs rather than TensorFlow.

6. Results

We use the framework detailed in Section 5.2 to investigate the effect of245

hyperparameters on wall time; to reflect that these are tests, relatively small

numbers of epochs are used. Sections 6.1.1 and 6.1.2 take a close look at how

each hyperparameter impacts training time of the neural network using both

preaugmented data and live data augmentation, respectively. Then with the

same framework we examine how varying the number of GPUs impacts wall time250

performance in Section 6.1.3, the central idea being that this helps determine

an optimal hardware configuration for future training of similar networks with

an immense data size. All forms of augmentation are done using Keras’ datagen

API with identical inputs. Any differences in accuracy are an artifact of seeding

or data shuffling during training. With this in mind we present only wall times255

as a demonstration of how some hyperparamters can have a meaningful impact

on wall time and thus should be tuned carefully, perhaps even last, to prevent

cumbersome training times.

Extending the results presented originally in [8], the additional Section 6.2

investigates how batch size and GPU count affect accuracy ; to ensure the net-260

works are fully trained as well as to reflect real world usage patterns, in this

section we use a much greater number of epochs than are used in the previous

sections.

The numerical studies in this work use a distributed-memory cluster of com-

pute nodes with large memory and connected by a high-performance InfiniBand265

network. The CPU nodes feature two multi-core CPUs, while the 2018 GPU

node has four GPUs. The following specifies the details:

• 2018 CPU nodes: 42 compute nodes, each with two 18-core Intel Xeon

Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache,
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6 memory channels). Each node has 384 GB of memory (12×32 GB DDR4270

at 2666 MT/s). The nodes are connected by a network of four 36-port

EDR (Enhanced Data Rate) InfiniBand switches (100 Gb/s bandwidth,

90 ns latency).

• 2018 GPU node: 1 GPU node containing four NVIDIA Tesla V100

GPUs connected by NVLink and two 18-core Intel Skylake CPUs. The275

node has 384 GB of memory (12 × 32 GB DDR4 at 2666 MT/s).

6.1. The Effect of Data Augmentation on Wall Time

6.1.1. Preaugmented Data

Each network was trained using a single node’s total resources with the

framework mentioned in Section 5.2 regardless of whether CPUs or GPUs were280

used during training. This section contains the wall time results for training

all neural networks using data which has been preaugmented before training

with primitive methods and saved to disk. This means that the network will

not perform any live augmentation but rather read in the preaugmented data

directly from disk. By timing in this way all the computational time will be285

tied directly to moving data and training the network. This is sketched in

Figure 2. Additionally the words “data multiplier” refers to data that has been

augmented enough that the total size of the data has increased multiplicatively

by the multiplier. A data multiplier of 2 means that data has been augmented

to be twice as large in size.290

The results in Table 1 are made of up of the total times to train networks

with various hyperparameter configurations using the 2018 CPU hardware. The

timing in the upper left corner of the first subtable is the time taken to train

a network on preaugmented data which has the same number of total records

as the original nonaugmented data using a batch size of 128, 5 epochs, and a295

learning rate of 0.001. Similarly the bottom right entry of that same subtable is

the time taken to train a network on preaugmented data which has four times

as many entries as the original unaugmented dataset using a batch size 4096, 5

epochs, and a learning rate of 0.001.
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The first subtable in Table 1 used 5 epochs and a learning rate of 0.001300

for training all subconfigurations within the table. The first column of this

subtable uses as many records as the original dataset but each network in the

column used a different batch size for training. As the batch size increases the

time taken to train the network decreases. However the time saved after each

increase in batch size does not scale proportionally with the change in batch305

size. Now consider only the first row of the first subtable. All networks trained

in this row use the same number of epochs, the same learning rate, and the

same batch size of 128 but the total number of records increase multiplicatively

with the column’s associated multiplier. The first entry in the row uses the

same number of entries as the original dataset but the second entry in that row310

uses twice as many entries and the last row uses four times as many entries. As

the number of total entries used doubles the timings grow proportionally larger.

