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Abstract

Background: The administration of anti-trypanosome nitroderivatives curtails Trypanosoma cruzi infection in Chagas disease
patients, but does not prevent destructive lesions in the heart. This observation suggests that an effective treatment for the
disease requires understanding its pathogenesis.

Methodology/Principal Findings: To understand the origin of clinical manifestations of the heart disease we used a chicken
model system in which infection can be initiated in the egg, but parasite persistence is precluded. T. cruzi inoculation into
the air chamber of embryonated chicken eggs generated chicks that retained only the parasite mitochondrial kinetoplast
DNA minicircle in their genome after eight days of gestation. Crossbreeding showed that minicircles were transferred
vertically via the germ line to chicken progeny. Minicircle integration in coding regions was shown by targeted-primer
thermal asymmetric interlaced PCR, and detected by direct genomic analysis. The kDNA-mutated chickens died with
arrhythmias, shortness of breath, cyanosis and heart failure. These chickens with cardiomyopathy had rupture of the
dystrophin and other genes that regulate cell growth and differentiation. Tissue pathology revealed inflammatory dilated
cardiomegaly whereby immune system mononuclear cells lyse parasite-free target heart fibers. The heart cell destruction
implicated a thymus-dependent, autoimmune; self-tissue rejection carried out by CD45+, CD8cd+, and CD8a lymphocytes.

Conclusions/Significance: These results suggest that genetic alterations resulting from kDNA integration in the host
genome lead to autoimmune-mediated destruction of heart tissue in the absence of T. cruzi parasites.
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Introduction

Trypanosoma cruzi infection (American Trypanosomiasis) is an

endemic ailment transmitted by hematophagous (Reduviid:Tria-

tominae) bugs, by blood transfusion and transplacentally from the

mother to offspring [1]. In pregnant women T. cruzi infections may

lead to fetal complications, with desorption of the embryo,

stillbirth, neonatal death, intrauterine growth retardation, or

prematurity [2–7]. These infections are highly prevalent in rural

areas of Latin America, where an estimated 18 million people

harbor T. cruzi, and over 100 million are at risk of acquisition [8].

The migration of T. cruzi-infected patients from endemic areas has

made Chagas disease cosmopolitan, now emerging in five

continents as an important global health problem requiring

specific training of personnel for diagnosis and delivery of medical

assistance [9].

The acute T. cruzi infections are usually asymptomatic and go

unrecognized, but high rates of morbidity and lethality are

recorded in chronically infected cases [1,10,11]. Chagas disease is

a multifaceted clinical condition encountered in approximately

one third of the human population with T. cruzi infections; the

disease attacks the heart in 94.5% of cases, and the esophagus

and/or the colon (mega syndromes) in 5.5% of the chronically

infected individuals. The hallmark of the disease is a destructive

myocarditis [10], which typically is lethal two to five years after

presenting signs of impairment of blood circulation [11].

The administration of an anti-trypanosome nitroderivative to

treat human T. cruzi-infections did not prevent destructive heart

lesions and death [12,13], thus an effective treatment for Chagas

disease requires further knowledge about parasite-host relation-

ships and its pathogenesis [1]. Two theories are proposed to

explain the pathogenesis of Chagas disease: i) Parasite persistence

with rupture of parasitized cells and release of parasitic antigens

that attracts inflammatory cells infiltrates [14,15]; and ii)

Autoimmune rejection of target cells by the immune system

inflammatory effector cells [1,16,17]. The second hypothesis is

difficult to test, because other mechanisms of tissue inflammation

may coexist in the setting of an active infection [18,19]. On the

one hand, the cryptic infections are sources of parasitic antigens

and inflammation, or they persist for decades without causing the
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host significant damage? On the other, a clear demonstration of

the part autoimmunity plays on the development of Chagas heart

disease is essential for the effective delivery of treatment.

Upon entry of T. cruzi into the body, the infective trypomas-

tigote form can be destroyed by the monocyte-macrophage

system, but internalized parasites in non-phagocyte cells can

replicate as amastigotes before returning to trypomastigotes that

then emerge, invading any tissue or cell type. The T. cruzi genome

measures 60.3 Mbp [20,21], and its total DNA ranges from 125–

280 fg/cell [22–24]. Those broad differences are explained by

relative chromosome number and size due to insertions,

duplications and deletions, or by the relative contents of haploid,

diploid or aneuploid cells during the growth process [25]. T. cruzi

has a unique mitochondrion with a large amount of extranuclear

DNA (kDNA) that can reach 15% to 30% of total cellular DNA

[26], which differs from the nuclear component by buoyant

density, base ratio, and degree of renaturation [27]. A kDNA

network is composed of catenated rings with a few dozen

maxicircles (20 to 40 kb) and thousands of minicircles (1.4 kb).

The maxicircles are structurally and functionally analogous to the

mitochondrial DNA in higher eukaryotes, encoding rRNAs and

subunits of the respiratory complexes [28,29]. Topologically, each

T. cruzi minicircle has four average 240 bp hypervariable regions

interspersed by 122 bp conserved regions each of which pre-

sents conserved cytosine/adenine-rich sequence blocks (CArsbs)

[29–33]. It is through sequence microhomologies in the CArsbs

that foreign DNA integration is thought to occur [34]. The

minicircles encode guide RNAs (gRNAs), which modify the

maxicircle transcripts by extensive uridine insertion or deletion, in

a process known as RNA editing. Information for this process is

provided by small gRNA molecules encoded primarily on the

kDNA minicircles. The unusual organization of kinetoplastid

genes in directional gene clusters requires equally unorthodox

mechanisms to generate functional eukaryotic mRNA [28, 35, and

36]. The sequence heterogeneity of the thousands of kDNA

minicircles in each cell represents an additional layer of comple-

xity, thus augmenting genetic diversity.

Horizontal transfer of kDNA minicircle sequences into the

genome of T. cruzi-infected macrophages and of chagasic rabbits

and humans is documented [34,37–39]. T. cruzi minicircle

sequences integrated mainly in retrotransposable elements present

in chromosomes of rabbits and of people with T. cruzi infections.

Subsequent recombination and hitchhiking propagate minicircle

sequence insertions in coding regions, rupturing open reading

frames or knocking out genes in the host genome [1,10,34,37–39].

In a broad sense, the demonstration of kDNA minicircle sequences

integrated into the genome of mammalians could be challenged by

the possibility of contamination with DNA residues of the T. cruzi

life long infections in susceptible hosts. Therefore, to further

document possible roles played by LkDT-induced genotype

alteration in the proposed autoimmune pathogenesis of Chagas

disease it was required the live infection to be omitted. This

important requirement could be fulfilled in the crosskingdom

chicken model system that would eradicate the T. cruzi infections.

The chicken genome has a haploid content of 1.26109 bp

(20,000–23,000 genes) divided among 39 chromosomes. Auto-

somes are classified into macrochromosomes 1 through 5,

intermediate chromosomes 6 through 10, and microchromosomes

11 through 32. The sex chromosomes are denominated Z and W,

with homogametic males (Z/Z) and heterogametic females (Z/W).

Repetitive elements make up 10% of the chicken genome,

compared with 40–50% in the genomes of most mammals. A

relatively compact genome structure is the result of the limited

accumulation of repetitive elements. Unlike other vertebrate

genomes, active short interspersed nuclear elements (SINEs) are

not found in the chicken genome. Most retroelements are found in

G+C-rich regions and many of the chicken repeats-1 (CR-1) flank

multiple genes, but CR-1 elements may also accumulate within

A+T rich satellite regions [40,41].

In this study we describe an experimental crosskingdom host

model for parasite-free heart disease in chickens, which are refractory

to T. cruzi infection [42] except during early embryonic life, prior to

the development of their immune system [10]. Chicks hatched from

T. cruzi-infected eggs retained minicircle sequences in the absence of

parasite nuclear DNA (nDNA). Moreover we document integration

of kDNA into the DNA of somatic and germ line cells, from where

they are vertically transmitted to subsequent progeny. kDNA

mutations were detected mainly in coding regions on several

chromosomes. Interestingly, kDNA-mutated chickens developed

gross cardiomegaly with an inflammatory myocarditis similar to that

of Chagas disease in man, in which parasite-free myofibers are

destroyed by immune system effector cells, as well as heart failure.

Methods

Animals
White Ross chicken eggs were obtained from Asa Alimentos

(Recanto das Emas, Federal District, Brazil). Chicks and adult

birds were housed in the Faculty Animal Facility at room

temperature. Protocols for all animal studies were approved by

the Institutional Ethical Committee in Animal Research in

accordance with international guidelines.

