
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. Access to this work was provided by the University
of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the
Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Countering PUF Modeling Attacks through
Adversarial Machine Learning

Mohammad Ebrahimabadi, Wassila Lalouani, Mohamed Younis, and Naghmeh Karimi
CSEE Department, University of Maryland Baltimore County, Baltimore, MD 21250

Email:{e127, lwassil1, younis, nkarimi}@umbc.edu

Abstract— A Physically Unclonable Function (PUF) is an ef-
fective option for device authentication, especially for IoT frame-
works with resource-constrained devices. However, PUFs are
vulnerable to modeling attacks which build a PUF model using a
small subset of its Challenge-Response Pairs (CRPs). We propose
an effective countermeasure against such an attack by employing
adversarial machine learning techniques that introduce errors
(poison) to the adversary’s model. The approach intermittently
provides wrong response for the fed challenges. Coordination
among the communicating parties is pursued to prevent the
poisoned CRPs from causing the device authentication to fail. The
experimental results extracted for a PUF implemented on FPGA
demonstrate the efficacy of the proposed approach in thwarting
modeling attacks. We also discuss the resiliency of the proposed
scheme against impersonation and Sybil attacks.

I. INTRODUCTION

The Internet of Things (IoT) extends the scope of communi-
cation and data exchange from servers and personal computers
to the objects used in everyday life. However, such increased
interconnectivity has magnified the concern about the cyber
attacks. Thereby, robust schemes are needed for supporting
authentication, data integrity and confidentiality. Given the
large number and diversity of devices in an IoT framework,
ensuring security is more challenging than in the traditional
networks. Security attacks on IoT devices include forcing
malicious malfunctions, denial of service, and leaking sensitive
information. IoT is a collection of low cost and resource-
constrained devices operating in unsupervised environments.
To protect IoT frameworks, developing authentication and key
management protocols that utilize lightweight cryptography
and low-cost tamper-resistant primitives is highly required.

Physically Unclonable Functions (PUFs) generate a unique
signature for each IoT device. A PUF’s signature corresponds
to its input and output pairs, so-called Challenge-Response
Pairs (CRPs) [1]. A PUF is embedded in each device during
the fabrication process, and a subset of its CRPs are registered
once after the device fabrication and during the enrollment
phase. These CRPs are then used during operation to au-
thenticate the device [2]. PUFs exploit the inherent physical
variations of devices during the manufacturing process to
generate a unique signature for the underlying device [1], and
avoid storing the device signature in memory.

Although supposed to be unclonable, a PUF behavior may
be modeled using Machine Learning (ML) techniques [3],
where an adversary opts to devise a behavior model based on
a limited subset of the PUF’s CRPs. This model is then used to
predict the PUF response to any unseen challenges. The attack
accuracy depends on the used ML scheme, the target PUF’s
type, and the number of CRPs the adversary can get access to.

PUFs are classified into strong and weak, based on their
CRP space [4]. The former are often used for authentication
protocols, while weak PUFs are deemed suitable for generating

cryptographic keys [5]. The delay-PUFs and in particular
the arbiter-PUFs family (e.g., arbiter-PUF, feed-forward-PUF,
XOR-PUF) are deemed the most popular in the strong PUF
category. However, recent research studies have shown that
even a 64-bit arbiter-PUF can be successfully modeled by
ML schemes [6]. The feed-forward and XOR-PUFs that were
considered as modeling resistant arbiter-PUF counterparts be-
forehand, have been also compromised recently using ML [7].

One can benefit from adversarial ML models to increase
the resiliency of PUFs against modeling. Conventionally, in
adversarial models some of the ML input is poisoned, i.e.,
intentionally made erroneous, in order to cause inaccuracy. In
this paper, we exploit such a concept to make the PUFs secure
against modeling attacks, where the communicating nodes
follow adversarial models and intermittently send poisoned
CRPs (i.e., the challenge bit-stream along with an incorrect
response) to decrease the accuracy of the PUF modeling
attempts made by a malicious eavesdropper. We propose an
adversarial ML scheme that deliberately poisons the CRPs
transferred between IoT nodes and a server by intermittently
toggling the response bit for some challenges before sending
to the server. The adversary will not be able to differentiate the
poisoned (i.e., fake) CRPs from the genuine ones, and thereby
fails to launch replay and impersonation attacks. On the other
hand, the server is made aware of this poisoning so it can
still authenticate the device. The agreement between the server
and IoT device is made during the IoT node enrolment in the
network. Our contributions are as follows:

• Developing a novel adversarial scheme to prevent ML-
based modeling attacks on PUF-based IoT devices;

• Analyzing the resiliency of the IoT framework against
Sybil and impersonation attacks when the proposed
scheme is deployed;

• Investigating the impact of the poisoned CRPs on the
success of the PUF modeling attacks launched via state-
of-the-art ML schemes;

• Studying the overhead and resiliency of the proposed
scheme for different configurations;

• Evaluating the proposed method using the data extracted
from FPGA implementation of the target PUF.

