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Abstract

The Stokes–Brinkman equations model flow in heterogeneous porous media by combining the Stokes and Darcy models
of flow into a single system of equations. With suitable parameters, the equations can model either flow without detailed
knowledge of the interface between the two regions. Thus, the Stokes–Brinkman equations provide an alternative to coupled
Darcy–Stokes models. After a brief review of the Stokes–Brinkman problem and its discretization using Taylor–Hood finite
elements, we present a residual-based a posteriori error estimate and use it to drive an adaptive mesh refinement process. We
compare several strategies for the mesh refinement, and demonstrate its effectiveness by numerical experiments in both 2D
and 3D.
c⃝ 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The simulation of flow in porous media has numerous applications, to include reservoir simulation, nuclear waste
disposal, and carbon dioxide sequestration. Such simulation is challenging for a variety of reasons. First, the domains
tend to be fairly irregular, which complicates the model geometry. Second, the geologic formations consist of many
varying materials, with different geologic properties. Third, there are often fractures and vugs within the domain
that alter the effective permeabilities. The standard approach to modeling these types of problems is to couple Darcy
and Stokes and enforce the Beavers–Joseph–Saffman conditions along the interface [2,5,20]. The free-flow regions
(fractures, vugs) are modeled using Stokes flow, whereas the porous region is modeled using Darcy’s law [13,22].
However, the two types of domains are not well-separated in reservoirs, and it may be difficult to determine the
appropriate conditions to enforce along the interface.

We model flow in porous media using the Stokes–Brinkman equations [4,7,16–18], which combine Stokes and
Darcy into a single system of equations. The Stokes–Brinkman equations reduce to Stokes or Darcy flow depending
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upon the coefficients and were suggested as a replacement for coupled Darcy and Stokes in [18]. By careful selection
of coefficients, the equations allow modeling of free-flow and porous domains together, thereby resolving issues
along the interface.

In this paper, we present a residual-based a posteriori error estimate for the Stokes–Brinkman problem discretized
using Taylor–Hood finite elements, and we use it to drive an adaptive mesh refinement process. There are various
strategies for a posteriori error estimation presented in the literature, see for example [1,15,21]. The closest to the
presented work are the estimates developed for the Stokes and Navier–Stokes equations by Burda et al. [8,9,11],
and in particular for the Stokes–Brinkman problem derived in 2D by Burda and Hasal [10]. Here, we first extend
the estimate from [10] to 3D. Then, we use the estimate to drive an adaptive mesh refinement process. Finally, we
study several mesh refinement strategies and present numerical experiments in both 2D and 3D.

The paper is organized as follows. In Section 2, we introduce the Stokes–Brinkman problem and its finite element
discretization using Taylor–Hood elements. The error estimate is presented in Section 3, and several mesh refinement
strategies to be studied are presented in Section 4. In Section 5, we present the results of numerical experiments.
Finally, in Section 6, we summarize and conclude our work.

2. Stokes–Brinkman problem

Let Ω ⊂ Rd , d = 2, 3 be a connected, open domain with Lipschitz boundary ∂Ω . Let Ω f ⊂ Ω be a free-flow
region within Ω and Ωp ⊂ Ω be a porous medium within Ω such that Ω f ∩Ωp = ∅ and Ω = Ω f ∪Ωp. Within the
free-flow region, Ω f , the flow is governed by the Stokes equations

−µ∆u⃗ +∇ p = f⃗ (1)

∇ · u⃗ = g, (2)

where µ is the viscosity of the fluid, u⃗ : Rd
→ Rd is the velocity, p : Rd

→ R is the pressure, f⃗ : Rd
→ Rd

denotes external forces, and g : Rd
→ R denotes sources and sinks. Eq. (1) is derived from the conservation of

momentum, and Eq. (2) is derived from the conservation of mass and denotes the incompressibility of the fluid.
Within the porous media region, Ωp, the flow is governed by Darcy’s law

u⃗ = −
K
µ

(∇ p − f⃗ ) (3)

∇ · u⃗ = g, (4)

where K is a symmetric positive definite permeability tensor. It is important to note that the velocity and pressure
terms, u⃗ and p, are different than the same terms in the Stokes equations. In the Stokes equations, they denote the
actual velocity and pressure of the fluid, whereas, in Darcy’s law, they denote the averages over some representative
element volume.

In the Stokes–Brinkman equations, the Stokes (1)–(2) and Darcy (3)–(4) flows are combined into a single system
of equations

−µ∗∆u⃗ + µK−1u⃗ +∇ p = f⃗ (5)

∇ · u⃗ = g, (6)

where µ∗ denotes the effective viscosity of the fluid. Both Stokes and Darcy flows are limiting cases of the Stokes–
Brinkman equations using suitable choices of µ∗ and K . If µ∗ = 0, Eq. (5) is simply Darcy’s law; whereas, if
K ≫ 0, it reduces to the Stokes equations. Within Ωp, we choose K to be the Darcy permeability; within Ω f , we
choose K−1

= 0. The choice of µ∗ is crucial for resolving conditions between the free-flow and porous interface.
If detailed knowledge is available, µ∗ may be chosen to mimic the Beavers–Joseph–Saffman conditions along the
interface. However, absent such detailed knowledge, we may select µ∗ = µ throughout the entire domain. This has
the consequence of only a slight perturbation of Darcy’s law in the porous domain [17,18].

