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Abstract

A dynamic mode decomposition (DMD) algorithm has been used to analyze the vortex struc-
tures shedding from an oscillating square cylinder. The flow fields are simulated using a high-order
accurate flux reconstruction/correction procedure via reconstruction (FR/CPR) method. The dom-
inant dynamic modes from the wake vortex structures are then extracted from the DMD analysis.
Effects of the Strouhal number and Reynolds number on the dynamic modes are studied. Results
from DMD are also compared with those from proper orthogonal decomposition (POD). In this
study, the capability of the two flow analysis techniques, namely DMD and POD, on capturing
dominant vortex structures have been successfully demonstrated. Insights are gained into the flow
physics induced by flow structure interaction.

Nomenclature

A Propagator matrix
Ao Oscillation amplitude, Ao = 0.2D
ci The amplitude of the i-th dmd mode
C Temporal correlation matrix of the snapshots
dk(ti) The amplitude of the k-th pod mode at time instant ti
D Side length of the square cylinder
f Oscillation frequency of the cylinder

Re Reynolds number, Re = ρU∞D
µ

St Strouhal number, St = 2fAo

U∞
U∞ free stream velocity
λi The growth rate of the i-th dmd mode
µ Dynamic viscosity of the fluid
ρ Fluid density
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φi The i-th dmd mode
ψk The k-th pod mode
ωi The frequency of the i-th dmd mode

I. Introduction

Flow past bluff body has been extensively studied due to its practical importance to engineering
and scientific merit to fluid mechanics. Vortex shedding behind a bluff body can induce vibration of
structures, which can be detrimental to structural safety. Knowledge about flow-induced unsteady
loading on structures is vital for aero-hydrodynamic design of these structures and flow control
over them. In particular, rectangular cylinders resemble a wide range of constructed facilities such
as bridges, buildings, and offshore structures. Despite its importance, flow past these geometries
is less explored compared with its circular counterpart. In this study, we focus on flow past square
cylinders undergoing forced harmonic oscillation.

Many numerical1–3 and experimental4 studies in flow past oscillating square cylinder are pri-
marily concerned with characteristics of vortex shedding, vortex structures, aerodynamic forces,
and ‘lock-on’ state. ‘Lock-on’ refers to the phenomenon that when a bluff body is forced to oscil-
late at a frequency close to its natural vortex shedding frequency, vortex shedding from the body
will synchronize with the forced oscillation frequency. This can occur during certain oscillation
frequency band. The characteristic flow features associated with this synchronization band not
only are important to the structural dynamics but also exhibit interesting flow physics. Note that
the vortex shedding characteristics can change with different Reynolds numbers. In this paper, we
will study flow structures behind a square cylinder undergoing forced oscillation in the vicinity of
lock-on state at low Reynolds numbers.

Recent advances in scale-resolving numerical simulation techniques and computing power have
enabled high-fidelity simulation of vortex-dominated flows. Flux reconstruction/correction proce-
dure via reconstruction (FR/CPR)5–7 is a recently developed finite-difference like discontinuous
high-order method for unstructured grids. Several comprehensive reviews of recent development of
the FR/CPR method can be found in Refs. [8, 9]. In this work, we use the high-order FR/CPR
method developed for incompressible flow to simulate the flow past the oscillating cylinder at low
Reynolds numbers.11,12 In the flow solver, an arbitrary Lagrangian-Eulerian (ALE) method with
implicit geometric conservation law (GCL) treatment is used to handle the moving/deformable
grid in incompressible flow simulation. This solver has been verified and validated with series of
numerical and experimental benchmarks.

One tradeoff with high-resolution simulation is the difficulty with exacting critical flow features
due to the large data set. Popular data processing techniques that can be used to circumvent this
barrier include, but not limited to, dynamic mode decomposition(DMD) and proper orthogonal
decomposition (POD). DMD is a recently proposed data-based mode decomposition technique.14,15

Different from the POD method which ranks the flow structures by energy, DMD captures dominant
dynamic behaviors encoded in the data sequence by frequency. So far this method and its variations
have been successfully applied to a range of fluid flow problems.15–22 One objective of this paper is
to extract dominant dynamical features of flow past forced oscillating square cylinders from high-
fidelity numerical simulations results using the DMD technique. A comparison of DMD modes and
POD modes is also performed to characterize special features of DMD and POD.

