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0.1 Introduction

This thesis is focused on efficient methods for solving optimal control problems
constrained by partial differential equations (PDEs). Research in this area started
with the work of Lions in the 1960s [1]. Several research studies have been devoted
to this subject in recent years [2–5]. One important application of PDE-constrained
optimization problems is parameter identification. Many quantitative phenomena
in various fields such as engineering, physics, and biological science can be modeled
using PDEs. All involved parameters are assumed to be known when running simu-
lation based on a PDE model. However, identifying accurate quantitative values for
all parameters is challenging, and this may lead to erroneous predictions. One way of
obtaining better estimates for the parameters is by formulating a PDE-constrained
optimization problem, in which the parameters to be identified are the optimization
variables, and the cost functional measures the discrepancy between the measure-
ments and predictions. Other applications of PDE-constrained optimization include
medical applications (optical tomography, radiation therapy) [6,7], economical (rate,
pricing) [8–10], and engineering (shape optimization, optimal design of cooling pro-
cess, minimize harmful byproducts of chemical reactions) [11].

In spite of the remarkable developments in the high performance, parallel
computing technologies, which allow us to conduct numerical computations at un-
precedented resolutions, solving large-scale PDE-constrained optimization problems
still requires significant advances in algorithmic development. For example, the im-
plementation of the four-dimensional variational data assimilation (4D-Var) requires
solving a time dependent PDE with thousands of time steps to obtain the value of
the cost functional. Due to significant computer processing requirements for solving
such problem, and given existing and emerging computing capabilities, development
of novel efficient large-scale optimization algorithms is still necessary [12,13].

The multigrid paradigm is that by using multiple discretizations of the same
problem (for example, multiple grids/meshes or polynomial degrees) one can speed
up the numerical solution process to the point where it becomes optimal in a certain
sense. Multigrid originated in solving linear systems representing discretizations
of elliptic equations, and since then has been extended to many classes of PDEs,
including the Stokes and Navier-Stokes equations. Multigrid methods for PDEs
are different from the multigrid methods for the problems of interest. Multigrid
methods have been used for PDE-constrained optimization problems beginning with
the work of Hackbusch [14, 15]. The methods proposed in this project are related
to those developed by Rieder [16], Hanke and Vogel [17], Akcelik et al. [18], Biros
and Dogan [19], and Draganescu and Dupont [20]. Related methods are found in
the works of King [21] and Kaltenbacher [22], both works being applicable to more
generic inverse problems, while [14, 16, 17] are for more specific integral equations,
and [18, 19] are for PDE-constrained optimization problems. The results in this
thesis push the boundaries of the applicability of the multigrid strategy, by showing
that it can be applied efficiently to two classes of problems: distributed optimal
control of linear parabolic equations, and boundary control of elliptic equations.
Ultimately, it is shown that the algorithms developed and analyzed lead to a solution
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process whose computational cost, at high resolution, is a relatively small multiple
of the cost of solving the PDE itself.

0.2 General formulation and description of main contribution

Consider a general form of a PDE-constrained optimization problem

min J(y, u) (1)

subject to e(y, u) = 0, (2)

y ∈ Yad ⊆ Y, u ∈ Uad ⊆ U,

where e(y, u) = 0 is a well-posed PDE in the sense that for each valid u there exists
a unique y = y(u) for which e(y, u) = 0, and y depends continuously on u. We
refer to y as the state and u as the control. If Yad 6= Y , respectively Uad 6= U
we say that (1)-(2) has state constraints, respectively control constraints. The cost
functional is oftentimes quadratic and of tracking type and includes regularization.
An example of a cost functional is as follows:

J(y, u) =
1

2
||y − yd||L2(Ω) +

β

2
||u||L2(Ω), (3)

where Ω ⊂ Rd is a bounded domain and β is the regularization parameter. PDEs
can be linear or nonlinear elliptic (Poisson, elasticity, Stokes) [23–25], parabolic
(heat equation) [26, 27], fluid flows, magneto hydrodynamics (MHD) [28, 29], etc.
The controls can be boundary values, initial values, or forcing terms (distributed).
Current research directions include existence, uniqueness, and regularity of optimal
controls, discretization and error estimation, and solvers. This thesis is concerned
with the latter.

The primary focus in solving PDE-constrained optimization problems is the
KKT system (named after the Karush-Kuhn-Tucker optimality conditions). This
can be a linear or a nonlinear, possibly non-smooth large-scale system of equations.
In the absence of inequality constraints, the KKT is a smooth nonlinear system. In
the particular case of linear-quadratic problems (PDE is linear, cost functional is
quadratic) the KKT is a linear system. The main technique for solving PDE con-
strained optimization problems is by solving the associated KKT systems. There
are two main directions in solving a KKT system numerically. One method is to dis-
cretize the PDE constraints, then solve the resulting discrete optimization problem
(first-discretize-then-optimize). The second method is to discretize the continu-
ous system representing the first order optimality conditions (the KKT system),
then discretize it appropriately (first-optimize-then-discretize). The first approach
is more attractive computationally than the second approach, since one is faced with
solving an actual finite dimensional optimization problem, while the second one is
more convenient for convergence analysis, but the system one has to solve may not
exactly represent the first order optimality conditions of a discrete optimization
problem. Regardless of whether the first or the second method is chosen, one has
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to solve numerically a sparse, potentially nonlinear and non-smooth system (the
discrete KKT system) whose linearization is an indefinite operator. Two further
approaches are common in both methods: (i) solve the linear KKT system using a
multigrid iteration or preconditioned MINRES; or (ii) eliminate the variables caus-
ing indefiniteness, and solve the resulting reduced system. The advantages of (i)
is that the system is sparse, but it is difficult to solve and precondition due to its
indefiniteness; this is the approach found in the work of Wathen and collaborators
(e.g., [30, 31]), and of Borzi and collaborators. In the approach (ii), the matrix
of the system is usually dense, however, it is positive definite. Since for (ii) each
matrix-vector multiplication usually involves solving the equivalent of two linearized
PDE solves, this approach is viable only if very good preconditioners are available.
The question of when each approach is more advantageous than the other remains
open. In this thesis we work with the reduced system. The thesis is centered around
devising preconditioners rooted in the multigrid approach developed in Draganescu
and Dupont [20] for an inverse problem.

This work is primarily concerned with linear-quadratic problems where the
cost-function is of tracking type. For the first problem discussed in Chapter 1, the
PDE constraint is a linear parabolic equation and the control is distributed, while
for the second problem discussed in Chapters 2 and 3, the PDE constraint is an
elliptic equation and the control is on the boundary. We impose no inequality con-
straints. Both problems are formulated in reduced form and lead to the problem of
solving large-scale linear systems. While these linear systems can be solved using
Krylov space methods, a critical aspect that needs to be addressed is precondition-
ing. Systems are never formed (this is the so-called matrix-free approach). Each
matrix-vector multiplication (Mat-vec) involves two PDE solves, making it very ex-
pensive. Therefore, we need highly-efficient preconditioners. Systems are similar in
character (they resemble an integral equation of the second kind) and similar to the
system arising in the distributed optimal control of elliptic equations. The design of
the preconditioners follows a recipe that proved to be successful in the distributed
elliptic case. However, for the first problem (distributed optimal control problem
constrained by a linear parabolic equation), standard space-time finite element dis-
cretizations (e.g., Crank-Nicolson discretization) lead to suboptimal results. For the
boundary control of elliptic equations we noticed numerically an important distinc-
tion between Dirichlet and Neumann boundary control. We observed optimal order
results for Neumann boundary control problem and suboptimal results for Dirichlet
boundary control problem. The main contribution of this thesis for the first problem
is to point out a discretization that leads to optimal order preconditioners, and for
the second problem is to provide analysis.

vii



Chapter 1: Multigrid preconditioning for space-time distributed

optimal control of parabolic equations

1.1 Introduction and literature review

In this chapter, we devise efficient methods for solving large-scale optimiza-

tion problems constrained by linear parabolic equations. There are real life problems

such as data assimilation for fluid flows with application to atmospheric and ocean

modeling which lead to a large-scale optimization problems constrained by time-

dependent PDEs. Hence, finding an efficient method for solving time-dependent

PDE constrained optimization problems help solve such real-life problems. A partic-

ular challenge specific to time-dependent PDE-constrained optimization problems is

related to the PDE solving technique itself; namely, when solving large-scale time-

dependent PDEs, at any stage we access a limited number of snap-shots in time

because of memory limitations. Since most time-stepping methods require the ac-

cess to a few past states when computing the next state, this is enough to solve the

time dependent PDEs numerically. However for large scale optimization problems

constrained by time dependent PDEs, accessing to the entire system may not be

possible at the same time. Hence, there may be advantages to treat such optimiza-
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tion problems in reduced form, by eliminating states and Lagrange multipliers from

the KKT system. Gradients with respect to the remaining independent variables

(the controls) are computed by solving the adjoint equation, a task that is nontriv-

ial in itself due to the need to access the entire space-time state of the PDE during

the computation of the gradient. In particular, this task has given rise to an entire

set of algorithms revolving around checkpointing, where certain computations are

repeated to avoid expensive data accessing and storage. While secant methods such

as L-BFGS rely only on gradients for approximating the action of the Hessian or its

inverse, for large-scale problems they tend to converge too slowly, and this is mainly

due to the fact that the number of gradients needed for approximating the action

of the (very large) Hessian with sufficient accuracy would have to be too large. For

certain classes of problems including those arising from 4D-variational data assim-

ilation (4D-Var), other suboptimal approximations of the Hessian are used which

are only based on first-order information [12].

In this work we develop optimal order preconditioners, which, for the opti-

mization problems under scrutiny lead to a low number of linear iterations in the

solution process. In fact, given that the equations involved in the reduced system

are integral in character (the solution operator of the PDE, which is of integral type,

is explicitly involved in the reduced KKT system), the number of multigrid itera-

tions decrease with increasing resolution or with decreasing mesh size, unlike the

case of multigrid methods for differential equations, where the number of iterations

is expected to be bounded with respect to mesh size.

In this chapter we focus on the distributed control of linear parabolic equations,
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that is, the space-time control appears as a forcing term of parabolic equation.

It is notable that standard discretization of the parabolic equation does not

give rise to optimal order preconditioners. In fact, as numerical results show, we see

a drop in the approximation order by one half both for backward Euler and Crank-

Nicolson. However, if we use a non-standard discretization based on discontinous-

in-time-continuous-in-space finite elements as presented by Leykekhman and Vexler

in [32], it turns out that the preconditioner is also of optimal order. In addition

to recognizing the impact of the discretization on the design of preconditioners,

the main contribution of this work is the analysis certifying the optimality of the

preconditioner.