Note that the novelty of our work is in the prevention
of modeling attacks on PUF-based authentication schemes,
rather than using PUFs for authentication.

II. RELATED WORK
Several authentication protocols proposed in literature for

device attestation. However, they may not be suitable for IoT
frameworks given the resource constraints and very dynamic
network membership of IoT devices [8]. Moreover, storing
device identification in its memory is not suitable due to the
security vulnerabilities. Hence, PUF-based authentication has

been exploited to mitigate the concern about key storage on
vulnerable devices [9], [10]. These PUF-based authentication
methods are lightweight, yet suffer from vulnerabilities such
as modeling attacks, replay attacks, and impersonation attacks.

To secure data transfer and device authentication, [11]
deployed PUFs to generate public and private keys in IoT
networks. This method is robust against replay attacks, yet it
is computationally intensive. A mutual authentication scheme
has been presented in [12] where each challenge bit-stream
is a function of the previous one. Although resilient against
modeling attacks, leaking even one challenge bit-stream makes
the overall process vulnerable to impersonation attacks.

Challenge obfuscation schemes (e.g., [13]) proposed in
literature where each challenge bit-stream C is mutated before
feeding the PUF; thereby the response is generated for the mu-
tated challenge (i.e., Ĉ) and is not directly related to C that the
adversary has intercepted. This scheme misleads the adversary
by injecting wrong CRPs into dataset used for training the PUF
model. This method decreases the PUF modeling accuracy, yet
imposes a significant area overhead. Vatajelu [14] obfuscated a
strong PUF with a symmetric encryption algorithm whose key
is generated via a weak PUF. This scheme is promising, but
suffers from hardware overhead. The Slender [9] and Noise
Bifurcation [15] obfuscated PUFs both were compromised by
the CMA-ES based attack proposed in [16]. Gu [17] proposed
to insert two PUFs in each node (genuine and fake PUFs). The
genuine PUF responses are used for authentication while the
fake PUF is queried once a while to mislead the adversary who
eavesdrops the transmission line and thus prevent PUF model-
ing. This method suffers from area and power overhead and the
increase of traffic related to the exchange of redundant CRPs.

Wang [18] used adversarial models to fool an attacker who
eavesdrops CRPs. The approach changes the response of some
challenges based on a functions of the challenge bits or in a
periodic manner. Although imposes little area overhead, as we
show in Sec. VI, it can be easily compromised via ML schmes.

III. THREAT MODEL

We assume that authentication and key management are
conducted through a central supervisory node (e.g., server)
either as a part of IoT admission control or as a service
to enable communication between device pairs. The server
is assumed to be trustworthy, i.e., handling an IoT with an
untrusted server is out of scope of this paper. We assume that
a PUF is embedded in each IoT device during the fabrication
and is leveraged for its authentication. To authenticate node
Ni, the server sends it a challenge bit-pattern. Then Ni applies
the challenge to its PUF and sends back the PUF response
(although may not send the correct response in our method).
By matching the node response to a pre-known value, the
server can confirm the identity of Ni. Note that in PUF-based
authentication schemes, a subset of CRPs of each device are
stored in the server during the device enrolment phase.

In our proposed method, node Ni may send an incorrect
response intermittently, instead of the one supposed to, to
mislead the adversary who eavesdrops on the wireless link
between Ni and the server. This makes the adversary build
an incorrect model of the targeted PUF, thus thwarting the
modeling attack. Decisions on toggling the response for a
challenge received from the server (i.e., sending an incorrect
or a correct response from Ni to the server) is made based

on our approach discussed in Sec. V. Both the server and
Ni apply the same decision process, and thus the server can
differentiate correct and fake (incorrect) responses. This results
in imposing no overhead regarding required CRPs as even the
challenges with fake responses can be used for authentication.
In this paper, the adversary is unable to differentiate genuine
from fake responses. Moreover, we rely on the link- and
transport- layer protocols for the reliable exchange of packets
between the server and the nodes. We assume that the impact
of transmission noise is mitigated via Error Correction Codes.