The rest of the paper is organized as follows. The problem description is given in Sec. II. A
description of numerical methods is provided in Sec. III. The dynamic mode decomposition and
proper orthogonal decomposition technique are briefly introduced in Sec. IV and Sec.V, respectively.
Results and analysis are given in Sec. VI. Finally, a conclusion is drawn in Sec. VII.
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II. Problem Description

Flow features caused by harmonic oscillation of a square cylinder placed in the free stream are
numerically studied. The square cylinder oscillates in the traverse direction of the flow with a fixed
amplitude Ao = 0.2D at a range of frequencies, where D is the side length of the square cylinder. A
schematic diagram of the free-stream flow past an oscillating square cylinder is shown in Figure 1.
The Reynolds number (Re = ρU∞D

µ ), based on the width of the cylinder and the upstream velocity,

is selected as 100 and 400. The Strouhal number, defined as St = 2fAo

U∞
, varies in the range of

[0.05, 0.2].
The computational domain is of dimensions [−100D, 100D]× [−100D, 100D] in the steam- and

cross- directions respectively. An unstructured grid with a total number of 3120 quadrilateral
elements is used in the simulation. The mesh is refined near the wall boundaries of the square
cylinder and the wake region to capture boundary layers and wake structures, respectively. A
high order scheme up to the 6-th order is used in the simulation. More details about the numeral
algorithm used is given in Sec. III.

Figure 1. Schematic of the free stream flow past an oscillating square cylinder.

III. Numerical Methods

III.A. Governing Equations

The governing equations for unsteady incompressible viscous flow are Navier-Stokes equations,
which can be written in the conservation form as:

At
∂Q

∂t
+∇ · F = 0. (1)

Herein, Q = (p, u, v) are the primitive variables; p is the pressure; u and v are flow velocities in
the x and y directions; and F are the flux vectors, which consist of inviscid and viscous parts, i.e.,
Finv = (f inv, ginv) and Fvis = (fvis, gvis). For two-dimensional (2D) flow, these fluxes are written
as follows:

f inv =

 u

u2 + p
ρinc

uv

 , ginv =

 v

uv

v2 + p
ρinc

 , fvis =

 0
µ
ρinc

∂u
∂x

µ
ρinc

∂v
∂x

 , gvis =

 0
µ
ρinc

∂u
∂y

µ
ρinc

∂v
∂y

 , (2)
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where ρinc is the fluid density, and µ is the dynamic viscosity. The matrix At takes the following
form:

At =

0 0 0

0 1 0

0 0 1

 . (3)

To effectively solve the governing equations using modern CFD techniques developed for com-
pressible flows, the artificial compressibility effect is introduced into Eq. (1) by augmenting the
system with a pseudo-time derivative term. The new governing equations are then written as:

Ap
∂Q

∂τ
+At

∂Q

∂t
+∇ · F = 0, (4)

where Ap takes the following form:

Ap =

1/β 0 0

0 1 0

0 0 1

 . (5)

In Eq. (5), β is the artificial compressibility factor. It is observed that the pseudo-time derivative
term ∂Q/∂τ does not affect flow physics as long as Q does not vary with respect to the pseudo-time
τ at each physical time t. Instead, this term introduces finite response time for pressure distur-
bances into the incompressible flow system. This strategy provides flexibility for the numerical
algorithm design of the governing equations.
To facilitate numerical discretization, Eq. (4) can be recast as

∂Q

∂τ
+∇ · Fr = S, (6)

where S = −At∂Q/∂t is the source term, Fr is the modified flux vector with artificial compressibil-
ity. The only difference between Fr and F is that the inviscid fluxes u and v in F are substituted
with βu and βv in Fr respectively. For conciseness, we drop the superscript ‘r’ in Fr for the rest
of the paper when no confusion arises.