1.2 Problem description

Consider a convex polygonal or polyhedral open bounded set Ω ⊂ Rd, d = 2, 3,

and Y , U be subspaces of

L2((0, T ), L2(Ω)) = {v(x, t) : Ω× (0, T )→ R;

∫ T

0

||v(·, t)||2L2(Ω)dt <∞},

with norm

||v||L2((0,T ),L2(Ω)) =

(∫ T

0

||v(·, t)||2L2(Ω)dt

) 1
2

,
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where T > 0 fixed. Let Q = Ω× (0, T ) and Σ = Γ× (0, T ). The problem studied in

this chapter is:

min
(y,u)∈(Y,U)

J(y, u) :=
1

2

∫
Q

|y(x, t)− yd(x, t)|2dxdt+
β

2

∫
Q

|u(x, t)|2dxdt (1.1)

subject to :


yt −∆y = u in Q

y = 0 on Σ

y(x, 0) = 0 in Ω.

(1.2)

We call (1.1) a tracking-type cost functional. We refer to y as the state and u as the

control. A significant literature [33–38] is devoted to questions regarding existence,

uniqueness, and regularity of solutions to the optimal control problem (1.1)-(1.2), as

well as its discretization and error estimation. In this section we briefly discuss the

precise formulation of the optimization problem under consideration. We focus on

heat equation for the sake of clarity, however we expect the results to hold for more

general parabolic equations. Furthermore, we recall theoretical results on existence,

uniqueness, and regularity of optimal solutions as well as optimality conditions.

1.2.1 The control-to-state map and reduced problem

As stated above, in our attempt to extend ideas from distributed optimal

control of elliptic problems to develop multigrid preconditioners for the reduced

Hessian, the preliminary numerical results show a rather surprising behavior: when
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using standard discretization such as Crank Nicolson or backward Euler, we observe

a degrading by precisely half and order of the expected optimality of the precon-

ditioners. Following [32] we then used a continuous-in-space-discontinuous-in-time

Galerkin discretization and we obtained the desired optimality.

To set up a weak formulation of the state equation, we introduce the following

notation: We denote V to be H1
0 (Ω) and Ṽ = H1(Ω). For a time interval I = (0, T )

we introduce the state and control spaces

Y := {v|v ∈ L2(I, V ) and ∂tv ∈ L2(I, V ∗)},

U := L2(I, L2(Ω)).

We use the following notations for the inner product and norms on L2(Ω):

(·, ·) := (·, ·)U , and || · || = || · ||U .

In this setting, a standard weak formulation of the state equation for a given control

u ∈ U is: find a state y ∈ Y satisfying


(∂ty, φ) + (∇y,∇φ) = (u, φ) ∀φ ∈ V

y(·, 0) = 0.

(1.3)

For this formulation of the state equation, we recall the following result on existence

and regularity that appears as Theorem 3.1 in [39]:

Theorem 1.2.1 For fixed control u ∈ U , there exists a continuous linear operator

5



S : U → Y such that y = Su solves (1.3) and the following stability estimates hold.

||Su|| 6 C||u||, (1.4)

||∂ty||+ ||∆y|| 6 C||u||, (1.5)

where the first inequality just expresses continuity, and the second expresses maximal

parabolic regularity.

The following theorem appears as Theorem. 3.16 in [2] proves the solvability of the

optimal control problem (1.1)-(1.2).

Theorem 1.2.2 For given yd ∈ U and β > 0 the optimal control problem admits a

unique solution (u, y) ∈ U × Y . The optimal control u possesses the regularity

u ∈ L2(I,H2(Ω)) ∩H1(I, L2(Ω)).

Moreover, the optimal solution satisfies the KKT system associated with the opti-

mization problem (1.1)-(1.2)

yt −∆y = u in Q −zt −∆z = y − yd in Q

y = 0 on Σ z = 0 on Σ (1.6)

y(x, 0) = 0 in Ω z(x, T ) = 0 in Ω.

As stated at the beginning of this section, our approach relies on reduced

system rather than solving the KKT system (1.6). The existence result for the
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state equation in Theorem 1.2.1 ensures the existence of a control-to-state mapping

u → y = Su given by (1.3). By means of this mapping we introduce the reduced

cost functional J : U → R :

Ĵ(u) := J(u,Su).

The reduced optimal control problem can then be equivalently reformulated as

min
u∈U

Ĵ(u). (1.7)

The first order necessary optimality condition for (1.7) reads

Ĵ ′(u)(δu) = (∇Ĵ(u), δu) = 0, ∀δu ∈ U. (1.8)

Due to the linear-quadratic structure of the optimal control problem this condition

is also sufficient for optimality. Since the reduced cost functional is

Ĵ(u) :=
1

2
||Su− yd||2 +

β

2
||u||2,

the Fréchet derivative of it can be expressed as

Ĵ ′(u)(δu) = (βu+ S∗(Su− yd), δu) (1.9)

where S∗ : U → U is the adjoint of S, that is

(S∗u, v) = (u,Sv) ∀u, v ∈ U. (1.10)
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Therefore, by (1.9),

∇Ĵ(u) = βu+ S∗(Su− yd). (1.11)

Theorem 1.2.3 For v ∈ U , we have z = S∗v if and only if z satisfies


−(φ, ∂tz) + (∇φ,∇z) = (φ, v), ∀φ ∈ V,

z(·, T ) = 0.

(1.12)

Proof. Let z be the solution of (1.12). Recall (1.3) that

(∂ty, φ)L2(Ω) + (∇y,∇φ)L2(Ω) = (u, φ)L2(Ω) ∀φ ∈ V.

Replace φ in (1.12) with y in (1.3), then we obtain

−(y, ∂tz)L2(Ω) + (∇y,∇z)L2(Ω) = (y, v)L2(Ω).

Since y(·, 0) = 0 and z(·, T ) = 0,

0 =

∫ T

0

∂

∂t
(y, z)L2(Ω)dt

=

∫ T

0

(
(∂ty, z)L2(Ω) + (y, ∂tz)L2(Ω)

)
dt

=

∫ T

0

(
(∇y,∇z)L2(Ω) − (y, v)L2(Ω) + (u, z)L2(Ω) − (∇y,∇z)L2(Ω)

)
dt

=

∫ T

0

(
−(y, v)L2(Ω) + (u, z)L2(Ω)

)
,

= −(y, z) + (u, z),
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hence

(Su, v) = (u,S∗v).

We note that by defining z̃(x, t) = z(x, T − t), where z satisfies (1.12), z̃

satisfies


(φ, ∂tz̃(·, T − t)) + (∇φ,∇z̃(·, T − t)) = (φ, v(·, T − t)), ∀φ ∈ V,

z̃(·, 0) = 0,

(1.13)

which is a parabolic equation with the right hand side ṽ with ṽ(x, t) = v(·, T − t).

Therefore, by Theorem 1.2.1

||∂tz̃||+ ||∆z̃|| 6 C||ṽ||, (1.14)

which is equivalent to

||∂tz||+ ||∆z|| 6 C||v||. (1.15)

The Hessian operator at u ∈ U is given, in general, by the following equality

involving the second variation

(H(u)v1, v2) = Ĵ ′′(u)(v1, v2), ∀v1, v2 ∈ U.

9



Since Ĵ is quadratic, we have

Ĵ ′′(u)(v1, v2) = ((S∗S + βI)v1, v2), ∀v1, v2 ∈ U.

It follows that

H = S∗S + βI. (1.16)

We note that the Hessian H is independent of u and is a symmetric positive definite

operator because

(Hv, v) > β(v, v) ∀v ∈ U.

The optimality condition (1.8) is equivalent, due to (1.11), to

Hu = (S∗S + βI)u = S∗yd, with y = Su. (1.17)

Hence, the reduced problem has a unique solution u given by

u = H−1(S∗yd). (1.18)

The challenge of this approach is to find efficient solution methods for solving the

linear systems representing discrete versions of (1.17). To solve the discrete opti-

mization problem we will introduce special discrete versions of S,S∗, and H, and
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we will define and analyze two-grid preconditioners for the discrete version of H.

1.2.2 The discrete control-to-state map and the discrete reduced

problem

The discussion in this section follows closely [32]. For h ∈ (0, h0](h0 > 0), let

T denote a quasi-uniform triangulation of Ω with mesh size h, i.e., T = {τ} is a

partition of Ω into cells (triangles) τ of diameter hτ such that for h = maxτ hτ ,

diam(τ) ≤ h ≤ C|τ |
1
d , ∀τ ∈ T ,

hold. Let Ṽh be the space of continuous piecewise linear functions with respect to

T , and Vh = Ṽh ∩ H1
0 (Ω). We introduce the following notation: I = (0, T ), Im =

(tm−1, tm], km = tm − tm−1, 0 = t0 < t1 < · · · < tM−1 < tM = T . To obtain the fully

discrete approximation we consider the space-time finite element space

Y 0,1
k,h = {ykh : ykh|Im ∈ Vh,m = 1, 2, · · ·,M}, (1.19)

U0,1
k,h = {ukh : ukh|Im ∈ Ṽh,m = 1, 2, · · ·,M}. (1.20)

More precisely, Y 0,1
k,h and U0,1

k,h consist of functions that are piecewise constant in time

with respect to the partition Im and continuous piecewise linear in Ω with respect

11



to T . We also define the following:

[ykh]m = y+
kh,m − y

−
kh,m,

y+
kh,m = lim

ε→0+
ykh(tm + ε),

y−kh,m = lim
ε→0+

ykh(tm − ε).

We define the following bilinear form

B(ykh, φkh) = (∇ykh,∇φkh) +
M∑
m=2

(
[ykh]m−1, φ

+
kh,m−1

)
L2(Ω)

. (1.21)

By rearranging the terms in (1.21), we obtain an equivalent (dual) expression of B:

B(ykh, φkh) = (∇ykh,∇φkh) +
M∑
m=1

((
y−kh,m, φ

−
kh,m

)
L2(Ω)

−
(
y+
kh,m−1, φ

+
kh,m−1

)
L2(Ω)

)
+

M∑
m=2

((
y+
kh,m−1, φ

+
kh,m−1

)
L2(Ω)

−
(
y−kh,m−1, φ

+
kh,m−1

)
L2(Ω)

)
+
(
y+
kh,0, φ

+
kh,0

)
.

