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This thesis contains the theoretical basis for the rigorous coupled-wave algorithm

(RCWA) and its application to the design of novel materials with desired electromagnetic

properties. The RCWA is typically used to calculate diffraction efficiencies and electro-

magnetic field distribution during the scattering of light by periodic dielectric structures.

First, the basic idea of the algorithm is introduced for a single grating layer with uni-

directional periodicity [1]. The next chapter covers the stacking of multiple layers of

gratings using the scattering matrix [2] and the big matrix method [3]. These ideas are

then extended to gratings having periodicity in both orthogonal directions perpendicular to

the plane of incidence [4, 5]. The concepts introduced in these independent sources are

consolidated using a consistent mathematical framework, and the results produced by the

algorithm for several photonic structures are presented. Finally, application of the RCWA

to design a new metamaterial with polarization-independent ultra-broadband absorption is

discussed.
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Chapter 1

OVERVIEW

The rigorous coupled-wave algorithm (RCWA) is a semi-analytical Fourier space

method that can be used to find exact solutions for electromagnetic waves that diffract

through intricate grating structures. The geometry of such a structure is shown in Fig.

1.1. A unit amplitude, monochromatic plane wave with free space wavelength λ0 trav-

elling from the half-space z < 0 at an arbitrary angle with respect to the z direction, is

assumed to be incident on a permittivity distribution that varies along the (x, y) plane with

finite thickness h. The regions I & II on either side of the grating layer 0 < z < h are

homogeneous with refractive indices nI and nII respectively.

The incident electric field from such a plane wave at any point with z < 0 can be

written as,

Einc(r) = exp(−jkinc · r) û ∀ r | z < 0 , (1.1)

where the polarization vector is

û = ( cosψ cosφ cos θ − sinψ sinφ) x̂ + (cosψ cosφ cos θ + sinψ cosφ) ŷ

+ cosψ sin θ ẑ , (1.2)

1
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and the incident wave vector is

kinc = kx0 x̂ + ky0 ŷ + kI,z00 ẑ , (1.3)

with

kx0 = nIk0 sin θ cosφ , (1.3a)

ky0 = nIk0 sin θ sinφ , (1.3b)

kI,z00 = nIk0 cos θ . (1.3c)

The free space wavenumber k0 = 2π/λ0, and the angles θ, φ, andψ are defined according to

convention and shown in Fig. 1.1. A time dependence of exp(jωt) is assumed throughout

this report.

To keep the equations concise and for better numerical stability, it is advisable to keep

the field magnitudes normalized so that they are of comparable magnitude. Hence, we

suppose the magnetic field H is normalized as

H = −jη0H̃ , (1.4)

where H̃ is the actual, non-normalized magnetic field vector, and η0 is the impedance of

free space. We also assume that all materials are non-magnetic with a relative permeability

µ = 1.

The core of the RCWA approach lies in the Fourier analysis of Maxwell’s curl equa-

tions, which under these constraints, simplify to

∇× E = k0H , (1.5a)
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FIG. 1.1: Example of a single layered binary grating [1].

∇×H = k0εE . (1.5b)

We begin our analysis by calculating the Fourier series for a given permittivity dis-

tribution, which is modelled as a function ε(x, y) that yields the relative permittivity at

(x, y) within the grating structure. The permittivity is assumed to be constant along the

z-direction, but ways to relax this constraint are discussed in Chapter 3. The Fourier de-

composition of this function can either be done analytically or by using the fast Fourier

transform (FFT) algorithm.

The wavenumbers for the electric and magnetic fields are expanded as pseudo-periodic

functions using the Floquet-Bloch theorem, which describe a wavefunction traveling across
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a periodic crystal lattice [10, 11]. The fields can then be expressed as a Fourier series

of mode amplitude coefficients corresponding to these wavenumbers and introduced into

Maxwell’s equations. The results is an eigenvalue equation for the coupling between in-

dividual components of the fields. The eigenvectors of this equation are the independent

propagating modes within the grating and the eigenvalues are proportional to the prop-

agation constants (wavenumbers) of these modes in the z-direction. The fields can be

expressed using the solutions of the eigenvalue equation in terms of the (yet unknown) am-

plitudes for forward- and backward-traveling waves within the structure. A set of linear

equations is obtained by applying the boundary conditions at region interfaces, and they

are solved for these amplitude coefficients.

The series expansions of the fields and permittivity would have to be infinitely long to

produce an exact solution. In practice, the series must be truncated after some finite number

of terms N . Increasing the number of terms included in the calculation usually yields more

accurate results, but is also more computationally demanding.

We will now consider in detail the application of this procedure to single-layered

gratings.



Chapter 2

SINGLE-LAYERED GRATINGS

In this chapter, we will focus only on single-layered structures with a periodically

varying electric permittivity in one direction. Single-layered structures are structures whose

permittivity does not change along the direction of propagation. Moreover, the permittivity

is constant in the y-direction as the direction of periodicity is assumed to be x. Hence the

permittivity ε(x, y) is a function of x and ε(x0 + nDx) = ε(x0) for some period Dx. Thus,

these structures are also referred to as 1D gratings since the permittivity only changes along

a single direction.

We next review an example in which the Fourier series can be obtained analytically

for a simple permittivity function.

2.1 The permittivity expansion for binary gratings

Consider again the binary 1D grating shown in figure 1.1. Let the two permittivity

values be εrd for the “ridges” and εgr for the “grooves”. The permittivity function can be

written as

ε(x) =


εrd = n2

rd if |x| ∈
[
0,
fDx

2

)
,

εgr = n2
gr if |x| ∈

[
fDx

2
,
Dx

2

]
,

(2.1)

5
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where Dx is the period of the grating and the filling factor f is the fraction of the period

with permittivity εrd.

The Fourier series expansion of ε(x) can be written using the Fourier transform as

εm =
1

Dx

∫ Dx/2

−Dx/2

ε(x) cos(2πmx/Dx) dx

=
2

Dx

[∫ fDx/2

0

εrd cos(2πmx/Dx) dx+

∫ Dx/2

fDx/2

εgr cos(2πmx/Dx) dx

]

= (εrd − εgr)
sin(πmf)

πm
= (n2

rd − n2
gr)

sin(πmf)

πm
(m 6= 0) ,

(2.2)

where m is an integer and ε0 = n2
rdf + n2

gr(1− f).

This expression is valid only for binary gratings, but it can be replaced with Fourier

expansions of more complicated permittivity distributions to widen the applicability of the

algorithm. Moreover, performing the FFT on a row matrix containing the permittivity

values that are sampled at predefined intervals in a period yields the coefficients for any

arbitrary distribution. The FFT is indispensable for most bi-periodic index profiles and is

discussed in greater detail in Chapter 4. However, an analytical expression when obtainable

uses less computational power and is a good starting point for the analysis of more complex

structures.

2.2 TE-polarized incidence

For the grating just described, we first consider the transverse electric (TE) polariza-

tion. Here, the incident electric field is normal to the plane of incidence which is the (x, z)

plane, and is polarized along the y-direction. Hence, we find that φ = 0, ψ = π/2, and the

incident wavevector kinc = k0(sin θx̂+cos θ ẑ). The reflected and transmitted electric fields

are expressed in terms of coefficients Rm and Tm respectively, which are to be determined.
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2.2.1 Fields in the homogeneous regions

We limit our expansion of the fields to include N modes such that N is odd and

−(N − 1)/2 ≤ m ≤ (N − 1)/2. We now write

Einc,y = exp[−jk0nI(sin θ x+ cos θ z)] , (2.3a)

EI,y = Einc,y +
∑

m
Rm exp[−j(kxmx− kI,zmz)] , (2.3b)

EII,y =
∑

m
Tm exp[−j(kxmx+ kII,zm(z − d))] , (2.3c)

where Einc,y is the y-component of the incident electric field, EI,y and EII,y are the y-

components of the electric field in the incidence and transmission regions respectively, Rm

and Tm are the efficiencies of the m-th order component of the reflected and transmitted

waves respectively, and the sum is carried out over the N diffraction orders.

The spatial dependence of the diffracted fields is defined in terms of the periodic

wavenumbers in the x- and z-directions. The x-direction wavenumbers are expressed using

the Floquet condition [11]

kxm = nIk0 sin θ − 2πm/Dx , (2.4)

while the z-direction wavenumbers are expressed using |k|2 = (k0n)2. Thus, we find

kρ,zm =
[
(k0nρ)

2 − k2xm
]1/2

, (2.5)

where ρ = I, II denote respectively the incidence and transmission regions. Special care

must be taken to ensure that the imaginary parts of all the kρ,zm are negative to prevent

exponentially increasing field amplitudes, as discussed in Section 2.3.3.

The normalized magnetic field vector, H from Eq. (1.4), is next expressed in the ho-
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mogeneous regions in terms of the electric field. Using the reduced form of Maxwell’s

equation Eq. (1.5a) we obtain

Hinc = VI,0Einc,y x̂−Kx0Einc,y ẑ , (2.6a)

HI = Hinc +
∑

m

[
− VI,mRm exp[−j(kxmx− kI,zmz)] x̂

−KxmRm exp[−j(kxmx− kI,zmz)] ẑ
]
, (2.6b)

HII =
∑

m

[
VII,mTm exp[−j(kxmx− kII,zm(z − h))] x̂

−KxmTm exp[−j(kxmx− kII,zm(z − h))] ẑ
]
, (2.6c)

where Hinc is the incident magnetic field vector, HI and HII are the magnetic field vectors

in the incidence and transmission regions respectively, and two important set of coefficients

that will be used extensively are defined as

Kxm = j
kxm
k0

, (2.7)

Vρ,m = j
kρ,zm
k0

. (2.8)

2.2.2 Fields in the grating region

In the grating region (0 < z < h) the tangential electric and magnetic fields can be

expressed as a Fourier series in terms of the spatial harmonics,

Ey =
∑

m
Eym(z) exp(−jkxmx) , (2.9a)

Hx =
∑

m
Hxm(z) exp(−jkxmx) . (2.9b)
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Maxwell’s curl equations can also be expanded in terms of their constituent components,

which for the TE-polarization reduce to

k0Hx = −∂zEy , (2.10a)

k0Hz = ∂xEy , (2.10b)

k0ε(x)Ey = ∂zHx − ∂xHz , (2.10c)

where ∂` stands for a partial derivative with respect to `.

