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Abstract—Water contamination has been a critical issue in
many countries of the world including USA. Physical, chemical,
biological, radio-logical substances can be the reason of this
contamination. Drinking water systems are allowed to contain
chlorine, calcium, lead, arsenic etc., at a certain level. However,
there are expensive instruments and paper sensors to detect
the quantity of minerals in water. But these instruments are
not always convenient for easy determination of the quality of
the sample as drinking water. Different minerals in the water
reacts to heat heterogeneously. Some minerals (i.e., arsenic) stay
in the water with noticeable amount even after reaching to
boiling point. However, it requires cheaper and easier process
to examine the quality of water samples for drinking from
different sources. With this in mind, we experimented few
water samples from different places of USA including artificially
prepared samples by mixing different impurities. We investigated
their heating property with the sample of marked safe drinking
water. We collected thermal images with 10-seconds interval
during cooling period of hot water samples from the boiling
point to room temperature. We extracted features for each of
the water samples with the combination of convolution and
recurrent neural network based model and classified different
water samples based on the added impurity types and sources
from where the samples were collected. We also showed the
feature distances of these water samples with the safe water
sample. Our proposed framework can differentiate features for
different impurities added in the water samples and detect
different category of impurities with average accuracy of 70% .

I. INTRODUCTION

Drinking water is expected to contain reasonable amount of
contaminants. Any physical, chemical, biological, or radiologi-
cal substances or matter in water is considered as contaminants
according to Safe Drinking Water Act (SDWA) [10]. Physical
contaminants such as sediment or organic material changes
the physical appearance or properties of water. Different
types of bacteria, viruses, protozoan, parasites are considered
as biological contaminants. Chemical contaminants refers to
nitrogen, lead, metals, toxic elements or compounds which
might occur naturally or artificially by human. Radiological
contaminants i.e. cesium, plutonium, uranium etc. creates
an ionizing radiation from unbalanced protons and neutrons.
However, consuming some contaminants i.e. lead, arsenic, per-
fluorooctanoic acid etc. above a certain level can affect human
health significantly. Environmental Protection Agency (EPA)
has announced a standard amount of different contaminants
that can be present in drinking water which is not harmful for
human health.

The contamination of drinking water has been widespread
throughout the world including USA. Aged infrastructure,
impaired source water, strained community finances etc. have

made supplying safe drinking water a challenge in USA. In
2014, water crisis in Flint city of Michigan state created the
most shocking incident in USA. In an evaluation of health-
related violations of SDWA, from 1982 to 2015 around 45
million people are getting drinking water from EPA standard
violated source [12]. Spatial and temporal pattern identified in
this study showed violation incidence is substantially higher
in rural areas than in urban areas. Besides, several states in the
southwest region are struggling with recurring issues. A report
from the U.S Public Interest Rights Group graded water sys-
tems of each state and mentioned 21 states which are currently
failing to provide safe drinking water in schools [13]. The
most common lead contamination is happened from the lead
in water delivery systems i.e. water fountains, faucets, pipes
etc. However, lead is not the only contaminants threatening
the supply of safe drinking water in USA. According to a
report from Environmental Working group, around 110 million
people are exposed to the water contamination caused by per-
and polyfluoroalkyl substances (PFAS) [14].

There are sensors which can provide various water proper-
ties (i.e., turbidity, pH etc.) and also detect different impurities
in water. These sensors can be of various types depending on
the categories of impurities. For example, turbidimeter grades
the transparency of the water sample. There are different
sensors to detect carbon and nitrogen content, biochemical
oxygen demand (BOD), countless number of salt contents,
and others. Beside of these sensors, there are also online
water quality monitoring systems which worked as a reliable
indicator of real time contamination events. However, collect-
ing information about baseline water level quality, considering
contextual threshold selection as well as managing operational
and maintenance costs for online water quality monitoring
systems made it infeasible for regular water quality assess-
ment. Besides, there are also several chemical tester for this
purpose. However, there exists lack of researches on the water
assessment using smart computing.