IV. PRELIMINARIES
A. Arbiter-PUF

An arbiter-PUF consists of a pair of delay chains; when
queried, it generates one response bit per challenge [19]. This
PUF operates based on the process-variation that induces race
between two identical paths (top and bottom paths in Fig. 1).
The race corresponds to the difference in signal propagation
delay on these two paths, and affects the value latched by the
arbiter. The sign of this difference (extracted by the arbiter)
presents the PUF response. The arbiter can be as simple as
an SR-latch. This paper targets arbiter-PUFs. However, the
proposed schemes are applicable to other strong PUFs.

Figure 1. Illustrating the design of an arbiter-PUF.

B. Adversarial Machine Learning (AML)
In this paper, we assume that the adversary deploys ML to

model the target PUF. In the training phase, the model is built
utilizing the PUF’s CRPs. Then, in the evaluation phase, the
response of unseen challenges are predicted based on the built
model. We provide the attack outcome when the adversary
uses Neural Networks (NN), Support Vector Machine (SVM),
or Logistic regression (LR) [17] to model the PUF, and show
the efficiency of our proposed countermeasure against all such
state-of-the-art modelings. We also show that attacks through
the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [19] are not effective against our proposed method.

Meanwhile, AML is a technique to corrupt ML-based
models through poisoning or evasion; the former incorrectly
manipulates data during the training phase to decrease the
effectiveness of the model. Evasion corresponds to the case
when fake data is injected at the test time such that the output
is classified (i.e., predicted) incorrectly. In this paper, we apply
poisoning as a defense mechanism against modeling attacks by
flipping the PUF response. The poisoned data is inserted in an
unpredictable manner given that the adversary collects CRPs
in an incremental way.

V. PROPOSED METHODOLOGY

In this paper, we employ AML to increase the resiliency
of the PUF-based security solutions. In particular, we toggle
the PUF response intermittently based on some conditions
discussed below. Accordingly, the adversary who eavesdrops

2

on the communication links will intermittently receive poi-
sonous responses (instead of the correct one), will thus fail to
accurately model the target PUF. As the poisoning algorithm is
known by the server, i.e., decided during enrolment of IoT de-
vices, the poisonous response can also serve in authenticating
the device; thereby zero overhead is imposed by our method
to the IoT framework regarding CRPs as no extra CRP is
required by the proposed scheme for authenticating a device.

Figure 2. The block diagram of the proposed scheme.

Fig. 2 shows the block diagram of the proposed scheme. To
authenticate node Ni the server sends a challenge (say C) to
Ni whose response is known by the server. Upon receiving the
challenge, it is applied to the Ni’s embedded PUF, and either
the PUF response or its complement is sent back to the server.
The server is aware in case the response has been toggled.
The server then checks the response of Ni with a pre-stored
value in order to authenticate the node. To decide whether
a response needs to be toggled or not, the node runs a ML
model, specifically a NN model in our case, based on the last L
exchanged CRPs. This is done to mimic what an eavesdropper
on the communication link will do to model the PUF behavior
and predict the response for challenge bit-streams.

Storing all exchanged CRPs requires a large buffer and is not
cost-effective in the node side. Thereby, the ML modeling on
the node (and the server) is always performed on the last L
exchanged CRPs stored in the "Buffer" (Fig. 2), from which T
CRPs are used for training the model and the rest M = L − T
CRPs are used for its inference. In practice, we train a model
and test it (on the node side) upon receiving the first B
challenges (B refers to Bundle Size) and repeat the process
iteratively each time after receiving the next B challenges. If
the modeling accuracy exceeds a predefined threshold value
(e.g., τ > 0.6), we decide to poison (toggle) the PUF response
for the next B upcoming challenges. However, if the modeling
accuracy is less than τ , the next B responses are sent intact.
The threshold τ is a real number in [0,1] and its value is
agreed upon the IoT node enrolment between the node and
server. Note that the response of each challenge is sent back
immediately by the node upon the receipt of that challenge,
i.e., the node does not wait to receive a bundle.