By adding like terms we obtain:

B(ykh, φkh) = (∇ykh,∇φkh)−
M−1∑
m=1

(
y−kh,m, [φkh]m

)
L2(Ω)

+
(
y−kh,M , φ

−
kh,M

)
L2(Ω)

.(1.22)

Following [32], the dG(0)cG(1) discretization of the state equation (1.2) for given

u ∈ U0,1
k,h has the form: Find a state ykh = Skh(u) ∈ Y 0,1

k,h such that

B(ykh, φkh) = (u, φkh) ∀φkh ∈ Y 0,1
k,h . (1.23)
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We note that the test space is the same as the solution space and the method reduces

to a modified backward Euler method [40]. It is noted that there exist a variety

of space-time finite element formulations for the discrete parabolic equation. For

example, in [27] a certain formulation based on continuous finite elements in space

and time gives rise to the standard Crank-Nicolson Galerkin method. To construct

the matrix equation corresponding to (1.23), we introduce the nodal basis {φj} of

Vh associated to the Nh interior nodes of T numbered in some fashion, hence

y|Im =

Nh∑
j=1

ymj φj,

where the coefficient ymj are the nodal values of y|Im . Let φj with j = Nh+1, · · ·, Ñh,

be basis functions associated with the boundary nodes. Hence

u|Im =

Ñh∑
j=1

umj φj,

where the coefficients umj are the nodal values of u|Im . We denote ym = (ymj ) to be

the vector of coefficients. We define Nh × Nh mass matrix M , stiffness matrix K,

and the Nh × 1 vector b by

(M)ij = (φj, φi)L2(Ω), (K)ij = (∇φj,∇φi)L2(Ω), (b)i = (u, φi),

for 1 6 i, j 6 Nh. We also define Ñh× Ñh mass matrix M̃ with coefficients (M̃)ij =

(φj, φi)L2(Ω), for 1 ≤ i, j ≤ Ñh. Since ym = y+
m−1 and ym−1 = y−m−1, the discrete
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equation for the dG(0)cG(1) approximation on Im is:

(M + kmK)ym = Mym−1 + M̃um, (1.24)

where um = (umj )j=1,...,Ñh
. Define the following matrix

A =



M + k1K 0 0 . . . 0

−M M + k2K 0 . . . 0

...
...

...
. . .

...

0 . . . 0 −M M + kMK


.

The above equation can be written as

Ay = Cu, (1.25)

where C is a matrix that contains M̃ as diagonal blocks.

The following theorem appears in [41].

Theorem 1.2.4 Let u ∈ U0,1
k,h, the discrete problem

B(ykh, φkh) = (ukh, φkh) ∀φkh ∈ Y 0,1
k,h , (1.26)

has a unique solution ykh ∈ Y 0,1
k,h .

The existence result for the discrete problem in Theorem 1.2.4 ensures the

existence of a control-to-state mapping u→ y = Skh(u) defined in(1.23). By means
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of this mapping we introduce the discrete reduced cost functional Ĵkh : U0,1
k,h → R

Ĵkh(u) := J(u, ykh(u)).

Hence the optimal control problem can be reformulated as

min
ukh∈U0,1

k,h

Ĵkh(ukh). (1.27)

The following result appears as Remark 3.5 in [35], ensures the solvability of the

discrete optimal control problem (1.27).

Theorem 1.2.5 The discrete optimal control problem (1.27) admits for β > 0 a

unique solution ukh ∈ U0,1
k,h.

The uniquely determined optimal solution of (1.27) is denoted by ukh ∈ U0,1
k,h.

The optimal control ukh ∈ U0,1
k,h fulfills the first order optimality condition

Ĵ ′kh(ukh)(δu) = (∇Ĵ(ukh), δu) = 0 ∀δu ∈ U. (1.28)

Due to the linear-quadratic structure of the optimal control problem this condition

is also sufficient for optimality. Since the reduced discrete problem is

Ĵkh(u) :=
1

2
||Skhu− yd||2 +

β

2
||u||2, (1.29)
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the first derivative of it can be expressed as

Ĵ ′kh(u)(δu) = (βu+ S∗kh(Skhu− yd), δu), (1.30)

where S∗kh is the adjoint of the discrete version of S that is

(S∗khu, v) = (u,Skhv), ∀u, v ∈ U0,1
k,h.

Therefore

∇Ĵkh(u) = βu+ S∗kh(Skhu− yd).

Theorem 1.2.6 The adjoint of Skh is given by zkh = S∗khv if and only if

B(φkh, zkh) = (φkh, v) ∀φkh ∈ Y 0,1
k,h . (1.31)

Proof. Given v ∈ U0,1
k,h, let φkh in (1.31) be ykh from (1.23), then

B(ykh, zkh) = (ykh, v).

From (1.23), B(ykh, zkh) = (u, zkh) and ykh = Skhu, hence

(u, zkh) = (Skhu, v) = (u,S∗khv).

Remark that proof is so simple due to the fact that the test space for the discrete
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variational inequality (1.23) is same as the solution space. As in the continuous

case, the second variation of the reduced discrete cost functional defines the Hessian

operator

(Hkh(u)v1, v2) = Ĵ ′′(u)(v1, v2), ∀v1, v2 ∈ U0,1
k,h.

Since Ĵ is quadratic,

Ĵ ′′(u)(v1, v2) = ((S∗khSkh + βI)v1, v2), ∀v1, v2 ∈ U0,1
k,h. (1.32)

It follows that

Hkh = S∗khSkh + βI. (1.33)

We note that the discrete Hessian operator is independent of u and is symmetric

positive definite because

(Hkhu, u) > β(u, u). ∀u ∈ U0,1
k,h

1.3 Estimates

We define a projection operator π̂k : C(I, L2(Ω))→ P0(L2(Ω)), where P0(L2(Ω))

is the space of functions that are piecewise constant in time and square integrable

in space by

π̂ky(x, t) = y(x, t−m), ∀x ∈ Im, x ∈ Ω. (1.34)
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We also define Ph : L2(Ω) → Vh to be the orthogonal L2-projection, and Rh to be

the Ritz projection, namely Rh : H1
0 (Ω) → Vh, and (·, ·)Im×Ω is the L2 space-time

inner-products on the subinterval Im and Ω. We introduce the discrete Laplace

operator ∆h : Vh → Vh by

(−∆hvh,X )L2(Ω) = (∇vh,∇X )L2(Ω), ∀X ∈ Vh.

The following result is extracted from Theorem 12 in [42].

Theorem 1.3.1 Let y be the solution to (1.2) with y ∈ C(I;L2(Ω)) and ykh be the

dG(0)cG(1) solution. Then there exists a constant C independent of k and h such

that

||y − ykh|| ≤ C ln
T

k
(||y − π̂ky||+ ||Phy − y||+ ||Rhy − y||) .

The following estimate appears as Corollary 4 in [42].

Corollary 1.3.2 If the solution y to (1.2) satisfies y ∈ H1(I;L2(Ω))∩L2(I;H2(Ω)),

then there exists a constant C independent of k and h such that

||y − ykh|| ≤ C ln
T

k
(k||y||H1(I;L2(Ω)) + h2||y||L2(I;H2(Ω))). (1.35)

Proof. The following estimates hold for Ritz projection, projection πk, and
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projection Ph,

||Rhy − y|| ≤ c1h
2||y||L2(I;H2(Ω)) (1.36)

||π̂ky − y|| ≤ c2k||y||H1(I;L2(Ω)) (1.37)

||Phy − y|| ≤ c3h
2||y||L2(I;H2(Ω)), (1.38)

where c1, c2, and c3 are independent of k and h. The estimates for the Ritz projection

and the L2 projection Ph are the standard estimates and the estimate for π̂k is taken

from [42]. From Theorem 1.3.1 and using (1.36), (1.37), and (1.38), the estimate

(1.35) can be obtained.

By applying the Maximal parabolic regularity from Theorem 1.2.1 to Corollary

1.3.2 we obtain the following.

Corollary 1.3.3 If u ∈ U , then the solution y = Su to (1.2) satisfies y ∈ H1(I;L2(Ω))∩

L2(I;H2(Ω)), and there exists a constant C independent of k and h such that

||y − ykh|| ≤ C ln
T

k
(k + h2)||u||. (1.39)

We define πkh : U → U0,1
k,h to be the L2-projection. The discrete solution

operator Skh is naturally from U0,1
k,h to Y 0,1

k,h . We extract its definition from U to U

by S̃kh = Skh ◦πkh : U → U . By Corollary 1.3.3 the following estimate holds for S̃kh

||(S − S̃kh)u|| ≤ C(h2 + k)||u||. (1.40)
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A standard duality argument (see, e.g., [43]) implies,

||(S − S̃kh)∗u|| = ||(S − S̃kh)u||, (1.41)

and by (1.40), we have

||(S − S̃kh)∗u|| = ||(S∗ − S∗kh ◦ πkh)u|| ≤ C(k + h2)||u||. (1.42)

Therefore, the estimate that holds for the solution operator S (Corollary 1.3.3) and

its discrete counterpart S∗kh also holds for the adjoint operators S∗ and S∗kh.

1.3.1 The two-grid preconditioner

In this section we introduce and analyze the preconditioner for the operator

denoted

Hkh = S∗khSkh + βI : U0,1
k,h → Y 0,1

k,h ,

where S∗kh, is the adjoint of the discrete version of S introduced in the previous

section. In fact, the operator Hkh introduced here is the Hessian of the reduced cost

functional in (1.29).

Note that π2k2h is the orthogonal projection onto U0,1
2k,2h, which is a coarser

(both in space and in time) version of U0,1
k,h. When the L2- projector applies to a

function in U , we regard this operator as the extraction of its smooth component.

On the other hand (I − π2k2h) extracts the oscillatory component of a function.
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Since S∗khSkh approximates the smoothing operator, we have

(βI + S∗khSkh)(I − π2k2h) ≈ β(I − π2k2h).

Therefore we have

Hkh = (π2k2h + (I − π2k2h))(S∗khSkh + βI)(π2k2h + (I − π2k2h))

≈ π2k2h(S∗khSkh + βI) + β(I − π2k2h).

Hence, we anticipate that the discrete Hessian Hkh is well approximated by

Mkh = H2k2hπ2k2h + β(I − π2k2h).

Note that the inverse of Mkh is computed as

M−1
kh = H−1

2k2hπ2k2h + β−1(I − π2k2h).

To evaluate the quality of the preconditioner we search for an estimate of the type

1− C(kδ + hα)

β
6

(Hkhu, u)

(Mkhu, u)
6 1 +

C(kδ + hα)

β
, ∀u 6= 0 (1.43)

where h is a mesh size, C is independent of h, k, and may depend on ln k, k is the

time-step, δ is related to the time-discretization order, and an exponent α > 0 (is

related to the spatial discretization) is as large as possible. In general, α and δ are
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not expected to exceed the order of convergence of the discretization. Numerical

results suggests that α = 2 and δ = 1, so the preconditioner is of optimal-order

since we applied dG(0)cG(1) discretization. The goal is to show that the generalized

eigenvalues of Hkh and Mkh are in an interval of center 1 and radius C(k + h2)/β.

Given that

(Hkhu, u) > β||u||2,

it is sufficient to find a norm ||| · ||| on U0,1
k,h so that the symmetric (same norm on both

sides) estimate holds

|||(Hkh −Mkh)u||| 6 C(k + h2)|||u|||, ∀u ∈ U0,1
k,h .

The rest of this section is devoted to showing that the above estimate holds with

||| · ||| = || · ||.