With two times the amount of data used to train the network the network takes

twice as long to train. Similarly using four times as much data results in the

time taken to train being four times larger than the first entry in the row. The315

more data used the longer it takes to train. These changes in timings hold for

all subtables in Table 1.

Examine the upper right entry in each of the subtables. Each of these entries

were trained using the same learning rate, batch size, and dataset but with a

varying number of epochs. The first subtable uses the least number of epochs320

and also has the fastest time among the three. The second subtable uses double

the number of epochs as the first and also takes twice as long to train. Similarly

the third subtable takes three times as long to train and uses three times as many

epochs as the first subtable. An increase in the number of epochs means the

data is passed that many more times to the network for training. It is sensible325

then that the time taken to train would increase linearly with the number of

epochs used so long as all other hyperparamters are the same.

Table 2 contains the times taken to train networks with various hyperpa-

rameter configurations using the 2018 GPU hardware. All timing results draw

the same conclusions as Table 1 except all timings for the GPUs are 10× faster330
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Figure 3: The original data is first loaded from disk. When an epoch starts the one batch

of data is augmented and trained on. While the network trains on that batch another is

augmented in parallel as indicated by the green arrow.

and in some instances even 12× faster. This massive increase in speedup is

expected by researchers in the machine learning community and is a common

theme seen when comparing CPU based training versus GPU based training.

The process of training a convolutional neural network such as the one discussed

in Section 1 uses many complex matrix operations in the process of computing335

weights for the hidden layers of the network. GPUs are specifically designed to

do matrix operations of many flavors and it is accepted fact that they do these

operations much faster than CPUs. Sensibly then, these specialized accelerators

perform the training process considerably faster than a CPU. In the case of the

2018 GPUs there are four GPUs training the neural network at any one time as340

opposed to the two CPUs used to train the neural networks in the CPU tables.

Since there is no data augmentation happening during training, all the times

listed are pure training times. The timings for the CPUs improve dramatically

as the batch size is increased regardless of the number of epochs. The GPUs

are so effective with regards to training that batch size plays a smaller role in345

the training time. GPUs are, in all regards, faster than CPUs for training.

6.1.2. Live Augmentation

This section contains the results that use live data augmentation during

training. The original natural data is loaded, but while training the data is

14



Table 1: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 CPUs with preaugmented data in seconds.

5 Epochs Data Multiplier

Batch Size 1 2 4

128 195 369 737

256 124 253 484

512 95 194 384

1024 77 159 310

2048 64 125 251

4096 56 107 211

10 Epochs Data Multiplier

Batch Size 1 2 4

128 373 720 1494

256 238 486 962

512 189 382 763

1024 154 313 629

2048 123 240 506

4096 110 210 422

15 Epochs Data Multiplier

Batch Size 1 2 4

128 574 1120 2239

256 367 740 1408

512 284 558 1140

1024 233 468 929

2048 184 370 730

4096 158 308 649
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Table 2: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 GPUs with preaugmented data in seconds.

5 Epochs Data Multiplier

Batch Size 1 2 4

128 20 36 72

256 12 24 47

512 11 18 38

1024 10 17 32

2048 10 16 30

4096 13 18 37

10 Epochs Data Multiplier

Batch Size 1 2 4

128 36 74 146

256 24 48 96

512 22 36 77

1024 19 32 62

2048 17 30 58

4096 20 36 67

15 Epochs Data Multiplier

Batch Size 1 2 4

128 56 110 223

256 37 72 144

512 32 55 109

1024 25 48 99

2048 25 48 88

4096 32 56 98
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pushed through the primitive augmentation methods provided by Keras. The350

training times that are seen represent the wall time taken to move data, augment

the data on-the-fly, and train the network. A high level view of this process can

be seen in Figure 3. Keras’ primitive augmentation supports parallel augmen-

tation meaning that data is being augmented in parallel to the networks being

trained. This parallel operation can be seen as the green arrows in Figure 3.355

Live augmentation is typically done so that one does not need to preaugment

gigabytes or even terabytes of unbalanced data. In some cases, you may even

do live augmentation to turn small amounts of balanced or unbalanced data

into larger amounts of balanced data so while the original dataset may fit into

memory the larger augmented dataset might not. If your data is too large to fit360

into memory then preaugmented data would be I/O bound as it is read from

disk rather than being CPU bound by being augmented on-the-fly.