Growth of parasites
Trypomastigotes forms of T. cruzi Berenice and the b-

galactosidase-expressing Tulahuen T. cruzi MHOM/CH/00 C4

were used [43]. Trypomastigote forms of T. cruzi were grown in

murine muscle cell (L6) cultivated in Dulbecco minimal essential

medium with 10% FSB, 100 IU/ml penicillin, 100 mg/ml

Author Summary

The Trypanosoma cruzi acute infections can be asymp-
tomatic but approximately one third of the chronically
infected cases may present Chagas disease. Parasite
persistence and autoimmunity are theories trying to
explain the clinical and pathological manifestations of
Chagas disease in the heart and the digestive system. To
clearly demonstrate roles played by parasite persistence
and autoimmunity in Chagas disease we used a chicken
model refractory to the T. cruzi. In this study we inoculated
the invasive T. cruzi in the air chamber of embryonated
eggs. The infection was eradicated by the innate immunity
and the chicks were parasite-free at hatching, but they
retained the parasitic mitochondrial kinetoplast DNA
minicircle in their genome. We documented the kDNA
minicircle integrated in the chicken genome by a targeted
prime TAIL-PCR, Southern hybridizations, cloning and
sequencing. The kDNA minicircles integrated in coding
regions of various chromosomes, and mutated chickens
developed an inflammatory cardiomyopathy hallmark of
Chagas disease, whereby immune system mononuclear
cells lyse parasite-free target heart fibers. Genotype
alterations resulting from transfers of the parasitic DNA
were associated with the tissue destruction carried out by
effectors CD45+, CD8cd+, CD8a lymphocytes. This research
provides insights about a protozoan infection that can
induce genetically driven autoimmune disease.

Autoimmune Chagas Disease
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streptomycin, and 250 nM L-glutamin (pH 7.2), 5% CO2 at 37uC.

Epimastigote forms were grown in liver-infusion tryptose axenic

medium at 27uC. The parasite forms were harvested at

exponential growth phase.

Trypanosoma cruzi inoculation in embryonated chicken
eggs

In the test group, a 2-mm diameter hole pierced in the shell of

60 fertile eggs for injecting with 100 forms of T. cruzi

trypomastigotes in 10 mL of culture medium into the air chamber

of stage X embryos. In the control group, 36 mock chickens

received 10 mL of culture medium alone. Holes were sealed by

adhesive tape, and the T. cruzi-infected eggs as well mock and 12

uninfected control samples were incubated at 37.5uC and 65%

humidity for 21 days. The viable embryos (86%) initiated growth

upon incubation, and after 21 days the chicks that hatched were

kept in incubatory for 24 h and thereafter at 32uC for three weeks.

Obtaining samples for DNA extraction
The peripheral blood mononuclear cells and solid tissues from

48 kDNA-mutated and from 22 control and mock (shells pierced

but not T. cruzi or kDNA inoculated) chickens were processed for

DNA extraction. DNA was also extracted from semen collected

from roosters, and from nonfertilized eggs (,5 mm) from hens

hatched from fertile eggs inoculated with T. cruzi [44]. The

mitochondrial kDNA was obtained from T. cruzi epimastigote

forms as described elsewhere [45].

Primers and probes used
The primers used for PCR amplifications and the thermal

conditions are shown in Table 1. The probes used in Southern

blot hybridizations were: 1) Wild-type kDNA (,1.4 kb) minicircle

sequences purified from T. cruzi epimastigote forms; 2) kDNA

minicircle fragments (362 bp) obtained by NsiI digests of wild-type

kDNA; and 3) nDNA repetitive sequence (188 bp) obtained by

amplification of the parasite DNA with the Tcz1/2 primers. The

probes were purified from 1% agarose gels.

Southern blot and PCR analyses
Genomic DNAs from infected chicks and uninfected controls

were templates for PCR with specific T. cruzi nDNA Tcz1/2 [46]

and kDNA primers s35/s36 [47]. The standard PCR procedure

consisted in using 100 ng template DNA, 0.4 mM of each pair of

primers, 2 U Taq DNA polymerase, 0.2 mM dNTP and 1.5 mM

MgCl2 in a 25 mL final volume. The sensitivity of Tcz1/2 primers

was determined in a mix of 200 ng chicken DNA with serial

dilutions of T. cruzi DNA (from 1 ng to 1 fg) and the standard

procedure was carried out with same concentrations of reagents

used in test experiments with chicken DNA alone. The

temperature used was 95 uC for 5 min, 30 cycles of 30 secs at

95 uC/30 secs at 68 uC/1 min at 72 uC with 5 min final extension

before refrigeration. The amplification products were analysed in

1.3% agarose gel, transferred to a positively-charged nylon

membrane (GE Life Sciences) by the alkaline method for

hybridization with specific probes labeled with [a-32P] dATP

using Random Primer Labeling Kit (Invitrogen, Carlsbad, CA).

Southern hybridizations were performed with MboI and/or with

EcoRI (Invitrogen) digests of DNA samples of body tissues from

uninfected control chickens and from chickens hatched from eggs

inoculated with virulent T. cruzi forms. The enzymes used made

single cuts in minicircles. The digests of DNA from T. cruzi were

subjected to electrophoresis in 0.8% agarose gel at 50 V overnight

at 4uC. The gel transferred to positively charged nylon membrane

was hybridized with radio labeled kDNA probe. The membrane

was washed twice for 15 min at 65 uC with 2X SSC and 0.1%

SDS, twice for 15 min at 65 uC each with 0.2X SSC and 0.1%

SDS, and autoradiograph for variable periods of time.

59 RACE and sequencing
The identification of T. cruzi kDNA minicircle integrated into

the chicken genome was first shown using a standard protocol for

59-RACE [48]. The amplification products were cloned directly in

pGEM T Easy vector. The clones confirmed by DNA hybridiza-

tion with a radioactively labeled wild-type kDNA probe were

sequenced commercially (AY237306, FN600577).

Table 1. Probes used in the tpTAIL-PCR amplifications.

Primer Target DNA Sequence Tm*

S 34 T. cruzi kDNA 59 ACA CCA ACC CCA ATC GAA CC 39 57,9

S 67 T. cruzi kDNA 59 GGT TTT GGG AGG GG(G/C) (G/C)(T/G)T C 39 60,1

S 35 T. cruzi kDNA 59 ATA ATG TAC GGG (T/G)GA GAT GC 39 59,4

S 36 T. cruzi kDNA 59 GGT TCG ATT GGG GTT GGT G 39 57,9

Gg1 G. gallus 59 AGC TGA TCC TAA AGG CAG AGC 39 60.1

Gg2 G. gallus 59 CTG AGC CTC TGC TTT GAA A 39 56.8

Gg3 G. gallus 59 TTT CAA AGC AGA GGC TCG G 39 60.1

Gg4 G. gallus 39 GCT CTG CCT TTA GGA TCA GCT 59 64.2

Gg5 G. gallus 39 AGC AAC TCA GCG TCC ACC TT 59 62.3

Gg6 G.gallus 39 CTG TTA GCA TGA GGC TTC ACA A 59 60.4

XeCRs-1a G. gallus 59 ATW TCW GTS TTT GCA GAT GAC ACA 39 60.4

XeCRs-2 G. gallus 59 CTT WGT TGC CCT YCT CTG KAC YCT CTC YA 39 66.6

XeCRs-3 G. gallus 59 TGT GTC ATC TGC AAA SAC WGA WAT 39 65.3

XeCRs-4 G. gallus 59TRG AGA GRG TMC AGA GRA GGG CAA CWA TG 39 67.9

*Tm = average annealing temperature uC.
aXeCrs primer sets were a gift from Professor Dusan Kordis to Dr. Jiri Hejnar, Czech Academy of Sciences, Praha.
doi:10.1371/journal.pntd.0001000.t001

Autoimmune Chagas Disease
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tpTAIL-PCR, validation of the tpTAIL-PCR, cloning and
sequencing

A modification of the TAIL-PCR technique was used [34,49],

which combined kDNA primers with primer sets obtained after

alignment of chimera sequence AY237306 within the loci

NW_001471687.1 at the G. gallus genome. In the first round of

amplifications, each reaction included 200 ng template DNA,

2.5 mM MgCl2, 0.4 mM of kDNA primers (S34 or S67), 0.2 mM

dNTPs, 2.5 U Taq Platinum (Invitrogen, Carlsbad, CA). The

kDNA primers were used in combination with 0.04 mM of Gg

primers (Gg1 to Gg6, Table 1), separately. The targeting primers

annealing temperatures ranged from 57.9 to 60.1 uC for kDNA

primers, and from 59.9 to 65.6 uC for CR-1 primer sets (Table 1).