High-resolution handheld thermal cameras are being used
by geological scientists for groundwater or surface-water in-
teraction studies and other investigations [7]. Thermal cameras
helps to locate and characterize thermal anomalies in streams,
lakes, and adjacent structures. Temperature variations can be
used to determine the heat carried by flowing water. Interesting
thermal properties of water i.e., high thermal inertia, low
thermal conductivity as well as high thermal capacity approves
the use of water temperature for different research purposes.
A thermometer can be used to measure water temperature by
immersing it into water which involves direct contact. Besides,



indirect measurement of radiation emitted from the water
surface can provide the radiant temperature of water using
remote sensing. The spectral distribution of radiant energy
consists of both the water body temperature and water surface
emissivity. The emissivity of water surface and black body
are approximately similar. However, the emissivity of water
varies with the amount of dissolved minerals in it. Therefore,
to characterize the impurities in water samples, emissivity can
be chosen. Thermal imaging sensor can create a composite
image which provides accurate measure of heat emitting from
water surface. We selected FLIROne thermal camera which
provides both RGB image and temperature image. Besides,
FLIROne provide open source template for developing cus-
tomized image capturing smart device application.

We attempted to capture thermal properties of water samples
using thermal images from its boiling temperature to room
temperature. We extracted spatio-temporal features from con-
secutive thermal images of water samples using ConvLSTM
based deep neural network. Sequential adoption of convolu-
tion and LSTM models usually learn spatial and temporal
features sub-sequentially. However, ConvLSTM can provide
the opportunity of learning temporal and spatial features
simultaneously and estimate how data changes between time
steps. ConvLSTM has been used to extract spatiotemporal
features of weather radar maps [16] and videos [17], [18].
We used ConvLSTM with sequential thermal images for water
quality assessment for this study.

We artificially prepared water samples by mixing different
impurities i.e., salt, pencil lead powder, fluoride etc. along
with the neutral water samples for this study. We proposed
a framework for measuring the water quality with thermal
images using smart computing. Consecutive thermal images
express the thermal properties of water which varies according
to different facts i.e., turbidity, pH, hardness, minerals as well
as impurities added to the water sample. Our contribution in
this paper is as follows:

o We introduced a model based on ConvLSTM to extract
features from consecutive thermal images for classifi-
cation problem. We extracted features from temporal
thermal image sequences and classified the water samples
according to the materials we mixed. We also showed the
similarity and dissimilarity among different water sources
using the features from water samples.

« We scored each water sample by comparing their feature
distance from the fresh water sample. The higher distance
refers to more impurity in the water sample for drinking.

The rest of the paper is organized as follows: section II
presents the relevant works in water impurity detection, section
IIT presents the overall framework, section IV describes our
proposed framework in detail, section V presents the results
using our framework, VI discusses the shortcomings and future
direction of our work, and VII concludes the paper.

II. RELATED WORKS

A limited amount of research in detecting water contami-
nants were performed in recent years. In 2006, micro-organism

oocysts were identified in drinking water using simple image
processing algorithms by Fernandez-Canque et.al [2]. Later in
2014, a capacitive sensor is designed using low cost parallel
plate for detecting impurities such as salt, sugar, ferrous
sulphate and copper sulphate [3]. Another recent research in
[9] was done with 9 samples of water using chemical char-
acteristics such as ion concentration, nutrient concentration,
stream metabolism etc., of the water samples as features.
They distinguished the water samples using different types of
machine learning algorithms. However, these chemical prop-
erties of water samples are not often convenient to measure
for easy assessment. Our project attempts to measure the
water quality in perspective of safe and non-safe. Recently,
University of Michigan conducted a research with Flint water
crisis [8] which identified the factors involved with elevated
lead in the water sources by studying lead test results along
with demographic data of the water contaminated homes at
city scale. Another interesting experiment was performed by
adding different impurities such as sand, salt, black peepers
etc. with water samples [1]. These samples were identified
from visual images by extracting features using convolutional
neural network. However, it would be difficult to determine the
impurity types which does not change the usual appearance
of water. In this experiment, all of the water samples were
prepared by mixing sand which obviously change the visual
appearance of water.

We used thermal images instead of RGB images for detect-
ing the categories of impurities. A good number of qualitative
research has been performed with thermal images to analyze
the zone of interest for different domain specific problems.
Based on the domain specific knowledge, thermal images
have been observed to characterize or evaluate the concept
of the zone of interest. For example, spatial pattern of land
surface temperature has been quantified from the thermal
images of land surfaces by analyzing spatial differences and
relationships between land surface temperatures [4]. Thermal
image sequences of water surface have been analyzed to
measure the spatio-temporal flow velocity by studying the
thermal features from the images [5]. However, thermal images
have also been used in detecting foreign bodies in food [6].
However, in this study we presented a novel approach to detect
impurities in water samples using thermal images.

