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Woven fabric composites have emerged as promising alternative in frontier technology areas such as aerospace, defense and automotive applications. In particular, woven ceramic matrix composites exhibit superior strength at
elevated temperatures while maintaining robust stiffness characteristics. Silicon Carbide (SiC) fiber reinforced Chemically Vapor Infiltrated (CV1) SiC matrix woven composites are being evaluated as candidate materials in the hot
gas exhaust region of NASA's FasTrac engine which would provide the driving thrust to the future generation X-34 space vehicle.Woven polymer matrix composites are currently employed on the nose cone and wing leading
edges of the Space Shuttle. Military striker aircraft such as the Northrup Grumman F/A-22, B-52 bomber and the USS Navy Sea Shadow employ polymer matrix composites toward savings in weight and enhancement of stealth

capabilities.

The objective of the present study is to develop reliable analysis tools aimed at understanding the mechanical as well as thermal response of advanced plain and satin weave ceramic and polymer matrix fabric composites.The
first step toward successfully characterizing the behavior of woven composites involves the mathematical description of the fiber tow architecture and matrix layer topology within the domain of the symmetric unit cells of
these materials. As such, a new class of robust mathematical shape functions are developed and incorporated into the in-house finite element mesh generator DENDRO. The resulting three-dimensional (3D) finite element mesh

is employed to conduct fundamental thermo-mechanical finite element studies as needed to capture the elastic micro-fields induced by the combined application of mechanical and processing thermal loads.
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Top views of the fiber architecture in woven fabric composites | 3* |
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Top views of the fiber architecture in binary sub-cells
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Woven composites applications in Aerospace and Deep Svace loration
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Mathematical treatment of the fiber tow architecture in bz’nam sub-cell # 1
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Simulation Parameters:

= T300 pitch based fibers

+ Plain woven 9K fiber tows

* Pyrolytic Carbon bundle
matrix

* Unit-cell height fixed at
1.1 mm

* Number of fibers varied
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» Robust computational models of complex woven fabric composites have been developed with aid
of generalized mathematical surface functions.

® The models are inherently capable of accounting for the intricate fiber tow architecture as well as
the spatially varying matrix layer topology characteristic of woven composites fabricated via the
Chemical Vapor Infiltration (CVI) technique.

® Failure loci based on the Maximum Normal Stress criterion have been established for the Plain
Weave (PW) CVI 5i1C/8iC composite.

® The predicted Proportional Limit strength for the PW CVI SiC/5iC composite was shown to be in
excellent agreement with experimental data,

» Simulations performed for the PW 1on optic grid produced an envelope of effective elastic moduli
predictions which was shown to be in excellent agreement with experimental studies.
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