These temperatures are higher than those (,45 uC) required for

the arbitrary degenerated primers used in the TAIL-PCR [49].

The temperature and cycles used (MyCycle Termocycler, Bio-Rad

Laboratories, Hercules, CA) are described in a previous paper (34).

In the second round of amplifications, PCR products were diluted

1:40 (v/v) in water. kDNA primers S35 and S35 antisense were

substituted for the nested ones, along with the same Gg primers. In

the third step, PCR products of tpTAIL-PCR 2 were diluted 1:10

(v/v) in water and the Gg primers were combined in the reaction

with S67 antisense or S36, separately. PCR products of the last

amplification that hybridize with kDNA probe were cloned

directly in pGEM T easy vector (Promega, Madison, WI). Clones

selected by hybridization with kDNA probe were sequenced

commercially. The validation of the tpTAIL-PCR was determined

in a mix of 300 pg of kDNA from T. cruzi with 200 ng of DNA

from control birds never exposed to kDNA. The temperature and

amplification cycles were the same used for the test birds’ DNA.

Chagas disease clinic manifestation
Growth and development of chickens hatched from T. cruzi

infected eggs and of healthy controls hatched from non-infected

eggs were monitored daily for mortality and weekly for disease

manifestations. Clinical abnormalities in those chickens were

detected by inspection and by disclosure of arrhythmias and of

increasing heart size by electrocardiograph (ECG) recordings. A

one-channel model apparatus was used for ECG recordings with

standard 1 mV/cm and speed of 25 mm/sec. The electrodes were

placed under the wing pits and on the back of the legs after removal

of feathers and skin cleansing with the chicken in supine position.

Chickens were submitted monthly to ECG recordings of frontal

leads AVR, AVL and AVF, and assessment of deviation of mean

electrical axis to the left, which is suggestive of heart enlargement,

were obtained. The ECG recordings allowed evaluation of mean

electrical axes, heart rates and arrhythmias. These experiments

included equal number of control chickens for comparison.

Pathology and immunochemical analyses
Heart and body weight indexes were obtained after natural deaths of

kDNA-mutated chickens. For each experimental case, a control

(kDNA- the negative) chicken of the same age and gender was

sacrificed, and the heart weight (g)/body weight (kg) indexes were

obtained. Tissues removed from the heart, esophagus, intestines,

skeletal muscle, lungs, liver, and kidneys were fixed in buffered 10%

formalin (pH 7.4), embedded in paraffin and cut to 4 mm thick sections

for histological analyses after Hematoxylin-Eosin (HE) staining. Tissues

that were harvested from embryos and from chicks at set times were

bisected so that half could be fixed in 0.02% glutaraldehyde prepared

in phosphate buffered saline (pH 7.2) and stained with X-Gal (43).

X-Gal-stained tissues were then fixed in paraformaldehyde. Paraffin

embedded tissues sections were mounted by standard methods for

microscopic examination. Sections showing blue cells were subjected to

incubation with a human Chagas diseased antiserum with specific anti-

T. cruzi antibody 1:1024 [12] and immunofluorescent staining with a

fluorescein-conjugated rabbit anti-human IgG for colocalizing embryo

cells harboring T. cruzi.

Phenotyping immune system cells in heart lesions
Tissue sections of heart from kDNA-positive and from control

kDNA-negative chickens were separated for phenotype immune

effectors cells. The slides embedded in paraffin were placed at 65uC
for 30 min to melt wax previous to submission to four baths in

100% to 70% xylene and then in absolute ethanol PBS for 5 min

each. The slides rinsed in distilled water were air dried treated with

the following antibodies: 1) Mouse anti-chicken Bu-1 (Bu-1a and

Bu-1b alleles, Mr 70–75 kDa) Mab AV20 recognizing monomor-

phic determinant on the B cell antigens of inbred chickens. 2) Mouse

anti-chicken CD45, Ig isotype IgM1k specific to chicken thymus

lineage cells (Mr 190 to 215-KDa variant). 3) Mouse anti-chicken

TCRcd (Mr 90-kDa heterodimer) Mab specific to thymus

dependent CD8+cd T cells. 4) Mouse anti-chicken Mab CT-8

specific to chicken a chain (Mr 34 kDa) recognizing the CD8 cells in

thymocytes, spleen and peripheral blood. 5) Mouse anti-chicken

KuL01 exclusively recognizing monocytes/macrophages of the

phagocyte system. The monoclonal antibodies were fluorescein- or

R-phycoerythrin-conjugate obtained from SouthernBiotech, Bir-

mingham, AL. After incubation with specific anti-phenotype

antibody the slide was washed three times with O.1 M PBS,

pH 7.4, 5 min each. At the end the slide was washed trice with PBS

and assembled with buffered glycerin for exam under a fluorescent

light microscope with emission filter of wavelength 567 and 502 nm,

respectively, to detect red and green fluorescence-labeled cells.

Data analyses
The chicken genome database (http://www.ncbi.nlm.nih.gov/

genome/seq/BlastGen/BlastGen.cgi?taxid=9031) was used for

BLASTn sequence analyses. CLUSTALW alignments were

performed and statistical significance (p,0.001) was determined

for scores (e-values) recorded. The GIRI repeat masking algorithm

CENSOR (http://girinst.org/censor/index.php) was employed

for localization of different classes of repeats in chimeric

sequences. The Kinetoplastid Insertion and Deletion Sequence

Search Tool (KISS) were employed to identify potential gRNAs in

the kDNA sequences [50]. The KISS database comprises

Trypanosoma brucei and Leishmania tarentolae minicircle and maxicircle

as well as a work bench for RNA editing analysis in kinetoplastids

[50,51] with the aid of WU-Blastn-modified-matrix [52]. Also,

T. cruzi sequences (http://www.biomedcentral.com/content/

supplementary/1471-2164-8-133-s1.fas) were used to search-in

gRNAs in the kDNA-host DNA chimera sequences. Student’s t

test was used to detect significant differences between deviations of

electric axes in the ECG tracings in kDNA-positive and in control

healthy chickens, and between heart/body weight indexes

obtained in the experimental and control groups. The Kol-

morov-Smirnov test was used to detect mortality ratios significant

differences between groups of chickens hatched from T. cruzi

inoculated eggs and from mock control.

Results

Trypanosoma cruzi short run infections in embryonated
chicken eggs and parasite-free inflammatory
cardiomyopathy

To separate possible roles played by parasite persistence

and autoimmunity in the pathogenesis of the inflammatory

Autoimmune Chagas Disease
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Chagas heart disease seen in T. cruzi-infected mammals, active

infection coexisting with any mechanism of tissue inflammation

had to be eliminated [19]. The variable of parasite persistence was

removed by using a ‘clean’ host model [10, 42, and 53]. Thus, we

used chickens refractory to T. cruzi infections and performed

invasion studies early in their embryonic life. We inoculated 100

T. cruzi trypomastigotes into the air chamber of 60 stages X

chicken eggs prior to incubation. The infection was established in

the embryo cells (Figure S1A to E), and embryonic tissues

collected on the second, fourth, and eighth days postinfection

produced nDNA and kDNA amplifications; interestingly, tissue

collected on the tenth, 12th, 18th and 20th days yielded

amplification products only for kDNA (Figure 1A). To avoid

the possibility of very low level of parasitism remaining in the

embryo, we used a PCR assay with Tcz1/2 primers, and the

amplicons obtained were subjected to hybridization with the radio

labeled 188-bp nDNA probe to increase sensitivity of the

technique [54,55]. This assay can detect 10 fg of T. cruzi DNA

(Figure 1B), which is 24-fold below the amount found in the

diploid parasite [22–24].