Table 3 shows similar timing behaviors to Table 1 when examining how

the data multiplier scales the timing results but a much stronger diminishing

return when batch size is increased. In order to do live data augmentation365

Keras starts as many processes as there are cores on a node. The processes

rotate, scale, and so on in parallel and send the data back to the main process.

These processes are then cleaned up by the operating system forcing the main

process to block during this time. This becomes a clear bottleneck as we can see

that the timings for smaller batch sizes are much worse than the larger batch370

sizes. However the times approach the preaugmented timings as the overheard

of process creation becomes a smaller player in the time it takes to augment

the data. The less data that can be live augmented the less time the spawned

processes work meaning they spend more time being created and cleaned up

than they do actually generating new data.375

The overhead is even more aparent when examining Table 4 compared to

Table 2. The scaling in each individual row has the same behavior but all of the

rows in Table 4 are much slower than expected. Subtable 3 is 2× to 3× slower

than the preaugmented numbers in the same positions. This is clearly due to

the CPU bounded operations that are inherent with live data augmentation.380
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Additionally if you examine the data mulitplier 4 column of subtable 3 the

time savings as batch size increase disappears and makes way for varying wall

times that are completely unrelated to the increase in batch size. Any savings

that would normally be obtained from increasing batch size are lost due to the

overhead of live augmentation.385

The timings for primitive live augmentation methods using CPUs and GPUs

are anywhere from a few minutes to a couple hours. The GPU training is so

efficient the GPU spends most of its time waiting for the data to be augmented

rather than training. In cases where you are doing CPU based training the

processor is working hard to both train and augment the data in tandem and390

often does not have the spare resources to balance both tasks.

6.1.3. The Effect of GPU Count on Wall Time

This section contains the wall time results for varying the number of GPUs

while training. The number of GPUs used during training can be treated as

a hyperparameter, as it has an impact on both training time and prediction395

accuracy.” If the impact of using more GPUs is negligible then all future hy-

perparamter sweeps should use the lowest number of GPUs possible. If luck

would have it that the optimal number of GPUs can be evenly divided amongst

the MPI processes during training, then result would be great boon for efficient

training in the future. We use Keras’ mult_gpu_model which will automatically400

force TensorFlow to use all available GPUs by duplicating the graph on each

GPU and training each of these with mini-batches in a process we refer to as

“forced” parallelism. Additionally it has already been show in Section 6.1.2 that

live augmentation is far slower than preaugmented data thus for this section we

only use preaugmented data to cut down the wall time as much as possible.405

Table 5 contains the wall times for the numbers of GPUs versus data mul-

tiplier grouped by epochs on the 2018 GPUs with preaugmented data, forced

parallelism, and a batch size of 32768. Consider the first row of 5 epoch table.

For one GPU as the data multiplier increases the wall time increases propor-

tionally. Now consider the data multiplier 1 column of the 5 epoch table. As410
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Table 3: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 CPUs with live augmented data in seconds.

5 Epochs Data Multiplier

Batch Size 1 2 4

128 2534 5052 9859

256 1324 2597 5174

512 723 1445 2897

1024 390 776 1527

2048 210 425 852

4096 154 302 527

10 Epochs Data Multiplier

Batch Size 1 2 4

128 5066 10122 19627

256 2626 5271 10322

512 1376 2766 5520

1024 762 1501 3026

2048 429 847 1735

4096 305 620 1636

15 Epochs Data Multiplier

Batch Size 1 2 4

128 7369 14779 30372

256 3893 7950 15476

512 2083 4161 8304

1024 1155 2327 4511

2048 631 1278 2555

4096 388 798 1689
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Table 4: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 GPUs with live augmented data in seconds.