The Stokes–Brinkman equations are accompanied by Dirichlet and Neumann conditions of the form

u⃗ = u⃗D on ∂ΩD (7)
∂ u⃗
∂n
− pn⃗ = u⃗N on ∂ΩN , (8)
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where ∂ΩD and ∂ΩN denote the Dirichlet and Neumann parts of the boundary, respectively, n⃗ is the unit outward
normal, and ∂ u⃗

∂n is the directional derivative of the velocity in the normal direction.
We seek a weak solution to Eqs. (5)–(8). Let us define the spaces

H 1
E (Ω ) = {u⃗ ∈ H 1(Ω )d

| u⃗ = u⃗D on ∂ΩD}

H 1
E0

(Ω ) = {u⃗ ∈ H 1(Ω )d
| u⃗ = 0 on ∂ΩD},

and define the bilinear forms

a(u⃗, v⃗) =
∫
Ω

(
µ∗∇u⃗ : ∇v⃗ + µu⃗T K−1v⃗

)
dx (9)

b(u⃗, q) = −
∫
Ω

q ∇ · u⃗dx, (10)

where ∇u⃗ : ∇v⃗ =
∑d

i=1 ∇u⃗i · ∇v⃗i . In the weak formulation of FStokes–Brinkman, we wish to find u⃗ ∈ H 1
E (Ω ) and

p ∈ L2(Ω ) such that

a(u⃗, v⃗)+ b(v⃗, p) =
∫
Ω

f⃗ · v⃗dx +
∫
∂ΩN

u⃗N · v⃗ds, ∀v⃗ ∈ H 1
E0

(Ω ) (11)

b(u⃗, q) = −
∫
Ω

gqdx, ∀q ∈ L2(Ω ). (12)

We need to set proper boundary conditions. In order to guarantee a unique velocity solution, the Dirichlet part of
the boundary, ∂ΩD , must have nonzero measure. Similarly, in order to guarantee a unique pressure solution, the
Neumann part of the boundary, ∂ΩN , must have nonzero measure. In the case where ∂ΩN has measure zero, the
pressure solution is unique up to a constant, so we may impose the additional constraint

∫
Ω pdx = 0 in order to

obtain a unique pressure. Furthermore, in such cases, we must impose a compatibility condition on the boundary
data ∫

∂Ω+

u⃗D · n⃗ds −
∫
∂Ω−

u⃗D · n⃗ds =
∫
∂Ω

gds,

where ∂Ω+ = {x ∈ ∂Ω | u⃗D · n⃗ > 0} and ∂Ω− = {x ∈ ∂Ω | u⃗D · n⃗ < 0} are the outflow and inflow boundaries,
respectively. In our experiments, we use Dirichlet conditions on the inflow and so-called do-nothing conditions on
the outflow. For more details, see, for example, [14, Chapter 3].

We use the mixed finite element method to discretize (11)–(12). Let Vh ⊂ H 1
E0

(Ω ) denote the discretized
space of velocities with basis {ψ1, ψ2, . . . , ψn} and Ph ⊂ L2(Ω ) the discretized space of pressures with basis
{φ1, φ2, . . . , φm}. To incorporate the Dirichlet boundary conditions, we extend Vh by defining additional basis
functions ψn+1, . . . , ψn+n∂ and coefficients u j , j = n + 1, . . . , n + n∂ , such that

∑n+n∂
j=n+1 u jψ j interpolates the

boundary data, u⃗ D . We then seek a finite element solution of the form u⃗h =
∑n

j=1 u jψ j +
∑n+n∂

j=n+1 u jψ j and
ph =

∑m
j=1 p jφ j . The discrete weak formulation of Stokes–Brinkman is to find u = (u1, . . . , un)T

∈ Rn and
p = (p1, . . . , pm)T

∈ Rm such that

a

⎛⎝ n∑
j=1

u jψ j +

n+n∂∑
j=n+1

u jψ j , v⃗h

⎞⎠+ b

⎛⎝v⃗h,

m∑
j=1

p jφ j

⎞⎠ = ∫
Ω

f⃗ · v⃗hdx +
∫
∂ΩN

u⃗N · v⃗hds, ∀v⃗h ∈ Vh (13)

b

⎛⎝ n∑
j=1

u jψ j +

n+n∂∑
j=n+1

u jψ j , qh

⎞⎠ = − ∫
Ω

gqhdx, ∀qh ∈ Ph . (14)

As the above must hold for all (v⃗h, qh) ∈ Vh × Ph , we may choose v⃗h = ψi and qh = φi , so that we obtain the
saddle point system[

A BT

B 0

] [
u
p

]
=

[
f
g

]
.

The matrices A and B are discrete versions of the bilinear forms (9) and (10), respectively. The vectors u and p
denote the coefficients of the discrete velocity and pressure, respectively, in the chosen finite element basis, and
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f and g are discretizations of the external forces and sources and sinks, respectively. We use Taylor–Hood P2/P1
finite elements to guarantee inf–sup stability, see, for example, the monographs [6,14]. This results in piecewise
(bi)-quadratic approximation of the velocity and piecewise linear approximation of the pressure.