The first result shows a symmetric approximation between of the continuous

reduced Hessian and the discrete operator Hkh in the || · ||-norm.

Theorem 1.3.4 The following estimate holds:

|| (πkhH−Hkh)u|| 6 C(k + h2)||u||, ∀u ∈ U0,1
k,h,

where πkh : U → U0,1
k,h is the L2 projection.
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Proof. We have

πkhH−Hkh = πkhS∗S − S∗khSkh = πkh (S∗ − S∗kh)S︸ ︷︷ ︸
A

+πkhS∗kh (S − Skh)︸ ︷︷ ︸
B

.

For the term A we have

||πkh (S∗ − S∗kh)Su|| 6 C|| (S∗ − S∗kh)Su||
(1.42)

6 C(k + h2)||Su||
(1.4)

6 C(k + h2)||u||.

To estimate the term B we use the stability of S∗kh that is obtained by the approxi-

mation:

||S∗khv|| 6 ||(S∗kh − S∗)v||+ ||S∗v||

(1.42)

6 C1(k + h2)||v||+ C2||v|| 6 C||v||.

Therefore,

||πkhS∗kh (S − Skh)u|| 6 C||S∗kh (S − Skh)u||

6 || (S − Skh)u||

Corollary 1.3.3

6 C(k + h2)||u||.

Theorem 1.3.5 The following estimate holds:

||S∗S(I − πkh)u|| ≤ C(h2 + k)||u||, ∀u ∈ U0,1
k,h. (1.44)
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Proof. Define J to be an interpolant operator such that ŷ(x, t) = Ph(y(·, t)),

J (y) = π̂kŷ and for y = Su or y = S∗u satisfies the following estimate

||y − J y|| ≤ C(k + h2)||u||. (1.45)

The above estimate is the result of (1.15) and Theorem 1.2.1. Therefore

(S∗S(I − πkh)u, u) = ((I − πkh)u,S∗Su)

= ((I − πkh)u,S∗Su− J (S∗Su)) ≤ C(k + h2)||(I − πkh)u||||Su||

≤ C(k + h2)||u||.

By dividing both sides by ||u|| and taking the supremum, we arrive at the estimate.

Theorem 1.3.6 In the conditions of Theorems 1.3.4 and 1.3.5 the following holds:

||Hkh −Mkh|| ≤ C(k + h2)||u||. (1.46)

Proof. The difference between the two-grid preconditioner and the Hessian is:

Hkh −Mkh = Hkh + βI − (H2k2h + βI)π2k2h − β(I − π2k2h)

= Hkh −H2k2hπ2k2h

= Hkh −H +H−Hπ2k2h + (H−H2k2h)π2k2h

= (Hkh −H) +H(I − π2k2h) + (H−H2k2h)π2k2h.
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We showed that

||(H−Hkh)u|| ≤ C(k + h2)||u||, ∀u ∈ U0,1
k,h.

Similarly, we obtain

||(H−H2k2h)π2k2hu|| ≤ C1(2k + (2h)2)||π2k2hu|| ≤ C2(k + h2)||u||, ∀u ∈ U0,1
k,h.

The second term bounded as in (1.44), therefore

||(Hkh −Mkh)u|| ≤ C(k + h2)||u||.

1.4 Numerical results

In this section, we numerically show how well the preconditioner approximates

the Hessian. We consider two different projections. First, we define π to be the

space-time projection π2k2h, as in Section (1.3). Second, we experiment with a

space-only projection π.

1.4.1 Space-time projection

We use the orthogonal projection and the two-grid preconditioner that we

defined in Section 1.3.1 to verify O(k + h2) numerically. We conduct numerical
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experiments in one space dimension, Ω = [0, 1] with variable T . We build the

matrices representing Hkh and Mkh and compute the joint spectrum. Finally, we

compute

dkh = max{| lnλ| : λ ∈ σ(Hkh,Mkh)}.

We hope to verify numerically the validity of estimate (1.46). In order to do so we

consider

h0 = 2−3, hn = 2−nh0, k0 = 2−4, kn = 4−nk0.

The theoretical estimate predict

dknhn/dkn+1hn+1 ≈ 4.

Conclusion: numerics are consistent with the theoretical results.
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β = 1, T = 1

n 0 1 2

dknhn 1.726× 10−3 5.629× 10−4 1.560× 10−4

dknhn/dkn+1hn+1 3.0672 3.6083 –

β = 1, T = 2

dknhn 2.887× 10−3 1.017× 10−3 3.009× 10−4

dknhn/dkn+1hn+1 2.8380 3.3814 –

β = 10−2, T = 1

dknhn 1.377× 10−1 4.322× 10−2 1.182× 10−2

dknhn/dkn+1hn+1 3.1866 3.6558 –

β = 10−2, T = 2

dknhn 2.388× 10−1 7.964× 10−2 2.304× 10−2

dknhn/dkn+1hn+1 2.9979 3.4573 –

1.4.2 Space projection

In this section, We define πk2h : U → U0,1
k,2h to project on the coarse finite

element space only. Hence the preconditioner is,

Mkh = Hk2hπk2h + β(I − πk2h).
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The way to do this is to cut h in 1
2

and fix k = 2−4 and k = 2−5 and hope to see

a decrease by a factor of 2. We begin with h0 = 2−5 and hn = 2−nh0. From the

tables it is observed that the spectral distance between constructed preconditioner

and the Hessian is O(h2). We fix T = 1 and consider two different values for the

regularization parameter β and obtain the following results.

β = 10−2, k = 2−4

n 0 1 2

dkhn 2.463× 10−3 1.624× 10−4 1.541× 10−4

dkhn/dkhn+1 3.9968 3.9992 –

β = 1, k = 2−4

dkhn 4.379× 10−1 1.097× 10−1 2.745× 10−2

dkhn/dkhn+1 3.9908 3.9977 –

β = 1, k = 2−5

dkhn 0.112× 10−4 0.028× 10−4 0.007× 10−4

dkhn/dkhn+1 3.9977 3.9994 –

β = 10−2, k = 2−5

dkhn 0.624× 10−3 0.156× 10−3 0.039× 10−3

dkhn/dkhn+1 3.9992 3.9998 –
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1.5 Future work

In this work, we presented the numerical analysis for a specific discretization

(dG(0)cG(1)) of the state equation, with no control or state constraints. Our analy-

sis can be extended in a number of directions. We would like to observe the behavior

of the two-grid preconditioner when we apply dG(1)cG(1) as a discretization of the

state equation. In the present work, we did not consider additional constraints on

the state y or the control u. We intend to consider control-constrained optimal

control problems constrained by parabolic PDEs. We also intend to study the more

challenging case of state constrained problems using Lavrentiev- and Moreau- Yosida

regularization.
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Chapter 2: Multigrid methods for Dirichlet boundary control of

elliptic equations

2.1 Introduction

In this work we design and analyze multigrid preconditioners for the elliptic

boundary control problem


minimize J(y, u) = 1

2
||y − yd||2L2(Ω) + β

2
||u||2L2(∂Ω),

subject to : Ay = 0, y|∂Ω = u, (y, u) ∈ H1(Ω)× L2(∂Ω)

(2.1)

where Ω ⊂ IRd, d = 2 is a bounded domain, and A is a second-order linear uniformly

elliptic operator in divergence form

Ay(x) = −
d∑
i=1

∂i

(
d∑
j=1

aij(x)∂jy(x) + bi(x)y(x)

)
+ c(x)y(x) , (2.2)

where aij, bi, and c are assumed to be sufficiently smooth functions. Since the con-

straint in (2.1) is a well-posed elliptic PDE, we define the solution u → y = Su

which allows us to replace y by Su in the cost functional, and obtain the reduced
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form of the problem

minimize Ĵ(u) :=
1

2
||Su− yd||2L2(Ω) +

β

2
||u||2L2(∂Ω). (2.3)

Since (2.3) is quadratic, the Hessian of the reduced cost functional (called the re-

duced Hessian) is independent of u, and is given by

H = S∗S + βI,

where S∗ is the adjoint of the solution operator S (see next section for derivation).

Given that the solution of the elliptic boundary control problem is

umin = H−1(S∗yd),

the challenge is to find efficient solution methods for solving the linear systems

representing discrete version of

Hu = S∗yd. (2.4)

Solving a discrete version of (2.4) is very expensive due to the potentially very large

cost of applying the operators S and S∗, each of them involving a PDE solve. The

discrete representations of S and S∗ are dense, therefore solving (2.4) has to rely on

matrix-free Krylov space solvers associated with efficient matrix-free precondition-

ers. We developed efficient two-grid preconditioners for the reduced Hessian, and we
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observed numerically for the above optimization problem with (aij = 1, bi = 0, c = 0)

a degrading by at least one order of the expected optimality of the preconditioners.

Our goal is to analyze the behavior of the two-grid preconditioners in theory.

2.2 Problem description

We denote by Y = H
1
2 (Ω), Y0 = H1

0 (Ω), U = L2(∂Ω). Furthermore (·, ·)

denotes the L2(Ω)-inner product, while 〈·, ·〉 denotes the inner product in L2(∂Ω).

2.2.1 The Dirichlet problem and its discretization

We begin with constructing a solution operator S : H
1
2 (∂Ω) → H1(Ω). The

PDE-constraint in (2.1) is given by the Dirichlet problem

Find y ∈ H1(Ω) s.t. Ay = 0 in Ω, y|∂Ω = u , (2.5)

with u ∈ H 1
2 (∂Ω) given. If we define a : H1(Ω) ×H1(Ω) → IR to be the standard

bilinear form associated with A

a(y, ϕ) =
∑
i,j

∫
Ω

aij ∂jy ∂iϕ , (2.6)

then the weak solution y of (2.5) is found as

y = y0 + Eu ,
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where E : H
1
2 (∂Ω)→ H1(Ω) is a bounded linear extension operator, and S0u = y0 ∈

Y0 satisfies the variational inequality

a(y0, ϕ) = −a(Eu, ϕ), ∀ϕ ∈ Y0 . (2.7)

We denote by S : H
1
2 (∂Ω)→ H1(Ω) the solution operator of (2.5); hence

S = E + S0 . (2.8)

Note that the definition of S is independent of the extension operator E . To extend

S from U to Y we consider the very weak formulation of elliptic equation (2.2),

− (y,∆φ) + 〈u, ∂nφ〉 = 0, ∀φ ∈ Y0 ∩H2(Ω). (2.9)

For this formulation of the state equation, we recall the following result on existence

that is taken from [2]:

Theorem 2.2.1 There exists an operator S : U → Y such that y = Su solves (2.1).

We use the following a priori bound for the solution operator S that is extracted

from [44] Lemma 2.2.

Lemma 2.2.2 Suppose that Ω ⊂ R2 is a bounded convex polygonal domain with

boundary ∂Ω. For 0 ≤ s ≤ 1 the solution operator S is continuously defined from
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Hs(∂Ω)→ Hs+1/2(Ω), and satisfies

||Su||
Hs+ 1

2 (Ω)
≤ c||u||Hs(∂Ω). (2.10)

The following theorem that is taken from [44] Lemma 2.4, proves the solvability

of the optimal control problem (2.1).