5 Epochs Data Multiplier

Batch Size 1 2 4

128 37 70 142

256 35 69 138

512 36 72 140

1024 37 72 142

2048 38 76 150

4096 44 83 163

10 Epochs Data Multiplier

Batch Size 1 2 4

128 73 146 285

256 71 143 286

512 69 141 278

1024 73 144 284

2048 77 150 295

4096 83 161 329

15 Epochs Data Multiplier

Batch Size 1 2 4

128 108 214 442

256 105 211 429

512 107 216 426

1024 109 217 432

2048 117 229 445

4096 126 245 502
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the number of GPUs increases the time remains nearly identical despite the

doubling, tripling, and quadrupling of the compute power being used during

training. Even considering the entire 5 epoch subtable yields the same behav-

ior: as the number of GPUs increase the wall time remains qualitatively the

same. All other subtables exhibit the same behavior as the 5 epoch subtable.415

While the increase in epochs causes a general increase in the subtable timings,

changing the number of GPUs does nothing to improve these timings. Concep-

tually the batch size of the table is 1/5 of all data with regards to a multiplier

of 1. Multiple GPUs should have a real edge over a single GPU yet there this

is not demonstrated. This is to say that the number of GPUs does nothing to420

improve wall time despite differences in data size.

Table 6 contains the wall times for the number of GPUs versus epochs

grouped by data multiplier with preaugmented data, forced parallelism, and

a batch size of 128. Consider the first row of the first subtable. For one GPU

with a data multiplier of 1 and a varying number of epochs as the number of425

epochs increases the wall time increases proportionally. This proportional in-

crease holds for all rows of the subtable and similarly this table wide behavior

holds for the data multiplier 2 and 4 subtables. Examine the first column of the

last subtable which is the 5 epoch column of data multiplier 4 table with a vary-

ing number of GPUs. As the number of GPUs increases the time also increases430

though the increase in time is steepest from one GPU to two GPUs. From there

the time increase is 10 seconds per GPU additional GPU. As the number of

epochs increases from 5 to 10 the increase from one GPU to two GPUs triples

from around 20 seconds to approximately 60 seconds. Every additional GPU

increases time by 20 seconds per GPU. As the number of epochs increases from435

5 to 15 the increase from one GPU to two GPUs goes from around 20 seconds

to approximately 90 seconds. Every additional GPU is around 30 seconds per

GPU. At the smallest batch size the more GPUs used the slower the training

time.

When even larger cases are run in isolation, this behavior is more easily440

observed with the tool nvidia-smi. With just one GPU and a batch size of
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32,768 the GPU is entirely saturated for the majority of run-time with only

occasional drops in GPU usage when the training rolls over to the next epoch.

Similarly submitting a 4 GPU job with a batch size of 131,072, meaning each

GPU gets as much data as the multiplier 1 case, results in maximum saturation445

as well. This is why timings at much larger batch sizes seem much closer in time

as the GPUs spend around the same amount of time computing and idling. This

would give the impression that it takes Keras more time to distribute the data

to the GPUs than compute and finalize all other information associated with

computation.450

22



Table 5: Wall time for GPUs versus data multiplier grouped by epochs with batch size 32768,

learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism in

seconds.

5 Epochs Data Multiplier

GPUs 1 2 4

1 11 18 34

2 11 18 33

3 11 18 33

4 11 18 33

10 Epochs Data Multiplier

GPUs 1 2 4

1 17 29 58

2 16 30 59

3 16 30 57

4 18 31 60

15 Epochs Data Multiplier

GPUs 1 2 4

1 25 44 92

2 23 44 88

3 23 45 84

4 26 45 88
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Table 6: Wall time for GPUs versus epochs grouped by data multiplier with batch size 128,

learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism in

seconds.