3. A posteriori error estimate

Let u⃗h and ph denote the finite element solution using Taylor–Hood P2/P1 finite elements. We define the residuals
R1 and R2 of the discrete counterparts of (5)–(6) as

R1(u⃗h, ph) = f⃗ + µ∗∆u⃗h − µK−1u⃗h −∇ ph (15)

R2(u⃗h, ph) = g −∇ · u⃗h . (16)

Because uh is piecewise (bi)-quadratic, ∆u⃗h and ∇ · u⃗h may be computed on element interiors, even though uh may
have discontinuous first derivatives along element interfaces. Furthermore, since ph is piecewise linear, ∇ ph may be
computed on element interiors, despite ph possibly having discontinuous first derivatives along element interfaces.
Thus, within element interiors, the computation of the residuals (15)–(16) is well-defined. Due to the discontinuous
derivatives at element interfaces, we define the flux jumps as follows. Given an edge/face E , let T and T ′ denote
the elements sharing E and n⃗ denote the unit outward normal of E on T . Then the flux jump is defined as[[

µ
∂ u⃗h

∂n
− ph n⃗

]]
E
=

(
µ
∂ u⃗h

∂n
− ph n⃗

)
+

−

(
µ
∂ u⃗h

∂n
− ph n⃗

)
−

where (·)+ uses values of (u⃗h, ph) within T and (·)− uses values of (u⃗h, ph) within T ′. Note that, if using a
continuous pressure approximation as with Taylor–Hood P2/P1 elements, the pressure terms in the flux jumps
vanish. From the flux jumps, we define the equilibrated edge residuals

RE(u⃗h, ph) =

⎧⎪⎪⎨⎪⎪⎩
1
2

[[
µ
∂ u⃗h
∂n − ph n⃗

]]
E
, E ∈ Eh,Ω

u⃗N −

(
µ
∂ u⃗h
∂n − ph n⃗

)
, E ∈ Eh,N

0, E ∈ Eh,D

where Eh,Ω , Eh,N , Eh,D denote the interior, Neumann, and Dirichlet edges (or faces), respectively.
We now revisit the main theorem of [10]. The theorem was proven there for the special case d = 2 and g = 0,

and we state it here also for the case d = 3 and general g. The extension is relatively straightforward, but we
include the full proof for completeness.

Theorem 1. Let Ω be a polygon in R2 or a polyhedron in R3. Let Th be a family of regular triangulations of Ω .
Let (u⃗h, ph) be the Taylor–Hood approximation of the solution (u⃗, p) of the Stokes–Brinkman problem. Then the
error (e⃗u, ep) = (u⃗ − u⃗h, p − ph) satisfies the following a posteriori error estimate

∥e⃗u∥1 + ∥ep∥0 ≤ 2CPC I CR

∑
T∈Th

⎛⎝hT ∥R1(u⃗h, ph)∥0,T + ∥R2(u⃗h, ph)∥0,T + h1/2
T

∑
E∈E(T )

∥RE(u⃗h, ph)∥0,E

⎞⎠
(17)

where CP ,C I ,CR are positive constants, hT is the diameter of element T , and E(T ) denotes the set of edges (in
2D) or faces (in 3D) of element T .

Proof. The ideas are based upon Eriksson et al. [15]. First, we recall the Poincaré–Friedrichs inequality

∥e⃗u∥
2
1 ≤ CP∥∇ e⃗u∥

2
0 (18)

for a constant CP ≥ 1. We next define the dual Stokes–Brinkman problem

−µ∗∆ϕ⃗u + µK−1ϕ⃗u +∇ϕp = −∆e⃗u (19)

∇ · ϕ⃗u = −ep (20)

ϕ⃗u = 0 on ∂Ω . (21)
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The weak form of (19)–(21) is to find (ϕ⃗u, ϕp) ∈ (H 1
0 (Ω ))d

× L2(Ω ) such that

a(ϕ⃗u, v⃗)+ b(v⃗, ϕp) =
∫
Ω

∇ e⃗u : ∇v⃗dx, ∀ v⃗ ∈ (H 1(Ω ))d (22)

b(ϕ⃗u, q) =
∫
Ω

epqdx, ∀ q ∈ L2(Ω ). (23)

Since e⃗u ∈ (H 1(Ω ))d and ep ∈ L2(Ω ), we may choose v⃗ = e⃗u in (22) and q = ep in (23), and use (18) to obtain

1
CP
∥e⃗u∥

2
1 ≤ ∥∇ e⃗u∥

2
0 =

∫
Ω

∇ e⃗u : ∇ e⃗udx

= a(ϕ⃗u, e⃗u)+ b(e⃗u, ϕp)

= a(ϕ⃗u, u⃗)− a(ϕ⃗u, u⃗h)+ b(u⃗, ϕp)− b(u⃗h, ϕp) (24)

∥ep∥
2
0 = b(ϕ⃗u, ep)

= b(ϕ⃗u, p)− b(ϕ⃗u, ph). (25)

Since CP ≥ 1, we combine (24) and (25) as

1
CP

(
∥e⃗u∥

2
1 + ∥ep∥

2
0

)
≤ a(ϕ⃗u, u⃗)− a(ϕ⃗u, u⃗h)+ b(u⃗, ϕp)− b(u⃗h, ϕp)+ b(ϕ⃗u, p)− b(ϕ⃗u, ph)

=
[
a(ϕ⃗u, u⃗)+ b(u⃗, ϕp)+ b(ϕ⃗u, p)

]
−

[
a(ϕ⃗u, u⃗h)+ b(u⃗h, ϕp)+ b(ϕ⃗u, ph)

]
.