III.B. Spatial Discretization

The FR/CPR formulation5–7 is used to discretize Eq. (6). Suppose that the governing equations
are defined on Ω × [0, T ] × [0,Γ]. Herein, Ω is the spatial domain with boundary ∂Ω, [0, T ] is the
physical time domain, and [0,Γ] is the pseudo-time domain.The spatial domain Ω is divided into
N non-overlapping elements Ωj , j = 1, · · · , N . The exact solution of Eq. (6) is then approximated
using an element-wise continuous polynomial Qh(x, t) defined on each element Ωj . By applying the
weighted residual operations on each element Ωj ,

23 the final form for the FR/CPR formulation is
expressed as

∂Q

∂τ
+ P(∇ · F) + δc = S. (7)

Herein, P(∇ · F) is a projection of ∇ · F onto the polynomial space on the element Ωj , and δc is a
correction field, which satisfies∫

Ωj

δcWdV =

∫
∂Ωj

(Fncom − Fn)WdS. (8)

In Eq. (8), Fn = F ·n is the local normal flux on the element boundary. To ensure conservation, we
also define the common flux Fncom(Qjh, Q

j+
h ,∇Qjh,∇Q

j+
h ,n), where Qj+h denotes the solution outside
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the current element Ωj , and n is the outward unit normal of ∂Ωj . For the inviscid common flux
calculation, various approximate Riemann solvers can be used, e.g., the Roe Riemann solver.24 For
the viscous common flux calculation, there also exist several choices, e.g., the second approach of
Bassi and Rebay (BR2).25 W is the test function in the weighted residual operations.

III.C. Dual Time Stepping Procedures

Let R = −(P(∇ ·F) + δc), then Eq. (7) can be written as ∂Q/∂τ = S +R. A general practice is to
directly solve this equation with the Newton’s method.26 In this approach, the nonlinear system
is firstly linearized with respect to the current solution state Qm+1,n

h , where m and n stand for
the time level in the physical and pseudo time domain, respectively. The resulting linear system
becomes (

∂Q

∂τ

)m+1,n+1

−
(
∂R

∂Q

)m+1,n

∆Q = Rm+1,n + Sm+1,n+1, (9)

where ∆Q = Qm+1,n+1
h −Qm+1,n

h . In the physical time domain, the second-order backward differ-
entiation formulation (BDF2) is used to discretize the term ∂Q/∂t. In the pseudo-time domain,
the backward Euler is used to discretize the term ∂Q/∂τ . As a result, Eq. (9) can be written as

I

∆τ
∆Q−

(
∂R

∂Q

)m+1,n

∆Q = Rm+1,n −At
3Qm+1,n+1

h − 4Qmh +Qm−1
h

2∆t
(10)

After reformulation, Eq. (10) reads(
I

∆τ
+

3At
2∆t

−
(
∂R

∂Q

)m+1,n
)

∆Q = Rm+1,n + Sm+1,n. (11)

In this study, we use the block Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) method to solve
the linear system such derived. More details can be found in Refs. [12, 13].

IV. Dynamic Mode Decomposition

Dynamic mode decomposition is a data-based approach that can extract dynamic modes from
the time-resolved datasets. This method can be applied to both data from numerical simulations
and from experiments, and it does not require knowledge about governing equations of the dynam-
ical system studied. Over the past few years, this technique has been used to analyze a variety of
fluid flow problems.15–22 We give a brief overview of this method in what follows. For details about
this technique, please refer to a series of work on the development of DMD.14–17

We consider the data matrix in the space-time domain with uniform temporal sampling as shown
in Figure 2. Different colors distinguish different time instants from one another. The i-th column
corresponds to the flow field snapshot at the i-th time instant, as denoted by vi, for i = 1, 2, ..., n.
For 2D or 3D measurement or simulation, we vectorize each snapshot as a column vector. Note
that the data columns are equally spaced in time, which means that they are assumed to be sam-
pled at constant time intervals ∆t. We further assume a constant matrix A propagates the flow
field from one time instant to the consecutive time instant over the whole interval [∆t, n∆t], namely,

Avi = vi+1.
(12)
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Figure 2. A schematic overview of the setup for the dynamic mode decomposition algorithm

For a nonlinear process, this assumption amounts to a linear tangent approximation. It allows us to
formulate the data sequence as a Krylov sequence. Let V j

i denote the data sequence [vi, vi+1, ..., vj ].
On applying the matrix A to each column of the data matrix V n−1

1 , we obtain the following relation
by Eq. (12):

AV n−1
1 = V n

2 = V n−1
1 S + reTn−1,

(13)
where S is a companion matrix, r is the residual vector, and en−1 ∈ Rn−1 is the (n − 1)-th unit
vector.