1 Data Multiplier Epochs

GPUs 5 10 15

1 20 38 61

2 27 51 77

3 31 55 83

4 41 61 92

2 Data Multiplier Epochs

GPUs 5 10 15

1 42 76 114

2 53 103 154

3 59 112 168

4 64 123 182

4 Data Multiplier Epochs

GPUs 5 10 15

1 85 157 229

2 106 215 311

3 116 231 340

4 125 247 368
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6.2. The Effect of Batch Size and GPU Count on Accuracy

In this section we present accuracy results for varying batch size and the

number of GPUs used during training. In order to ensure the network is fully

trained, greater numbers of epochs are used (up to 1000) than in the previous

sections. The data multiplier is kept to 1 so as not to artificially inflate run455

time.

Figure 4 shows training accuracy curves varied by number of GPUs for batch

sizes 128, 4,096, and 32,768. Note that the sudden drops in accuracy (especially

prominent in the batch size 4,096 plot) result from the use of dropout layers. In

the batch size 128 plot accuracy plateaus after only a small number of epochs460

and the curves for each GPU count lie on top of each other, virtually indistin-

guishable. As batch size increases a tendency emerges for higher GPU counts to

have a slightly higher accuracy for any given number of epochs. With a batch

size of 32,768, throughout most of the time spent training the 4 GPU curve has

an accuracy about 1% higher than the 1 GPU curve with the same batch size.465

The training accuracy curves resulting from keeping GPU count fixed and

varying batch size are shown in Figure 5. The 2 GPU plot on the left and

the 4 GPU plot on the right are virtually identical, as would be expected from

the results in Figure 4. For any fixed number of epochs increasing batch size

decreases accuracy. Even after 1,000 epochs there is an approximately 10%470

difference in accuracy between the batch size 128 curve and the batch size 65,536

curve.

When using Keras’ mult_gpu_model a copy of the network is sent to each

GPU. For every batch, each copy of the network is trained on a smaller subset of

the original batch, then the resulting weights are aggregated together and copied475

back to each network. This ensures that after every batch each copy of the

network is identical, even though they have all been trained on different subsets

of the original batch. The size of these subsets is equal to the total batch size

divided by the number of GPUs used. Therefore, when comparing the training

of two different networks, one might expect that when the respective batch sizes480

divided by the respective GPU counts equal some constant, their training curves
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will be more or less the same. Figure 6 does exactly this, varying both GPUs

and batch size at the same time so that the batch size divided by GPU count is

constant. We see that in fact the training curves are not the same. The effect of

a smaller batch size outweighs the effect of a lower GPU count, and vice versa.485

Table 7 contains the testing accuracies of the network, organized by batch

size versus epochs, with 2 GPUs, data multiplier 1, learning rate 0.001, preaug-

mented data, and forced parallelism. We provide only the 2 GPU table since it

allows us to provide data for the batch size 65,536 runs, and since other GPU

counts result in similar accuracies. By considering just a single row of this table490

we see that the testing accuracies follow a similar trend to what is exhibited

by the training accuracies in Figure 5, that is, accuracy decreases as batch size

increases. Therefore, when using a larger batch size a network must be trained

for a greater number of epochs to reach a similar accuracy as that reached by a

network trained using a smaller batch size. By examining individual columns we495

see that testing accuracy plateaus between 92% and 93%. This would indicate

that the network configuration which can reach a testing accuracy of around

93% in the least amount of time would be the optimal configuration.

The corresponding timings of each run of the network are presented in Ta-

ble 8. Here we see that total training time increases linearly with epochs, but500

increases non-linearly with batch size. The speedup of training time decreases

with each doubling of batch size until the speedup is negligible. We see that in

the case of our test network that this point of negligible speedup is reached by a

batch size of 4,096. This is in contrast to the effect that batch size has on accu-

racy, since it can be seen in Table 7 that accuracy continues to decrease across505

an entire row. As a result of these effects, neither maximizing nor minimzing

any of these hyperparameters leads to optimal performance. This behavior can

be observed when examining Table 8. The 256 batch size 100 epoch run and the

1024 batch size 200 epoch run both have an accuracy of approximately 93% and

a run time of approximately 5 minutes. However the 128 batch size 100 epoch510

run has comparable accuracy but is double the run time at approximately 10

minutes. Additionally the 4096 batch size 400 epoch run has a 10 minute run

26



Table 7: Training accuracies for batch size versus epochs with 2 GPUs, data multiplier 1,

learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism.