Substituting (2.2) and (2.9) in Eq. (2.10) and eliminating Hz, we obtain the coupled

equations,

∂zEym = −k0Hxm , (2.11a)

∂zHxm = k0K
2
xmEym + k0

∑
p

ε(m−p)Eyp . (2.11b)

These equations can further be simplified by eliminating Hxm and on arranging the coeffi-

cients Eym in a column matrix Ey we obtain the differential equation

∂2zEy = k20
(
−K2

x − JεK
)

Ey , (2.12)

where JεK is the Toeplitz matrix formed by the permittivity harmonic components from

Eq. (2.2) in which the (m, p) element is equal to εm−p. This matrix acts as a convolution

operator, and Kx is a diagonal matrix in which the (m,m) element is equal to Kxm.
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2.2.3 The eigenvalue problem

Solutions to Eq. (2.12) can be obtained by making a similarity transformation of the

matrix A = −K2
x − JεK so that

A = WΓ2W−1 , (2.13)

where Γ is a diagonal matrix in which the (m,m) element γm is equal to the square root of

the m-th eigenvalue of A. The columns (Wn) of W are the eigenvectors of A. When these

matrices are substituted into Eq. (2.12) we obtain a simpler differential equation

∂2z
(
W−1Ey

)
= (k0Γ)2

(
W−1Ey

)
. (2.14)

As Γ is diagonal, there is no coupling among the matrix elements and the solution to

Eq. (2.14) becomes

Ey(z) = W
{

exp(−k0Γz) c+ + exp[k0Γ(z − h)] c−} , (2.15a)

which may also be written as,

Eym(z) =
∑
n

Wm,n

{
c+n exp(−k0γnz) + c−n exp[k0γn(z − h)]

}
, (2.15b)

where −(N − 1)/2 ≤ n ≤ (N − 1)/2. The set of constants c+ and c−, are determined by

the boundary conditions. The magnetic field coefficients can now be obtained from (2.11a).

Defining V = W Γ we obtain

Hx(z) = V
{
− exp(−k0Γz) c+ + exp[k0Γ(z − h)] c−} , (2.16a)
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Hxm(z) =
N∑
n=1

Vm,n
{
−c+n exp(−k0γnz) + c−n exp[k0γn(z − h)]

}
. (2.16b)

We also define the diagonal matrices φ(z) = exp(−k0Γz) and X = φ(h). These matrices

take into account the propagation of wave amplitudes c+ and c−. The entire z-propagation

of the fields can now be written in a concise form as

Ey(z)

Hx(z)

 =

W W

V −V

φ(z) 0

0 Xφ(−z)

c+

c−

 . (2.17)

The eigenvalues γn govern the phase change along the z-direction of the fields, including

their attenuation or gain. They are equivalent to the z-direction wavenumber in the in-

cidence and transmission regions kρ,zm. Thus, for the homogeneous regions we see that

γρ,n = j(kρ,zn/k0), and we can use this observation to define Γρ and φρ(z).

The unknown constants c+n and c−n , are the amplitudes of the nth eigenmode for the

forward- and backward-propagating waves respectively. They are equivalent to Tm and Rm

defined in Eq. (2.3). The incident wave is assumed monochromatic and hence its amplitude

coefficient matrix is the Kronecker delta column matrix δ0 which is 1 only for indexm = 0

and 0 elsewhere.

The n-th column of the eigenvector matrices W and V equals the relative intensity

of the individual field harmonics that make up the eigenmodes of the grating structure.

It follows that Wn and Vn are the standard basis vectors of the structure for the electric

and magnetic fields respectively, and these components will travel unperturbed through

the medium. The homogeneous counterpart of these matrices may not seem obvious from

Eq. (2.3). Hence, using Eq. (2.6), our recent definition of γρ,n, and defining Vρ as a diagonal

matrix with γρ,m as its (m,m) element, we can use the definition for V, from which we find

that Wρ = I, where I is an N ×N identity matrix.
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Using this insight we can express the electric and magnetic fields in the homogeneous

regions in a matrix equation similar to (2.17) as

EI,y(z)

HI,x(z)

 =

WI WI

VI −VI

φI(z) 0

0 φI(−z)

δ0
R

 , (2.18a)

EII,y(z)

HII,x(z)

 =

WII WII

VII −VII

φII(z − h) 0

0 φII(h− z)

T

0

 . (2.18b)

2.2.4 Boundary conditions

Equations 2.17 and 2.18 form the backbone of the approach that we will apply to

multilayer gratings in Chapter 3. Among these equations we have 4 unknown matrices R,

T, c+, and c−. To find them, we apply the boundary conditions by matching the tangential

components of the fields at z = 0 and z = h, which yields

 I I

VI −VI

δ0
R

 =

W WX

V −VX

c+

c−

 , (2.19a)

 I I

VII −VII

T

0

 =

WX W

VX −V

c+

c−

 . (2.19b)

Since each of the matrix equation is in fact a pair of equations we may eliminate R from

Eqs. (2.19a) and T from Eqs. (2.19b) and concatenate them in a single matrix equation to

obtain

2VIδ0

0

 =

 WVI + V (WVI − V) X

(WVII − V) X WVII + V

c+

c−

 . (2.20)
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We use this expression to solve for C =
[
c+ c−

]T
where T stands for the transpose.

Substituting C into (2.19), we obtain R and T as

 I

−VI

R =

W WX

V −VX

c+

c−

−
 I

−VI

 δ0 , (2.21a)

 I

VII

T =

WX W

VX −V

c+

c−

 . (2.21b)

Finally, the reflected and transmitted diffraction efficiencies of the m-th order component,

DErm and DEtm respectively, can be calculated using

DErm = |Rm|2 Re

(
γI,m
γI,0

)
, (2.22a)

DEtm = |Tm|2 Re

(
γII,m
γII,0

)
. (2.22b)

where Re(x) denotes the real part of x.

2.2.5 Estimating the fields

Once we find the amplitude coefficients, we have calculated the behaviour of the light

that is incident on the grating structure. The transverse components of the fields have

already been expressed in Eq. (2.17). Including the lateral component Hz, we obtain


Ey(z)

Hx(z)

Hz(z)

 =


W W

V −V

−Vz −Vz


φ(z) 0

0 Xφ(−z)

c+

c−

 . (2.23)
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We make use of k0Hz = ∂xEy to obtain Hz = −KxEy, which implies that

Vz = KxW . (2.24)

As we have the same equation describing the z-propagation of the fields in all regions, we

can generalize this result. We denote the first matrix on the right hand-side of Eq. (2.23)

containing the eigenvector matrices (W, V, Vz) as M. The matrix M contains the mode

coupling information. We denote the second matrix on the right hand-side of Eq. (2.23) as

Φ(z). We now find

Ψρ(z) = MρΦρ(z)Cρ , (2.25)

where Ψρ =
[
Ey(z) Hx(z) Hz(z)

]T
is the matrix containing all non-zero components of

the fields in region ρ. Multiplying each of those components with φx(x) = exp(−k0Kxx)

yields the complex magnitude of that field component at any point in the (x, z) plane. Thus,

by defining

Φx(x) =


φx(x) 0 0

0 φx(x) 0

0 0 φx(x)

 , (2.26)

we can obtain the fields diffracted from a single layer of gratings with the equation

Ψρ(x, z) = Φx(x)MρΦρ(z)Cρ . (2.27)
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2.2.6 Chalcogenide glass

To test this portion of the algorithm, we consider the structure studied in [6]. The

authors discuss the asymmetric resonances caused by subwavelength slits in a single layer

of As2S3 etched on glass (nII = 1.52), as shown in Fig. 2.1a. An implementation in MAT-

LAB based on the equations in Section 2.2 was able to accurately recreate the expected

response and the results are displayed in Fig. 2.1b.

(a) (b)

FIG. 2.1: (a) The basic structure of the As2S3 grating used to test the algorithm for 1D

gratings [6]. Thickness h = 200 nm. (b) Reflection resonances for three slit sizes of

chalcogenide glass a.
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2.3 TM Polarization

It was found that when the approach we described for TE-polarized light is repeated

for transverse-magnetic (TM) polarized light, the convergence obtained by increasing the

number of harmonics is slow. Hence, corrections have been introduced in the algorithm

[12, 13]. Before proceeding to the corrections, let us follow the same procedure as before

for TM-polarized incidence and discuss why these corrections appear.

2.3.1 The classical approach

Instead of starting with the equations of the electric field, as we did in Section 2.2, we

start out with equations for the magnetic field. Thus, we write

Hinc,y = exp[−jk0n1(sin θ x+ cos θ z)] , (2.28a)

HI,y = Hinc,y +
∑

m
Rm exp[−j(kxmx− kI,zmz)] , (2.28b)

HII,y =
∑

m
Tm exp[−j(kxmx+ kII,zm(z − d))] . (2.28c)

where Hinc,y is the y-component of the incident magnetic field, while HI,y and HII,y are the

y-components of the magnetic field in the incidence and transmission regions respectively.