We may also choose v⃗ = ϕ⃗u in (11) and q = ϕp in (12), and use the definition of the residuals (15)–(16) to yield

1
CP

(
∥e⃗u∥

2
1 + ∥ep∥

2
0

)
≤

∫
Ω

f⃗ · ϕ⃗udx −
∫
Ω

gϕpdx −
[
a(ϕ⃗u, u⃗h)+ b(u⃗h, ϕp)+ b(ϕ⃗u, ph)

]
=

∫
Ω

f⃗ · ϕ⃗udx −
∫
Ω

gϕpdx

+

∑
T∈Th

[ ∫
T µ
∗∆u⃗h · ϕ⃗udx −

∫
∂T µ

∗ ∂ u⃗h
∂n · ϕ⃗uds −

∫
T µϕ⃗

T
u K−1u⃗hdx

−
∫

T ∇ ph · ϕ⃗udx +
∫
∂T ph ϕ⃗u · n⃗ds +

∫
T ϕp∇ · u⃗hdx

]
=

∑
T∈Th

∫
T

(
f + µ∗∆u⃗h − µK−1u⃗h −∇ ph

)
· ϕ⃗udx +

∑
T∈Th

∫
T
(∇ · u⃗h − g) ϕpdx

−

∑
T∈Th

∫
∂T
µ∗
∂ u⃗h

∂n
· ϕ⃗uds +

∑
T∈Th

∫
∂T

ph ϕ⃗u · n⃗ds

=

∑
T∈Th

∫
T

R1(u⃗h, ph) · ϕ⃗udx −
∑
T∈Th

∫
T

R2(u⃗h, ph)ϕpdx

−

∑
T∈Th

∫
∂T
µ∗
∂ u⃗h

∂n
· ϕ⃗uds +

∑
T∈Th

∫
∂T

ph ϕ⃗u · n⃗ds. (26)

By taking v⃗h = πh ϕ⃗u and qh = πhϕp, the Clément interpolants [12], in (13) and (14), we obtain

0 =
∫
Ω

f⃗ · πh ϕ⃗udx −
∫
Ω

gπhϕpdx −
[
a(u⃗h, πh ϕ⃗u)+ b(u⃗h, πhϕp)+ b(πh ϕ⃗u, ph)

]
=

∑
T∈Th

∫
T

R1(u⃗h, ph) · πh ϕ⃗udx −
∑
T∈Th

∫
T

R2(u⃗h, ph)πhϕpdx

−

∑
T∈Th

∫
∂T
µ∗
∂ u⃗h

∂n
· πh ϕ⃗uds +

∑
T∈Th

∫
∂T

phπh ϕ⃗u · n⃗ds.
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Subtracting this from (26), we obtain

1
CP

(
∥e⃗u∥

2
1 + ∥ep∥

2
0

)
≤

∑
T∈Th

∫
T

R1(u⃗h, ph) · (ϕ⃗u − πh ϕ⃗u)dx −
∑
T∈Th

∫
T

R2(u⃗h, ph)(ϕp − πhϕp)dx

−

∑
T∈Th

∫
∂T
µ∗
∂ u⃗h

∂n
· (ϕ⃗u − πh ϕ⃗u)ds +

∑
T∈Th

∫
∂T

ph(ϕ⃗u − πh ϕ⃗u) · n⃗ds

=

∑
T∈Th

∫
T

R1(u⃗h, ph) · (ϕ⃗u − πh ϕ⃗u)dx −
∑
T∈Th

∫
T

R2(u⃗h, ph)(ϕp − πhϕp)dx

−

∑
T∈Th

∑
E∈E(T )

∫
E

(
1
2

[[
µ∗
∂ u⃗h

∂n
− ph n⃗

]]
E

)
(ϕ⃗u − πh ϕ⃗u)ds.

In the above, the sum over E ∈ E(T ) is taken over edges of the triangle in 2D and faces of the tetrahedron in 3D.
Using the Schwarz inequality,

∥e⃗u∥
2
1 + ∥ep∥

2
0 ≤ CP

∑
T∈Th

(
∥R1(u⃗h, ph)∥0,T ∥ϕ⃗u − πh ϕ⃗u∥0,T + ∥R2(u⃗h, ph)∥0,T ∥ϕp − πhϕp∥0,T

)
+ CP

∑
T∈Th

∑
E∈E(T )

1
2

[[
µ∗
∂ u⃗h

∂n
− ph n⃗

]]
E


0,E
∥ϕ⃗u − πh ϕ⃗u∥0,E .