2 GPUs Batch Size

Epochs 128 256 512 1024 2048 4096 8192 16384 32768 65536

5 87.96 90.26 82.55 85.23 87.86 89.28 83.00 79.98 76.21 68.57

10 92.02 86.88 87.37 88.21 89.18 88.95 89.00 84.44 83.55 77.65

15 91.41 88.41 89.98 91.11 88.79 87.60 85.75 86.20 85.98 76.67

100 93.03 93.15 91.90 90.02 88.68 87.09 88.68 88.54 89.23 88.09

200 93.45 93.26 93.14 93.57 92.39 89.91 87.14 88.49 87.48 86.60

300 93.50 93.77 93.41 93.21 92.27 92.53 89.66 87.63 89.03 86.80

400 92.19 93.43 93.52 93.08 92.63 92.90 90.88 88.30 88.53 87.12

500 91.12 93.40 93.49 93.14 93.11 92.27 92.90 90.87 90.37 88.32

600 93.27 92.94 93.23 93.27 92.86 92.49 91.71 90.95 88.81 88.95

700 93.29 93.48 93.62 93.08 92.98 92.77 92.28 90.11 87.71 88.18

800 92.58 93.32 93.41 93.26 93.23 92.81 92.33 90.93 90.97 89.84

900 93.96 93.38 93.24 93.11 89.23 93.36 92.70 89.98 87.06 90.34

1000 92.12 92.98 93.23 93.48 92.92 93.34 92.37 91.29 89.05 87.21

time for the same comparable accuracy.
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Table 8: Timing for batch size versus epochs with 2 GPUs, data multiplier 1, learning rate

0.001 for the 2018 GPUs with preaugmented data and forced parallelism.

2 GPUs Batch Size

Epochs 128 256 512 1024 2048 4096 8192 16384 32768 65536

5 00:31 00:17 00:12 00:11 00:10 00:13 00:13 00:14 00:15 00:15

10 00:59 00:33 00:23 00:18 00:17 00:18 00:21 00:21 00:23 00:24

15 01:22 00:48 00:34 00:27 00:25 00:27 00:27 00:26 00:26 00:27

100 09:12 05:23 03:38 02:45 02:23 02:23 02:29 02:24 02:22 02:19

200 18:14 10:49 07:14 05:32 04:42 05:12 04:47 04:42 04:29 04:26

300 27:33 16:15 10:54 08:13 07:07 07:37 07:16 06:58 06:47 06:35

400 36:47 21:46 14:25 11:03 09:35 10:19 09:30 09:17 08:54 08:50

500 46:10 27:07 18:04 13:44 11:50 12:41 11:57 11:27 11:11 10:55

600 55:33 32:44 21:42 16:31 14:17 15:24 14:11 13:57 13:15 13:20

700 64:39 38:06 25:29 19:12 16:30 17:43 16:33 16:03 15:33 15:13

800 73:40 43:48 28:58 21:58 18:41 20:20 18:57 18:24 17:52 17:24

900 83:21 49:03 32:56 24:44 21:16 22:55 21:16 20:35 19:57 19:26

1000 92:02 54:55 36:29 27:40 23:40 25:22 23:58 22:48 22:42 21:39
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(a) batch size 128

(b) batch size 4,096

(c) batch size 32,768

Figure 4: Training accuracy curves for different batch sizes, varying GPU counts, with data

multiplier 1 and learning rate 0.001 for the 2018 GPUs with preaugmented data and forced

parallelism.
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(a) 2 GPUs (b) 4 GPUs

Figure 5: Training accuracy curves for different GPU counts, varying batch sizes, with data

multiplier 1 and learning rate 0.001 for the 2018 GPUs with preaugmented data and forced

parallelism.