Figure 1. Elimination of Trypanosoma cruzi infection early in Gallus gallus embryonic development. A) Top panel shows 330 bp bands
formed by PCR amplified minicircles kDNA templates harvested at several stages of the chicken embryonic development, after hybridization with a
specific probe; Bottom panel shows bands formed by PCR amplified from same embryos after separation in 1% agarose gel and hybridization with a
specific nDNA probe; the 188 bp nDNA band was diagnostic of the parasite persistence in the host tissue. B) Sensitivity of the PCR with nDNA primers
Tcz1/2. Lanes 1 and 2, control DNA from kDNA negative and from kDNA-mutated chickens; Lanes 3 to 7, mix of 200 ng of control chicken DNA with
increasing amounts of T. cruzi DNA, respectively: 1 fg, 10 fg, 1 pg, and 100 pg, and 1 ng. The hybridization with the radiolabeled 188-bp probe
improved the technique sensitivity (10 fg), which reached 24-fold below the diploid T. cruzi total DNA.
doi:10.1371/journal.pntd.0001000.g001
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Among 48 T. cruzi-infected eggs that sustained embryo

development, 28 (58.8%) hatched healthy chicks and 20 (41.2%)

resulted in embryo liquefaction during the first week of growth

(45%), and in deaths either at hatching (31%) or within one week

after hatching (24%). The histopathology of whole body tissues

from chicks that were found dead at hatching revealed severe

inflammatory infiltrates and lyses of self tissues in the liver, kidneys,

intestines, skin, lung, skeletal muscles and heart (not shown). Four

chicks showing retarded growth and respiratory distress died

during the first week of life. Those chicks had heart failure with

cardiomegaly and inflammatory infiltrates with destruction of

nonparasitized heart cells (Figure 2). None of these findings were

present in 36 mock control eggs inoculated with 10 ml of culture

medium in the air chamber, neither in 12 non-infected control

eggs. In the control groups were found dead embryos (15.4%) in

the first week of growth. The mortality ratios differences between

groups of T. cruzi inoculated eggs and controls were highly

significant (p,0.005).

Although the refractory nature of birds to T. cruzi is well known

[10,42,53], we documented the absence of the active infection in

each of 12 parental kDNA-positive (FO) chicks showing negative

blood culture in axenic liver infusion-tryptose medium and

negative blood inoculations in weaning mice. In the positive

control tests, 50 ml aliquots from suspensions of blended tissues

(50 mg/1 ml PBS, pH 7.4) from five day-old embryos, which had

received T. cruzi in the air chamber, were inoculated in the

peritoneal cavity of weaning mice and in axenic culture medium

and yielded, respectively, blood trypomastigotes and epimastigote

forms.

To further dissociate the kDNA retention event from the

presence of active infection, we inoculated naked minicircle

sequences in the air chamber of eleven embryonated chicken eggs.

Absence of kDNA PCR products from these embryos tested

weekly prior to hatching indicated that transfer of minicircle

sequences to the chicken genome required a living T. cruzi

infection in first week of embryonic growth. With this respect,

further important information yet could be obtained in the

crosskingdom model system, aiming at the documentation of the

kDNA integration in the chicken genome, which were considered

deemed necessary to clarify the pathogenesis of the parasite-free

cardiomyopathy in chicks hatched from the T. cruzi-infected

embryonated eggs.

Retaintion of parasitic mitochondrial kDNA minicircle
sequences

Having shown that the live T. cruzi infections were eradicated by

the chick innate immune response after 10 days of embryonic

development we fathomed the parasite mitochondrial kDNA alone

Figure 2. Trypanosoma cruzi-free inflammatory myocardiopathy in one week-old chick. A) Cardiomegaly in a chick hatched from T. cruzi
inoculated egg. B) Histopathology showing severe inflammatory infiltrates and non-parasitized heart cell lyses by cytotoxic lymphocytes. C) Normal
heart size of a mock control chick. D) Normal heart histology of control chick. H-E staining, magnification 200 X.
doi:10.1371/journal.pntd.0001000.g002

Autoimmune Chagas Disease

www.plosntds.org 6 March 2011 | Volume 5 | Issue 3 | e1000



that was shown in Figure 1A. The DNA templates from

peripheral blood cells of F0, F1, F2 and F3 chickens (Table S1)

were subjected to direct PCR amplifications, cloning and

sequencing. A total of 25 kDNA minicircle sequences were

obtained with 4046150 nts comprising conserved and variable

minicircle sequence fragments (EMBL accession numbers:

FR719694 to FR719718). In view or the reported hypervariability

of the kDNA minicircles [30,31] it was interesting to observe that

64% of these sequences retained in the chicken genome showed

high similarity (e-values 5e-45 to zero) with those resulting from

our investigations in humans [34]. This finding suggested that

some classes of kDNA minicircles from T. cruzi may be

preferentially retained in the vertebrate host, and that the

minicircle sequences could be possibly integrated in the chicken

genome [34,37–39].

Lateral kDNA transfer (LkDT)
The documentation of parasite-free inflammatory cardiomyop-

athy (Figure 2) in chicks hatched from eggs that had received the

T. cruzi inoculations incited us to continue the investigation about

kDNA integrations and resulting genotype alterations in the

chicken model system. DNA templates were obtained from twelve

chickens hatched from infected embryos, which showed T. cruzi-

kDNA amplicons in the absence of parasite nDNA (Figure 3A).

In the T. cruzi-free control experiment 12 embryonated chicken

eggs and 36 mocks were subjected to PCR, and neither nDNA nor

kDNA was detected. Therefore, it was clear that kDNA alone was

transferred to the chick genome during the transient T. cruzi

embryonic infections. The horizontal transfer of kDNA minicircle

sequences to parental (F0) chicken genomes could have physio-

pathological consequences that would be valuable in a model to

study the pathogenesis of chagasic heart disease. Therefore, F0

birds were raised for crossbreeding. The F1, F2, and F3 progeny

tested positive for the kDNA in lack of nDNA, indicating that the

T. cruzi infection occurring early in the embryonic developmental

process generated mature chicken with kDNA integrated into

gonadal tissue (Figure 3B).

Vertical kDNA transfer (VkDT)
Sperm and ova from birds hatched from T. cruzi-infected eggs

was examined because it was fundamental to confirm vertical

transfer of minicircle sequences to progeny via the germ line. DNA

templates of germ line cells from roosters and hens yielded PCR

amplicons with kDNA s35/s36 primers but lacked nDNA

amplification with the Tcz1/2 primers (Figure 3C). Crossings

of kDNA-mutated F0 birds generated F1, F2 and F3 progeny and

each sibling showed amplicons of minicircle alone. A pedigree

depicting LkDT into parentals and VkDT into chicken’s progeny

is shown in Figure S2.

In control experiments template DNAs were subjected to PCR,

and neither nDNA nor kDNA was detected. Southern blot

analyses of EcoRI and of MboI digests of DNA from body tissues

(blood mononuclear cells, heart, skeletal muscle, liver and kidney)

of parental F0, and offspring F1 and F2 progeny revealed various

size bands with a kDNA-specific probe (Figure S3A and B). The

various positions occupied by the kDNA bands in Southern blots

revealed that minicircle sequences were integrated in the parental

and offspring chicken genomes.

Thus, chickens with kDNA integrated into their germ line and

somatic cells in the absence of the infection were generated. The

detection of kDNA signals on fragments of distinct sizes from

unintegrated minicircles in the heart DNA of chickens combined

with the absence of T. cruzi nDNA attests to the success of the

integration event and of the subsequent eradication of the

infection.

Mapping Trypanosoma cruzi minicircle integrations in the
Gallus gallus genome

The difficulty in demonstrating randomly contemporaneous

eukaryotic interspecies DNA transfer may be explained partially

by the inaccessibility of those events to an effective methodological

approach. We obtained by chance a chimeric kDNA-chicken

DNA sequence (AY237306), which was amplified by the 59-RACE

technique. This model sequence was used to construct primer sets

Gg1 to Gg6 (Table 1) annealing upstream and downstream to a

minicircle integration event into the locus NW_001471687.1. The

substitution of traditional PCR degenerate primers by host DNA-

specific primer sets Gg1 to Gg6 eliminated the main difficulty and

permitted demonstration of the junctions of kDNA-host DNA

chimeras, employing a targeted-primer thermal asymmetric

interlaced-PCR (tpTAIL-PCR). A scheme with the strategy used

to amplify the kDNA integration event in the G. gallus genome is

shown in Figure 4. The description of the modified tpTAIL-PCR

is given in the Methods section, and a detailed flowchart with

primer set combinations used is shown in Figure S4A to C. The

tpTAIL-PCR was then employed to amplify minicircle-host DNA

junction sequences from our chickens. The amplicons that tested

positive with a radioactive kDNA probe were cloned and

sequenced (FN598971 to FN590000, FN599618, FN600557,

and FR681733). These results are shown in Table S1.