By using Eq. (1.5b) we obtain the following expressions for the electric field,

Einc = VI,0Einc,y x̂−KI,x0Einc,y ẑ , (2.29a)

EI = Einc +
∑

m

[
− VI,mRm exp[−j(kxmx− kI,zmz) x̂

−KxmRm exp[−j(kxmx− kI,zmz) ẑ
]
, (2.29b)

EII =
∑

m

[
VI,mTm exp[−j(kxmx− kII,zm(z − h)) x̂

−KII,xmTm exp[−j(kxmx− kII,zm(z − h)) ẑ
]
. (2.29c)
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where Einc is the incident electric field vector, EI and EII are the electric field vectors in the

incidence and transmission regions respectively. The equations appear similar to Eq. (2.6),

but we note that V now acts on the magnetic field to yield the electric field instead of vice

versa. The appearance of the relative permittivity n2
ρ in the Maxwell’s equation used here

changes the definitions of Kxm and Vρ,m. So, for the TM-polarization, we find

Kρ,xm = j
kxm
n2
ρk0

, Vρ,m = j
kρ,zm
n2
ρk0

. (2.30)

The Fourier expansions of the fields in the region 0 < z < h becomes

Hy =
∑

m
Hym(z) exp(−jkxmx) , (2.31a)

Ex =
∑

m
Exm(z) exp(−jkxmx) . (2.31b)

Analogous to how we obtained Eqs. (2.10), we solve Maxwell’s equations for their indi-

vidual components and eliminate Ez to obtain the coupled equations

k0εEx = −∂zHy , (2.32a)

k0Hy = ∂zEx − ∂x
(

1

ε
∂xHy

)
. (2.32b)

At first glance, these equations seem very similar to the ones in (2.10), and we could con-

tinue to follow the same steps that we described previously and arrive at

∂zHy = −k0JεKEx , (2.33a)

∂zEx = k0Hy + k0Kx

s
1

ε

{
KxHy . (2.33b)

Note that the matrix J1/εK is not the same as 1/JεK. This matrix has as its elements the
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Fourier coefficients of the inverse permittivity function ζ(x) = [ε(x)]−1. For the uni-

periodic binary grating described in Fig. 1.1 we have,

ζ0 = n−2
rd f + n−2

gr (1− f) , ζm = (n−2
rd − n

−2
gr )

sin(πmf)

πm
. (2.34)

The (m,n) element of the Toeplitz matrix J1/εK is equal to ζm−n. This matrix will hence-

forth be referred to as JζK.

It is possible to proceed by formulating an eigenvalue problem using Eq. (2.33), but

the rate of convergence as N increases, where N is number of Fourier modes that are

included in the field expansion, is poor compared to the TE-polarized case [12, Fig. 2].

The solution to this problem was suggested by Lalanne and Morris [12] in 1996, and the

mathematical reasoning behind it was presented by Li [13].

2.3.2 An improved formulation for the TM-polarization

Consider a function h(x) such that h(x) = f(x)g(x) where f and g are piecewise

continuous functions having the same period. Li outlines three rules that suggest how one

might best transform this spatial relationship into the frequency domain, i.e. express the

harmonic amplitude coefficients hm of h(x) in terms of fm and gm.

Rule 1. If f and g do not share any points of discontinuity, then h(x) should be transformed

using the Laurent rule:

h(N)
m =

N∑
m=−N

fm−ngn , or h(N) = JfKg . (2.35)

We effectively made use of this relation in Eq. (2.11b) as there are no concurrent

discontinuities between ε and Ey.

Rule 2. If the concurrent discontinuities in f and g are such that their product h is still
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continuous, then they are pairwise complimentary discontinuities. The Laurent rule

is no longer the best approach. The situation can still be easily rectified. If f(x) is

invertible, then for

g(x) =
1

f(x)
h(x)

rule 1 holds. This relation can now be written in terms of the harmonic coefficients

as

∑
m

(
1

f

)
m−n

h(N)
m = gn, or h(N) =

s
1

f

{−1

g . (2.36)

This rule will be called the inverse rule.

Rule 3. A product of two functions having concurrent, but not complimentary discontinu-

ities cannot be transformed accurately by the rules described above. Such products

are to be avoided.

Equipped with this new information, let us re-analyze Eq. (2.32). Maxwell’s equa-

tions tell us that the product εEx is continuous across the regions of different permittivity

since Ex is the component of electric field normal to changes in ε. We know that ε is dis-

continuous, so Ex and ε must have pairwise complimentary discontinuities. Hence, this

product should be transformed according to the inverse rule, and Eq. (2.32a) yields

∂zHy = −k0JζK−1Ex . (2.37a)

For Eq. (2.32b), the product [(1/ε)∂xHy] is of interest. Once again, the physics tells us that

this product should be transformed using the inverse rule.

∂zHx = k0Ey + k0KxJεK−1KxHy . (2.37b)
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The equations are now in a numerically stable form. We eliminate Ex to find the

eigenvalue equation for the magnetic field modes

∂2zHy = −k20JζK−1(I + KxJεK−1Kx)Hy . (2.38)

To solve this eigenvalue equation, we define A = −JζK−1 (I + KxJεK−1Kx) and proceed as

in Section 2.2.3. However, the matrix W in this case, computes the amplitude coefficients

for the magnetic field. So, to compute V we must use Eq. (2.37a). Hence for the TM-

polarization, we find

V = JζKWΓ . (2.39)

2.3.3 Dealing with a complex permittivity: Diffraction in silver gratings

In order to test the TM formulation we refer to [7], which describes diffraction through

metallic gratings with narrow slits. The relative permittivity of the silver, the grating ma-

terial in question here, is a complex number. The dispersion of Ag is discussed by Palik

[14].

If we simply write εrd = Re(εAg) + j Im(εAg), the results are unphysical. We note

that the operator Im(x) stands for the imaginary part of (x). We assumed a convention that

exp(−jεkzz) indicates a propagation in positive z-direction, and we also assumed that loss

in a medium is characterized by a negative value for the imaginary part of the permittivity.

Thus, we find that if Im(εAg) is positive the z-propagation term now includes an increasing

exponential term exp[Im(ε) kzz] which results in a violation of conservation in energy.

Instead, we demand that εrd = Re(εAg)− j Im(εAg).

Fig. 2.2b shows the transmission of the gratings described in Fig. 2.2a and is in agree-

ment with Fig. 3 from [7].
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(a) (b)

FIG. 2.2: (a) D’Aguanno et al. [7, Fig. 1]. The basic geometry of the silver gratings. For

this example, we set Dx = 285 nm, a = 32 nm, and h = 400 nm. (b) Transmission

spectrum of the gratings where ω/ωref = 1/λ0.



Chapter 3

MULTIPLE LAYERS

Now that the techniques to model the fields and diffraction for the case of single-layer

gratings have been discussed, we proceed to a more complex situation. In this chapter,

we will consider the techniques that can be applied to structures in which the permittivity

distribution function ε(x, y) may change along the direction of propagation z. Since the

permittivity can now vary along two directions, these are also called 2D structures. It is

not practical to solve Maxwell’s equations for such a situation by considering the entire

structure to be a single layer. However, if the structure can be broken down into finitely

many single-layer gratings having the same period, then the ideas presented in the previous

section can be extended to find the solutions.

3.1 Lamellarization

The first step is to approximate the structure in such a way that the theory developed in

the previous section can be used. For the case of binary gratings, we define two piecewise

constant functions f(z) and h(z) in 0 < z < h such that

h(z) = hl and f(z) = fl , (3.1)

22
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for zl−1 < z < zl, where zl =
∑l

i=1 hi is the z-coordinate for the end of layer l. Further-

more, if the total number of layers is L, then we define h1 = f1 = 0 for the incidence layer

and hL = fL = 0 for the transmission layer. Note that the regions I and II are renumbered

as 1 and L for consistency. In this notation, the gratings discussed in the previous section

had L = 3 with h2 = h and f2 = f . For structures that do not have an analytical Fourier

series, we can build a matrix where the elements in each row are the permittivity values of

a layer sampled at predefined intervals and use the FFT to obtain the Fourier series of the

permittivity for each layer.

FIG. 3.1: The decomposition of a 2D structure into many thin layers [8].

Once we obtain these Fourier coefficients we can build the permittivity Toeplitz matri-

ces JεK. The eigenvalue equation, which is Eq. (2.12) for TE-polarized waves and Eq. (2.38)

for TM-polarized waves, is then solved independently for each layer. Finally we apply the
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boundary conditions at every interface.

Here, the 2D formulation requires a novel approach. As we may have an arbitrary

number of linear equations, traditional techniques to solve them are computationally inef-

ficient. We now describe two common approaches to solve a large set of linear equations.

3.2 Calculating the efficiencies: The S-matrix method

FIG. 3.2: Schematic representation of the

S-matrix as a four-port system.

The first approach eliminates two out of the

four unknown sets of coefficients from each in-

terface equation. We then obtain an equation

in terms of R, T, and the incident wave coeffi-

cients, which we have already assumed to equal

δ0. From among many iterative methods, one of

the most efficient has been shown to be the S-

matrix, or scattering matrix method [2]. It was

developed for experiments in high energy physics, where the probability outcomes of var-

ious scattering processes are of interest. Here we will formulate a method that utilizes the

properties of scattering matrices to solve the boundary conditions arising from Maxwell’s

equations.

Consider a system with two inputs and two outputs as shown in Fig. 3.2. The S-matrix

for this system defines a linear relation between the outputs and inputs. In quantum me-

chanics, it is used as an operator that when applied to the incoming wavefunction computes

the outgoing waves,

Ψout = ŜΨin . (3.2)

where Ψin and Ψout are the incoming and outgoing waves respectively and Ŝ is the S-matrix
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operator.

For the situation of interest here, we find

T

R

 = S

I+

I−

 , (3.3)

where I+ is the wave incident from region 1, and I− is the wave incident from region L.

The matrix S can be decomposed as

S =

Suu Sud

Sdu Sdd

 , (3.4)

from which we obtain

T = SuuI+ + SudI− , (3.5a)

R = SduI+ + SddI− . (3.5b)

The real utility of the S-matrix however, lies in consolidating many systems into a

single system. Fig. 3.3 shows a situation where two such systems are stacked. One of the

outputs of system S1, c+, acts as an input to the next system S2 and one output from S2,

c−, acts as input to S1. Thus we can have no information about c− unless we apply S2

to its inputs, for which we need to know c+. Such situations can be simplified using the

combination property of the S matrix, sometimes referred to as the Redheffer star product.