In the proposed scheme, the buffer embedded in each node
is empty upon powering up, and hence the response related to
the first B queries are sent intact (not toggled). However, these
B CRPs are used to decide about whether poisoning is applied
to the next bundle. The process continues iteratively each time
a new bundle (i.e., B challenges) is received, yet the ML model
uses the whole data residing in the buffer and not just the
new bundle. As will be discussed in Sec. VI-A2, the bundle

Algorithm 1: Proposed AML Scheme
input : Threshold (τ), Bundle-Size (B), New-CRP
output: Flag: (1/0) => select (genuine / poisonous) response

1 Flag ← 1
2 while (true) do
3 i← 0
4 while (i < B) do
5 if (New-CRP) then
6 if (buffer is not full) then
7 store new CRP in the buffer
8 else
9 replace the oldest CRP with New-CRP

10 i← i+ 1

11 Running ML on the buffer
if (ACC < τ) then Flag ← 1 else Flag ← 0

size selection should strike a balance between overhead and
PUF modeling prevention. In particular the first B challenges
should not be enough to build an accurate PUF model.

After the buffer becomes full, the whole data is used for the
next round of decision making. This buffer is implemented as
a FIFO queue. When a bundle is added, the oldest bundle
is flushed from the queue and NN is applied. In fact, the
modeling is done based on the whole content of the buffer.
As mentioned, based on the outcome of each modeling round
(i.e., when a new bundle is added to the buffer), a flag is
set indicating whether the response of until the next round
(bundle) will be sent intact or poisoned. The idea behind
this is that the adversary intercepts fake data intermittently
which degrades the accuracy of the PUF modeling attack.
The data stored in the buffer consists of each challenge along
with the related transferred response (it can be genuine or
poisonous based on the decision made by the previous ML
model assessed accuracy). Thereby, at the node side the model
is trained with the same data used by the eavesdropper; the
only difference is that node uses the most recent L CRPs while
the adversary can consider all exchanged data. Yet, as the
experimental results show, this does not affect the effectiveness
of the proposed scheme in thwarting modeling attacks.

To authenticate an IoT node, the server needs to follow a
similar approach discussed above for the node, i.e., the server
also includes a buffer to store the recent L exchanged CRPs
and runs the same ML model (initialized with the exact same
weights and seed for random generator agreed upon during
the node enrolment process) upon receiving each B responses
and compares the modeling accuracy with the threshold value
to find out if the response would be genuine or poisoned. In
this case, the server can also authenticate the device using
poisoned ones. Thus, our method does not require exchanging
any extra CRPs. Algorithm 1 depicts the pseudo code of
our proposed scheme. As mentioned, each CRP stored in the
lines 7 and 9 of this algorithm consist of a challenge with its
related genuine or fake response (based on the last poisoning
decision made through AML). Since the adversary is unaware
of the ML technique and parameters used at the server and
the node, he cannot distinguish between the poisoned and
legitimate responses. Similar to contemporary authentication
schemes, we consider the node enrolment phase to be secure.
Moreover, being unaware about the poisoning algorithm, the
adversary cannot benefit from using the adversarial training

3

schemes to thwart the poisoning scheme.
VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

We implemented a 64-bit Arbiter-PUF on Xilinx ARTIX7
FPGA. The results provided in this section are based on using
NN to build the adversarial model in the node and server,
while applying NN, SVM and LR as the representatives of ML
techniques that an adversary pursues to conduct a modeling
attack against the authentication scheme. Nonetheless, we
have alternated among these techniques, e.g., by basing the
adversarial model on SVM and pursuing NN, SVM, and LR
as a modeling attack scheme; in these alternative scenarios, the
results stayed consistent and are excluded from the paper due
to space limitations. Our NN consists of one input layer (with
64 neurons reflecting the PUF size), three nonlinear hidden
layers (with 5, 10 and 15 neurons) and one output neuron
with sigmoid function. Rectified linear unit (ReLU) is used
as an activation function in all layers. The learning rate and
momentum are 0.01 and 0.99, respectively, and the number of
epochs is 1000. This architecture can model our 64-bit arbiter-
PUF with 98% accuracy using 2000 CRPs for training in the
absence of the proposed poisoning approach.

The adversary is assumed to intercept the exchanged CRPs,
but cannot differentiate between the genuine and poisoned
ones based on the contents. In all experiments we have used
90% of the data set for training and the rest for the inference
unless otherwise mentioned, i.e., T = 0.9L and M = 0.1L.