In control experiments the tpTAIL-PCR products did not test

positive with the specific kDNA probe. Validation experiments

consisted of tpTAIL-PCR amplifications of a mix of T. cruzi kDNA

with control chicken DNA (Figure S4A to C). Twenty-three

amplicons that tested positive with the wild-type kDNA probe

showed only kDNA sequences with no host contribution.

Chimeric sequences with minicircle-host DNA junctions were

obtained from chickens testing positive by PCR with the

minicircle-specific s35/s36 primers. Thirty-four chimeras (total

F0, 8; F1, 17; F2, 7; and, F3, 2) with average 5556153 nts (kDNA

296678 nts and host DNA 2816148 nts) were documented in 14

chromosomes. E-values for each of the chimeras were statistically

significant (p,0.001; kDNA, 1e206 to 2e2150; host DNA, 1e253 to

0). Three of these chimeras were obtained by using chicken repeat-

1 (CR-1) specific primers (FN598975, FN598994, and FN598998).

The minicircles spread to various loci of chicken chromosomes are

shown in Table S1. Overall, 64.6% of kDNA-mutations entered

in the macrochromosomes (1, 38%; 2, 18%; 3 18%; 4, 23%; and,

5, 3%), 17.7% in the intermediate, and 17.7% in the microchro-

mosomes of the chicken genome. A map showing the heredity of

the kDNA integrations in those chromosomes loci is depicted in

Figure 5. BLASTn analyses revealed that Gg1 to Gg6 primer sets

aligned to multiple loci in 18 chicken chromosomes with the

following frequencies: Gg1, 19; Gg2, 39; Gg3, 28; Gg4, 19; Gg5, 3;

and, Gg6, 23. Thus the tpTAIL-PCR achieved reproducible

random amplification of kDNA-host DNA integrations in a variety

of chromosomes. The alignment of chimeric sequences from F0

(AY237306) and F1 (FN600557) chickens documented vertical

transfer of the kDNA mutation in non-coding locus NW_

001471687.1 of chromosome 4 (Figure S5A). In addition, kDNA

mutations in the dystrophin gene locus NW_001471534.1 at

chromosome 1 from F1 (FN598991) and F2 (FR681733) progeny

showed perfect alignments (Figure S5B). The heritability of the

kDNA mutations was documented; the fixation of the mutations in

the chicken model can be further spanned through obtaining

host’s specific primer sets anneal to the kDNA-mutated loci and the

full sequencing of the targeted chromosome.
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Figure 3. Retention of the kDNA minicircle from Trypanosoma cruzi in the Gallus gallus genome. A) PCR amplification of kDNA from 12
adult chickens hatched from T. cruzi-infected eggs with primer set s35/s36 and hybridization with NsiI-digested, whole kDNA labeled as probe. The
lower panel shows the absence of nDNA by the Tcz1/2 primer set, hybridized with a 188 bp probe. B) G. gallus somatic cell’s DNA templates from F3
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End-joining microhomologous recombination
intermediates kDNA integration

Due to the CA-rich microhomologies in chimeric sequences

detected in the genomes of Chagas disease patients [34]; we

conducted a bioinformatic search for similar features in the

kDNA-mutated chick sequences, revealing CArsb repeats between

kDNA-host DNA junctions. Sequence analyses of CArsb repeats

intermediate to the kDNA minicircle integration into the chicken

genome revealed consensus I – ACACCAACCCCAATCGA-

ACCCAAACCAAA, present in seventeen clones, and consensus

Figure 4. The tpTAIL-PCR strategy used to detect Trypanosoma cruzi kDNA integration into the Gallus gallus genome. A) A chimera
sequence with a fragment of kDNA minicircle conserved (dark blue) and variable (light blue) regions integrated in the locus NW_001471687.1 at
chromosome 4 (AY237306) of the chicken genome (green) was used to obtain the host specific primer sets (Gg1 to Gg6). B) The tpTAIL-PCR
amplifications were initiated (primary cycle) by annealing of the kDNA-specific S34 or S67 primers in combination with chicken-specific Gg1 to Gg 6
primers. Diluted products provided template for the secondary cycle with the S35 (sense/antisense) primers and the combinations of Gg primers. In
the tertiary cycle a dilution of the secondary products was subjected to amplification with kDNA S36 or S67 antisense primers in combination with
the Gg primers. C) These amplification products were separated in 1% agarose gels and transferred to nylon membrane, hybridized with the specific
kDNA probe, then cloned and sequenced. The combinations of kDNA and targeted Gg1 to Gg6 are shown on top of the gel. The sequential PCR
reactions amplified target kDNA-host DNA sequences with kDNA minicircles (blue) and the avian sequence (green).
doi:10.1371/journal.pntd.0001000.g004

progeny, which were separated in 1% agarose gels, revealed the minicircle 330-bp band in the absence of nDNA by using specific primer sets and
hybridization with the 188 bp probe. C) G. gallus germ line DNA templates from parental 1 and 2, and from mated progeny in the F1 (8 and 9) and F2
(19 and 20) amplified with primer sets s35/s36 or Tcz1/2 and probed as described.
doi:10.1371/journal.pntd.0001000.g003

Autoimmune Chagas Disease

www.plosntds.org 9 March 2011 | Volume 5 | Issue 3 | e1000



II – TAYACCMACCCCTCCCAAAACC, found in the flanking

region of eleven chimeras. CArsb microhomologies in chimeric

sequences secured from kDNA-mutated chickens are depicted in

Figure S6A and B. These repeats found coding regions in the

chicken genome concentrated (52.4%) in chromosomes 4 (13. 5%),

3 (5%), 2 (20.4%) and 1 (13.5%). Additionally, CArsbs were also

present in long terminal repeat Hitchcock transposons (FN598974

and 599618), and in CR-1 non-LTR retrotransposons (FN598975,

598994, and 598998), and L1-24xT (FN598995). The consensus

microhomologies in coding regions, chicken LTRs and non-LTRs,

and minicircles implied that microhomology-mediated end-joining

[56] was mediating integration of exogenous sequence into host

chromosomes.

Minicircle disruption of host genes
The data shown in Table S1 were obtained from DNA

templates of F0, F1, F2 and F3 chickens with inflammatory

cardiomyopathy. A range of minicircle integration events

promoting rupture of ORFs of those chickens is shown in Table
S2. Twenty kDNA integrations (,60%) were detected in coding

regions of various chromosomes. These integrations were seen

frequently in genes encoding protein kinases (20%) playing

important roles in cell division and differentiation, in the

dystrophin gene (10%), which encodes a high molecular weight

protein connecting the cytoskeleton to muscle and nervous cell

membrane, and in growth factors (10%), transcription factors

(5%), and immune factors (5%). Other important genes encoding

GTPase, adenylate cyclase, and adhesion molecules related to

macrophage recruitment and blood vessel maturation were

disrupted. In one case a gene expressed in blood mononuclear

cells from patients with systemic lupus erythematosus (NW_

001471554.1) was ruptured by kDNA integration (FN598994). A

minimum of 12 mutations were observed in one chicken with

severe inflammatory cardiomyopathy. These mutations may skew

coding regions of chromosomes with subsequent functional

alterations such as cell cycle regulation, clonal proliferation of

immune system cells, and tissue injury [57–61]. Interestingly,

documented clinic and pathologic manifestations were clearly

associated with the kDNA-mutations in the locus of the dystrophin

gene (Figure S5) in two chickens with muscle weakness,

cardiomegaly and heart failure.

Identification of ORFs in chimerical sequences
The chimerical sequences that were obtained from F0, F1, F2,

and F3 kDNA-mutated chickens (Table S3) presented ORFS with

the potential for translation of hybrid proteins. A total of 13 ORFS

(43.3%) comprised kDNA alone, and 17 ORFs (56.7%) were

chimeras formed by kDNA-host DNA. A majority of the ORFs

(77%) encoded proteins without significant similarity, but 20% of

the ORFs translated hypothetical proteins with significant similar-

ities (e-values ranging from 2e-06 to 2e-22) with other proteins.

Furthermore, one ORF encoding the reverse transcriptase from

G. gallus (locus AA49027.1) showed highly significant scores (4e-29).

In the model system used each ORF encoding putative neo-antigen

was generated after the invasive T. cruzi replicated in the embryonic

tissues prior to the development of the chick immune system in the

first week of growth. Therefore, a functional role for ORF’s encoded

neo-antigen in the pathogenesis of Chagas disease did not hold

promise in the absence of humoral autoimmune factors in the

actively tolerized kDNA-mutated chicken [62–66].