A linear relation can be algebraically worked out between the final inputs and outputs

using equations (3.5a) for both S1 and S2. Eliminating c+ and c−, we find that the relation
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FIG. 3.3: Stacking of two systems represented as S-matrices.

between I+, I−, R and T can be expressed using a single S-matrix S, which consists of

Suu = S2uu (I− S1udS2du)
−1 S1uu ,

Sud = S2ud + S2uuS1ud (I− S2duS1ud)
−1 S2dd ,

Sdu = S1du + S1ddS2du (I− S1udS2du)
−1 S1uu ,

Sdd = S1dd (I− S2duS1ud)
−1 S2dd .

(3.6)

This relationship is usually denoted S = S1 ? S2.

3.2.1 Implementing the S matrix for single-layered gratings

As a simple example of the S-matrix formulation, we will re-examine the single-

layered gratings. The systems S1 and S2 now correspond to the incidence and transmission

interfaces. We rearrange the terms to obtain a matrix that relates the incoming wave ampli-

tudes to the outgoing amplitudes. Eq. (2.19a) may be written as

c+

R

 =

W2 −I

V2 V1

−1  I −W2X

V1 V2X

I+

c−

 , (3.7)
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which has the form of an S-matrix with

S1 =

W2 −I

V2 V1

−1  I −W2X

V1 V2X

 . (3.8)

Similarly, from Eq. (2.19b) we obtain

S2 =

 I −W2

V3 V2

−1 W2X −I

V2X V2

 . (3.9)

The coefficients for S1 and S2 stand for the index of the interface between layers. Taking the

star product, we obtain the final S-matrix that accurately models the diffraction produced

by the grating, due to incident waves from either direction.

3.2.2 A generalized approach

Recall W = I and also that X = I for the incidence and transmission layers. Thus, we

may express the S-matrix for any interface ` as

S` =

W`+1 −W`

V`+1 V`

−1 W`X` −W`+1X`+1

V`X` V`+1X`+1

 . (3.10)

In the case of a single layer, we only had three layers and two interfaces, but in Section

3.1 we showed how a grating can be decomposed into any number of interfaces. Hence, we

take the star product of S-matrices for all the interfaces, which number L− 1 for L layers,

S = S1 ? S2 ? · · · ? SL−1 . (3.11)

Once we obtain this final S matrix, the transmitted and reflected wave amplitudes can be
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obtained from Eq. (3.3). For unit-amplitude monochromatic incidence from a single direc-

tion, we have

T = Suuδ0 , and R = Sduδ0 . (3.12)

3.2.3 Results

The S-matrix implementation was tested using the photonic structures shown in Fig.

3.4 from [9]. The results shown in Figs. 3.5 and 3.6 for TE- and TM-polarized incidence

respectively, show a sharp drop in transmission at a very small incidence angle. The fre-

quency at this resonance is called the Dirac point, and it is in agreement with [9].

3.3 Fields within the structure: The big matrix approach

Since the amplitude coefficients of the internal layers are eliminated, the S-matrix

method does not facilitate the process of obtaining the fields inside the structure. To calcu-

late these fields, we need an equation that expresses the amplitude coefficients of a layer in

terms of the coefficients of an adjacent layer, which can be done by converting the S-matrix

into a transmission or T-matrix, which appears in the relation

Cρ = TCρ−1 . (3.13)

However, the transmission matrix includes exponentially diverging products of Φ(z) and

is numerically unstable. This inability of the S-matrix to resolve the fields inside the struc-

ture arisees because it is calculated recursively. Each star product in the formulation is

equivalent to adding a single layer. The impact of the fields in the remaining layers is then

adjusting in the later products. This step-by-step approach can be avoided by building a

large matrix containing the eigenvector matrices of all the layers so that when it is applied
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(a)

(b)

FIG. 3.4: (a) D’Aguanno et al. [9, Fig. 1a]. Structure for the results shown in Figs. 3.5

with the following parameters: number of rows Nr = 5, r/a = 0.2, a = 1 µm, and relative

permittivity of columns ε = 12.5. (b) Structure for the plots in Figs. 3.6. Correctly labelled

version of [9, Fig. 7a] with parameters: Nr = 5, r/a = 0.2, ε = 11.4.
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(a) (b)

FIG. 3.5: Transmission spectrum for TE-polarized incidence on 2D gratings shown in

Fig. 3.4a. Reproduction of (a) [9, Fig. 2] and (b) [9, Fig. 1b].

(a) (b)

FIG. 3.6: Reproduction of the transmission efficiency plots for TM-polarized incidence on

2D gratings shown in Fig. 3.4b. Compare with (a) [9, Fig. 7c] and (b) [9, Fig. 7b]
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to the known incident fields we obtain a solution that includes the coefficients for all layers

of the grating. This approach is called the big matrix approach. The big matrix approach is

computationally more expensive than the S-matrix approach because it is necessary to use

Gaussian elimination to solve a large matrix. Since the complexity of Gaussian elimination

is O(n3), it is more efficient to carry out L such operations on n × n matrices (as done in

the S-matrix calculations) than a single operation on a matrix with size Ln×Ln. However,

due to its greater numerical stability it yields an accurate calculation of the field distribution

within the grating.

We first define a column matrix F that contains the field amplitudes incident at every

interface. These fields are only present for the first and last interfaces at the start of the

calculation. For the solution, we define a column matrix C that holds the amplitude coeffi-

cients of all layers and add two more entries for the outgoing waves R and T which allow

us to calculate the final reflected and transmitted amplitudes. We now write,

C =



I+

R

c2
+

c2
−

c3
+

...

cL−1
+

cL−1
−

T

I−

R

T



, F =



Einc

Hinc

0

0

0
...

0

0

0

0

0

0



. (3.14)
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Here, the entire matrix C is considered to be unknown even though we do know that I+ =

δ0 and I− = 0 in most cases. Next we obtain a matrix B that can be used to find the

incident fields such that

BC = F , or C = B−1F . (3.15)

3.3.1 The big matrix for a single layer

To begin with a simple example, we first express B for 1D gratings. The goal is

to express the fields at every interface using the coefficients available in C. For the first

interface, from the incidence layer (at z = 0−) we obtain

W1 W1

V1 −V1

I+

R

−
W1

−V1

R =

Einc

Hinc

 . (3.16a)

Looking at the same interface from the grating layer (z = 0+) we obtain

−

W1 W1

V1 −V1

I+

R

+

W2 W2X

V2 −V2X

c2
+

c2
−

 =

0

0

 . (3.16b)

Similarly, assuming no incidence from the transmission side, the fields at the second inter-

face are,

−

W2X W2

V2X −V2

c2
+

c2
−

+

W3 W3

V3 −V3

T

0

 =

0

0

 , (3.16c)

−

W3 W3

V3 −V3

T

0

+

W3

V3

T =

0

0

 . (3.16d)
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The column matrices from (3.14) become C =
[
δ0 R c2

+ c2
− T 0 R T

]T

and F =
[
Einc Hinc 0 0 0 0 0 0

]T
in this case. Now if we arrange the layer

eigenvector matrices from equations (3.16) such that

B =



W1 W1 0 0 0 0 −W1 0

V1 −V1 0 0 0 0 V1 0

−W1 −W1 W2 W2X2 0 0 0 0

−V1 V1 V2 −V2X2 0 0 0 0

0 0 −W2X2 −W2 W3 W3 0 0

0 0 −V2X2 V2 V3 −V3 0 0

0 0 0 0 −W3 −W3 0 W3

0 0 0 0 −V3 V3 0 V3



, (3.17)

we find that Eq. (3.15) is satisfied. In fact B is just an expression of the four parts of

Eq. (3.16) in a single matrix equation.

3.3.2 The general case

From the definition of B we find that each layer has its own smaller 4× 2 sub-matrix

embedded in B. We denote these sub-matrices with a lowercase bρ where ρ indicates the

layer. We may now write,

bρ =


Wρ WρXρ

Vρ −VρXρ

−WρXρ −Wρ

−VρXρ Vρ


. (3.18)
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After arranging the sub-matrices b inside B, we add to B the last two columns, which

contain the eigenvector matrices for the reflected and transmitted waves.

To calculate the fields, we use the approach that was presented in section 2.2.5. There

are many layers in the grating so that for Eq. (2.27), we have ρ = 1, 2, . . . , L. Hence, we

must slightly modify Φρ(z). The matrix Cρ contains the forward- and backward-travelling

amplitude coefficients of the layer ρ at its starting and ending interface respectively. Hence,

the z-coordinate for each layer must be corrected by subtracting the z-coordinate at the start

of that layer. So our modified definition becomes,

Φρ(z) =

φρ(z − zρ) 0

0 Xρφρ(zρ − z)

 (3.19)

for zρ−1 < z < zρ.

The rest of the process to calculate the fields is the same. For any point (x, z), we first

figure out the layer to which it belongs, after which all the fields can be computed by using

Eq. (2.27) for that layer,

Ψρ(x, z) = Φx(x)MρΦρ(z)Cρ . (3.20)

3.3.3 Results

To plot the fields for the structures shown in Fig. 3.4, we use the big matrix formula-

tion. To find the Dirac point for the structures, we could use the S-matrix (Fig. 3.5) since

the diffraction efficiencies calculated by the methods are consistent, and the S-matrix is

faster. The results shown in Figs. 3.7 and 3.8 clearly show the expected accumulation of

the fields at the Dirac point. Note the change in scale of the color plot.
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(a) (b)

FIG. 3.7: Field distribution for the photonic structure in Fig. 3.4a with TE-polarized in-

cidence. Electric field intensity at the Dirac point for (a) normal incidence and for (b)

θ = 0.1◦.

(a) (b)

FIG. 3.8: Field distribution for the photonic structure in Fig. 3.4b with TM-polarized

incidence. Electric field intensity at the Dirac point for (a) normal incidence and for (b)

θ = 0.1o .