III. OVERALL FRAMEWORK

We use a sequence of thermal images of different water
samples from its hot temperature to room temperature for
detecting different impurities in it. We extract features from the
series of thermal images for each of the samples. Our overall
framework is showed in figure 1. There are three main modules
in the framework. In the first data pre-processing module,
the temperature of water surfaces are extracted using image
processing techniques and temperature conversion algorithm.
Then we transform the data into the subsequences of thermal
images for our model input. We also label the images based
on the impurity types and sources at this step. In feature
extraction module, all the subsequences are passed into the
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Fig. 1: Overall Framework

subsequent time-distributed convolution layers which extracts
local spatial features of the individual images. We apply layer
normalization [20] at the end of each convolution operations.
Then ConvLSTM layers are stacked on top of time-distributed
convolution layers to extract spatio-temporal features among
the image subsequences. ConvLSTM combines all the gates
of LSTM with 2D convolution and preserves hidden states
between time steps. A fully connected dense layer is applied
on the time distributed flattened features obtained from the
last ConvLSTM layer and a supervised classification layer
i.e., softmax layer categorizes the types of impurities added
with the water samples. Later, we compute the distance of
all water samples with safe water sample using discretized
representation of feature vectors with Symbolic aggregated
Approximation (SAX) [22].

IV. PROPOSED FRAMEWORK

In this section, we present our proposed framework for
determining the type of impurities in the water samples. In the
following subsections, we describe each step of the framework
in detail.

A. Data Pre-processing

We collected consecutive thermal images for each of the
water samples using our developed android application for
FLIROne thermal camera. In data pre-processing step, we
processed the collected thermal images in three steps - i) Water
surface extraction, ii) Temperature Extraction, iii) Prepare for
feature extraction. In the first step, we extracted water surface
area from the thermal image and cropped out the rest of
the portions from the thermal images. This step helps us
to focus only on the temperature of water surface ignoring
other parts that comes into the image capture. In temperature
extraction step, we extracted temperature value for each pix-
els of the interested region in the images. Infrared thermal
images provide the radiation in the long-infrared range of the
electromagnetic spectrum. However, we extract radiation data
from the metadata of infrared thermal images and converted
radiation values into estimated temperatures using standard
thermography equations with the help of a R library named
as 'Thermimage’ [15]. In the last step, we transformed the

images into a list of sub-sequences of temperature matrices to
pass into the model .

B. Feature Extraction Model

In order to learn features from the prepared temporal se-
quences of temperature matrices, we developed a deep network
with the combination of convolution and recurrent neural
network. This network constructs the latent representation of
our temporal sequences of temperature matrices. We use two
layers of convolution operations to find the local translation
invariant patterns of each of the images in the sequence
in a hierarchical manner. Later, we apply ConvLSTM to
capture better spatio-temporal features among given tempo-
ral sequences of temperature matrices. Convolutional LSTM
(ConvLSTM) is introduced in [16] with the combination of
CNN and LSTM where convolution structures are applied
both at the input-to-state transition and state-to-state transition.
It differs from the sequential CNN-LSTM network in which
CNN layer is followed by LSTM layer. In the following
subsections we describe the operations in different layers:

1) Convolutional Operation: The convolutional layer usu-
ally contains multiple convolution kernels or multiple filters
to extract various types of features. For the implementation
of £ number of kernels, we obtain k feature matrices. The
convolution operation can be expressed as follows:

Zk:f(Wk*X—f—b) @))

where X is the input data, W}, is the k—th convolutional kernel
and b denotes the offset. * denotes the convolution operation.

2) Layer Normalization: Layer normalization is introduced
in [20] which normalizes all the features to the neurons in
a layer. It computes normalization statistics (i.e., mean and
variance) across each features and does not depend on each
other. We use layer normalization as it works effectively
for recurrent neural networks and reduces the training time.
For recurrent networks, it computes normalization statistics
separately for each time steps. Mathematically, equations for
layer normalization are given below:
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Here, x; is the j-th feature in 4-th hidden unit, m is number
of hidden units in a layer, ; and 032- are the mean and variance
for feature j, respectively, and Zj; is the normalized feature
over all the hidden units in the layer.