Identification of gRNAs in the kDNA minicircles
The chimerical sequences showing kDNA integrated into the

host chicken chromosomes presented hypervariable minicircle

Figure 5. Heredity of the integrations of Trypanosoma cruzi kDNA minicircles into several loci of the chicken genome. Rows A, B, and C
show the integrations, respectively, in the macrochromosomes, in the intermediate, and in the microchromosomes. The numeral(s) in brackets
indicates the total times an insertion (red bar) was present at a chromosomal locus from animal source shown in Table S1.
doi:10.1371/journal.pntd.0001000.g005
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regions (Table S1) with the potential for gRNA transcription

[29–31,33,35,36]. The analysis of these hypervariable sequences

determined significant similarities with those edited maxicircle

gene sequences in KISS database, using the WU-Blastn-modified-

matrix [52]. This approach allowed the G-U base pairing and

retrieval of sequences with highly significant alignments. In total

the approach revealed putative gRNAs in six out of the 34

chimeras kDNA-host DNA (Table 2). The sequences showing

best alignment scores (e-values 7.9e- 3 to 9.3e-06) showed cognate

gRNAs adequately positioned in the hypervariable region of the

minicircles (Figure 6). Consistently, the gRNAs (5466 nts) were

located 5665 bp from the CArsb-I. Furthermore, the predicted

aminoacid similarities of 96.1, 89.4 and 95.2%, respectively, for

the NADH dehydrogenase subunit 7 (NAD7), ATPase 6, and

ND8 edited T. brucei and T. cruzi matched genes held high

confidence to the identification of gRNAs in the integrated kDNA

minicircles. The functional consequence of the parasite-derived

gRNA editing minicircles in the vertebrate host is presently

unknown.

Clinic manifestation of heart disease in kDNA-mutated
chickens

We inspected the kDNA-mutated and as well control chickens

daily for mortality and weekly for clinic manifestations of disease.

Often, the kDNA-mutated chickens showed signs of shortness of

breath and impaired oxygenation of blood that evolved to severe

cyanosis (Figure 7A). The electrocardiograms recorded at three

and six months of age (Figure 7B) in 12 F0 kDNA-positive birds

and in 22 control chickens never exposed to T. cruzi showed that

controls retained the electric axis at +75u and test birds changed

axis positions to the left from +80 to –115u over time. The heart/

body weight indexes from kDNA-positive F2, F1 and F0 birds

ranged, respectively, from 662, to 6.762, and to 1265, whereas

the control group index was maintained a constant 4.262

(Figure 7C). The differences among high heart indexes from F0

and from F1 kDNA-mutated chickens are statistically significant

from the control low indexes (p,0.05). Survival lengths for the F0

and F1 kDNA-positive birds were shorter for F0 (1264 months)

and F1 (1362 months) than those in the control group (1965

months), and these differences were statistically significant

(p,0.05).

Pathology and pathogenesis
Cardiomegaly was documented in 65% of the kDNA-mutated

adult birds, and absent in control animals free of minicircle

sequences. In the case of F1 hen 9 (Figure 7D) the heart weight

was over three times that of a control bird of same gender and age

(Figure 7E). Pleural and peritoneal effusions were collected in

kDNA-positive birds with cardiomegaly and heart failure. The

microscopic examinations of sections from the myocardium

showed severe infiltrates of immune system effector lymphocytes

and target cell lyses (Figure 7F). This destruction of parasite-free

target fiber by effector cells was typical, characterizing a minimal

rejection unity in the hearts of kDNA-mutated chickens (red

circle). These microscopic features were absent from control

chicken hearts (Figure 7G). Furthermore, the coalescence of

several rejection units resulted in diffuse myocarditis with massive

destruction of the myocardium in chickens showing cardiomegaly.

The intracardiac parasympathetic ganglion also showed mononu-

clear cell infiltrates and destruction of neurons (Figure H). These

pathologic features were neither encountered in intracardiac

ganglia nor in myocardial sections from controls (Figure 7I).

The phenotype of immune system mononuclear cell infiltrates

in sections of myocardium from kDNA-positive birds revealed a

lack of Bu-1b treated B-cells associated with humoral immune

responses (Figure 7J). By contrast, sections of myocardium of

kDNA-positive birds treated with anti-CD45, anti-CD8cd, or anti-

CD8a showed specific staining of immune lymphocytes that carry

out lysis of target heart cells (Figure 7K, L and M). Treatment of

those sections with specific antibodies revealed that some cells in

the myocardium infiltrate bore the macrophage phenotype

(Figure 7N). In control experiments, sections from myocardium

of control birds (white-frame inserts) showed neither markers of

immune system cells nor tissue destruction. A possible role played

by Th17 and Treg immune responses [67–71] in the destructive

myocardial lesions requires investigations in the chicken model.

Actually, the typical inflammatory type autoimmune myocar-

ditis depicted in F0 and F1 chickens is also observed in F2

progeny, albeit to a much lesser frequency. A F2 chicken that

showed cardiomegaly and succumbed to heart failure (Figure S7)

had the kDNA mutation in an exon of the dystrophin gene

(FR681733). The inflammatory cardiomyopathy with lymphocyte

rejection of target heart cells, typical of the autoimmune Chagas-

like disease in the kDNA-mutated chicken model system, was

attenuated in the F3 generation, which reached the adult life two

years after hatching without clinical signs of a heart disease.

Accordingly, the kDNA mutations were ranked in four levels: a)

High letality and early embryonic death; b) Age group specific

heart disease; c) Neutral in lack of disease manifestation; d)

Possible beneficial, yet difficult to demonstrate. In this regard,

attenuation of a kDNA mutation was defined by the decreasing

levels of manifestations encountered in the chicken model system.

Discussion

To separate the roles that parasite persistence and autoimmune

rejection of target tissues play in the pathogenesis of the Chagas

heart disease, implementation of an animal model that does not

retain cryptic T. cruzi infections was essential [10]. In this respect,

the mature chicken immune system is considered a tight biological

barrier against T. cruzi. In this study we describe a G. gallus model

that fulfills the criterion: T. cruzi infection is eradicated by the

innate immunity present in the chicken embryo upon development

of its immune system by the end of the first week of growth [10].

Here we demonstrate that chicks hatching from T. cruzi-inoculated

eggs eliminate the live infection, lacking the parasite nDNA.

Additionally, these chicks retain T. cruzi minicircle sequences in

their genome, and these mutations are transferred to their

progeny. The kDNA mutations integrated in coding regions of

multiple chromosomes. The integrations ruptured open reading

frames for transcription and immune system factors, phosphatase

(GTPase), adenylate cyclase and phosphorylases (PKC, NF-Kappa

B activator, PI-3K) associated with cell physiology, growth, and

differentiation [57–59]. Severe myocarditis due to rejection of

target heart fibers by effector cytotoxic lymphocytes is seen in the

F0 and F1 of the kDNA-mutated chickens, showing an inflam-

matory cardiomyopathy similar to that seen in Chagas disease.

Interestingly, heart failure and skeletal muscle weakness were

directly associated with the kDNA mutations and rupture of the

dystrophin gene in chromosome 1 of adult chickens [72,73].

Moreover, the contribution of various mutations present at other

loci in the genomes should be emphasized, because those chickens

with kDNA integrations spread throughout their chromosomes

also presented the self-tissue destructive pathology. Cardiomegaly

and heart failure recorded for F0 and F1 kDNA-positive birds

consistently attenuate in F2 and F3 progeny. Thus kDNA-integra-

tions in some chromosome coding regions, generating skewing,

instability, and clonality [60,61,74], may undergo long-range
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intragenomic signaling interactions [75], so as to achieve

physiological balance over forthcoming generations of descen-

dents; in our experimental system, however, the absence of active

T. cruzi infection is clear.

Experimental T. cruzi inoculation of the chicken embryo

highlights the crosskingdom exclusion of infection that prevents

evolutionary consequences resulting from the lateral transfer of

parasite DNA to the bird genome. We document these conditions

to confirm that only a narrow window is open for the infection to

become established within the first week of a chicken embryonic

life. In the absence of a mature immune system barrier, early

intracellular multiplication of T. cruzi in embryo stem cells is

possible. Inoculation was performed at the epiblast stage of chick

development at which all embryonic cells are susceptible to T. cruzi

invasion, and the kDNA can integrate in stem cells that

differentiate both somatic and genital crest precursors of germ

line. If this phenomenon were possible in nature it would create

the opportunity for increasing genetic diversity and evolution of

the species undergoing continuous change on a grand scale over

time [34]. In this regard, four categories of functional kDNA

mutations are described in this study: The high letality mutations

that generate abortions, congenital inflammatory cardiomyopathy,

and early death, in which the genotype modifications by means of

DNA transfer result in pathology incompatible with life (negative

selection) [10]. Age group specific mutations may be attenuated in

a majority of chickens that succumbed to the Chagas-like

inflammatory cardiomyopathy late in adult life. Neutral kDNA-

mutations are probably present in 35% of the chickens not

compromised by heart disease; these neutral mutations may

contribute to genome growth and positive selection. Theoretically,

beneficial mutations may exist [76], but they could not be

identified in three generations of kDNA mutated chickens.