Denote the singular value decomposition of V n−1
1 by V n−1

1 = UΣW ∗, where Σ is a r×r diagonal
matrix with r = rank(V n−1

1 ). A low-order representation of A can be obtained by mapping it to
the proper orthogonal modes of V n−1

1 as below:

Ã := U∗AU = U∗V n
2 WΣ−1

(14)
Alternatively, one can approximate the companion matrix S with the standard least square

procedures as below:

S ≈ R−1QHV n
2

(15)
with QR = V n−1

1 as the economy-size QR-decomposition of the data sequence V n−1
1 .15

The eigenvalues of both Ã and S can approximate some of the eigenvalues of A. Let yi be the
i-th eigenvector of Ã or S with the corresponding eigenvalue being µi. Then the eigenvalues µi
describe the temporal evolution of the modes. In particular, the modal frequency ωi and growth
rate λi can be calculated from the complex eigenvalues as below:

ωi = =[ log(µi)∆t ], λi = <[ log(µi)∆t ]
(16)

On obtaining the i-th eigenvectors yi of Ã or S, the i-th dynamic mode can be constructed
by φi = Uyi or φi = V n−1

1 yi, respectively. The flow field v(~x, t) can then be approximated by a
summation of the dynamic modes as below:
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v(~x, t) ≈ v̄(~x) +
∑n

i=1 ciφi(~x)e(ıωi+λi)t

(17)
where φi(~x) represents the i-th DMD mode corresponding to the eigenvalue µi, and ci is the
amplitude of the i-th mode which can be determined from a reconstruction of the original data. In
this study, we use the first snapshot to recover the amplitude. In this representation, the average
flow field is singled out, as it represents the zero frequency mode.

It is assumed that the SVD-based DMD algorithm is more robust for noisy or contaminated
data from experiments or simulations.15 By contrast, the least square based method is more
straightforward to implement. In this paper, we use the least square based DMD algorithm, since
the good quality of data as obtained from high order numerical simulation poses no difficulty for
the analysis.

V. Proper Orthogonal Decomposition

Proper orthogonal decomposition is another important tool that can be used to extract coherent
structures of the flow field. The representative development efforts within the context of fluid
mechanics can be traced back to the classical POD29 and the snapshot POD.30 This type of method
compresses the full data sets into a low-dimensional description comprised of a few dominant modes
based on the orthogonal decomposition of the spatial velocity covariance matrix. By applying
the method of snapshots,30 the velocity field is decomposed into the time-mean and fluctuation
components, i.e.,

v(~x, t) = v̄(~x) + v′(~x, t)
(18)

where v̄ and v′ represent the time-averaged and fluctuation components of the velocity, respectively.
Note that v′ has zero mean value. We form the snapshots matrix of v′(~x, ti), i = 1, ..., N , and
compute the eigenvalues and eigenvectors of its temporal correlation matrix:

CX = λX
(19)

where Cij =
∫

Ω v
′
iv
′
jdx, and v′i is the velocity fluctuation at i-th time instant. The k-th POD mode

can be constructed by ψk(~x) =
∑N

i=1Xikv
′
i.

Correspondingly, the flow field v(~x, t) can be decomposed into a summation of spatial and tem-
poral modes as below:

v(~x, ti) ≈ v̄(~x) +
∑N

k=1 dk(ti)ψk(~x)
(20)

where dk(ti) = (ψk, v
′
i)w, and w is the weighting function that can be determined from the mesh.