(a) batch size ÷ GPU count = 1, 024 (b) batch size ÷ GPU count = 8, 192

Figure 6: Training accuracy curves varied by both GPUs and batch size simultaneously, with

data multiplier 1 and learning rate 0.001 for the 2018 GPUs with preaugmented data and

forced parallelism.
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7. Conclusions

There is not a lot of discussion on whether or not one should augment the515

data prior to experimentation. Careful consideration should be taken with re-

gards to the time taken to train a network as can be seen in Section 6.1. The

time difference between using preaugmented data versus the use of primitive live

augmentation methods is substantial. If the disk space is available one should

always opt for preaugmented data over primitive live method. This becomes es-520

pecially important if one is looking to take advantage of accelerators like a GPU.

The GPU training is so efficient the GPU spends most of its time waiting for the

data to be augmented rather than training. In Section 6.1.1 the preaugmented

data times were on the scale of minutes compared to the primitive live augmen-

tation methods seen in Section 6.1.2 whose times were in hours. In cases where525

you are doing CPU based training the processor is working hard to both train

and augment the data in tandem and often does not have the spare resources to

balance both tasks. Preagumented data was clearly the better choice for both

GPU and CPU training. Additionally, GPU training was so much faster than

CPU training that even the GPUs in older CPU/GPU nodes (from 2013) were530

faster than the state-of-the-art CPUs from 2018 used in the studies here [6].

While the GPU training was clearly better than the CPU training, there

are still more variables to tackle. The question, “do more GPUs equate to

better performance time?,” may seem obvious but the results in Section 6.1.3

beg to differ. Initially one might suspect that putting more computing power535

behind training will result in faster run times but this is not the case. At the

smallest batch size, the more GPUs used, the slower the training time. The

mini-batch system Keras uses does not cater toward pushing and pulling small

amounts of data to the GPUs as the wall time is always worse as the number

of GPUs increase for this batch size. Additionally the number of GPUs does540

nothing to improve wall time despite differences in data size. A single GPU

still out performs all other counts of GPUs across the board. With just one

GPU and a batch size of 32,768, the GPU is entirely saturated for the majority

31



of run-time with only occasional drops in GPU usage when the training rolls

over to the next epoch. Similarly submitting a 4 GPU job with a batch size545

of 131,072, meaning each GPU gets as much data as the multiplier 1 case,

results in maximum saturation for very short bursts of a couple seconds. The

original predictive model is computationally cheap to train and as such it is

not unlikely that this leads to one GPU having the best performance times.

Each additional GPU exhibits a near constant increase in time as it is only a550

small amount of overhead to micromanage additional GPUs. This is to say that

training a more simple cheap network where one wants to train with as many

hyperparameter combinations as possible should be done with only one high

end GPU per process. With a node that has four GPUs you can train four

networks per node rather than just one per node which dramatically increases555

throughput. For a sufficiently complex network it is still possible that multiple

GPUs are more efficient as the extra computing power can be put to good use

rather than left idling.

The tests in Section 6.2 show that the number of GPUs have no meaningful

impact accuracy for small batch sizes. Yet when we increase batch size to be560

so large that the GPUs are fully saturated with full memory we see a large

drop in accuracy on an epoch by epoch basis. This alludes to larger batch sizes

being impractical for training unless one uses many more epochs to correct this

large drop. As mentioned in Section 6.1.3 one must use larger batch sizes to see

full computational saturation and huge boosts to speedup. If one were trying565

to see speedup while maintaining accuracy it would make sense to increase the

number epochs to account for the accuracy lost due to batch size enlargement.

However in many cases the speedup is completely lost by doing so. This further

reinforces the arguement that the minimal number of GPUs necessary should

be used in training a single network. This maximizes training throughput in570

regards to the number of networks trained at a time and the optimal speedup

for the majority of training cases.
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