The autoimmunity in Chagas disease was proposed to explain

about a preformed capacity of immune lymphocytes to carry out

an accelerated destruction of non-parasitized target heart cells

within few hours of incubation [16], and, thereafter, it was

suggested that existing cross-reactive antigens in target tissues

would call in the T. cruzi-sensitized lymphocyte cytotoxicity

[77–79]. However, the attempts to reproduce the myocarditis by

immunization of laboratory animals with parasite recombinant

antigens resulted in small infiltrates of mononuclear cells in

absence of clinical symptons and of gross lesions [80–83]. The

molecular mimicry mechanism was suggested to explain the

autoimmunity, whereby cross-reaction of parasite antigen-immune

effector cell against self-antigen on target cell, sharing putative

similar amino acid motifs or three dimensional epitopes, was

required to trigger off self-tissue rejection [84–92]. Accordingly,

mimicring immunogenic cryptic self peptides may become

accessible to auto-reactive T-lymphocytes that escape from the

host’s central and peripheral tolerance mechanisms [93,94]. In this

regard, molecular mimicry between cardiac myosin heavy chain

(residues 1442–1447 AAALDK) and T. cruzi protein B13 (residues

AAAGDK) could generate autoimmunity [85–87], but it was

shown that anti-myosin autoimmune factors was not essential for

cardiac damage [93–95]. So far, gross and microscopic pathology,

and clinic manifestations of Chagas disease have not been

obtained yet, by traditional immunizations with wild or recom-

binant T. cruzi antigens and, therefore, the primary cause of

autoimmunity in Chagas disease was not explained. In this study,

we suggest that the pathogenesis of Chagas disease is genetically

driven.

Herein, kDNA-mutated adult chickens are shown to develop

gross cardiomegaly in association with clinic manifestations similar

to those described for the human disease [10, 12, and 96]. The

lethal cardiomyopathy in the parasite-free chicken model system in

which the destruction of heart cells by lymphocytes is documented

is used to validate the autoimmune pathogenesis of human Chagas

disease. These phenomena were never seen in mock or control

chickens. Interestingly, the chicks that die after hatching show

cardiomegaly and myocarditis, with heart cell destruction by

lymphocytes similar to that described for congenital human

Chagas disease. Moreover, the inflammatory cardiomyopathy that

is the hallmark of human disease was present in a significant

portion of the T. cruzi kDNA mutated adult chickens and their

Figure 6. Representation of the gRNA in the Trypanosoma cruzi kDNA minicircle integrated into Gallus gallus genome. The kDNA
conserved (dark blue) and variable (light blue) fragment (nts 1 to 286) is inserted in the PI-3K serine-threonine related kinase SMG1 (Supressor
Morphogenetic Genitalia) at the locus NW_ 001471454.1. A CA-rich sequence block (CArsbI) microhomology intermediates the kDNA integration into
the PI-3K exon. A gRNA cognate to Tbnd7ed (Table 2) is present in the kDNA variable region (dotted line), which is formed by 55 nts in antisense
direction (arrow). Short arrows indicate positions of kDNA primers.
doi:10.1371/journal.pntd.0001000.g006
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progeny. In those chickens, the intensity of the self destructive

inflammatory process varied from one region to another in the

myocardium; while some lesions are triggered high, others are

intermediary or in a feeble state. Thus, some areas in the heart

may be spared while others may be affected harshly by the

inflammation; the intensity of the process never reaches all the

heart simultaneously, which would not be compatible with

prolonged survival. Such features are evidence of a genetically-

driven autoimmunity with the following progression: i) accumu-

lation of minicircles integrated in germline and somatic cells;

ii) rupture of important genes, such as those regulating cell growth

and differention, and the immune responses; iii) heart damage

produced by lymphocytic infiltrates and lyses of target cells; iv) age-

group specific rates of the disease.

The Chagas-like disease in the chicken shows multifaceted

clinical presentations involving primarily the heart and skeletal

muscles, along with the peripheral nervous systems, leading to

ominous repercussions in the cardiovascular system. These

manifestations can be explained only by the T. cruzi minicircle

sequence integrations at several loci in the genome. The tolerance

mechanism in kDNA-mutated chickens could not discriminate

between self and non-self target tissues because the immune

surveillance, fundamental to keep the self constituents free of the

destructive reactions from the body self-defense apparatus, may be

dampened due to the genotype modifications. The anti-self

lymphocyte destruction of the heart happens when breakdown

of self-tolerance or deregulation of the surveillance mechanism

occurs [62–66]. Thus, cardiomegaly with lymphocyte destruction

Figure 7. Clinical and pathological findings in Gallus gallus with Trypanosoma cruzi kDNA mutations. A) Nine month-old F1 hen displaying
heart insufficiency by cyanosis of the comb (bottom left), and a control hen of the same age showing a bright red comb (top right). B) Deviation of
cardiac axis from a-to-c over a six-month period. C) Increased cardiac heart/body indexes in chickens with kDNA integrations. The heart/body size
indexes showed statistically significant differences (p#0.05) in control and in kDNA-mutated chickens. D) Cardiomegaly (30 g) in a nine month-old
hen that died of heart failure. E) Control heart (8 g) from a nine month-old hen. F to I, H-E, magnification 100X: F) Diffuse myocarditis showing
immune system mononuclear cell infiltrates and lysis of target heart cells. The red circle depicts a minimal rejection unit whereby effectors
lymphocytes destroy a target heart cell. G) Histology of control chicken heart. H) Intracardiac parasympathetic ganglion showing mononuclear cell
infiltrates and neuronal cell lysis. I) Control plate showing normal histology of an intracardiac parasympathetic ganglion. J to N, series of histological
analyses with kDNA-mutated chicken heart; control uninfected chicken heart tissue shown in the inserts: J) Lack of B cells in a destructive heart lesion
treated with anti-Bu-1 monoclonal antibody. K) CD45+ lymphocytes identified (arrows) in heart lesions by a phycoerythrin-labeled specific
monoclonal antibody. L) CD8+cd immune lymphocytes (arrows) involved in severe destruction of the heart. M) Abundant CD8a+ T cells present in
severe lesions with heart cell lysis. N) Mononuclear peripheral cells, monocytes and macrophages in the heart lesions.
doi:10.1371/journal.pntd.0001000.g007
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of heart cells in a genotypically modified crosskingdom parasite-

free model of the human Chagas disease is shown here for the first

time.

Experimental T. cruzi infections of laboratory animals and

natural infections of hundreds of mammal species and of man

reveal a high prevalence of Chagas heart disease and no cancer

[1,8]. This study shows that the key environmental factor

contributing to the development of autoimmunity and self-heart

destruction in the chicken model and in the human Chagas disease

is the T. cruzi infection, during which the transfer of the kDNA

minicircle to the host’s genome occurs. Within this context, the

host’s immune system interacts in the conventional way to afford

partial protection against T. cruzi infection, whereas autoimmune

disease may ensue from genotypically modified T-cells producing

clonal cytotoxicity. An intrinsic feature of the minicircle sequences

in the kDNA mutations may produce genotype alterations with

rupture of genes regulating cell growth and differenciation factors,

but not cancer. We suggest that the generation of autoimmune

disease in mammals and in birds might be an intrinsic feature

stemming from the protozoan kDNA. This hypothesis requires

further investigations.