A. Experimental Result
1) Impact of AML on the PUF modeling attack success:

The first set of results shows the effectiveness of the proposed
AML-based scheme in preventing the PUF modeling attack.
These results were extracted for buffering 200 CRPs (at both
the IoT node and the server) where each bundle includes 20
CRPs and the threshold accuracy (τ) is set to 0.6. Fig. 3
presents the accuracy of the PUF model, when our poisoning
scheme is or is not used. As expected, the more CRPs the
adversary intercepts, the higher the accuracy of the PUF model.
Without our scheme (i.e., unprotected), the modeling accuracy
is 96% even with 2000 CRPs. When applying our AML-based
protection, building a model based on intercepting 2000, 5000,
10,000, and 50,000 CRPs results in 56%, 60%, 61%, and 64%
accuracy, respectively. Even with intercepting 100,000 CRPs,
the PUF modeling accuracy is 64.2%.

The first take away point from the above observations is
that our data poisoning strategy is highly effective in thwarting
the PUF modeling attack, regardless of the training size (i.e.,
the number of the intercepted CRPs). As shown, in all cases
the modeling accuracy is around 60%. This relates to the
considered τ value (=0.6) and confirms that the assessed
modeling accuracy using a limited number of CRPs stored in
the buffer (200 in our case) highly corresponds to the adversary
achieved modeling-accuracy even despite using much more
CRPs. The results also show that limiting the buffer size (to
200 CRPs in our experiments) and making decisions on poi-
soning the responses based on such limited training data, does
not negatively affect our proposed countermeasure as long as
an appropriate buffer size (L) is chosen. In fact, selecting an
appropriate buffer size is of utmost importance, and its impact
on the modeling accuracy will be discussed in Sec. VI-A2.

Fig. 4 depicts the fluctuation of the accuracy around
τ=0.6 for the model built in the node. The results are

Figure 3. The adversary’s achieved modeling accuracy for different training-
set size with and without using our poisoning scheme. A NN was used for
modeling, L=200, and B=20.

shown for 100 consecutive bundles each includes 20 CRPs.
We show the accuracy that the node achieves while running
its own model based on the whole data stored in its buffer
at each point of time. As discussed, whenever the accuracy
exceeds τ , poisoning is activated and the responses for the
next B challenges are toggled before being sent. This pulls the
accuracy down and forces it to a value below τ , as confirmed
by the results.

Figure 4. The modeling accuracy in the IoT node using all stored 200 CRPs
in the buffer when the poisoning decision is made upon receiving each of the
shown 100 consecutive bundles of 20 CRPs.This window was randomly chosen.

As will be discussed below if the CRPs are poisoned in a
periodic fashion (similar to [18]), the PUF can be modeled.
Accordingly, to ensure that the proposed scheme does not
follow a periodic poisoning pattern, Fig. 5(a) demonstrates the
location of poisonous data in the sequence of PUF responses.
Each blue vertical bar represents a bundle of poisonous re-
sponses. We only capture a frame size of 100 bundles for
the sake of readability. As shown the poisoning strategy is
not periodic, thus more resilient against the modeling attacks
discussed below. Fig. 5(b) depicts the poisoning pattern in
another point of time during the CRP exchange. This pattern
is very different from the one in Fig. 5(a) confirming the adhoc
nature of our poisoning strategy.

10
00

10
0
3

10
06

10
09

10
12

10
15

10
18

10
2
1

10
24

10
27

10
30

10
33

10
36

10
3
9

10
42

10
45

10
48

10
51

10
54

10
5
7

10
60

10
63

10
66

10
69

10
72

10
7
5

10
78

10
81

10
84

10
87

10
90

10
9
3

10
96

10
99

Bundle

(a) Frame Sample 1

2
0
0
0

2
0
0
3

2
0
0
6

2
0
0
9

2
0
1
2

2
0
1
5

2
0
1
8

2
0
2
1

2
0
2
4

2
0
2
7

2
0
3
0

2
0
3
3

2
0
3
6

2
0
3
9

2
0
4
2

2
0
4
5

2
0
4
8

2
0
5
1

2
0
5
4

2
0
5
7

2
0
6
0

2
0
6
3

2
0
6
6

2
0
6
9

2
0
7
2

2
0
7
5

2
0
7
8

2
0
8
1

2
0
8
4

2
0
8
7

2
0
9
0

2
0
9
3

2
0
9
6

2
0
9
9

Bundle

(b) Frame Sample 2

Figure 5. Depicting the time intervals between poisoning each two bundles.
The blue bars show the cases where the data got poisoned. Each window
includes 100 consecutive bundles.