Using the properties of the interpolants (cf. [6]), there exists a constant C I > 0 such that

∥ϕ⃗u − πh ϕ⃗u∥0,T ≤ C I hT ∥ϕ⃗u∥1,T

∥ϕp − πhϕp∥0,T ≤ C I∥ϕp∥0,T

∥ϕ⃗u − πh ϕ⃗u∥0,E ≤ C I h1/2
T ∥ϕ⃗u∥1,T ,

where hT is the diameter of element T . Thus, we obtain

∥e⃗u∥
2
1 + ∥ep∥

2
0 ≤ CPC I

∑
T∈Th

(
hT ∥R1(u⃗h, ph)∥0,T ∥ϕ⃗u∥1 + ∥R2(u⃗h, ph)∥0,T ∥ϕp∥0

)
+ CPC I

∑
T∈Th

∑
E∈E(T )

h1/2
T

1
2

[[
µ∗
∂ u⃗h

∂n
− ph n⃗

]]
E


0,E
∥ϕ⃗u∥1.

We then use properties of the dual solution (cf. [6]) to derive another constant CR > 0 such that

∥e⃗u∥
2
1 + ∥ep∥

2
0 ≤ CPC I CR

∑
T∈Th

⎡⎣ hT ∥R1(u⃗h, ph)∥0,T + ∥R2(u⃗h, ph)∥0,T

+
∑

E∈E(T ) h1/2
T

 1
2

[[
µ∗

∂ u⃗h
∂n − ph n⃗

]]
E


0,E

⎤⎦ (∥∆e⃗u∥−1 + ∥ep∥0).

Finally, using the inequality ∥∆e⃗u∥−1 ≤ ∥e⃗u∥1,(
∥e⃗u∥1 + ∥ep∥0

)2
≤ 2

(
∥e⃗u∥

2
1 + ∥ep∥

2
0

)
≤ 2CPC I CR

∑
T∈Th

⎡⎣ hT ∥R1(u⃗h, ph)∥0,T + ∥R2(u⃗h, ph)∥0,T

+
∑

E∈E(T ) h1/2
T

 1
2

[[
µ∗

∂ u⃗h
∂n − ph n⃗

]]
E


0,E

⎤⎦ (∥e⃗u∥1 + ∥ep∥0).

The a posteriori error estimate in Theorem 1 is obtained by canceling a factor of ∥e⃗u∥1 + ∥ep∥0. ■

The error estimate (17) in Theorem 1 is defined over the norm ∥e⃗u∥1 + ∥ep∥0. We would prefer the estimate in
the norm (∥e⃗u∥

2
1 + ∥ep∥

2
0)1/2. To this effect, we note

∥e⃗u∥
2
1 + ∥ep∥

2
0 =

∑
T∈Th

(
∥e⃗u∥

2
1,T + ∥ep∥

2
0,T

)
≤

∑
T∈Th

(
∥e⃗u∥1,T + ∥ep∥0,T

)2
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≤

∑
T∈Th

C1

⎛⎝hT ∥R1(u⃗h, ph)∥1,T + ∥R2(u⃗h, ph)∥0,T + h1/2
T

∑
E∈E(T )

∥RE(u⃗h, ph)∥0,E

⎞⎠2

≤

∑
T∈Th

C2

⎛⎝h2
T ∥R1(u⃗h, ph)∥2

1,T + ∥R2(u⃗h, ph)∥2
0,T + hT

∑
E∈E(T )

∥RE(u⃗h, ph)∥2
0,E

⎞⎠
for some constants C1,C2 > 0, where C1 depends upon CP ,C I ,CR . By defining our elementwise error indicator
ηT as

η2
T = h2

T ∥R1(u⃗h, ph)∥2
1,T + ∥R2(u⃗h, ph)∥2

0,T + hT

∑
E∈E(T )

∥RE(u⃗h, ph)∥2
0,E , (27)

we may write the global error estimate as

∥e⃗u∥
2
1 + ∥ep∥

2
0 ≤ C2

∑
T∈Th

η2
T . (28)

4. Adaptive mesh refinement

We use the error indicator (27) to mark elements for refinement. In [21, pp. 64–65], two strategies for marking
elements are presented. Both require a parameter θ ∈ (0, 1) and produce a subset T̃ of elements marked for
refinement. The first strategy, named the maximum strategy, is summarized in Algorithm 1. It marks for refinement
all elements for which the error indicator is greater than or equal to θ times the maximum over all elements.

Algorithm 1 (Maximum Strategy). Given: a partition T , an error indicator ηT for each element T ∈ T , and a
threshold θ ∈ (0, 1).
Sought: a subset T̃ of marked elements to be refined.

1. Compute ηT ,max = maxT∈T ηT .
2. Mark all elements T such that ηT ≥ θηT ,max and place in T̃ .

The second strategy, named the equilibration strategy, marks the elements with the largest error until
∑

T∈T̃ η
2
T ≥

θ
∑

T∈T η
2
T . This strategy marks the elements with the largest error until a given proportion of the total error

from (28) is attained.

Algorithm 2 (Equilibration Strategy). Given: a partition T , an error indicator ηT for each element T ∈ T , and a
threshold θ ∈ (0, 1).
Sought: a subset T̃ of marked elements to be refined.

1. Compute ΘT =
∑

T∈T η
2
T and set ΣT = 0 and T̃ = ∅.