The aforementioned two techniques share similarities, but they are apparently different from
several aspects. The DMD modes are separated by frequency, whereas the POD modes are dis-
tinguished by energy ranking. Though both techniques can describe the evolution of coherent
structures, they describes the temporal modes in different forms. Specifically, DMD characterizes
the temporal modes with the term e(ıωi+λi)t, whereas POD uses time-dependent mode amplitude
coefficient with spatial modes mutually orthonormal with respect to an appropriate inner prod-
uct. Previous studies have shown that there may exist dynamically highly relevant but zero-energy
modes in unsteady flow system.28 As a result, modification to POD is needed to capture transient
features in a dynamical system. In the DMD method, the modes and frequencies are determined
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without relying on an inner product, which makes it easily applicable to flow quantities at any
spatial locations.31 In this study, we compare the performance of DMD and POD on the analysis
of wake structures behind oscillating square cylinders.

VI. Results

Four types of wake structures behind oscillating square cylinders are considered in this section.
These cases include:

• Long-range oscillatory vortex street (Re = 100 and St = 0.12);

• Regular von Kármán vortex street (Re = 100 and St = 0.18);

• Asymmetric vortex street (Re = 400 and St = 0.12); and

• Dynamic multi-vortex wake (Re = 400 and St = 0.054).

Snapshots of vorticity fields for the four cases from CFD simulation are presented in Figure 3.
DMD analysis is applied to all these vorticity fields. POD analysis is applied to the long-range
oscillatory vortex street and the dynamic multi-vortex wake for comparison.

(a) (b)

(c) (d)

Figure 3. Vorticity fields from CFD simulation for (a) Re = 100 and St = 0.12; (b) Re = 100 and St = 0.18 ; (c)
Re = 400 and St = 0.12; (d) Re = 400 and St = 0.054.

VI.A. Long-range oscillatory vortex street

Results with Re = 100, and St = 0.12 are discussed in this section. A total number of 224 snapshots
are used in the analysis. This corresponds to two oscillating cycles. The time interval ∆t between
two successive snapshots is 0.015. Results for the DMD spectral analysis is presented in Figure 4.
In part (a), the eigenvalues µi, which are also called Ritz values,14 are found to be distributed very
close to the unit circle in the complex plane. This indicates the growth/decay rate of the flow
structures is close to zero. In part (b), the growth rates λi of the DMD modes are plotted against
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the frequency ωi. It is observed that the absolute values of the growth rate are very small, and
positive and negative values implies that the corresponding DMD modes are in the growing and
decaying states, respectively. Note that only the time-averaged state (i.e., 0-th mode) and the first
four pairs of DMD modes are shown here. Since we have normalized the DMD modes, |ci| gives
the magnitude of the n-th mode. In part (c), the amplitude |ci| of DMD modes are drawn against
the frequency ωi to illustrate the relative strength of each mode. There is one distinct peak at
zero frequency, which indicates the time-averaged state, in the energy spectrum over a range of
frequencies. The same set of dominant DMD modes are marked in all subfigures to establish the
correspondence of different properties of the same mode.

Re{
i
}

Im
{

i}

­1 ­0.5 0 0.5 1

­1

­0.5

0

0.5

1

0
1
2

4
3

(a)

i

i

­1E­09 0 1E­09

­5

0

5

1

0

4

3

2

(b)

i

|c
i|

­50 0 50
0

10

20

30

40
0

4
3

21

(c)

Figure 4. Results of DMD analysis of a N=224 snapshot sequence of wake structure behind an oscillating
square cylinder at Re = 100 and St = 0.12: (a) real and imaginary parts of the eigenvalues; (b) DMD spectrum;
(c) DMD amplitude spectrum.

Next, we present the dominant DMD modes, as marked in Figure 4 to aid the wake structure
analysis. The time-averaged vorticity field is shown in Figure 5, which represents the 0-th DMD
and POD mode. The DMD mode are ranked by frequency, i.e., |ωi|. The spatial distribution of

Figure 5. Time-averaged vorticity field at Re = 100 and St = 0.12

the real parts of the numbered DMD modes are shown in Figure 6. The imaginary parts can be
presented in the same way. They are not shown here for conciseness.