The conclusion drawn from the results in Fig. 3 - Fig. 5 is
that the adversary who intercepts all exchanged CRPs cannot
distinguish the poisoned data from the genuine one, hence fails
to model the PUF behavior. This weakness is exacerbated due
to the adhoc (non-periodic) nature of our poisoning scheme.

4

The next set of results compares the efficacy of the proposed
method with the AML-based scheme presented in [18] that
introduced different poisoning schemes. In [18], the response
toggling decision is made either based on a combinational
function applied on each challenge bit-stream (when satisfied,
the PUF response is poisoned) or the poisoning is performed
in a periodic fashion. Although claimed to be resilient against
modeling, we were able to attack these schemes with a high
success. Table I shows the results for the combinational case.
In each case, the authors toggle the PUF response when the
trigger function gets the value of “1”. As shown, we could
attack the models with as low as 5000 CRPs with > 95%
accuracy while [18] failed to attack the model using 106 CRPs.

The sequential-trigger poisoning scheme in [18] toggles the
response for every other N coming challenges while sends the
other responses intact. The weakness of this method is that to
be resilient, the poisoning period P cannot be too high (e.g.
> 10 based on our investigation) as the higher the P the less
the rate of poisoning and so less resiliency. Meanwhile, the
attacker can try P∈ {1, .., 10} to model the PUF otherwise.
This shows the superiority of our proposed scheme over the
previous AML-based ones; our poisoning scheme does not fol-
low a periodic pattern thus cannot be tackled in a similar way.

Table I
DEFEATING [18] WITH OUR NN MODELING

Poison Trigger
Function

Accuracy reported
in [18] 106 CRPs

Our Accuracy (using NN)
5000 CRPs

C0 · C1 + C2 · C3 59.21% 95.70%
C0 56.60% 96.20%

C0 ⊕ C1 · · · ⊕C7 55.37% 96.70%

2) The effect of buffer and bundle size, and threshold value
on the attack success: The buffer size (L), bundle size (B),
and τ should be selected such that the adversary fails to model
the PUF. Obviously, the larger τ gets, the higher the probability
of the adversary’s success becomes. Given the binary nature
of the PUF’s response, τ = 0.5 is ideal to prevent modeling
attack. However, τ = 0.5 implies a periodic poisoning pattern.
Setting τ = 0.6 strikes a balance by degrading the adversary’s
ability for modeling the PUF while introducing randomness
in the poisoning pattern.

A large-size buffer can impose unacceptable area overhead.
On the other hand, making poisoning decisions based on few
data points (in case of very small buffers) is not justified as
in this case the adversary’s model (with access to the whole
exchanged CRPs in the best case) would diverge from the
model built in the node (based on few data points). Moreover,
a very large bundle size results in transfer of excessive
consecutive CRPs that either all are genuine or all are toggled,
thus facilitates the modeling attack. Moreover, small bundle
size increases the effort as results in more learning iterations.

Fig. 6 shows the cases where the bundle size is 10%, 30%
and 50% of the buffer size. As expected, the lower the B

L value
is, the more resilient the target PUF would be against modeling
its behavior. Regardless of the buffer size, the adversary cannot
achieve more than 60% success rate when B = 0.1× L, and
thus fails to model the PUF. By increasing B

L to 0.3, the PUF
can be modeled easily (ACC. > 80%) for all the buffer sizes
shown in this figure. Note that the situation is different for
B
L =0.5 where increasing the buffer size to 2000 prevents the
adversary from modeling the PUF accurately (ACC.≈65%).
This is because in this case B=1000, hence either 1000 genuine

or 1000 fake responses are sent consecutively each time. This
number is large enough to push the accuracy > 60% and thus
results in making the opposite decision in the next round. Thus,
the decision would be one toggling among each 3 consecutive
decisions, resulting in around 33% toggling and consequently
low accuracy. This can also be explained based on Fig. 7.

Figure 6. The modeling accuracy (using NN) in the adversary side for differ-
ent bundle size while the train and test sizes are 100k and 10K respectively.