Lemma 2.2.3 The optimization problem (2.1) together with the very weak formu-

lation (2.9) of the state equation possesses a uniquely determined solution {y, u} ∈

Y × U .

The existence result for the state equation in Theorem (2.2.1) ensures the existence

of a control-to-state mapping y = Su defined through (2.8). By means of this

mapping we introduce the reduced cost functional J : U → R :

Ĵ(u) := J(u,Su).

The optimal control problem can then be equivalently reformulated as

minimizeu∈U Ĵ(u). (2.11)

The first order necessary optimality condition for (2.11) reads as

Ĵ ′(u)(δu) =
〈
∇Ĵ(u), δu

〉
= 0, ∀δu ∈ U . (2.12)
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Due to the quadratic structure of the optimal control problem this condition is also

sufficient for optimality. Since the reduced cost functional is

minimize Ĵ(u) :=
1

2
||Su− yd||2L2(Ω) +

β

2
||u||2L2(∂Ω),

the first derivative of it can be expressed as

Ĵ(u)(δu) = 〈βu+ S∗(Su− yd), δu〉 ,

where S∗ is the adjoint of S, that is

〈S∗u, v〉 = 〈u,Sv〉 ∀u, v ∈ U .

Therefore

∇Ĵ(u) = βu+ S∗(Su− yd). (2.13)

The second variation of the reduced cost functional defines the Hessian operator

〈H(u)v1, v2〉 = Ĵ ′′(u) 〈v1, v2〉 , ∀v1, v2 ∈ U ,

since

Ĵ ′′(u) 〈v1, v2〉 = 〈(S∗S + βI)v1, v2〉 , ∀v1, v2 ∈ U , (2.14)
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it follows that

H = S∗S + βI. (2.15)

We note that the Hessian operator is symmetric positive definite because

〈Hu, u〉 > β 〈u, u〉

and is independent of u. The optimality condition (2.12) is equivalent, due to (2.13)

to

Hu = (S∗S + βI)u = S∗yd. (2.16)

Hence the reduced problem has a unique solution given by

u = H−1(S∗yd), y = Su. (2.17)

The challenge of this approach is to find efficient solution methods for solving the

linear systems representing discrete version of (2.16).

To discretize (2.16) we consider a quasi-uniform sequence of triangulations

(Th)h∈J of Ω with J = {h0, h1, . . . }, where h is the mesh size of Th, and Thj is a

refinement of Thj−1
. Let Yh be the space of continuous piecewise linear functions on

Th, and

Y0,h = {u ∈ Yh : u|∂Ω = 0}.
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For the discrete control problem we consider the (d− 1)-dimensional triangulations

(T ∂h )h∈J defined on ∂Ω by T ∂h , and the spaces Uh of continuous piecewise linear

functions (with respect to T ∂h ) on ∂Ω. Note that Uh ⊂ U . Let Eh : Uh → Yh be the

natural extension, that is, for each ϕ ∈ Uh we set

(Ehϕ)(p) =


ϕ(p) , for p vertex on ∂Ω

0 , for p vertex in Int(Ω) .

For u ∈ Uh, the finite element solution of (3.5) is given by yh = y0,h + Ehu, where

S0,hu = y0,h ∈ Y0,h satisfies the variational inequality

a(y0,h, ϕ) = −a(Ehu, ϕ), ∀ϕ ∈ Y0,h . (2.18)

If we denote by Sh : Uh → Yh the discrete solution operator then

Sh = Eh + S0,h . (2.19)

The existence of a control-to-state mapping u → y = Shu defined (2.19),

allows us to introduce the discrete reduced cost functional Ĵh : Uh → R

Ĵh(u) := J(u,Shu).

The discrete optimization problem can be reformulated as

minimizeuh∈Uh Ĵh(uh). (2.20)
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The following result which is taken from [44], ensures the solvability of the discrete

optimal control problem.

Theorem 2.2.4 The discrete optimal control problem (2.20) admits for β > 0 a

unique solution uh ∈ Uh.

The optimal control uh ∈ Uh fulfills the first order optimality condition

Ĵ ′h(uh)(δu) =
〈
∇Ĵh(uh), δu

〉
= 0 ∀δu ∈ Uh. (2.21)

Due to the quadratic structure of the optimal control problem this condition is also

sufficient for optimality. Since the reduced discrete cost functional is

Ĵh(u) :=
1

2
||Shu− yd||2L2(Ω) +

β

2
||u||2L2(∂Ω),

the first derivative of it can be expressed as

Ĵ ′h(u)(δu) = 〈βu+ S∗h(Shu− yd), δu〉 , (2.22)

where S∗h is the adjoint of Sh. Therefore

∇Ĵh(u) = βu+ S∗h(Shu− yd). (2.23)
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The second variation of the reduced discrete cost functional defines the Hessian

operator

〈Hh(u)v1, v2〉 = Ĵ ′′(u) 〈v1, v2〉 ∀v1, v2 ∈ Uh, (2.24)

since

Ĵ ′′h(u) 〈v1, v2〉 = 〈(S∗hSh + βI)v1, v2〉 , ∀v1, v2 ∈ Uh. (2.25)

It follows that

Hh = S∗hSh + βI. (2.26)

We note that the discrete HessianHh is symmetric positive definite also with respect

to 〈·, ·〉 and is independent of u.

2.2.2 Computation of adjoints

Given ỹ ∈ L2(Ω), we define z ∈ Y0 to be the weak solution of the variational

inequality

a(ϕ, z) = (ϕ, ỹ) , ∀ϕ ∈ Y0 . (2.27)
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We denote the solution operator of (2.27) by Ŝ. Due to elliptic regularity z ∈ H2(Ω),

therefore Ŝ ∈ L(L2(Ω), H2(Ω) ∩ Y0). Hence

−
d∑

i,j=1

∂j

(
d∑
j=1

aij ∂iz

)
= ỹ a.e. (2.28)

After multiplying in (2.28) with a test function ϕ ∈ H1(Ω) and applying Green’s

theorem to the first term we obtain

−〈ϕ,N z〉+ a(ϕ, z) = (ϕ, ỹ) , (2.29)

where N : H2(Ω)→ U is defined by

N z =
d∑

i,j=1

(aij ∂iz)|∂Ω nj , (2.30)

with ~n = (nj)j=1,...,d being the unit outer normal vector on ∂Ω which is defined at

all but finitely many points of ∂Ω.

We are now computing the adjoint of the operator S, regarded as S : U → U .

We need u ∈ H 1
2 (∂Ω), ỹ ∈ L2(Ω), and y ∈ H1(Ω) for this formulation

(Su, ỹ) = (y, ỹ) = (y0 + Eu, ỹ)
(2.27)
= a(y0, z) + (Eu, ỹ)

(2.7)
= −a(Eu, z) + (Eu, ỹ)

(2.29)
= 〈u,−N z〉 =

〈
u,−(N ◦ Ŝ)ỹ

〉
.
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Since H
1
2 (∂Ω) is dense in L2(∂Ω), The above holds for u ∈ L2(∂Ω). Therefore

S∗ = −N ◦ Ŝ . (2.31)

The following estimates hold for S∗.

Lemma 2.2.5 The adjoint operator S∗ is defined from L2(Ω) → H
1
2 (∂Ω), and

satisfies

||S∗v||
H

1
2 (∂Ω)

6 c||v||L2(Ω) ∀v ∈ L2(Ω), (2.32)

||S∗v||L2(Ω) 6 c||v||
H−

1
2 (∂Ω)

∀v ∈ L2(Ω). (2.33)

Proof. Since the adjoint operator S∗ is naturally defined from L2(Ω) →

H
1
2 (∂Ω), we have the first estimate (2.32). For the second estimate (2.33), we

have

||S∗v||L2(∂Ω) = sup
φ∈U

(S∗v, φ)

||φ||L2(∂Ω)

= sup
φ∈U

〈v,Sφ〉
||φ||L2(∂Ω)

6 sup
φ∈U

c||v||
H−

1
2 (Ω)
||Sφ||

H
1
2 (Ω)

||φ||L2(∂Ω)

(2.10)(s=0)

6 c||v||
H−

1
2 (Ω)

.

We extract from [45], the following estimate.
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Lemma 2.2.6 The following estimate holds for the adjoint operator S∗.

||S∗y||
H−

1
2 (∂Ω)

6 c||y||H−1(Ω) ∀y ∈ L2(Ω). (2.34)

Proof. We first consider the general case that the following inequality

||∂y
∂ν
||
H−

1
2 (∂Ω)

6 c||y||H1(Ω) 6 c||u||H−1(Ω)

holds for the following problem

∫
Ω

∇y · ∇v = 〈u, v〉 ∀v ∈ Y0.

We have the extension E : H
1
2 (∂Ω) → H1(Ω) so that E(v) = v on the boundaries

and

||E(v)||H1(Ω) 6 c||v||
H

1
2 (∂Ω)

.

We have

∫
Ω

∇y · ∇E(v)dx =

∫
Ω

uE(v)dx+

∫
∂Ω

∂y

∂ν
v,
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hence

|
∫
∂Ω

∂y

∂ν
v | 6 ||y||H1(Ω)||E(v)||H1(Ω) + ||u||H−1(Ω)||E(v)||H1(Ω)

6
(
||y||H1(Ω) + ||u||H−1(Ω)

)
||v||

H
1
2 (∂Ω)

.

By dividing both sides by ||v||
H

1
2 (∂Ω)

and taking the supremum, we get

||∂y
∂ν
||
H−

1
2 (∂Ω)

6 ||y||H1(Ω) + ||u||H−1(Ω). (2.35)

For the adjoint solution operator, we have S∗y = v, where v = − ∂z
∂ν
|∂Ω, and z is the

solution of (2.27). By (2.35), we have

||S∗y||
H−

1
2 (∂Ω)

6 c
(
||z||H1(Ω) + ||y||H−1(Ω)

)
6 c||y||H−1(Ω).

The adjoint of Sh is computed somewhat similarly, the difference arising from

the fact that the discrete solution is not in H2(Ω). Given ỹ ∈ L2(Ω), let zh ∈ Y0,h

satisfy

a(ϕ, zh) = (ϕ, ỹ) , ∀ϕ ∈ Y0,h . (2.36)

43



For u ∈ Uh let yh = Shu. Then

(Shu, ỹ) = (yh, ỹ) = (y0,h + Ehu, ỹ)
(2.36)
= a(y0,h, zh) + (Ehu, ỹ)

(2.7)
= −a(Ehu, zh) + (Ehu, ỹ)

def
= 〈u, gh〉 ,

where we used the Riesz representation theorem to define gh as the only element in

Uh for which

−a(Ehu, zh) + (Ehu, ỹ) = 〈u, gh〉 , u ∈ Uh .