2. If ΣT ≥ θΘT , return T̃ . Else, go to step 3.
3. Compute η̃T ,max = maxT∈T \T̃ ηT .
4. For each element T in T \ T̃ such that ηT = η̃T ,max

(a) Update ΣT ← ΣT + η
2
T

(b) Add T to T̃

5. Go to step 2.

There may be cases where the errors are concentrated in only a few elements, with the remaining contributing
very little to the total error. In these cases, we should choose a small ϵ ∈ [0, 1] and always mark for refinement
the ϵ|T | elements of largest error and then apply either the maximum strategy or the equilibration strategy to the
remaining (1− ϵ)|T | elements.

5. Numerical experiments

In this section, we test the effectiveness of the error estimator (27) to drive an adaptive mesh refinement
process. We perform three experiments. The first experiment is on a nonconvex 2D domain, the second is
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Fig. 1. Nonconvex 2D domain used for numerical experiments.

on a 2D domain with discontinuous inflow and an obstacle, and the third is on a nonconvex 3D domain. In
all experiments, we use the maximum (Algorithm 1) and equilibration (Algorithm 2) strategies with parameters
(ϵ, θ) ∈ {0, 0.001, 0.01}× {0.25, 0.5, 0.75}. We compare results with the uniform refinement strategy (i.e., marking
all elements for refinement) to show that the adaptive procedure successfully yields a more accurate solution with
fewer degrees of freedom with the error given by (28). For simplicity, we assume the constant factor in the estimate
is 1 as its exact value is irrelevant when comparing estimates from successive meshes. We used a computer with two
8-core 2.10 GHz CPUs with 1 TB of memory running Linux openSUSE 42.3 and MATLAB version 9.2.0.538062
(R2017a). We implemented the error estimates in MATLAB, generated and refined the meshes with Netgen [19]
version 6.2, and visualized the solutions using Paraview [3] version 5.1.2. The underlying linear systems were
solved using the sparse direct solver (backslash) within MATLAB.

5.1. 2D nonconvex experiment

For the 2D nonconvex numerical experiment, we consider the nonconvex domain depicted in Fig. 1. The domain
is partitioned into three regions: one Stokes region in which the fluid free-flows (K−1

= 0) and two Darcy regions
with permeability tensors K = 5·10−4 I and K = 5·10−2 I , where I denotes the identity matrix. The fluid flows from
left to right, with parabolic inflow at the left end of the first Darcy region and a do-nothing outflow at the right end
of this region. No flow is allowed through any other boundary edge. The Stokes and second Darcy regions appear
as pockets at the top and bottom of the domain. The fluid has a constant viscosity µ = µ∗ = 10−3 throughout. We
used zero right-hand sides f⃗ = 0 and g = 0 throughout the domain.

We tested the maximum (Algorithm 1) and equilibration (Algorithm 2) strategies on this domain with all
combinations of (ϵ, θ) ∈ {0, 0.001, 0.01} × {0.25, 0.5, 0.75}. There were 1431 degrees of freedom in the initial
mesh. For each choice of adaptive strategy, we refined the mesh 10 times, and, for comparison, we uniformly
refined the mesh 5 times.

Fig. 2 compares the numbers of degrees of freedom against the computed error estimates for each experiment.
The degrees of freedom are plotted on the x-axis on a log scale; the error estimates are plotted on the y-axis also
on a log scale. There are 9 subplots arranged on a 3 × 3 grid. The rows correspond to the choices of ϵ with the
top row ϵ = 0, the middle ϵ = 0.001, and the bottom ϵ = 0.01. The columns correspond to the choices of θ
with the left column θ = 0.25, the middle column θ = 0.5, and the right column θ = 0.75. Each plot has the
results from the uniform refinement as the dashed black line, along with the results from the maximum (red + line)
and equilibration (blue dotted line) strategies. We can observe that the error decreases as the degrees of freedom
increase, as we expect. However, for each of the adaptive strategies, we attain lower errors for a given size of the
problem. This suggests that the adaptive strategies yield better accuracy with less work.

Fig. 3 shows how the choice of ϵ affects the performance of the adaptive strategy. There are 6 plots, each fixing
a choice of strategy (maximum or equilibration) and a choice of θ but varying ϵ. The plots are arranged in a 2 × 3
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Fig. 2. Comparison of each adaptive mesh refinement strategy against uniform refinement for the nonconvex 2D experiment.

Fig. 3. Comparison of varying choices of ϵ for each adaptive strategy for the nonconvex 2D experiment.

grid. The top row displays results with the maximum strategy and the bottom displays results with the equilibration
strategy; the first column displays results for θ = 0.25, the middle for θ = 0.5, and the final for θ = 0.75. For each
plot, the black (o) line is ϵ = 0, the red (+) line is ϵ = 0.001, and the blue dotted line is ϵ = 0.01. As before, the
degrees of freedom are plotted on the x-axis on a log scale with the computed errors on the y-axis on a log scale.
The plots show that the choice of ϵ has very little effect on the accuracy of the computation per degree of freedom.
However, there is a significant difference in the growth in degrees of freedom per iteration of refinement. Choosing
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Fig. 4. Comparison of varying choices of θ for each adaptive strategy for the nonconvex 2D experiment.

a small value of ϵ causes the degrees of freedom to grow slowly, as fewer elements are refined upfront, which
would require more iterations of refinement to reach a desired error tolerance. On the other hand, choosing a large
value of ϵ might cause the degrees of freedom to grow too rapidly, resulting in a larger problem than necessary for
a chosen error tolerance.