As can be seen from Eq. 17, the amplitude ci of the i-th DMD mode can be reconstructed from
the original data. In this study, ci is calculated from the first snapshot, i.e., v1. As a result, the
flow field at any time t can be reconstructed using Eq. 17. A typical reconstructed instantaneous
vorticity field using the zero and first four pairs of DMD modes is plotted in Figure 7. The contours
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(a) (b)

(c) (d)

Figure 6. Real part of the temporal DMD modes for Re = 100 and St = 0.12: (a) mode 1 ; (b) mode 2 ; (c)
mode 3; (d) mode 4.

of the vorticity field at the same time instant directly from the numerical simulation is also plotted
in this figure for comparison. A good visual agreement is obtained from these two sets of data.
This demonstrates that four pairs of low frequency modes plus the zero mode are adequate to give
a good representation of the vortex dynamics in this case.

(a) (b)

Figure 7. A typical instantaneous vorticity field (t = t0 + 75×∆t) for Re = 100 and St = 0.12: (a) reconstruction
using 4 pairs of dominant DMD modes plus the zero mode; (b) original vorticity field from the numerical
simulation at the same time instant.

POD analysis is made based on the same sequence of snapshots as those used in DMD analysis.
For comparison, we also show the reconstructed flow field at the same time instant using the
leading eight POD modes in Figure 8. It is clear that the leading eight dominant pod modes also
represents the original vorticity field very well. More insights can be gained from the eigenvalues
corresponding to these modes. As seen from Figure 9, the eigenvalues of the first four modes are
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(a) (b)

Figure 8. A typical instantaneous vorticity field (t = t0 + 75 × ∆t) for case Re = 100 and St = 0.12: (a)
reconstruction using the leading eight dominant POD modes plus the zero mode; (b) original vorticity field
from the numerical simulation at the same time instant.

much larger than those of the remaining modes, and fast decay is observed as the mode indices
increase. The cumulative distribution is calculated by the summation of the normalized eigenvalues
of the corresponding modes. The curve indicates that the leading eight modes contributes to above
95% of the total value. We show the corresponding POD modes in Figure 10. Compared with
Figure 6, it is found that the dominant POD modes are largely consistent with the dominant DMD
modes. This indicates that for the long-range oscillatory wake, the dominant low frequency modes
identified by the DMD technique are also dominant in energy contribution as measured in the sense
of POD analysis.
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Figure 9. Normalized eigenvalues and cumulative distribution of pod modes for case Re = 100 and St = 0.12.

VI.B. Regular von Kármán vortex street

In this section, we show results from DMD analysis for the case with Re = 100 and St = 0.18. The
DMD spectrum is presented in Figure 11. Compared with the long-range oscillatory vortex street
case (Re = 100 and St = 0.12), the lowest angular frequency of the dominate modes increases from
∼ 1.87 to ∼ 2.55. If St number is used to nondimensionalize the frequency, the lowest St number
for the long-range oscillatory vortex street case is ∼ 0.12 and that for the regular von Kármán
vortex street case is ∼ 0.16. Apparently, the long-range oscillatory vortex street case falls into the
’lock-in’ regime, but the regular von Kármán vortex street case does not.

The time-averaged vorticity field (i.e., zero mode) is shown in Figure 12. The spatial patterns
of the first four pairs (ranked by frequency) of DMD modes are illustrated in Figure 13. Using the
leading 4 pairs of dominant DMD modes and the zero mode, the vorticity field can be faithfully
reconstructed. As demonstrated in Figure 14, there is no apparent difference in the vorticity field
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Spatial patterns of the POD modes for case Re = 100 and St = 0.12: (a) mode 1 ; (b) mode 2 ; (c)
mode 3; (d) mode 4; (e) mode 5 ; (f) mode 6 ; (g) mode 7; (h) mode 8.
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between the reconstructed and original data for a typical time instant during the oscillation cycle.
Results from POD analysis show similar trend when compared with those from DMD analysis. We
omit the POD results for this case for conciseness.