Since gh depends linearly on ỹ, we have S∗hỹ = gh.

2.3 The two-grid preconditioner

In this section we discuss the analysis of the preconditioner for the Hessian

operator Hh defined in (2.26).

We now introduce the orthogonal projector π2h : U → U2h. Cf. [20]. When

the L2-projection applies to a discrete function it extracts the smooth part of it and

I−π2h extracts the oscillatory part of the discrete function. The S∗S is a smoothing

operator so (βI + S∗hSh)(I − π2h) ≈ β(I − π2h). Therefore we have

Hh = (π2h + (I − π2h))(S∗hSh + βI)(π2h + (I − π2h)) ≈ π2h(S∗hSh + βI) + β(I − π2h).

Hence the discrete Hessian is well approximated by

Mh = H2hπ2h + β(I − π2h). (2.37)
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Note that

M−1
h = H−1

2h π2h + β−1(I − π2h). (2.38)

To evaluate the quality of the preconditioner we use the spectral distance introduced

in [20] defined as

1− Chα

β
6
〈Hhu, u〉
〈Mhu, u〉

6 1 +
Chα

β
, ∀u 6= 0 (2.39)

where h is a mesh size, C is independent of h, and an exponent α > 0 is as large

as possible. In general, α is not expected to exceed the order of convergence of

the discretization. Since in discretization of the PDE we used continuous piecewise

linear polynomials for control and state, we expect to see a maximal rate of α = 2

which would be the optimal order. Numerical results performed on a number of

examples suggest α ∈ [1/2, 1], so the preconditioner is of suboptimal-order. The

goal is to show that the generalized eigenvalues of Hh andMh are in an interval of

center 1 and radius Chα/β. Given that

〈Hhu, u〉 > β||u||2,

it is sufficient to find a norm || · || on Uh so that the symmetric (same norm on both

sides) estimate holds

||(Hh −Mh)u|| 6 Ch||u||, ∀u ∈ Uh.
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However, the estimate resulting from our analysis appears to be less than the one

we observed numerically, namely

||(Hh −Mh)u|| 6 Ch
1
2 ||u||, ∀u ∈ Uh.

The rest of this chapter is devoted to showing that the above estimate holds with

|| · || = || · ||L2(∂Ω).

2.3.1 Error estimates

We extract from [44] the following estimate(s) where they appear as Lemma 3.3

parts (i) and (iv).

Lemma 2.3.1 Let A = −∆ and Ω ⊂ R2 be a convex domain, there exists a constant

C independent of h so that

||Shu||H1(Ω) 6 C||u||
H

1
2 (∂Ω)

, ∀u ∈ Uh , (2.40)

|| (S − Sh)u||H1(Ω) 6 C||u||
H

1
2 (∂Ω)

, ∀u ∈ Uh , (2.41)

|| (S − Sh)u||L2(Ω) 6 Ch||u||
H

1
2 (∂Ω)

, ∀u ∈ Uh , (2.42)
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|| (S − Sh)u||L2(Ω) 6 Ch1/2||u||L2(∂Ω), ∀u ∈ Uh . (2.43)

The following estimate satisfies for the solution operator S.

Lemma 2.3.2 The solution operator S satisfies

||Su||L2(Ω) 6 c||u||
H−

1
2 (∂Ω)

∀u ∈ U . (2.44)

Proof. Let u ∈ U ,

||Su||2 = (Su,Su) = 〈u,S∗Su〉

6 c||u||
H−

1
2 (∂Ω)
||S∗Su||

H
1
2 (∂Ω)

(2.32)

6 c||u||
H−

1
2 (∂Ω)
||Su||L2(Ω).

By dividing both sides by ||Su||L2(Ω), we obtain

||Su||L2(Ω) 6 c||u||
H−

1
2 (∂Ω)

The following estimate holds.

Lemma 2.3.3 There exists a constant C independent of h so that

|| (S − Sh)u||H− 1
2 (Ω)

6 Ch
1
2 ||u||L2(∂Ω), ∀u ∈ Uh . (2.45)

47



Proof. We have

y = Ehu+ y0, yh = Ehu+ y0,h,

where y0 and y0,h satisfy

a(y0, v) = − (Ehu, v) , ∀v ∈ Y0, (2.46)

a(y0,h, v) = − (Ehu, v) , ∀v ∈ Y0,h. (2.47)

We obtain that

y − yh = y0 − y0,h = eh

and

a(eh, v) = 0, ∀v ∈ Y0,h.

For a given φ ∈ U , let ẑ ∈ Y0

a(v, ẑ) = (v, φ), ∀v ∈ Y0.
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We now estimate ||eh||H− 1
2 (Ω)

||eh||H− 1
2 (Ω)

= sup
φ∈H

1
2 (Ω)

(eh, φ)

||φ||
H

1
2 (Ω)

= sup
φ∈H

1
2 (Ω)

a(eh, ẑ)

||φ||
H

1
2 (Ω)

= sup
φ∈H

1
2 (Ω)

a(eh, ẑ − ẑh)
||φ||

H
1
2 (Ω)

6
C||eh||H1(Ω)||ẑ − ẑh||H1(Ω)

||φ||
H

1
2 (Ω)

(2.41)

6 Ch||u||
H

1
2 (∂Ω)

||φ||L2(Ω)

||φ||
H

1
2 (Ω)

6 Ch
1
2 ||u||L2(∂Ω),

where for the last inequality, we used the inverse estimate [46].

Lemma 2.3.4 There exists a constant c independent of h such that

||(S∗ − S∗h)y||L2(∂Ω) 6 ch
1
2 ||y||L2(Ω) ∀y ∈ Y (2.48)

Proof. Let y ∈ Y ,

〈(S∗ − S∗h)y, u〉L2(∂Ω) = (y, (S − Sh)u)L2(Ω)

6 ||y||L2(Ω)||(S − Sh)u||L2(Ω) (2.49)

(2.43)

6 ||y||L2(Ω)Ch
1
2 ||u||L2(∂Ω),

by dividing both sides by ||u||L2(∂Ω) and taking the supremum over u ∈ U , we get

the estimate.
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2.3.2 Projection estimates and stability

We define the L2 projection πh that denotes either πuh : U → Uh or πyh :

L2(Ω)→ Yh.

Lemma 2.3.5 There exists a constant C independent of h so that

||πhz||k 6 C||z||k, k = −1, 0, 1 (2.50)

||(I − πh)z||−1 6 Ch||z||0, (2.51)

||(I − πh)z||0 6 Ch
1
2 ||z|| 1

2
, (2.52)

where || · ||1 is either || · ||H1(Ω) or || · ||H1(∂Ω), || · ||−1 is either || · ||H−1(Ω) or || · ||H−1(∂Ω),

and || · ||0 is either || · ||L2(Ω) or || · ||L2(∂Ω).

Proof. For k = 0, it is trivial. We prove for k = 1,−1. Let Jh be either

J y
h : H1(Ω)→ Yh or J u

h : U → Uh and Ih be either Iyh : Yh → L2(Ω) or Iuh : Uh → U .

For k = 1, we have,

||πhz||1 6 ||(πh − Jh)z||1 + ||Jhz||1

6 ||Jh(πh − I)z||1 + ||Jhz||1

6 C1h
−1||(πh − I)z||0 + C2||z||1

6 C3h
−1h||z||1 + C2||z||1 = C||z||1.
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For k = −1, we have,

||πhz||−1 = sup
v∈H1

0

(πhz, v)

||v||1

= sup
v∈H1

0

(z, πhv)

||v||1

6 C
||z||−1||πhv||1
||v||1

(2.50)(k=1)

6 C
||z||−1||v||1
||v||1

= ||z||−1,

where H1
0 denotes either Y0 or H1(∂Ω). For (2.51), we have,

||(I − πh)z||−1 = sup
v∈H1

0

((I − πh)z, v)

||v||1

= sup
v∈H1

0

(z, (I − πh)v)

||v||1

6 C
||z||0||(I − πh)v||0

||v||1

6 C
||z||0h||v||1
||v||1

= Ch||z||0. (2.53)

The last estimate (2.52) can be obtained by interpolating between the following two

estimates

||(I − πh)z||0 6 Ch1||z||1,

||(I − πh)z||0 6 C||z||0.
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Consider the embeddings

iuh : Uh → U ,

iyh : Yh → L2(Ω),

(2.54)

and the orthogonal projections

πuh : U → Uh,

πyh : L2(Ω)→ Yh.

Then

(πuh)∗ = iuh

and

(πyh)
∗ = iyh.

We introduce new discrete operators;

Ŝh = πyhSi
u
h,
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where ih is the embedding Uh → U . Hence

(Ŝh)∗ = (iuh)
∗S∗(πyh)

∗

= πuhS∗i
y
h

= πyhS
∗iyh.

Lemma 2.3.6 There exists a constant C independent of h such that

||(πuhS∗ − S∗h)y||L2(∂Ω) 6 Ch
1
2 ||y||L2(Ω) ∀y ∈ Y . (2.55)

Proof. Let y ∈ Y ,

||(πuhS∗ − S∗h)y||L2(∂Ω) = ||πuh(S∗ − S∗h)y||L2(∂Ω)

(2.50)

6 ||(S∗ − S∗h)y||L2(∂Ω)

Lemma 2.3.4

6 Ch
1
2 ||y||L2(Ω). (2.56)

Theorem 2.3.7 There exists a constant c independent of h so that

||S∗hShu− πuhS∗Su||L2(∂Ω) 6 ch
1
2 ||u||L2(∂Ω) ∀u ∈ Uh. (2.57)
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Proof. Let u ∈ Uh,

||S∗hShu− πuhS∗Su||L2(∂Ω) 6 ||(πuhS∗ − S∗h)Shu||L2(∂Ω) + ||πuhS∗(S − Sh)u||L2(∂Ω)

(2.55),(2.50)

6 ch
1
2 ||Shu||L2(Ω) + c||S∗(S − Sh)u||L2(Ω)

6 ch
1
2 ||u||L2(∂Ω) + c||(S − Sh)u||L2(∂Ω)

(2.43)

6 ch
1
2 ||u||L2(∂Ω) + ch

1
2 ||u||L2(∂Ω)

6 Ch
1
2 ||u||L2(∂Ω).

2.3.3 The two-grid preconditioner

In this section we estimate the quality of the two-grid preconditioner

Mh
def
= β(I − πu2h) +H2hπ

u
2h . (2.58)

This type of preconditioner was introduced in [20], and it is expected to be efficient

if the operator S∗hSh is of integral type.

Theorem 2.3.8 There exists a constant C independent of h so that

||(Hh −Mh)u||L2(∂Ω) 6 Ch
1
2 ||u||L2(∂Ω), ∀u ∈ Uh . (2.59)
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Proof. A simple verification shows that

Hh −Mh = S∗hSh − S∗2hS2hπ
u
2h .