Fig. 4 shows how the choice of θ affects the performance of the adaptive strategy. The setup is similar to that of
Fig. 3 except that, now, ϵ is fixed per plot and θ varies. The first and second rows display results for the maximum
and equilibration strategies, respectively; the first column displays results for ϵ = 0, the second ϵ = 0.001, and the
final ϵ = 0.01. As with varying ϵ, varying θ has very little effect on the accuracy of the computation per degree of
freedom. However, the choice of θ does have an effect on the growth of the degrees of freedom. For the maximum
strategy, a smaller value of θ results in a larger growth in degrees of freedom. This is expected as a smaller value of
θ results in more elements being marked for refinement. For the equilibration strategy, a smaller value of θ results
in a smaller growth, as expected.

The mesh for the equilibration strategy with ϵ = 0.01 and θ = 0.25 at various stages of refinement is shown in
Fig. 5. The top left corner shows the initial mesh, the top right after 1 iteration of refinement, the bottom left after 5
iterations, and the bottom right after 10 iterations. As expected, the error estimator is able to identify the non-convex
corners of the domain. Perhaps unexpectedly, the estimator suggests further refinement along the no-flow boundary
of the middle (Darcy) region. The flow for the final iteration of this strategy is visualized in Fig. 6. The domain is
colored according to K−1 on a log scale to accentuate the difference in permeabilities between the three regions.
The flow is visualized as streamlines flowing left to right colored by the pressure. Note that the pressure decreases as
the flow moves from the left end of the domain to the right. Also note that the flow tends to the higher permeability
Stokes and lower Darcy regions.

5.2. 2D obstacle experiment

For the second 2D experiment, we consider the square domain depicted in Fig. 7. For the boundary conditions,
we use a discontinuous inflow with a constant velocity of [1/4, 0]T and a do-nothing outflow. In the center of the
domain is an obstacle through which no flow is possible. Throughout most of the domain there is porous material
with permeability tensor K = 5 ·10−4 I . Near the obstacle, however, are Stokes and Darcy regions with permeability
tensors satisfying K−1

= 0 and K = 5 · 10−2 I , respectively. As with the previous experiment, we use a constant
viscosity of µ = µ∗ = 10−3. We used zero right-hand sides f⃗ = 0 and g = 0 throughout the domain.
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Fig. 5. Meshes at various stages of refinement for the nonconvex 2D problem using an equilibration strategy with ϵ = 0.01 and θ = 0.25.
The top left corner shows the initial mesh, the top right after 1 iteration of refinement, the bottom left after 5 iterations, and the bottom
right after 10 iterations.

Fig. 6. Visualization of the flow for the 2D nonconvex problem using an equilibration strategy with ϵ = 0.01 and θ = 0.25 after the final
iteration of refinement. The domain is colored according to K−1 on a log scale to accentuate the difference in permeabilities between the
three regions. The flow is visualized as streamlines flowing left to right colored by the pressure.

As with the previous experiment, we tested the maximum and equilibration strategies with the same combinations
of (ϵ, θ) ∈ {0, 0.001, 0.01} × {0.25, 0.5, 0.75}. There were 3978 degrees of freedom in the initial mesh. For each
choice of adaptive strategy, we refined the mesh 10 times, and, for comparison, we uniformly refined the mesh 5
times.

Fig. 8 compares the degrees of freedom against the computed error estimate for each experiment, in a manner
similar to Fig. 2 from the previous section. Note that the results are similar to the previous experiment with all
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Fig. 7. Domain in 2D with obstacle used for numerical experiments.

Fig. 8. Comparison of each adaptive mesh refinement strategy against uniform refinement for the 2D obstacle experiment.

adaptive strategies outperforming uniform refinement and very little differences in performance aside from the
growth in degrees of freedom.

Fig. 9 presents the meshes for various levels of refinement using an equilibration strategy with ϵ = 0.01 and
θ = 0.25. The top left corner displays the initial mesh used. The mesh after a single step of refinement is depicted
in the top right corner. Note that the only refinement was performed at the corners of the obstacle, where most of
the error was centered. The mesh in the lower left corner is after 5 refinement iterations. At this point, the errors
at the corners of the obstacle were reduced sufficiently so that errors in other parts of the domain, notably the
boundary walls at the top and bottom of the domain along with the interface between subregions near the obstacle
corners, could be identified and refined. The lower right picture is of the mesh after the final (10th) iteration of
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Fig. 9. Meshes at various stages of refinement for the obstacle problem using an equilibration strategy with ϵ = 0.01 and θ = 0.25. The
top left corner shows the initial mesh, the top right after 1 iteration of refinement, the bottom left after 5 iterations, and the bottom right
after 10 iterations.

Fig. 10. Visualization of the flow for the 2D obstacle problem using an equilibration strategy with ϵ = 0.01 and θ = 0.25 after the final
iteration of refinement. The domain is colored according to K−1 on a log scale to accentuate the difference in permeabilities between the
three regions. The flow is visualized as streamlines flowing left to right colored by the pressure.

refinement. At this stage, the errors are located in the same regions as before, suggesting a good approximation
throughout much of the rest of the domain.