Another factor that needs to be taken into account when
selecting proper sizing (B and L) is whether the toggling
pattern is random or periodic. As mentioned above, periodic
poisoning of CRPs can be exploited by the adversary to model
the PUF. Fig. 7 depicts the histogram for the distribution of
time intervals between two poisoned bundles while varying
the bundle and buffer sizes. For each case, the variance (σ2)
has been shown in the figure. As expected, by increasing the
B
L , the poisoning tends to be periodic (i.e., low variance).
This figure along with Fig. 6 confirm that with a B

L ≈ 10%
our proposed scheme is highly efficient in terms of both low
modeling accuracy and less periodicity. Note that for the B

L
less than 0.1 (not shown) the result are promising but with a
higher overhead as discussed earlier.

3) Resistance against PUF modeling mechanisms: SVM,
LR, and CMA-ES have been shown to be effective in attacking
the arbiter-PUF and its derivatives (XOR-PUF, Feed-Forward
PUF, etc) with high accuracy [19], [20]. Accordingly, this set
of results investigates the resiliency of our proposed method
against these modeling mechanisms. As Fig. 8 depicts, neither

(a) L=200, B=0.1L (b) L=200, B=0.3L (c) L=200, B=0.5L

(d) L=500, B=0.1L (e) L=500, B=0.3L (f) L=500, B=0.5L

(g) L=2000, B=0.1L (h) L=2000, B=0.3L (i) L=2000, B=0.5L

Figure 7. Distribution of the time intervals between poisoning two bundles
for different buffer & bundle sizes.

5

LR nor SVM is successful when our AML scheme is deployed,
where in both cases the modeling accuracy is ≈60% even
with intercepting 100,000 CRPs. Meanwhile the unprotected
PUF can be modeled with an accuracy of 98% with as low as
2000 CRPs using either SVM or LR. We again note that we
have repeated the experiment where NN is used for modeling
attack while the poisoning decision is made by SVM or LR.
The observed results were consistent with Fig. 8.

Becker [19] uses the CMA-ES scheme to model the PUF
based on the sensitivity of its response to environmental noise,
e.g. temperature or voltage variations. Such CMA-ES based
attack is not applicable when our AML scheme is used since
firstly based on our threat model the adversary doesn’t have
physical access to the PUF to repeat the same query multiple
times to benefit from the measurement noise in PUF modeling,
instead intercepting the exchanged messages is the only means.
Secondly, even if the PUF is queried with the same challenge
once a while, the node’s response to the same query may
change due to poisoning. This confuses the adversary as CMA-
ES may consider the poisoned data as measurement noise.

Figure 8. The accuracy that the adversary can achieve (using SVM and LR).
Bundle size = 20, buffer size = 200 while the train size is increasing to 100K.

4) Performance and security analysis: Below, we discuss
the security as well as overhead of the proposed framework.
Preventing Impersonation and Sybil Attacks: An imper-
sonation attack is realized when an adversary tries to identify
itself as a legitimate IoT node and sends erroneous messages
or leaks secret information upon authentication. Due to the
uniqueness of PUFs, the adversary does not have access
to the same PUF and has to pursue ML-based modeling.
Our poisoning method thwarts such a modeling attempt. In
addition, intermittent poisoning of the CRPs may result in
sending different responses to the same challenge at different
points of time by the node. This is known by the server and
a legitimate node would be authenticated; yet the adversary
cannot distinguish genuine and poisoned responses, and thus
cannot decide whether to send the response or its complement
even if he intercepted the response beforehand and is aware
that some responses are poisonous. A Sybil attack reflects the
case in which the adversary impersonates multiple nodes. This
is also prevented in a similar way as impersonation.
Overhead and Noise: The hardware overhead includes an
inverter and a 2-bit multiplexer per response. The ML is
performed in the IoT device’s software based on which a
response or its complement is selected by the multiplexer.
Moreover, similar to other PUF-based authentication schemes
(e.g. [11]), the transmission noise is mitigated via error correc-
tion mechanisms used in the transport layer of IoT frameworks
(out of scope of this paper). Also the rate of measurement noise
in PUFs, related to the environmental condition change such as
temperature and voltage is low (0.2% in our experiments) and
for a delay-PUF, the measurement noise can be handled by

multiple measurements and majority voting in the PUF side to
reduce the signal-to-noise ratio [11]. Since the server and node
ML models are trained with the same data collected by the
node’s PUF, the measurement noise doesn’t affect the synchro-
nization process; In the rare case of receiving noisy data, it can
be discarded by the server due to failed authentication.