Chapter 4

3D GRATINGS

In this chapter, we further extend our algorithm. We will analyze a grating that is

periodic in both the x- and y-directions, so that the permittivity can vary across three di-

mensions. Nearly any photonic structure can be analyzed using the methods developed in

this section, but the period of the structure must still remain constant along the direction of

propagation. Here, we will only discuss the solution for a single layer. Techniques devel-

oped in Chapter 3 can then be applied to study multiple layers. A rudimentary formulation

was first developed by Noponen and Turunen [4] in 1994. Later, the idea was improved by

Li [5] and a correction for the Fourier series of the permittivity distribution was introduced

that is similar to the correction that was described in Section 2.3.

We begin by taking a closer look at the geometry. Figure 4.1 shows an example of

a three-dimensional (3D) grating. The grating profile has a thickness h, and the grating

separates two semi-infinite dielectric media with refractive indices nI for z < 0, and nII for

z > h.

The approach to calculate efficiencies and fields inside this structure remains similar

to the methods used for a grating layer that we discussed in the Chapter 2. The Fourier

series of the grating permittivity function is estimated and the resulting eigenvalue equa-

tion is solved once the boundary conditions are incorporated. Finally, the reflection and

36
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FIG. 4.1: Schematic representation of a doubly periodic, binary surface-relief grating [4,

Fig. 1].

transmission coefficients are obtained. However, due to the bi-directional periodicity of the

structure, the coefficients are two-dimensional.

4.1 Reflected and Transmitted Fields

If Rmn and Tmn are the reflected and transmitted field coefficients, the electric fields

in the homogeneous regions ER and ET can be expressed as,

ER(r) =
∑

m,n
Rmn exp(jkI,mn · r) , (4.1a)

ET (r) =
∑

m,n
Tmn exp(jkII,mn · r) , (4.1b)

whereNx andNy are odd, andm and n are integers in the range [−(Nx−1)/2, (Nx−1)/2]

and [−(Ny−1)/2, (Ny−1)/2] respectively, whereNx andNy are the number of diffraction

orders that will be included in the calculations along the x- and y-direction respectively.



38

The wavevector kρ,mn = kxmn x̂ + kymn ŷ − kρ,zmn ẑ with

kxmn = nIk0 sin θ cosφ+ 2πm/Dx , (4.2a)

kymn = nIk0 sin θ sinφ− 2πn/Dy , (4.2b)

and

kρ,zmn =
[
(k0nρ)

2 − k2xm − k2yn
]1/2

. (4.2c)

The magnetic fields can be obtained, using Eq. (1.5a) which yields,

HR(r) =
j

k0

∑
m,n

kI,mn ×Rmn exp(jkI,mn · r) , (4.3a)

HT (r) =
j

k0

∑
m,n

kII,mn ×Tmn exp(jkII,mn · r) . (4.3b)

The matrices, with elements Rmn, Tmn, and kρ,mn, of sizeNx×Ny are reshaped to column

vectors, which reduces the two coefficients to a single index p = nNx +m. These matrices

are now of size Nt × 1 where the total number of orders is Nt = NxNy, and the index p is

an integer in [−(Nt − 1)/2, (Nt − 1)/2].

Due to the orthogonality of modes, we can find the z-component from the x- and

y-components of the field amplitude coefficients using kp · Cp = 0. So we define the

amplitude coefficient matrices as a column matrix C =
[
Cx Cy

]T
. A similar treatment is

given to the matrices for the fields E and H. Hence, we may express the magnetic field in

region ρ as

Hρ = VρEρ , (4.4)
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where

V =

Vxx Vxy

Vyx Vyy

 . (4.5)

The (p, p) elements of the constituent diagonal matrices become

Vxx,p = j
kxpkyp
k0kzp

, Vxy,p = j
k2yp + k2zp
k0kzp

, (4.5a)

Vyx,p = j
k2xp + k2zp
k0kzp

, Vyy,p = −Vxx,p . (4.5b)

We also define the diagonal matrix Ky with the elements Kyq = jkyq/k0 and Kx is defined

in Eq. (2.7).

4.2 Fourier transforms of the permittivity function

In order to take into consideration the correct rules for transforming a product of two

functions that we presented in Section 2.3.2, we must define some additional matrices for

the Fourier series of the permittivity. The permittivity is now a function of both x and y

and has to be transformed in both directions, so that

εm,n =
1

DxDy

∫ Dy

0

∫ Dx

0

ε(x, y) exp

[
−j2π

(
mx

Dx

+
ny

Dy

)]
dx dy , (4.6)

where m,n go from−(N`−1) to (N`−1) along their respective dimensions ` = x, y. The

coefficients are then arranged in an Nt × Nt Toeplitz matrix JεKp,q = JεKmn,jl = εm−j,n−l

where p and q are the 1D indices that are obtained by rearranging the 2D indices mn and

jl as p = nNx +m and q = lNy + j.

Analytical expressions for two-dimensional structures are not generally available, but
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the FFT makes computation of Fourier coefficients relatively straightforward. To apply

it to a structure, we first determine the number of equidistant sampling points in a single

period along both the directions of periodicity. If the structure is sampled at NNx and NNy

points along x- and y-directions respectively, the permittivity function ε(x, y) of a single

period may be arranged in a NNx × NNy matrix. The FFT is applied to this matrix along

both dimensions and only the central −(Nl − 1) to (Nl − 1) orders along either direction

are considered in the later calculations. The elimination of higher order terms contributes

to minimizing the error while the use of large number of sampling points makes it possible

to obtain a greater spatial resolution when defining the permittivity distribution.

Two dimensions also complicates the imposition of the continuity condition for the

product εE. Since the field Ex is discontinuous along the x-direction, and the field Ey

is discontinuous along the y-direction, we must transform the permittivity in x using the

inverse rule for a product of type εEx, while for εEy we must transform the permittivity in

y using the inverse rule. We now define notations which were introduced by Li [5]. The

1D transforms in x and y are denoted using d·e and b·c respectively.

dεemn =
1

Dx

∫ Dx

0

ε(x, y) exp

[
−j2π (m− n)x

Dx

]
dx , (4.7a)

bεcmn =
1

Dy

∫ Dy

0

ε(x, y) exp

[
−j2π (m− n)y

Dy

]
dy . (4.7b)

Hence the quantities dζe−1 and bζc−1 are the algebraic inverses of the Fourier domain

inverse permittivity matrices. Applying the transform in the remaining dimension to these

matrices yields the required permittivity components that have been transformed using the

inverse rule in only one direction. Explicitly, we find

bdεecmn,jl = b{dζe−1}mjcnl =
1

Dy

∫ Dy

0

{dζe−1}mj(y) exp

[
−j2π (n− l)y

Dy

]
dy , (4.8a)
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dbεcemn,jl = d{bζc−1}mjenl =
1

Dx

∫ Dx

0

{bζc−1}mj(x) exp

[
−j2π (n− l)x

Dx

]
dx . (4.8b)

4.3 The Eigenvalue Equation

Inside the grating structure, Eq. (1.5) defines the behaviour of the fields. Writing the

individual components of these equations and eliminating the z-component, we obtain

∂zEx = k0Hy + ∂x[(k0ε)
−1(∂xHy − ∂yHx)] ,

∂zEy = −k0Hx + ∂y[(k0ε)
−1(∂xHy − ∂yHx)] ,

∂zHx = k0εEy + ∂x[(k0)
−1(∂xEy − ∂yEx)] ,

∂zHy = −k0εEx + ∂y[(k0)
−1(∂xEy − ∂yEx)] .

(4.9)

Using the same matrix rearrangement and permittivity transforms that we introduced be-

fore, these equations can be reduced to concise matrix equations

∂zE = k0

 −KxJεK−1Ky I + KxJεK−1Kx

−I−KyJεK−1Ky KyJεK−1Kx

H = k0FH , (4.10a)

∂zH = k0

 −KxKy dbεce+ K2
x

−bdεec −K2
y KyKx

E = k0GE . (4.10b)

Eliminating H, we arrive at the eigenvalue equation

∂2zE = k20FGE . (4.11)

Hence, setting A = FG we can using the same ideas that were developed in the previous

sections. As before, we find that Γ is a diagonal matrix with the square root of the eigen-
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values γm of A. The columns of W are the propagating electric field modes in the grating

region and the magnetic field modes V can be obtained from Eq. (4.10a) or Eq. (4.10b).

However, it is preferable to use

V = −GWΓ−1 , (4.12)

since it only requires the inversion of a diagonal matrix.

The different layers of the structure can now be combined using either approach dis-

cussed in Chapter 3. Finally, we note that R =
[
Rx Ry Rz

]T
and T =

[
Tx Ty Tz

]T

also have a z-component that must be considered when calculating the efficiencies. Due to

the orthogonality of modes, we find that

kIz,pRz,p = kxpRx,p + kypRy,p , (4.13a)

−kIIz,pTz,p = kxpTx,p + kypTy,p . (4.13b)

4.4 Fields in 3D

As discussed previously, to obtain a picture of the fields inside the structure the big

matrix approach must be used. The arrangement of eigenmatrices W and V to form B

is the same as shown in Section 3.3. However, to obtain the fields from the amplitude

coefficients, we must slightly modify the procedure described in Section 2.2.5.