The typical inflammatory cardiomyopathy is present only in

chickens with somatic mutations hatched from T. cruzi-infected

eggs. These kDNA-mutated chickens show early mortality in

comparison with controls. When these chickens die the conspic-

uous pathologic finding is the inflammatory infiltrates with

destruction of heart myofibers by immune system cytotoxic T-

lymphocytes. The phenotype of immune system cells in the heart

inflammatory infiltrates reveals that a thymus-dependent immune

response, destroying the target tissue is a hallmark for pathogenesis

of Chagas-like heart disease in kDNA-mutated chickens. In this

respect, each kDNA-integrated immune system mononuclear cell

involved in the ‘self’ tissue destruction is essentially a mutated

clone [97], promoting an inflammatory lesion in the chicken heart.

Each clone not withstanding thymic selection is considered an

autoreactive T-lymphocyte repertoire producing the heart lesion,

which is an important risk factor for disease outcome [98,99].

The scattered nature of the minicircle integrations in CA-rich

sites throughout the chicken genome indicates that a large number

of host loci are susceptible to kDNA mutagenesis [32,34,40]. To

determine the full extent of this phenomenon, complete sequenc-

ing of a kDNA-mutated chicken is required to identify the full

cohort of minicircle integrations resulting from a single, specific

infection event; each new introduction of the parasite will give rise

to a unique combination of integrations for a given individual,

resulting in a spectrum of clinical consequences. Although we have

documented the disruption of multiple chicken genes resulting in

compromised immune system self-tolerance that became permis-

sive to autoimmune rejection of target tissue, inflammatory

cardiomyopathy and failure, several integration events may be

associated with these phenotypes. Accordingly, 20 genes and five

X-linked disorders correlate with manifestations of failure in the

genetic etiology of the heterogeneous group of cardiomyopathy in

humans [98–102]. Thus, groups of integration mutations, and

combinations thereof, may explain the clinical symptoms associ-

ated with Chagas disease.

The kDNA-mutated chicken model suggests a parasite-induced

familial genetic disease; the genotype modifications in association

with the autoimmune rejection of the heart originate from

disruption of the tolerance mechanism of ‘self’ recognition by

the host immune system [97]. The genetic control of immune

tolerance present in healthy chickens is impaired in kDNA-

mutated birds with rampant inflammatory cardiomyopathy.

Autoimmunity plays a pivotal role in a substantial proportion of

patients with genetically driven inflammatory cardiomyopathy of

unknown etiology [100–102]. Also, the high risk reported for

familial occurrence of cardiomyopathy in first-generation relatives

suggests disruption of immune response mechanisms early in the

development of the disease, and the identification of inflammatory

infiltrates in the heart is an ominous sign of poor disease outcome.

Further studies of chromosome skewing and instability-generated

long range signaling interactions [60, 61, 74, and 75] are required

to understand the genetically-induced mechanism of rupture of

immune tolerance, and to explaining the attenuation of heart

disease in descendents with genetic modifications.

Genetic mutations may generate myocarditis and dilated

cardiomyopathy in humans, and the identification of underlying

mutations, susceptibility and modifier genes are indispensable for

development of new therapies [98, 101, and 102]. Experimental

treatment of the inflammatory autoimmune cardiomyopathy in

kDNA-mutated chickens may require drug suppression of bone

marrow progenitor of specific T-cell phenotype infiltrating the

myocardium, and transplantation of histocompatible healthy bone

marrow to prevent the rejection of self-tissue. Thus, investigation

in the congenic chicken model is underway, aimed at the

inhibition of inflammatory cardiomyopathy by passive transfer of

healthy, naı̈ve bone marrow cells, and, consequently, an effective

therapy for Chagas disease.

Supporting Information

Figure S1 Trypanosoma cruzi infection established in
Gallus gallus embryo. The dividing T. cruzi amastigotes are

detected in the cytoplasm of 5 day-old chicken embryo

mesodermal and endodermal cells by the specific fluorescein-

labeled anti-T. cruzi antibody and by the X-gal stained b-

galactosidase-expressing parasites. A) The T. cruzi trypomastigote

silhouette is depicted by the fluorescein labeled specific antibody

(dilution 1:128 in PBS, pH 7.4) from a Chagas patient. Insert

shows a fluorescein labeled amastigote parasitic form. B) Hema-

toxilin and eosin stained mesodermal and endodermal tissue from

a control chicken embryo (magnification 100X). C) The control

chicken embryo tissue section does not stain by the treatment with

the fluorescein labeled specific anti-T. cruzi antibody (dilution

1:32). D) T. cruzi growth in endodermal and mesodermal cells from

a chicken embryo is shown by the specific fluorescein labeled

antibody from a Chagas patient. E) Paraffin-embedded section

showing the T. cruzi infected cells colocalized in the same embryo

mesodermal and endodermal tissues by the X-gal stained

b-galactosidase-expressing parasites.

Found at: doi:10.1371/journal.pntd.0001000.s001 (0.57 MB

TIF)

Figure S2 Pedigree showing lineage of chickens with
Trypanosoma cruzi kDNA minicircle sequence integrat-
ed into the genome. The parental hatched from T. cruzi

inoculated egg vertically transferred the kDNA mutations to

progeny F1 to F3. Asterisks refer to chickens subjected to tpTAIL-

PCR, whose amplicons were cloned and sequenced.

Found at: doi:10.1371/journal.pntd.0001000.s002 (0.07 MB TIF)

Figure S3 Direct detection of Trypanosoma cruzi kDNA
in Gallus gallus parental and progeny. Southern hybrid-

izations of (A) EcoRI and (B) MboI digests of chicken heart DNA

separated through a 0.8% agarose gel, blotted and hybridized with

whole minicircle probe. T. cruzi mitochondrial kDNA (Tc) and

uninfected chicken heart DNA were used as positive and negative

controls (c).

Found at: doi:10.1371/journal.pntd.0001000.s003 (1.64 MB TIF)
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Figure S4 The tpTAIL-PCR control and validation
experiments. A) Template DNA from a kDNA-mutated bird

subjected to tpTAIL-PC with different combination of kDNA

primers with Gg1-to-Gg6 primers sets in subsequent amplifications

throughout three cycles, showing an increasing specificity (few

bands) after hybridization with radio labeled kDNA probe on blots

of 1% agarose gel. B) The tpTAIL-PCR unique specificity shown

by a mix of T. cruzi kDNA with control chicken DNA. The

amplification products hybridized with the radio labeled kDNA

probe, which were cloned and sequenced, and revealed kDNA

minicircle only. C) The control tpTAIL-PCR amplification

products from control chicken did not hybridize with the specific

kDNA probe.

Found at: doi:10.1371/journal.pntd.0001000.s004 (2.46 MB TIF)

Figure S5 Vertical transfer of kDNA minicircle from
Trypanosoma cruzi from parental to Gallus gallus
progeny. A) Alignments of chimeras host DNA-kDNA minicircle

transferred from rooster F0 (AY237306) to hen F1 (FN600557),

locus NW_001471687.1 at chromosome 4. B) Ibid, from hen F1

(FN598991) to sibling F2 (FR681733), locus NW_001471679.1 at

chromosome 1.

Found at: doi:10.1371/journal.pntd.0001000.s005 (3.41 MB TIF)

Figure S6 Microhomologies present in Trypanosoma
cruzi kDNA minicircles and in the Gallus gallus genome.
A) Major CA-rich consensus sequence. B) Minor consensus.

Found at: doi:10.1371/journal.pntd.0001000.s006 (1.69 MB TIF)

Figure S7 Chagas-like dilated inflammatory cardiomy-
opathy in a F2 chicken with kDNA mutation in the
dystrophin gene. A) Dilated heart occupying most of the

thoracic cavity (heart weight = 16 g). B) Dark round mononuclear

cells infiltrates and destroys the myocardium of the kDNA-

mutated hen 20 (Table S2). C) Normal heart size (weight 7 g) of a

10-month-old control chicken. D) Normal histology of a control

chicken heart.

Found at: doi:10.1371/journal.pntd.0001000.s007 (0.74 MB TIF)

Table S1 Lateral transfer of Trypanosoma cruzi kDNA minicircle

into Gallus gallus genome and its vertical inheritance by progeny.

Found at: doi:10.1371/journal.pntd.0001000.s008 (0.09 MB

DOC)

Table S2 Integration of Trypanosoma cruzi kDNA minicircle

sequences into coding regions of Gallus gallus.

Found at: doi:10.1371/journal.pntd.0001000.s009 (0.06 MB

DOC)

Table S3 Chimera protein sequences translated from ORFs

formed by Trypanosoma cruzi mitochondrial kDNA minicircles

inserted in the Gallus gallus genome*.

Found at: doi:10.1371/journal.pntd.0001000.s010 (0.02 MB

DOCX)
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