Re{
i
}

Im
{

i}

­1 ­0.5 0 0.5 1

­1

­0.5

0

0.5

1

0
1
2

4
3

(a)

i

i

­1E­08 0 1E­08

­10

­5

0

5

10

1

0

4

3

2

(b)

i

|c
i|

­50 0 50
0

10

20

30

40

0

4
3

2

1

(c)

Figure 11. Results of DMD analysis of a N=222 snapshot sequence of wake structure behind an oscillating
square cylinder at Re = 100 and St = 0.18: (a) real and imaginary parts of the eigenvalues; (b) DMD spectrum;
(c) DMD amplitude spectrum.

Figure 12. Time-averaged vorticity field at Re = 100 and St = 0.18

VI.C. Asymmetric vortex street

Now we study the effect of Reynolds number on the topology of wake structures behind the oscil-
lating square cylinder. The Strouhal number St is selected as 0.12, and the Reynolds number Re
is increased to 400. In Figure 15, we show the DMD spectrum. Similarly as in previous cases, the
Ritz values are relatively uniformly distributed around the unit circle in the complex plane in this
case. The low growth/decay rate indicates that the dominant low frequency modes are very close
to neutral states. The lowest frequency of the dominant DMD modes remains to be ∼ 1.87 as in
the case Re = 100 and St = 0.12. This indicates that the frequency of the dominant modes are
mainly determined by the Strouhal number.

The time-averaged vorticity field is shown in Figure 16. The spatial patterns of the first four
pairs of DMD modes are presented in Figure 17. As observed from the Figure 17, the spatial
patterns of the DMD modes share similarities with those at Re = 100 and St = 0.12 for each
distinct frequency. But the wake turns to be asymmetric about the horizontal line, which appears
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(a) (b)

(c) (d)

Figure 13. Real part of the temporal DMD modes for Re = 100 and St = 0.18: (a) mode 1 ; (b) mode 2 ; (c)
mode 3; (d) mode 4.

(a) (b)

Figure 14. A typical instantaneous vorticity field (t = t0 +75×∆t) for Re = 100 and St = 0.18: (a) reconstruction
using 4 pairs of dominant DMD modes plus the zero mode; (b) original vorticity field from the numerical
simulation at the same time instant.

to be the effect of higher Reynolds number. Note that this vortex street pattern is different from
the long-range oscillatory vortex street pattern at Re = 100 and St = 0.12. In that case, the wake
shows large-scale wavy structure. But in the current case, the direction of the reflected wake does
not change. This agrees with previous findings of Yu et al. on asymmetric wake vortex structures
around an oscillating airfoil.27

Another observation is that the energy of the entire flow field is spread over a wider frequency
range (as seen in Figure 15 part (c)), as the Reynolds number increases. In order to give a good
representation of the original vorticity field, we need to include more dominate mode pairs in the
reconstruction. Figure 18 shows results from sixteen pairs of dominant modes plus the zero mode.
It is observed from this figure that good agreement with the original field is obtained when we
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include necessary amount of dominant modes.
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Figure 15. Results of DMD analysis of a N=224 snapshot sequence of wake structure behind an oscillating
square cylinder at Re = 400 and St = 0.12: (a) real and imaginary parts of the eigenvalues; (b) DMD spectrum;
(c) DMD amplitude spectrum.

Figure 16. Time-averaged vorticity field at Re = 400 and St = 0.12

VI.D. Dynamic multi-vortex wake

Finally, we show wake analysis results at Re = 400 and St = 0.054. This case represents interesting
wake dynamics, which features a third array of vortices first entrained into and then ejected from
the main vortex street as traveling along the downstream direction. Figure 19 gives the spectral
analysis of the DMD modes. The Ritz values distribution (Figure 19, part (a)) and growth rate of
the low frequency modes (Figure 19, part (b)) are largely the same as in previous cases. However,
in the frequency-amplitude chart, we notice a tiny contribution from the odd low frequency modes
as marked in Figure 19, part (c). In particular, we have displayed the time-averaged vorticity field
and the DMD modes in Figure 20 and Figure 21, respectively. As interestingly as the odd modes
present themselves, these dynamics contribute very little to the whole vorticity field during the
reconstruction process. So we need to use more pairs of low frequency DMD modes plus the zero
mode (Figure 16) to obtain a good representation of the original field. The results for sixteen pairs
is shown in Figure 22.