The Ψ matrix should now contain all 3 components of the magnetic and electric fields,

so that Ψ =
[
Ex Ey Ez Hx Hy Hz

]T
. For the added z-components we must define

Wz and Vz. From Maxwell’s equations, we have

k0εEz = ∂xHy − ∂yHx , (4.14a)

k0Hz = ∂xEy − ∂yEx , (4.14b)
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from which we obtain

Wz = JεK−1
[
−Ky Kx

]
V , (4.15a)

Vz =
[
−Ky Kx

]
W . (4.15b)

Using these definitions, the M matrix to calculate the field amplitude coefficients now

becomes

M =


W W

Wz −Wz

V −V

Vz Vz


. (4.16)

The phase matrices are similar to ones used in section 2.2.5. The only change is the intro-

duction of Φy(y) which is required due to the periodicity in y. Thus, the fields at any point

in or around a structure simulated using this algorithm can be calculated as

Ψ(x, y, z) = Φx(x)Φy(y)MΦz(z)C . (4.17)



Chapter 5

A NOVEL METAMATERIAL ABSORBER

5.1 Introduction

Research in electromagnetic absorbers has a long history, dating back to the Salisbury

absorber in 1952 [15]. The development of negative refractive index metamaterials was a

breakthrough in this technology. Negative index materials were first conceived by Vesalago

in 1968 [16], but it was not until 2000 that an experimental demonstration was obtained

[17]. Subwavelength structures to produce a desired electromagnetic response in materials

and devices continues to be a subject of considerable interest. Along with many possible

exotic electromagnetic effects, metamaterials can be optimized for perfect absorption. The

first such metamaterial absorber was developed in 2008 [18], experimentally achieving

88% absorption at microwave frequencies. Similar absorbers in the terahertz (THz) [19],

infrared (IR) [20] and visible [21] regions followed soon thereafter. The applications of

these materials are widespread and include solar light harvesting [22], thermophotovoltaic

cells [23], selective thermal emitters [24], optoelectronic devices [25], plasmonic sensors

[26], and stealth applications [27]. The first generation of metamaterial absorbers was

based on split ring resonance or electric ring resonance mechanisms, but this approach

is difficult to implement in practice as the wavelength becomes shorter. More recently,

based on a better understanding of photonic crystals and nano-scale fabrication, new and

44
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improved metamaterials to obtain specialized absorption spectra across a wider frequency

range have been obtained. Polarization-independent, ultra-broadband absorption, which is

the focus of this study, has been achieved in the gigahertz (GHz) [28] and terahertz (THz)

[29] regime using metamaterials. However, producing similar effects in the visible and

near-IR regions using efficient and cost-effective means is still a challenge. This paper

describes a realistic approach to meet this challenge.

Recent studies into stratified metal-dielectric metamaterials have uncovered an effi-

cient means of absorbing light at ultraviolet to near-infrared wavelengths [30, 31]. Con-

sider a periodic sequence of elementary cells comprised of a thin metal layer sandwiched

between two identical dielectric layers. Such a stratified, symmetric elementary cell acts

as an equivalent bulk material with a single effective characteristic impedance and Bloch

wave vector [32]. If the impedance of these metamaterials is matched to that of free space

(incidence medium), all incident radiation will enter the material. The metal layers then

absorb the radiation through ohmic loss [30]. Any number of the elementary cells may be

stacked on top of each other, depending on the thickness and absorption requirements, as

shown in Fig. 5.1a. The fabrication of these metamaterials can be achieved using simple,

low-cost techniques like thermal evaporation or standard sputtering [33].

Impedance-matched metamaterials are inherently non-resonant absorbers, active over

a broad bandwidth; however, the reflectivity of the metal layers dominates over the absorp-

tion as we venture deeper into the infrared region. In such a case, it seems reasonable to

hypothesize that an effective anti-reflection coating would further improve the bandwidth

and peak absorption. One of the ways to reduce reflection without adding more layers or

compromising on the impedance matching is by imprinting “moth-eye” structures, shown

schematically in Fig. 5.1b, through the top few elementary cells.

In the 1960s [34], it was discovered that corneal nipple patterns in the eyes of in-

sects, and more specifically nocturnal moths, help them see clearly in the dark while also
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FIG. 5.1: Schematic illustrations of the metamaterials and incidence geometry. (a) Lateral

view of impedance matched metal-dielectric metamaterials with a flat surface (left) and

moth-eye surface (right). The elementary cell has a period Λ, and it consists of a metal layer

of thickness dM sandwiched between dielectric layers of thickness dD. For the truncated

conical pillars that form the moth-eye surface (right), the variables r1 and r2 are the radius

at the top and bottom respectively and h is the height of the pillars. The geometry for

TE-polarized incidence is also shown. (b) Top and 3D view of moth-eye surfaces obtained

by arranging the truncated conical pillars in a triangular lattice with periods Dx and Dy =
√

3Dx in the x- and y-directions respectively. The polarization angle φ is shown here for

normal incidence.
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avoiding predation [35]. Later, with the advent of better fabrication technology, biomimetic

structures based on this design were found to be effective in reducing Fresnel reflections at

optical interfaces [36]. These moth-eye surfaces have recently been demonstrated to reduce

coupling losses at the end faces of optical fibers [37] as well as the reflection glare from

modern electronic displays [38]. They can be imprinted on an existing material using laser

writing [39] or nanoimprint lithography [40] and directly imprinted on flat impedance-

matched metamaterials.

In this study, we approximate these structures as truncated cones, shown in Fig. 5.1a,

that are arranged as shown in Fig. 5.1b. At wavelengths that are longer than the dimensions

of the moth-eye structures, these surfaces can be simply modeled and reduce reflection by

producing a gradual refractive index gradient at the interface. However, when the dimen-

sions of these structures are on the order of the wavelength of the incident light, full-wave

computational methods must be employed in order to model their reflection, transmission

and absorption properties accurately. For the results that follow, we have used our own

implementation of the rigorous coupled-wave algorithm (RCWA) that was discussed in the

preceding chapters. The MATLAB implementation has been included in Appendix A.

In the following section, we discuss the design of an improved metamaterial by com-

bining the concept of impedance-matched metallo-dielectric metamaterials [30] and AR

moth-eye structures. We demonstrate the possibility of achieving broad-angle, polarization

independent absorbers over a broad wavelength range that spans 500 nm to 6 µm.

5.2 Results and Discussion

We next show that imprinting moth-eye structures on the first few layers of impedance

matched metamaterials significantly broadens the material’s absorption spectrum. We

model two impedance-matched metal-dielectric metamaterials, one with a moth-eye sur-
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FIG. 5.2: The absorption spectrum for the Cu-based metamaterial that we consider with

TE-polarized incidence (φ = 90◦). The elementary cell in this metamaterial has metal

layers of thickness, dM = 10 nm and SiO2 layers of thickness, dD = 30 nm. The moth-eye

surface has a height h = 280 nm, periods Dx = 300 nm and Dy = 520 nm, and radii

r1 = 50 nm and r2 = 145 nm.

face and the other with a flat surface. We simulate the effects of monochromatic incidence

from θ = 0◦ to θ ≈ 90◦ on these metamaterials and plot the absorption spectrum as shown

in Figs. 5.2 and 5.3.

The metamaterial with a flat surface is the same as sample 2 from [30]. It consists of

10 repetitions of the elementary cell made up of a 10 nm layer of copper (Cu) between 30

nm layers of SiO2 (Λ = 70 nm) on a quartz substrate with an index of refraction n = 1.52.

The moth-eye metamaterial has its first 4 repetitions of the elementary cell imprinted into

truncated pillars and arranged on a triangular lattice to form the moth-eye surface. The

lattice periods are chosen as Dx = 300 nm and Dy = 520 nm, while the radii at top and

bottom are taken as 50 nm and 145 nm respectively. The periodicity, height, and radii of

the pillars can all be modified in principle to tune the absorption spectrum.

Along with Cu, we also consider metamaterials with tungsten (W) as the metal
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FIG. 5.3: Same as Fig. 5.2 with TM-polarization (φ = 0◦).

FIG. 5.4: The absorption spectrum for the W-based metamaterials that we consider with

TE-polarized incidence. Structure parameters, dM = 5 nm, dD = 75 nm, h = 620 nm,

Dx = 834 nm, Dy = 1444 nm, r1 = 236 nm, and r2 = 383 nm.
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FIG. 5.5: Same as Fig. 5.4 with TM-polarization.

(Figs. 5.4 and 5.5). The elementary cell based on W is composed of a 5-nm layer of

the metal surrounded by 75 nm layers of Ta2O5. Since the flat metamaterial based on W is

known to have a longer central wavelength and broader spectrum than the Cu-based meta-

material, the lattice periods are chosen to be Dx = 834 nm and Dy = 1444 nm. The radii

are similarly adjusted with r1 = 236 nm and r2 = 383 nm. No substrate is present, and the

output medium is air with an index of refraction n = 1.

We use the data of Palik [14] and Ordal et al. [41] to obtain the dispersion of Cu

and W respectively. Since the thickness of the metal layers is on the order of the electron

mean free path, the Fuchs-Sondheimer theory [42] should be used for the Drude model

calculations. Hence, the data for the bulk metals has been adjusted for thin metal films

using the methodology elaborated in [30]. The refractive index for SiO2 comes from the

Sellmeier equation [43] and for Ta2O5 from [44]. The plots for the metamaterials with a

flat surface closely match the results shown in Figs. 9 and 10 of [30], and the absorption

spectrum with the moth-eye surfaces is greatly broadened as anticipated.

In Fig. 5.6, in order to better understand the impact of impedance matching and anti-

reflection, we show the absorption for flat films and moth-eye structures that are entirely
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(a) (b)

(c) (d)

FIG. 5.6: The absorption spectrum for the non-impedance-matched all-metal films and

moth-eye structures. (a) Moth-eye surfaces made entirely of Cu with TM-polarized in-

cidence. (b) Moth-eye surfaces made entirely from W with TE-polarized incidence. (c)

700 nm thick Cu-film with TM-polarized incidence. (d) 1550 nm thick W-film with TE-

polarized incidence. The dimensions for the moth-eye surfaces are outlined in Fig. 5.2 for

(a) and Fig. 5.4 for (b) with a transmission region of the same metal. Transmission region

for (c) and (d) is air.
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composed of metal. The dimensions of these materials, like the thickness of the film, radii

and periods of the moth-eyes are equivalent to their corresponding metal-dielectric struc-

tures. The results show a much weaker absorption profile for the metal films and no signif-

icant broadening with the metal moth-eye surfaces. We conclude that the ultra-broadband

absorption that is shown in Figs. 5.2 to 5.5 is not just due to the metal or moth-eye surface,

but is due to a combination of impedance-matched metal-dielectric metamaterials and the

moth-eye surface. A clearer picture on how that happens can be obtained by examining the

field distribution inside the metamaterials.