While ML techniques vary in their computational complex-
ity, our results show that there is no significant difference in
robustness when NN, SVM or LL are used by the node and
server. Moreover, the frequency of conducting authentication
is typically not high for most practical applications. Given
such flexibility, we do not see the computational overhead of
our approach to be an obstacle for wide adoption.

VII. CONCLUSION

Physically Unclonable Functions offer a promising solution
for the authentication of IoT devices due to their low cost,
unique signature, and easy implementation. Although deemed
to be unclonable, a PUF behavior may be modeled by an
adversary who has access to a subset of its challenge response
pairs. In this paper, we proposed a robust modeling-resilient
PUF-based authentication scheme that poisons the transmitted
challenge response pairs intermittently to diminish the accu-
racy in the adversary’s model. The validation results confirm
the efficacy of the proposed method against PUF modeling as
well as the conventional attacks launched in IoT frameworks
such as impersonation and Sybil attacks. Future research direc-
tions include developing PUF-based data integrity solutions.

REFERENCES

[1] C. Herder et al., “Physical unclonable functions and applications: A
tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126–1141, 2014.

[2] A. Aysu et al., “End-to-end design of a PUF-based privacy preserving
authentication protocol,” in CHES, 2015, pp. 556–576.

[3] U. Ruhrmair and J. Solter, “PUF modeling attacks: An introduction and
overview,” in DATE, 2014.

[4] M. Ebrahimabadi et al., “Hardware assisted smart grid authentication,”
in IEEE Int’l Conf. on Communications, 2021.

[5] ——, “A novel modeling-attack resilient Arbiter-PUF design,” in VLSID,
2021, pp. 123–128.

[6] U. Rührmair et al., “Modeling attacks on physical unclonable functions,”
in CCS, 2010, pp. 237–249.

[7] M. S. Alkatheiri et al, “Towards fast and accurate machine learning
attacks of feed-forward arbiter PUFs,” in DSC, 2017, pp. 181–187.

[8] T. Xu et al., “Security of IoT systems: Design challenges and opportu-
nities,” in ICCAD, 2014, pp. 417–423.

[9] M. Majzoobi et al., “Slender PUF Protocol: a Lightweight, Robust and
Secure Authentication by Substring Matching,” in S&P, 2012, pp. 33– 44.

[10] Y. Lao et al., “Reliable PUF-Based Local Authentication with Self-
Correction,” TCAD, vol. 36, no. 2, pp. 201–213, 2016.

[11] U. Chatterjee et al., “Building PUF Based Authentication and Key
Exchange Protocol for IoT Without Explicit CRPs in Verifier Database,”
IEEE TDSC, vol. 16, no. 3, pp. 424–437, 2019.

[12] M. N. Aman et al., “Physical unclonable functions for IoT security,” in
Int’l Workshop on IoT privacy, trust, and security, 2016, pp. 10–13.

[13] S. S. Zalivaka et al., “Reliable and modeling attack resistant authenti-
cation of arbiter PUF in FPGA implementation with trinary quadruple
response,” IEEE TIFS, vol. 14, no. 4, pp. 1109–1123, 2018.

[14] E. I. Vatajelu et al., “On the encryption of the challenge in physically
unclonable functions,” in IOLTS, 2019, pp. 115–120.

[15] M.-D. Yu et al, “A noise bifurcation architecture for linear additive
physical functions,” in HOST, 2014, pp. 124–129.

[16] G. T. Becker, “On the pitfalls of using Arbiter-PUFs as building blocks,”
TCAD, vol. 34, no. 8, pp. 1295–1307, 2015.

[17] C. Gu et al., “A modeling attack resistant deception technique for
securing PUF based authentication,” in AsianHOST, 2019, pp. 1–6.

[18] S.-J. Wang et al., “Adversarial attack against modeling attack on PUF,”
in DAC, 2019, pp. 1–6.

[19] G. T. Becker, “The gap between promise and reality: On the insecurity
of xor arbiter PUFs,” in CHES, 2015, pp. 535–555.

[20] P. H. Nguyen et al., “The interpose PUF: Secure PUF design against
state-of-the-art machine learning attacks,” CHES, pp. 243–290, 2019.

6

View publication statsView publication stats

https://www.researchgate.net/publication/352296503

	sheet1
	ISVLSI_2021_1