3) ConvLSTM operation: ConvLSTM uses convolution op-
eration with the given kernel instead of matrix multiplication
among the gates of LSTM. This convolution operation of
ConvLSTM reduces the model parameters and prevent over-
fitting. LSTM and ConvLSTM structure are showed in figure
2. Mathematically the updating procedure of ConvLSTM can
be formulated as follows:
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where * denotes convolutional operation and © denotes
element-wise product; o and tanh are logistic sigmoid func-
tion and hyperbolic tangent function, respectively; W ™" and
be°™ denote weights and biases learning from the training
model. Here, the input data X, the output spatio temporal
hidden state H/°"", the input gate i{°"", forget gate f ", cell
state C7°"", and output gate of°"", all are three dimensional
matrices where the first two dimensions are spatio-temporal
information and the third dimension is the number of convo-
lutional filters.

Assume we have a set of temperature images I
11,192,%3, -+ , 1N, Where 4; is the temperature image at times-
tamp ¢t and N is the number of total images. Each of the
images are 2D matrix of single channel. Each temperature
image has a target categorical value Y which is the type
of impurity in the water sample. However, we divide I
into L local subsequences. Each subsequence is denoted as
St 2 L. where [ is the length of each

This iy > g
subsequence. After preparing the image subsequences, two
dimensional convolution layer is applied to extract features for
each of the images in the subsequence. Local feature extraction
processes are performed independently with each other for
each of the L sequences using “TimeDistributed” wrapper.
With TimeDistributed wrapper, same structure of local feature
extractors is applied for different time steps. We assume a
sample input subsequence St; = xk,, x%,, -+, zk.., which is
a 4D tensor of (I x Iy x Iy x 1) format. The local feature
extractor consists of two time-distributed local convolution
layers. There are two types of features embedded in the
sequences of temperature matrices, that is, spatial features in
temperature matrices for different water samples and temporal
features among consecutive temperature matrices. We apply
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Fig. 3: Framework of the proposed model

convolution operation to each frame x%v (where j < ) si-
multaneously using time-distributed wrapper. In the first local
convolution layer, two dimensional kernels with ¢ number of
filters are applied with convolutional stride (2,2) to extract
features inside a temperature matrix using non-linear activation
functions. The first convolution layer returns features with
reduced shape, (n,l, I}, I,,, c), which is thereafter served as
the input to the next time distributed convolution layer. In the
second local convolution layer, another 2D kernels are adopted
with same convolutional stride to learn more general features
in the temperature matrices and returns more reduced shape
of features Lsp; for sequence St;.

We apply layer normalization after each convolution layer
to normalize the features over all the hidden units of the layer.
Later, a ConvLSTM layer with 2D kernels are adopted to learn
deeper and sparser spatiotemporal features among the temporal
sequences. The spatiotemporal features at each subsequence
are flattened turning into shape (n x [ x l3) where I3 is the
shape of flattened features. The framework of our proposed
model is briefly presented in figure 3.



4) Classification Operation: At last, the feature vector is
passed into another fully-connected layer with m units and a
classification layer. The model is briefly presented in algorithm
1. As the target variable Y are discrete labels i.e., impurity
types, the supervised learning layer applies a softmax layer,
which is defined as follows:
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Algorithm 1 Feature Extraction with ConvLSTM
1: procedure FEATURE EXTRACTION (Input: Training data

I, Output: Predicted labels Y7, Y7o, -+, Y] ,)

2: S <+ Divide [ into L  subsequences
Sti1,5812,+ ,STL

3: for each S7; in S do:

4: Lst; < Local spatial features with convolution for
each z%.. in St;

5: end for

6: Apply ConvLSTM on Lsp;’s from L subsequences

7: Flatten features for each subsequence

8: Apply dense layer on the flattened features

90 Y[, Yig, -, Y] n  Softmax on feature vectors

10: return Y/, Y/, Y],

11: end procedure

To detect the quality of water samples, we measure the
distance between each water sample and the fresh or safe water
sample. We used SAX for discrete representation of feature
vectors obtained from the fully connected layer. SAX divides
the feature vectors using Piecewise Aggregation Approxima-
tion (PAA) and assign symbols to the PAA segments. The
feature vectors are represented with a sequence of symbols.
The final distance is defined as the total number of difference
in the symbol sequence between any two feature vectors.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results in
detecting impurities and differentiating water sources using
our framework.