We also conduct POD analysis for the same data sequence in this case. As seen from Figure 25,
though the even modes share similar spatial patterns to those from DMD analysis, the dynamics
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(a) (b)

(c) (d)

Figure 17. Real part of the temporal DMD modes for Re = 400 and St = 0.12: (a) mode 1 ; (b) mode 2 ; (c)
mode 3; (d) mode 4.

(a) (b)

Figure 18. A typical instantaneous vorticity field (t = t0 +75×∆t) for Re = 400 and St = 0.12: (a) reconstruction
using 16 pairs of dominant DMD modes plus the zero mode; (b) original vorticity field from the numerical
simulation at the same time instant.

of the odd leading DMD modes are not captured in the leading pod modes due to their low energy
content. It can be observed from Figure 24 that the first eight POD modes contributes to above
95% of the total value. Thus, it is no surprise that the reconstructed vorticity field (Figure 23)
from eight POD modes is non-distinguishable from that (Figure 22) from much more DMD modes.

From the comparison between DMD and POD analysis, it is found that the odd leading DMD
modes have similar features to the dynamically highly relevant but zero-energy modes mentioned
by Schmid.15 These dynamic modes may contribute to the development of robust low-dimensional
models as presented by Noack et al.28
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Figure 19. Results of DMD analysis of a N=198 snapshot sequence of wake structure behind an oscillating
square cylinder at Re = 400 and St = 0.054: (a) real and imaginary parts of the eigenvalues; (b) DMD spectrum;
(c) DMD amplitude spectrum.

Figure 20. Time-averaged vorticity field at Re = 400 and St = 0.054
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(a) (b)

(c) (d)

Figure 21. Real part of the temporal DMD modes for Re = 400 and St = 0.054: (a) mode 1 ; (b) mode 2 ; (c)
mode 3; (d) mode 4.

(a) (b)

Figure 22. A typical instantaneous vorticity field (t = t0+75×∆t) for Re = 400 and St = 0.054: (a) reconstruction
using 16 pairs of dominant DMD modes plus the zero mode; (b) original vorticity field from the numerical
simulation at the same time instant.
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(a) (b)

Figure 23. A typical instantaneous vorticity field (t = t0 + 75 × ∆t) for case Re = 400 and St = 0.054: (a)
reconstruction using the leading 16 dominant POD modes plus the zero mode; (b) original vorticity field from
the numerical simulation at the same time instant.
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Figure 24. Normalized eigenvalues and cumulative distribution of pod modes for case Re = 400 and St = 0.054.

VII. Conclusion

In this study, the DMD technique is used to analyze wake structures behind oscillating square
cylinders based on numerical simulation results. We conduct series of high-order CFD simulation at
different Strouhal numbers and Reynolds numbers, extract data in the wake region, and analyze the
dominant dynamic modes with the DMD technique in terms of vortex topology, frequency, growth
rate, and amplitude. The DMD modes are compared with POD modes. The effects of Strouhal
and Reynolds number on the dynamics of wake structures behind oscillating square cylinders are
then revealed based on the mode decomposition analysis.

For most vortex street types studied, including the long-range oscillatory wake, regular von
Kármán wake, and the asymmetric wake, DMD modes share much similarity with the POD modes.
For a very dynamic wake, i.e., the so-called dynamic multi-vortex wake, the DMD technique cap-
tures certain dynamically highly relevant but low-energy modes. These modes are closely related
to the transient effect presented in the evolution of the vortex wake. Further research is needed to
study their implications on reduced-order modeling.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 25. Spatial patterns of the POD modes for case Re = 400 and St = 0.054: (a) mode 1 ; (b) mode 2 ; (c)
mode 3; (d) mode 4; (e) mode 5 ; (f) mode 6 ; (g) mode 7; (h) mode 8.
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