Hence, for u ∈ Uh we have

||(Hh −Mh)u||L2(∂Ω) 6 ||(S∗hSh − πuhS∗S)u||L2(∂Ω)

+||(πuhS∗S − πu2hS∗Sπu2h)u||L2(∂Ω)

+||(πu2hS∗S − S∗2hS2h)π
u
2hu||L2(∂Ω) . (2.60)

From Theorem 2.3.7, the first and last terms on the righd-hand side of (2.60) are

bound from above by Ch
1
2 ||u||L2(∂Ω) for some appropriate constant. It remains to

evaluate the middle term.

||(πuhS∗S − πu2hS∗Sπu2h)u||L2(∂Ω) 6 ||(πuh(I − πu2h)S∗Su||L2(∂Ω) + ||(πu2hS∗S(I − πu2h)u||L2(∂Ω)

(2.50)

6 C||(I − πu2h)S∗Su||L2(∂Ω) + C||S∗S(I − πu2h)u||L2(∂Ω)

(2.52)

6 Ch
1
2 ||S∗Su||

H
1
2 (∂Ω)

+ C||S(I − πu2h)u||L2(Ω)

(2.32),(2.44)

6 Ch
1
2 ||Su||L2(Ω) + C||(I − π2h)u||H− 1

2 (∂Ω)

6 Ch
1
2 ||u||L2(∂Ω).

Hence

||(Hh −Mh)u||L2(∂Ω) 6 ch
1
2 ||u||L2(∂Ω).
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2.4 Numerical results

We show numerically, how well the preconditioner approximate the Hessian.

The following tables show the joint spectral analysis of the preconditioner and the

Hessian. The spectral distance is a measure of spectral equivalence between two

operators.

We build the matrices representing Hh and Mh and compute the joint spec-

trum. Finally, we compute

dh = max{| lnλ| : λ ∈ σ(Hh,Mh)}.

In order to do so we consider

h0 = 2−3, hn = 2−nh0.

We consider two different values for the regularization parameter β and obtain the

following results.

56



β = 1

n 0 1 2 3 4 5

dhn 0.0466 0.0238 0.012 0.00603 0.00302 0.00151

log2(dhn/dhn+1) 0.9694 0.97104 0.98669 0.99375 0.99866 –

β = 10−2

dhn 1.71 1.22 0.79 0.47 0.264 0.141

log2(dhn/dhn+1) 0.49 0.62 0.74 0.84 0.91 –

From the tables it is observed that the spectral distance between constructed

preconditioner and the Hessian is O(h), which is one less than optimal.
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Chapter 3: Multigrid methods for Neumann boundary control of

elliptic equations

3.1 Introduction

In this work we design and analyze multigrid preconditioners for the elliptic

boundary control problem


minimize J(y, u) = 1

2
||y − yd||2L2(Ω) + β

2
||u||2L2(∂Ω),

subject to : Ay = 0, ∂y
∂ν

= u, (y, u) ∈ H1(Ω)× L2(∂Ω),

(3.1)

where Ω ⊂ IRd, d = 2 is a bounded convex domain, yd denotes the desired state, y is

the state which is associated with the control u by the state equationAy = 0, ∂y
∂ν

= u

and A is a second-order linear uniformly elliptic operator in divergence form

Ay(x) = −
d∑
i=1

∂i

(
d∑
j=1

aij(x)∂jy(x) + bi(x)y(x)

)
+ c(x)y(x) , (3.2)

where aij, bi, and c are assumed to be sufficiently smooth functions. Since the con-

straint in (3.1) is a well-posed elliptic partial differentail equation, we can introduce

the control-to-state operator S : u→ y. Thus, we can obtain the reduced formula-
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tion of the problem which is given by

minimize
L2(∂Ω)

Ĵ(u) =
1

2
||Su− yd||2L2(Ω) +

β

2
||u||2L2(∂Ω). (3.3)

Since (3.3) is quadratic, the Hessian of the reduced cost functional (called the re-

duced Hessian) is independent of u, and is given

H = S∗S + βI,

where S∗ is the adjoint of the solution operator S. Given that the solution of the

elliptic boundary control problem is

umin = H−1(S∗yd),

the challenge is to find efficient solution methods for solving the linear systems

representing discrete version of

Hu = S∗yd. (3.4)

As mentioned in previous sections, solving a discrete version of (3.4) is very expen-

sive due to the potentially very large cost of applying the operator S and S∗, each of

them involving a PDE solve. Solving (3.4) has to rely on matrix-free Krylov space

solvers associated with efficient matrix-free preconditioners since the discrete repre-

sentations of S and S∗ are dense. We developed efficient two-grid preconditioners
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for the reduced Hessian, and we observed numerically for the above optimization

problem with (aij = δij, bi = 0, c = 1) an optimal order behavior of the precon-

ditioners. Our goal is to confirm the behavior of the two-grid preconditioners in

theory.

3.2 Problem description

We denote by Y = H1(Ω), U = L2(∂Ω). Furthermore (·, ·) denotes the L2(Ω)-

inner product, while 〈·, ·〉 denotes the inner product in L2(∂Ω).

3.2.1 The Neumann problem and its discretization

The PDE-constraint in (3.1) is given by the Neumann problem

Find y ∈ Y s.t. Ay = 0 in Ω,
∂y

∂ν
= u , (3.5)

with u ∈ U given and [ ai,j = δij, bi = 0, c = 1.]. Well-posedness for the Neumann

problem requires that c > 0 a.e. in Ω. If we define a : Y × Y → IR to be the

standard bilinear form associated with A

a(y, ϕ) =
∑
i,j

∫
Ω

aij ∂jy ∂iϕ+
d∑
i=1

∫
Ω

bi y ∂iϕ+

∫
Ω

c yϕ , (3.6)

then the weak solution y ∈ Y of (3.5) is

a(y, ϕ) = 〈u,Rϕ〉 , ∀ϕ ∈ Y . (3.7)
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where R : H1(Ω) → H
1
2 (∂Ω) representing the restriction operator. We denote by

S : U → Y the solution operator of (3.7). The following theorem that is taken

from [47] confirms the existence of the solution operator S.

Theorem 3.2.1 The continuous state equation has a unique weak solution y ∈

H1(Ω) for u ∈ U . Furthermore, there exists a positive constant c independent of u

such that

||y||H1(Ω) 6 c||u||L2(∂Ω).

The next theorem that is taken from [47] shows the solvability of the optimal control

problem.

Theorem 3.2.2 For a given yd ∈ U , and β > 0 the optimal control problem admits

a unique solution (u, y) ∈ (U ,Y).

The existence result for the state equation in theorem (3.2.1) ensures the

existence of a control-to-state mapping u→ y = Su. By means of this mapping we

introduce the reduced cost functional Ĵ : U → R:

Ĵ(u) := J(u,Su).

The optimal control problem can then be equivalently reformulated as

minimizeu∈U Ĵ(u). (3.8)
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The first order necessary optimality condition for (3.8) reads as

Ĵ(u)(δu) =
〈
∇Ĵ(u), δu

〉
= 0, ∀δu ∈ U . (3.9)

Due to the quadratic structure of the optimal control problem this condition is also

sufficient for optimality. Since the reduced cost functional is

minimizeu∈U Ĵ(u) :=
1

2
||Su− yd||2L2(Ω) +

β

2
||u||2L2(∂Ω),

the first derivative of it can be expressed as

Ĵ(u)(δu) = 〈βu+ S∗(Su− yd), δu〉 , (3.10)

where S∗ is the adjoint of S, that is

〈S∗u, v〉 = (u,Sv) ∀ u, v ∈ U .

Therefore

∇Ĵ(u) = βu+ S∗(Su− yd). (3.11)

The second variation of the reduced cost functional defines the Hessian operator

〈H(u)v1, v2〉 = Ĵ ′′(u) 〈v1, v2〉 , ∀v1, v2 ∈ U ,
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since

Ĵ ′′(u) 〈v1, v2〉 = 〈(S∗S + βI)v1, v2〉 , ∀v1, v2 ∈ U ,

it follows that

H = S∗S + βI. (3.12)

We remark that the Hessian operator is symmetric positive definite because

〈Hu, u〉 > β 〈u, u〉

and is independent of u. The optimality condition (3.9) is equivalent, due to (3.11)

to

Hu = (S∗S + βI)u = S∗yd. (3.13)

Therefore the reduced problem has a unique solution given by

u = H−1(S∗yd), y = Su. (3.14)

The challenge of our approach is to find efficient solution methods for solving the

linear systems representing discrete version of (3.13).
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To discretize (3.7) we consider a quasi-uniform sequence of triangulations

(Th)h∈J of Ω with J = {h0, h1, . . . }, where h is the mesh size of Th, and Thj is

a refinement of Thj−1
. Let Yh be the space of continuous piecewise linear functions

on Th. For the discrete control problem we consider the (d−1)-dimensional triangu-

lations (T ∂h )h∈J defined on ∂Ω by T ∂h , and the spaces Uh of discontinuous piecewise

linear functions (with respect to T ∂h ) on ∂Ω. Note that Uh ⊂ U . For u ∈ Uh, the

finite element solution of (3.5) is given by u→ Yh = Shu, with yh ∈ Yh satisfies the

variational inequality

a(yh, ϕ) = 〈u,Rϕ〉 , ∀ϕ ∈ Yh . (3.15)

We denote by Sh : Uh → Yh the discrete solution operator. The following theorem

is taken from [47].

Theorem 3.2.3 The discrete state equation has a unique solution yh ∈ Yh for

u ∈ Uh. Furthermore, the estimate

||y||H1(Ω) 6 c||u||L2(∂Ω)

holds with a positive constant c independent of u.

The discrete state equation possesses a unique solution in Yh for every u ∈ Uh.

Therefore, we can introduce the linear and continuous discrete control-to-state op-

erator Sh : Uh → Yh which maps a control u ∈ Uh to yh ∈ Yh. The discrete reduced
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cost functional Jh : Uh → R is now given by

Ĵh(u) :=
1

2
||Shu− yd||2L2(Ω) +

β

2
||u||L2(∂Ω).

The following two theorems appear in [47].

Theorem 3.2.4 The functional Jh : Uh → R is Frechet differentiable. Its derivative

at u ∈ Uh in the direction δu ∈ Uh is given by

Ĵ ′h(u)δu = 〈(S∗h(Shu− yd) + βu, δu〉 ,

where S∗h denotes the adjoint operator of Sh.

Theorem 3.2.5 The discrete optimal control problem

minimizeu∈Uh Ĵh(u)

has a unique solution u ∈ Uh. Let y = Shu be the discrete state, associated with u.