A. Data Pre-processing

We prepared 25 water samples from 16 water sources
with mixing other impurities i.e., salt, pencil lead powder,
toothpaste etc. We tested some samples as it was collected
from the source. With few water samples, a 10L water solution
were prepared by mixing 20 — 100 mg of impurities and we
took 1L solution for our experiments. However, we collected
water samples not only from the sources used for drinking
and other activities, but also from the sources (i.e., ponds,
rivers etc.) which are generally not used for drinking. Each
water samples was tested with paper testing strips which gives
us the ground truth of water properties. The paper testing
strips provides various properties of water samples such as
free chlorine, iron, copper, lead, nitrate, nitrite, bromine, total
chlorine, fluoride, cyanuric acid, carbonate, total alkaline and

(a) Thermal image

(b) Extracted temperature image

Fig. 4: Temperature image of thermal image

pH level. Each of the samples collected from the known drink-
ing sources are free of bromine, total chlorine and fluoride.
We collected thermal images for each of the 25 samples.
We heated the water samples to reach up to 100°C and
captured thermal images until the water surface temperature
reduces to room temperature. Here for this experiment, we
maintained the room temperature as approximately 75° F'. For
thermal image capture, we used FLIROne thermal camera
which can be associated with an android smart phone. We
developed an android app for FLIROne android camera to
capture consecutive images with a certain time interval (i.e.,
10 sec).

We extracted temperature and visual images for all the
collected thermal images using a R package named as *Ther-
mimage’ [15]. Extracted temperature image is showed in figure
4(b) for original thermal image in figure 4(a). Original pixel
values in pre-allocated matrix of the same dimensions of
the thermal image, are integers values which are radiance
values or absorbed infrared energy values in arbitrary units.
Calibration constants are used to fix the arbitrary unit problem
in temperature conversion algorithm. Besides, the conversion
algorithm includes Plank’s law and the Stephan Boltzmann
relationship, as well as atmospheric absorption, camera IR
absorption, emissivity and distance.

Our collected thermal images, capture other portions includ-
ing the water surfaces. Therefore, we extracted only water
surface area from the images. To extract water surface area,
we first obtained grayscale image of the original thermal image
and applied Otsu’s threshold to get a binary image. A circular
shape like the upper surface of the water container was used
as the kernel for morphological closing transformation. We
isolated the contours using the expected contour area and
prepare the mask by placing the minimum enclosing circle
onto it. We cropped out the bounding rectangle ROI on
the mask and considered temperature values only from the
extracted water surface area. Figure 5 shows an example of
captured thermal image and temperature image of extracted
water surface.

However, the bounding rectangle of the water surface area
are not of same size for all the images. Therefore, we center
cropped the portion with size 256 x 256 from temperature
matrices of water surface images. Later, we transformed the
list of temperature matrices from all images into Samples x
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Fig. 5: Pre-processing of original thermal images

TABLE I: Parameters of the proposed model used in water

impurity detection

No | Layer Type Kernel | Stride | Activation
1 Local Convolution 3,3) 2,2) LeakyReLu
2 ConvLSTM (3,3) 2,2) LeakyReLu
3 FC Layer 256 - Relu

4 Classification Layer | 4 - Softmax

Timesteps x Imageheight x Imagewidth x 1 form for pass-
ing through our model. We separately prepared sub-sequences
of 5 temperature matrices for each of the water samples and
labeled them according to the category of impurities we added.
It refers to that we are considering 50 seconds temperature
changes for each pass in our model.

B. Model Settings

Our proposed feature learning algorithm based on ConvL-
STM model were tested on the collected temporal sequences of
thermal images from different water samples. The parameters
in different layers are listed in Table I. We adopted categorical
cross-entropy as the loss function and stochastic gradient
descent for optimizing the loss of the model. In our developed
model, the kernel, stride and filter number of two convolution
layers are set to [(3,3), (2,2), 128] and [(3,3), (2,2), 64],
respectively.
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We visualized the features for different kind of water
samples in different layers of ConvLSTM model in figure 6(a).
This feature visualization helps us to understand the process
of differentiating the categories of impurities over different
layers in the model. Here, we used t-SNE method [21] to
show the features extracted by each layers in our proposed
model. T-SNE maps the high dimensional data from high
dimensional space to two-dimensional space. The feature maps
from input data, the local convolutional layer, ConvLSTM
layer and the last softmax layer are showed in figure 6. The
features of water samples with different impurities can be
distinguished by different colors in the figure. It is obvious
from the figure that the more the layers get deep, the features
get more separated. At the initial stage in the raw input data,
the features of all four impurities are all combined together.
After the local convolutional layers, features are still dispersed
and combined together. However, starting from ConvLSTM
layer, the features from same mixture types begin to be placed
together. At ConvLSTM layer, most of the features from the
fluoride and the salt mix type water sample, clustered together,
while the neutral type are still mixed together with lead mix
and salt mix. The fully connected layer further separates the
features of the four mix types and the features of the same
mix type are placed closer than before. At the last layer, there
exists some sparse feature vectors which are not completely
separated. In comparison with the proposed algorithm, we
presented feature evolution at different epochs during training
using stacked LSTM network in figure 7. For this network,
we took the mean temperature from each temperature images
of water samples and prepare a temperature sequence. The
figure shows stacked LSTM network with only temperature
sequence from different samples cannot differentiate features
for these four categories of mixtures dissolved in water. We
also experimented with LSTM layer by replacing ConvLSTM
layer in our proposed model which also acts same as satacked
LSTM network. Table II shows the average accuracy for
predicting each category of impurities of different amount with
classification using our proposed model.