Fig. 10 depicts the flow from the solution to the final (10th) iteration of an equilibration strategy with ϵ = 0.01
and θ = 0.25. As expected, the pressure decreases from inflow to outflow, and the flow avoids the obstacle in
the center of the domain. The subregions are colored according to the inverse permeability on a log scale with the
Stokes (free-flow) region in blue, the high permeability Darcy region in gray, and the low permeability Darcy region
in red. As we would expect, the flow tends to the regions of higher permeability, as evidenced by the bulges at the
corners of these regions. However, the flow appears to quickly leave the regions due to encountering the obstacle.
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Fig. 11. 3D nonconvex domain with subregions colored according to inverse permeability (smaller values correspond to higher permeabilities).
The permeabilities range from 5 · 10−5 I to 500I (inverse permeabilities ranging from 2 · 104 I to 2 · 10−3 I ) and are colored on a log scale
to demonstrate the jumps in order of magnitude.

Fig. 12. 2D slice of the 3D domain, indicating boundary conditions. The parabolic inflow is defined with a maximum velocity magnitude
of 1.

5.3. 3D experiment

We also ran a series of 3D experiments. For this experiment, we used the nonconvex domain depicted in Fig. 11,
which provides a front and back view of the domain. The domain is partitioned into eight unit cubes, each cube
forming a subregion with a different permeability. Each subregion is colored according to the inverse permeability
(smaller values correspond to higher permeabilities). The permeabilities K span several orders of magnitude, ranging
from 5 ·10−5 I to 500I (inverse permeabilities spanning 2 ·104 I to 2 ·10−3 I ). The inverse permeabilities are colored
on a log scale in the figure to demonstrate the jumps in orders of magnitude. The fluid has a constant viscosity
µ = µ∗ = 10−3 throughout.

A 2-dimensional slice of the domain is depicted in Fig. 12 in order to explain the choice of boundary conditions.
All faces of the domain, except for those corresponding to the dotted edges in the figure, have no-flow boundary
conditions u⃗ = 0. We define do-nothing boundary conditions on the outflow and a parabolic profile on inflow
given independently in the two spatial dimensions with maximal velocity 1 in the center of the face and decreasing
quadratically to zero on the walls. The right-hand sides f⃗ and g are defined to be zero throughout the domain.

As with the 2D experiment, we tested the maximum and equilibration strategies with (ϵ, θ) ∈ {0, 0.001, 0.01}×
{0.25, 0.5, 0.75}. There were 2630 degrees of freedom in the initial mesh. For each choice of adaptive strategy, we
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Fig. 13. Comparison of each adaptive mesh refinement strategy against uniform refinement for the 3D experiment.

refined the mesh either a total of 10 times or until the number of degrees of freedom exceeded 105. For comparison,
we uniformly refined the mesh 3 times.

Fig. 13 compares the degrees of freedom against the computed error estimates for each experiment in a manner
similar to Fig. 2. The results are similar to the 2D case, showing an improvement in the overall error per degree of
freedom for all of the adaptive strategies.

The mesh for the equilibration strategy with ϵ = 0.01 and θ = 0.25 at various levels of refinement is shown
in Fig. 14. The top left corner shows the initial mesh, the top right after 1 iteration of refinement, the bottom left
after 3 iterations, and the bottom right after 6 iterations.

The flow for this experiment is visualized in Fig. 15. This visualization used the results from the final iteration of
an equilibration strategy with ϵ = 0.01 and θ = 0.25. The domain is colored according to inverse permeability and
the flow is visualized as streamlines colored by pressure. As expected, the pressure decreases as it travels through
the domain. Of interest, note that the flow appears to avoid the low permeability (red) subregion of the domain, as
it curves to flow into the higher permeability subregion nearby.

6. Conclusion

We extended the error estimate for the Stokes–Brinkman problem developed by Burda and Hasal in [10] to the
3D domain and to a general right-hand side. We performed numerical experiments in 2D and 3D that showed that the
error estimate is effective in driving an adaptive mesh refinement process. The presented error estimate and adaptive
mesh refinement strategies will, therefore, be effective in accurately modeling flow using the Stokes–Brinkman
equations.

We noticed no substantial difference between the equilibration and maximum refinement strategies, but we
noticed that the choice of the parameters ϵ and θ have a significant effect on the number of iterations of refinement
needed to reach a desired error tolerance. A smaller choice of ϵ results in fewer elements being refined and therefore
more iterations needed to obtain a desired error tolerance. On the other hand, a larger choice of ϵ, while requiring
fewer iterations to reach convergence, results in larger problems to be solved. Similar analysis holds for the choice
of θ , with a smaller θ resulting in slower convergence and smaller problems with the equilibration strategy but
faster convergence and larger problems with the maximum strategy.
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Fig. 14. Meshes at various stages of refinement for the 3D equilibration strategy with ϵ = 0.01 and θ = 0.25. The top left corner shows
the initial mesh, the top right after 1 iteration of refinement, the bottom left after 3 iterations, and the bottom right after 6 iterations.

Fig. 15. Visualization of flow from final iteration of an equilibration strategy with ϵ = 0.01 and θ = 0.25 for the 3D experiment.
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