Then the variational inequality

〈S∗h(Shu− yd) + βu, δu〉 = 0 ∀δu ∈ Uh (3.16)

is satisfied.
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In general, the second variation of the reduced cost functional defines the Hessian

operator

〈Hh(u)v1, v2〉 = Ĵ ′′h(u) 〈v1, v2〉 , ∀v1, v2 ∈ Uh, (3.17)

since

Ĵ ′′h(u) 〈v1, v2〉 = 〈(S∗hSh + βI)v1, v2〉 ∀v1, v2 ∈ Uh, (3.18)

it follows that

Hh = S∗hSh + βI. (3.19)

3.2.2 Computation of adjoints

Given ỹ ∈ L2(Ω), we define z ∈ Y to be the weak solution of the variational

inequality

a(ϕ, z) = (ϕ, ỹ) , ∀ϕ ∈ Y . (3.20)

which represents the weak formulation of the elliptic Neumann-boundary value prob-

lem

−
d∑

i,j=1

∂j

(
d∑
j=1

aij ∂iz

)
−

d∑
j=1

bi ∂iz + c z = ỹ
∂z

∂ν
= 0. (3.21)
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If we denote by z = S2ỹ the solution operator of (3.20), then

(Su, ỹ) = (y, ỹ)
(3.20)
= a(y, z)

(3.7)
= 〈u,Rz〉 = 〈u, (R · S2)ỹ〉 .

Therefore the adjoint S∗ of S, regarded as operator in L(U), is

S∗ = R · S2 . (3.22)

Given ỹ ∈ L2(Ω), let zh ∈ Yh satisfy

a(ϕ, zh) = (ϕ, ỹ) , ∀ϕ ∈ Yh , (3.23)

and denote by zh = S2,hỹ the solution operator of (3.23). Then

(Shu, ỹ) = (yh, ỹ)
(3.23)
= a(yh, zh)

(3.15)
= 〈u,Rzh〉L2(∂Ω) = 〈u, (R · S2,h)ỹ〉L2(∂Ω) .

Hence

S∗hỹ = R · S2,h.

The following estimate that is taken from [48], holds for S∗.

Lemma 3.2.6 The adjoint operator S∗ is defined from L2(Ω)→ H
3
2 (∂Ω) and sat-

isfies

||S∗v||
H

3
2 (∂Ω)

6 c||v||L2(Ω)∀v ∈ L2(Ω). (3.24)
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Proof. The operator S2 takes L2-functions to H2-functions and the restriction

operator takes H2-functions to H
3
2 -functions.

3.2.3 Two-grid preconditioner for the discrete Hessian

In this section, we use the techniques developed in [20] to construct a two-grid

preconditioner for the discrete Hessian Hh defined in (3.19). The two-grid precondi-

tioner can be extended to multigrid. Let π2h : U → U2h be the L2-projection. When

the L2- projection applies to a discrete function it extracts the smooth part of it

and (I − π2h) extracts the oscillatory part of the discrete function. The S∗hSh is a

smoothing operator so (βI + S∗hSh)(I − π2h) = β(I − π2h). Therefore we have

Hh = (π2h + (I − π2h))(S∗hSh + βI)(π2h + (I − π2h)) ≈ π2h(S∗hSh + βI) + β(I − π2h).

Hence the discrete Hessian Hh is well approximated by

Mh = Hhπ2h + β(I − π2h),

and the inverse of it is computed as

M−1
h = H−1

h π2h + β−1(I − π2h).
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To evaluate the quality of the preconditioner we use the spectral distance introduced

in [20] defined as

1− Chα 6
〈Hhu, u〉
〈Mhu, u〉

6 1 + Chα, ∀u 6= 0 (3.25)

where h is a mesh size, C is independent of h, and an exponent α > 0 is as large

as possible. In general, α is not expected to exceed the order of convergence of

the discretization. Since in discretization of the PDE we used discontinuous piece-

wise linear polynomials for control, we expect to see α = 2 which is the optimal

order. Numerical results suggests that α = 2, so the preconditioner appears to be

of optimal-order. To confirm the numerical results we need to find a norm || · || on

Uh such that the symmetric (same norm on both sides) estimate holds

||(Mh −Hh)u|| 6 Ch2||u||, ∀u ∈ Uh. (3.26)

However, the estimate resulting from our analysis appears to be less than half of

the one we observed numerically, namely

||(Mh −Hh)u|| 6 Ch
3
2 ||u||, ∀u ∈ Uh. (3.27)

The rest of this chapter is devoted to showing that the above estimate holds with

|| · || = || · ||L2(∂Ω).
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3.2.4 Error estimates

We extract from [47] the following estimate(s).

Theorem 3.2.7 There exists a constant C independent of h so that

||(S − Sh)u||L2(Ω) 6 Ch
3
2 ||u||L2(∂Ω), ∀u ∈ Uh , (3.28)

|| (S − Sh)u||H1(Ω) 6 Ch
1
2 ||u||L2(∂Ω), ∀u ∈ Uh . (3.29)

We extract from [49] the following theorem.

Theorem 3.2.8 There exists a constant C independent of h so that

||S∗hz||L∞(∂Ω) 6 C||z||L2(Ω), (3.30)

||Ry||L∞(∂Ω) 6 C||S2,hy||L∞(Ω). (3.31)

The following estimate holds.

Lemma 3.2.9 The following estimate holds for S

||Su||L2(Ω) 6 c||u||
H−

3
2 (∂Ω)

. (3.32)
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Proof. Let u ∈ U

||Su||2L2(Ω) = (Su,Su)

= (u,S∗Su)

6 ||u||
H−

3
2 (∂Ω)
||S∗Su||

H
3
2 (∂Ω)

(3.24)

6 ||u||
H−

3
2 (∂Ω)
||Su||L2(Ω).

By dividing both sides by ||Su||L2(∂Ω) and taking the supremum, we obtain (3.32).

Theorem 3.2.10 There exists a constant C independent of h such that

||(S∗ − S∗h)y||L2(∂Ω) 6 Ch
3
2 ||y||L2(Ω) ∀y ∈ Y . (3.33)

Proof. Let y ∈ Y ,

〈(S∗ − S∗h)y, φ〉 = (y, (S − Sh)φ)

6 ||y||L2(Ω)||(S − Sh)φ||L2(Ω)

(3.28)

6 Ch
3
2 ||y||L2(Ω)||φ||L2(∂Ω).

By dividing both sides by ||φ||L2(∂Ω) and taking the supremum we get,

||(S∗ − S∗h)y||L2(∂Ω) 6 Ch
3
2 ||y||L2(Ω).
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Theorem 3.2.11 There exists a constant C independent of h such that

||S∗h(S − Sh)u||L2(∂Ω) ≤ Ch
3
2 ||u||L2(∂Ω) ∀u ∈ Uh. (3.34)

Proof. Let u ∈ Uh,

||S∗h(S − Sh)u||L2(∂Ω) 6 C||(S − Sh)u||L2(Ω)

(3.28)

6 Ch
3
2 ||u||L2(∂Ω).

Theorem 3.2.12 There exists c independent of h so that

||S∗hShu− S∗Su||L2(∂Ω) 6 ch
3
2 ||u||L2(∂Ω) ∀u ∈ Uh. (3.35)

Proof. Let u ∈ Uh,

||S∗hShu− S∗Su||L2(∂Ω) 6 ||(S∗ − S∗h)Su||L2(∂Ω) + ||S∗h(S − Sh)u||L2(∂Ω)

(3.33),(3.34)

6 ch
3
2 ||u||L2(∂Ω) + ch

3
2 ||u||L2(∂Ω)

6 ch
3
2 ||u||L2(∂Ω).
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3.3 The two-grid preconditioner

The Hessian

Hh
def
= S∗hSh + βI (3.36)

would have been introduced in an earlier section as well as the L2-projector πh :

U → Uh. In this section we estimate the quality of the two-grid preconditioner

Mh
def
= β(I − π2h) +H2hπ2h . (3.37)

This type of preconditioner was introduced in [20], and it is expected to be efficient

if the operator S∗hSh is of integral type.

Theorem 3.3.1 There exists a constant C independent of h so that

||(Hh −Mh)u||L2(∂Ω) 6 Ch
3
2 ||u||L2(∂Ω), ∀u ∈ Uh . (3.38)

Proof. A simple verification shows that

Hh −Mh = S∗hSh − S∗2hS2hπ2h

= (S∗hSh − S∗S) + S∗S(I − π2h) + (S∗S − S∗2hS2h)π2h.
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We showed that

||(S∗hSh − S∗S)u||L2(∂Ω) 6 Ch
3
2 ||u||L2(∂Ω).

Similarly, we obtain

||(S∗S − S∗2hS2h)π2hu||L2(∂Ω) 6 Ch
3
2 ||π2hu||L2(∂Ω) 6 Ch

3
2 ||u||L2(∂Ω).

Hence, for u ∈ Uh we have

||(Hh −Mh)u||L2(∂Ω) 6 ||(S∗hSh − S∗S)u||L2(∂Ω)

+||S∗S(I − π2h)u||L2(∂Ω)

+||(S∗S − S∗2hS2h)π2hu||L2(∂Ω) . (3.39)

The first and last terms on the righd-hand side of (3.39) are bound from above

by Ch
3
2 ||u||L2(∂Ω) for some appropriate constant. It remains to evaluate the middle

term.

||S∗S(I − π2h)u||L2(∂Ω) 6 C||S(I − π2h)u||L2(Ω)

(3.32)

6 C||(I − π2h)u||H− 3
2 (∂Ω)

6 Ch
3
2 ||u||L2(∂Ω).

74



Hence we obtain

||Hh −Mh||L2(∂Ω) 6 ch
3
2 ||u||L2(∂Ω).

3.4 Numerical results

For large-scale problems, since the Hessian is dense, we do not form it. We

can compute matrix vector products at a cost equivalent to approximately two PDE

solves. We show numerically, how well the preconditioner approximate the Hessian.

The following tables show the joint spectral analysis of the preconditioner and the

Hessian. The spectral distance is a measure of spectral equivalence between two

operators. We build the matrices representing Hh and Mh and compute the joint

spectrum. Finally, we compute

dh = max{| lnλ| : λ ∈ σ(Hh,Mh)}.

In order to do so we consider

h0 = 2−3, hn = 2−nh0.

From the tables it is observed that the spectral distance between constructed pre-

conditioner and the Hessian is O(h2), which is optimal. As the resolution increases

dh decreases. We consider two different values for the regularization parameter β

and obtain the following results.
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β = 1

n 0 1 2 3 4 5

dhn 1.59e-03 4.03-e04 1.01e-04 2.53e-05 6.32e-06 1.58e-06

log2(dhn/dhn+1) 1.9766 1.9819 1.9960 1.9992 1.9999 –

β = 10−2

dhn 5.38e-02 1.33e-02 3.30e-03 8.25e-04 2.06e-04 5.15e-05

log2(dhn/dhn+1) 2.0206 2.0065 2.0025 2.0010 2.0005 –
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