TABLE II: Accuracy of detecting different category of water
samples

Added material Amount(mg) | Accuracy(%)
Salt 20 70.3
Salt 50 80.2
Salt 100 82.4
Fluoride 20 65.2
Fluoride 30 69.4
Fluoride 50 72.9
Pencil lead powder | 20 67.5
Pencil lead powder | 30 70.1
Pencil lead powder | 40 73.4
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Fig. 8: Feature space for differentiating water-sources

It is obvious from the accuracy results that with the incre-
ment of impurity amount, the model can predict the impurity
category more accurately. However, for salt mixed water
sample, the model performs better even for small amount.
However, we also differentiated water samples based on the
sources. Figure 8 shows features for each of the water sources
with t-sne plot. Although most of the water sources are safe for
drinking as no harmful substances are present above standard
amount, they are quite distant in the feature space. The
paper tester provides different amount of hardness, carbonate,
alkaline, free chlorine and pH level. However, water samples
from source 3, 12 and 16 are closer in feature space than
that of other samples. Those samples were collected from a
hilly area and the hardness, alkaline and pH level were high
in amount. The sources located in the middle of the feature
space are of similar pH level but differs in other properties of
water i.e. amount of carbonate, iron, cyanuric acid, hardness
and alkaline.

C. Differentiating Mix types

We converted our features vectors into discretized repre-
sentation with SAX. In Table III, we presented the average
SAX distances between each category of water samples and
drinking water samples. It shows that features from lead mix
and fluoride mix water are more distant than the salt mix water
sample with fresh water sample.

TABLE III: SAX distance of all mix types from safe water

Mix type | Distance
Salt 3.35
Fluoride 6.7

Lead 4.69

VI. LIMITATIONS AND FUTURE WORK

Our work in this study is a preliminary step to investigate
the feasibility of using thermal images to determine the water
quality. There are some limitations of our work due to lack
of resources and lab settings. We collected water samples
from different residential areas in USA and prepared some
samples with three kinds of impurities. For this study, we used
considerably large amount of impurities compared to the actual
permitted amount of impurity. For example, we used 20-40mg
of lead powder to prepare 10L solution for our experiments
while permissible lead amount in water sources is approxi-
mately 0.015mg/L which is 100 times smaller than the amount
we considered. The measuring scale for such precise amount
is very expensive. Besides, some minerals i.e., lead, arsenic
etc., are very scarce in salt form in the market. We conducted
experiments with best possible settings in residential home
considering these limitations. We experimented the variation
of thermal characteristics due to the use of impurities in water.
Our framework is useful to compare the quality of an unknown
water sample with the known safe water sample. We captured
thermal images in 10 seconds interval as we observed hot
water samples take at least 10—15 minutes to reach to room
temperature. Due to thermal inertia and higher thermal heat
capacity, water stores heat well. Therefore, we chose not to
select higher time interval for longitudinal image capture.

As future study, we might extend this work to investigate
the presence of smaller amount of impurities in water samples.
For testing and detecting the amount of other minerals, we
can build machine learning based model involving chemical
sensors along with the thermal properties of water samples to
detect the noticeable minerals in water.

VII. CONCLUSION

In this work, we experimented with water samples that
are mixed with different impurities in different amounts. We
used the thermal property of water samples to identify the
materials. For feature extraction from the temperature matrices
of thermal images, we used ConvLSTM based network. We
visualized how this model differentiates feature vectors for
different type of water samples. Finally, we also scored each
water sample using discrete representation of their feature
vectors. Given more time and resources, we could extend
this project for creating more artificial samples with smaller
amount of impurities and testing on originally contaminated
water samples. This work is considered to be the initial step for
using machine learning to analyze thermal images for water
quality assessment.
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