In Figs. 5.7 and 5.8, we show the intensity of the electric field and the ohmic loss

[equal to Im(ε) |E|2] distribution within the metamaterials. We focus on two incident wave-

lengths each for the Cu-based and W-based metamaterials. These wavelengths are chosen

such that the shorter of the two lies within the absorption spectrum of the flat as well as the

moth-eye metamaterial. The other wavelength is absorbed only by the moth-eye metama-

terial. We chose wavelengths of 0.5 µm, and 1.2 µm for the Cu-based metamaterials, and

we choose 2.5 µm, and 5 µm for the W-based metamaterials.

In the flat metamaterial, the maximum attenuation always occurs in the first metal

layer and successively decreases with each layer. Moreover, the peak absorption in the

first metal layer is not significantly reduced even at the longer wavelength. However, the

penetration is reduced because the first layer now reflects much of the light, and the energy

carried by the light never reaches the other metal layers (shown by the broken lines in

Figs. 5.7 and 5.8). Hence, the total absorption is reduced.

For the moth-eye surface, we look at the fields in a plane dividing the pillars in two

vertical halves. The solid line traces the projection of the truncated pillars on this plane.

In this case, the moth-eye surface act like a lens, focusing the incident energy at just a few

spots inside the structure. Hence, a greater amount of energy passes through the metal,

which produces higher loss that is also heavily concentrated in a few layers.
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(a) (b)

(c) (d)

FIG. 5.7: Electric field intensity and ohmic loss distribution for Cu-based metamaterials.

(a) λ = 0.5 µm, absorption > 99%. (b) λ = 0.5 µm, absorption ≈ 95%. (c) λ = 1.2 µm,

absorption ≈ 99%. (d) λ = 1.2 µm, absorption ≈ 20%.
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(a) (b)

(c) (d)

FIG. 5.8: Electric field intensity and ohmic loss distribution for W-based metamaterials.

(a) λ = 2.5 µm, absorption ≈ 90%. (b) λ = 2.5 µm, absorption ≈ 90%. (c) λ = 5 µm,

absorption > 99%. (d) λ = 5 µm, absorption ≈ 15%.
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5.3 Conclusion

We have proposed and computationally analyzed a novel approach to achieve absorp-

tion over a wide spectrum by combining two independent mechanisms: (a) metal-dielectric

impedance-matched metamaterials and (b) anti-reflective moth-eye structures. The analy-

sis was done using the RCWA [1, 5] method, which was developed in-house and validated

by comparison with experimental results. Our implementation was then applied to the

proposed designs.

By testing the hypothesis on structures that we designed using the metals Cu and W,

we found that moth-eye surfaces imprinted on impedance-matched metal-dielectric meta-

materials can greatly broaden the absorption bandwidth of the corresponding flat metama-

terial. By simulating the absorption spectrum of all metal films and moth-eye structures, we

also confirmed that neither the metal nor the moth-eye structures alone are the cause of the

broadening. Finally, by generating a visual representation of the electric field distribution

inside the metamaterials, we provided an understanding of the loss mechanism behind this

phenomenon.

We have computationally demonstrated a practical and cost-efficient approach to

obtain polarization-independent, non-resonant, broadband absorption. Similar to flat

impedance-matched metamaterials, the absorption of the moth-eye metamaterial is also in-

dependent of the substrate and can be used as a thin film to cover other materials. The fabri-

cation of planar multilayer materials can be achieved through standard sputtering or thermal

evaporation techniques [33], and fabrication of moth-eye structures based on nanopillars

with dimensions on the order of a few hundred nm is well within the reach of current nano-

lithography techniques. Moreover, while we have studied metals here, the same concepts

and designs can be exploited using semiconductor materials in their absorption band. In

this case, instead of being dissipated through ohmic losses in the metal, the light can be
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harvested to create electron-hole pairs in the semiconductor material for efficient infrared

detectors, night vision cameras, or solar cell applications.



Appendix A

MATLAB SCRIPTS

We present two example scripts that we used to simulate the response of the moth-eye

metamaterial absorber discussed in Chapter 5. Listing A.1 plots the absorption spectrum of

the W-based moth-eye metamaterials shown in Fig. 5.4 and the script in A.2 recreates the

field distribution for Cu-based moth-eye metamaterial at wavelength of 500 nm Fig. 5.7a.

Listing A.1: MATLAB script to recreate Fig. 5.4

%% Inputs and Structure Parameters

y = 700.1:10:6250.1; % Range of wavelength in nm

% Angles

th = 0:0.25:89.75; % Incidence Angle (deg)

phi = 0; % Angle between 'x' axis and plane of incidence (deg)

psi = 90; % Polarization angle (deg) 0 -> TM, 90 -> TE

% Unit cell parameters

mlt = 2.78; % Scaling factor for the hexagonal unit cell

D_x = 300; % Length of one period in 'x'

D_x = 2*round(D_x*mlt/2); % Scaled and rounded to nearest even number

D_y = 2*round(sqrt(3)*D_x/2); % Length of one period in 'y'
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% Metal-dielectric metamaterials

D_m = 5; % Thickness of metal layer in 'z'

D_d = 75; % Thickness of dielectric layer in 'z'

NN_z = 6; % Number of uncarved unit cells (after the moth-eyes)

% NN_z = 10; for uncarved % NN_z = 0; for metal moth-eyes on metal

substrate

% Moth-eye Structures

N_m = 4; % = 0; for uncarved % Number of elementary cells carved into

pillars

r_1 = 85*mlt; % Radius of pillars at top

r_2 = 138*mlt; % Radius of pillars at bottom

N_zd = 3; % Number of slices of the dielectric layer (calculates radius,

increase for accuracy)

D_z = N_m*(2*D_d+D_m); % Thickness of moth-eye structure in 'z'

N_z = N_m*(2*N_zd+1); % Number of layers in one carved elementary cell

h_zd = D_d/N_zd; % Resolution in 'z' for carved dielectric layers

h_z = repmat([repmat(h_zd,1,N_zd),D_m,repmat(h_zd,1,N_zd)],1,N_m); %

Height of each carved layer

z_l = [0,cumsum(h_z(1:N_z-1))]; % 'z' coordinate of each carved layer

r_z = interp1([0,D_z-h_zd],[r_1,r_2],z_l); % Radius of pillars for each

carved layer

N_l = N_z+3*NN_z+2; % Total layers

% Fourier modes to consider in calculations (ODD)

N_x = 9; %=1; for uncarved % Number of Fourier modes in x direction

N_y = 9; %=1; for uncarved % Number of Fourier modes in y direction

Nt = N_x*N_y;

% Preallocations

ky = 2*pi./y; % Wavenumbers
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I = eye(Nt); II = eye(2*Nt); % Identity matrices

ZZ = zeros(2*Nt);

EPS = zeros(Nt,Nt,N_z);

EPSyx = zeros(Nt,Nt,N_z);

EPSxy = zeros(Nt,Nt,N_z);

W = zeros(2*Nt,2*Nt,N_l);

V = zeros(2*Nt,2*Nt,N_l);

X = zeros(2*Nt,2*Nt,N_l);

DEr = zeros(length(y),length(th),length(psi));

DEt = zeros(length(y),length(th),length(psi));

% Foruier mode numbers and arrays

mx = (-(N_x-1)/2:(N_x-1)/2)';

my = (-(N_y-1)/2:(N_y-1)/2);

m0x = (N_x+1)/2;

m0y = (N_y+1)/2;

m0 = (Nt+1)/2;

%% Wavelength based permittivity

% Metal (with thin layer correction)

load Tu.txt; % Taken from refractiveindex.info

Me = interp1(Tu(:,1),Tu,y/1000); % Interpolation of experimental data

Metal = (Me(:,2) + 1i*Me(:,3)).ˆ2; Metal = Metal.';

kkk = D_m/19; % Thickness of W layer divided mean free path of W

kky = 1000*ky;

fi = (1./kkk+3/4*(1-1/12*kkk.ˆ2).*expint(kkk)-3./(8*kkk.ˆ2).*(1-exp(-kkk

))-(5./(8*kkk)+1/16-kkk/16).*exp(-kkk)).ˆ-1;

wp = 0.79; % Plasma frequency in micronˆ-1

gamma = 39.79*10ˆ-4; gammakk = gamma*fi/kkk;
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epsDrude = 1-(wpˆ2)./((kky/(2*pi)).ˆ2+1i*(kky/(2*pi))*gamma); % Drude

model for the Bulk

epsDrudekk = 1-(wpˆ2)./((kky/(2*pi)).ˆ2+1i*(kky/(2*pi))*gammakk); %

Drude Model corrected for the thin layer

epsMetal = Metal-epsDrude+epsDrudekk;

% Dielectric

load Ta2O5_n.txt; load Ta2O5_k.txt; % Taken from refractiveindex.info

De = interp1(Ta2O5_n(:,1),[Ta2O5_n(:,2),Ta2O5_k(:,2)],y/1000);

eps_d = (De(:,1) + 1i*De(:,2)).ˆ2;

%% Index profile of moth eye structures

% Build the moth-eye structure as a binary 3D matrix

indexProfLog = false(D_x,D_y,N_z);

% Hexagon vertice positions

centre = [D_x,D_y]/2;

for nn=1:N_z

r = round(r_z(nn));

% Pillars

[rr,cc] = meshgrid(1:2*r+1);

circ = (rr-1-r).ˆ2+(cc-1-r).ˆ2<=rˆ2;

% Positioning the pillars

indexProfLog((centre(1)-r):(centre(1)+r),(centre(2)-r):(centre(2)+r)

,nn) = circ;

indexProfLog(1:r,1:r,nn) = indexProfLog(1:r,1:r,nn) | circ(r+2:2*r

+1,r+2:2*r+1);
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indexProfLog(1:r,D_y-r:D_y,nn) = indexProfLog(1:r,D_y-r:D_y,nn) |

circ(r+2:2*r+1,1:r+1);

indexProfLog(D_x-r:D_x,D_y-r:D_y,nn) = indexProfLog(D_x-r:D_x,D_y-r:

D_y,nn) | circ(1:r+1,1:r+1);

indexProfLog(D_x-r:D_x,1:r,nn) = indexProfLog(D_x-r:D_x,1:r,nn) |

circ(1:r+1,r+2:2*r+1);

end

%% Begin loop in wavelength

for yy=1:length(y)

uy = y(yy)/1000; % Wavelength in micron

%% Structure Analysis

% Permittivity and refractive indices

n_1 = 1; % Refractive index of incidence medium

n_3 = 1; % Refractive index of transmission medium

% n_3 = conj(epsMetal(yy))ˆ2; for metal as substrate/

transmission medium

e_m = epsMetal(yy); % Permittivty of metal for current

wavelength

e_d = eps_d(yy); % Permittivity of dielectric layer (Ta2O5)

% e_d = e_m; for all metal moth-eyes

e_f = 1; % Permittivity of material between pillars

e_p = repmat([repmat(conj(e_d),N_zd,1);conj(e_m);repmat(conj(e_d

),N_zd,1)],N_m,1);

% Permittivity matrices for each layer

indexProf = ones(D_x,D_y);

for nn=1:N_z
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indexProf(indexProfLog(:,:,nn)) = e_p(nn);

indexProf(˜indexProfLog(:,:,nn)) = e_f;

eps_fft = fftshift(fft2(indexProf))/(D_x*D_y);

eps_mn = eps_fft(D_x/2+2-N_x:D_x/2+N_x,D_y/2+2-N_y:D_y

/2+N_y);

for pp = 1:N_x

for qq = 1:N_y

EE = rot90(eps_mn(pp:pp+N_x-1,qq:qq+N_y

-1),2);

EPS(pp+N_x*(qq-1),:,nn) = reshape(EE

,1,[]);

end

end

i_iepsx_mj = zeros(N_x,D_y,N_x);

iepsx_fft = fftshift(fft(indexProf.ˆ(-1),[],1),1)/D_x;

for qq=1:D_y

iepsx_m = iepsx_fft(D_x/2+2-N_x:D_x/2+N_x,qq);

iepsx_mj = toeplitz(iepsx_m(N_x:2*N_x-1),flip(

iepsx_m(1:N_x)));

i_iepsx_mj(:,qq,:) = inv(iepsx_mj);

end

epsxy_fft = fftshift(fft(i_iepsx_mj,[],2),2)/D_y;

epsxy_mnj = epsxy_fft(:,D_y/2+2-N_y:D_y/2+N_y,:);

E4 = zeros(N_x,N_y,N_x,N_y);
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for pp = 1:N_x

for qq = 1:N_x

E4(pp,:,qq,:) = toeplitz(epsxy_mnj(pp,

N_y:2*N_y-1,qq),flip(epsxy_mnj(pp,1:

N_y,qq)));

end

end

EPSxy(:,:,nn) = reshape(E4,[N_x*N_y,N_x*N_y]);

i_iepsy_nl = zeros(D_x,N_y,N_y);

iepsy_fft = fftshift(fft(indexProf.ˆ(-1),[],2),2)/D_y;

for pp=1:D_x

iepsy_n = iepsy_fft(pp,D_y/2+2-N_y:D_y/2+N_y);

iepsy_nl = toeplitz(iepsy_n(N_y:2*N_y-1),flip(

iepsy_n(1:N_y)));

i_iepsy_nl(pp,:,:) = inv(iepsy_nl);

end

epsyx_fft = fftshift(fft(i_iepsy_nl,[],1),1)/D_x;

epsyx_mnl = epsyx_fft(D_x/2+2-N_x:D_x/2+N_x,:,:);

E4 = zeros(N_x,N_y,N_x,N_y);

for rr = 1:N_y

for ss = 1:N_y

E4(:,rr,:,ss) = toeplitz(epsyx_mnl(N_x

:2*N_x-1,rr,ss),flip(epsyx_mnl(1:N_x
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,rr,ss)));

end

end

EPSyx(:,:,nn) = reshape(E4,[N_x*N_y,N_x*N_y]);

end

%% Begin loop in polarization and incidence angle

for ss=1:length(psi)

for tt=1:length(th)

% Incident Field

u_x = cosd(psi(ss))*cosd(phi)*cosd(th(tt)) -

sind(psi(ss))*sind(phi);

u_y = cosd(psi(ss))*sind(phi)*cosd(th(tt)) +

sind(psi(ss))*cosd(phi);

% Wavenumber Matrices

k_0 = ky(yy);

k_xi = k_0*n_1*sind(th(tt))*cosd(phi) + 2*pi*mx/

D_x;

k_yi = k_0*n_1*sind(th(tt))*sind(phi) + 2*pi*my/

D_y;

k_x_mn = reshape(repmat(k_xi,1,N_y),[],1);

k_y_mn = reshape(repmat(k_yi,N_x,1),[],1);

k_1_zmn = conj(((n_1*k_0)ˆ2*ones(Nt,1) - k_x_mn

.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));

k_d_zmn = conj((e_d*(k_0)ˆ2*ones(Nt,1) - k_x_mn

.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));
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k_m_zmn = conj((e_m*(k_0)ˆ2*ones(Nt,1) - k_x_mn

.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));

k_3_zmn = conj(((n_3*k_0)ˆ2*ones(Nt,1) - k_x_mn

.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));

K_x = 1i*diag(k_x_mn/k_0);

K_y = 1i*diag(k_y_mn/k_0);

%% Eigenmatrices

% Eigenvalue formulation for the grating region

for nn=1:N_z

F11 = -K_x*(EPS(:,:,nn)\K_y);

F12 = I + K_x*(EPS(:,:,nn)\K_x);

F21 = -I - K_y*(EPS(:,:,nn)\K_y);

F22 = K_y*(EPS(:,:,nn)\K_x);

F = [F11 F12;F21 F22];

G11 = -K_x*K_y;

G12 = EPSyx(:,:,nn) + K_xˆ2;

G21 = -EPSxy(:,:,nn) - K_yˆ2;

G22 = K_x*K_y;

G = [G11 G12;G21 G22];

[W(:,:,nn+1), Q] = eig(F*G);

Q = (sqrt(Q));

qm = diag(Q);

V(:,:,nn+1) = -G*W(:,:,nn+1)/Q;

X(:,:,nn+1) = diag(exp(-k_0*qm*h_z(nn)))

;

end
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% Eigenmatrices for reflection and transmission

layers

W(:,:,1) = II;

W(:,:,N_l) = II;

VIxx = (1i/k_0)*diag((k_x_mn.*k_y_mn)./k_1_zmn);

VIxy = (1i/k_0)*diag((k_y_mn.ˆ2 + k_1_zmn.ˆ2)./

k_1_zmn);

VIyx = -(1i/k_0)*diag((k_x_mn.ˆ2 + k_1_zmn.ˆ2)./

k_1_zmn);

VIyy = -VIxx;

V(:,:,1) = [VIxx VIxy;VIyx VIyy];

X(:,:,1) = II;

VIIxx = (1i/k_0)*diag((k_x_mn.*k_y_mn)./k_3_zmn)

;

VIIxy = (1i/k_0)*diag((k_y_mn.ˆ2 + k_3_zmn.ˆ2)./

k_3_zmn);

VIIyx = -(1i/k_0)*diag((k_x_mn.ˆ2 + k_3_zmn.ˆ2)

./k_3_zmn);

VIIyy = -VIIxx;

V(:,:,N_l) = [VIIxx VIIxy;VIIyx VIIyy];

X(:,:,N_l) = II;

% Eigenmatrices for the uncarved layers

for nn=1:3*NN_z

if (mod(nn+1,3))==0

k_n_zmn = k_m_zmn;

D_n = D_m;

else
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k_n_zmn = k_d_zmn;

D_n = D_d;

end

W(:,:,1+N_z+nn) = II;

Vnxx = (1i/k_0)*diag((k_x_mn.*k_y_mn)./

k_n_zmn);

Vnxy = (1i/k_0)*diag((k_y_mn.ˆ2 +

k_n_zmn.ˆ2)./k_n_zmn);

Vnyx = -(1i/k_0)*diag((k_x_mn.ˆ2 +

k_n_zmn.ˆ2)./k_n_zmn);

Vnyy = -Vnxx;

V(:,:,1+N_z+nn) = [Vnxx Vnxy;Vnyx Vnyy];

X(:,:,1+N_z+nn) = diag(exp(-1i*[k_n_zmn;

k_n_zmn]*D_n));

end

%% S matrix calculation

% Preallocating

Suu = II;

Sud = ZZ;

Sdu = ZZ;

Sdd = II;

for ll=1:N_l-1

S = [W(:,:,ll+1) -W(:,:,ll);V(:,:,ll+1)

V(:,:,ll)]\[W(:,:,ll)*X(:,:,ll) -W

(:,:,ll+1)*X(:,:,ll+1);V(:,:,ll)*X

(:,:,ll) V(:,:,ll+1)*X(:,:,ll+1)];

% Cascade the next interface to the
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current S matrix

Auu = Suu;

Aud = Sud;

Adu = Sdu;

Add = Sdd;

Buu = S(1:2*Nt,1:2*Nt);

Bud = S(1:2*Nt,2*Nt+1:4*Nt);

Bdu = S(2*Nt+1:4*Nt,1:2*Nt);

Bdd = S(2*Nt+1:4*Nt,2*Nt+1:4*Nt);

Suu = Buu*((II-Aud*Bdu)\Auu);

Sud = Bud+(Buu*Aud*((II-Bdu*Aud)\Bdd));

Sdu = Adu+(Add*Bdu*((II-Aud*Bdu)\Auu));

Sdd = Add*((II-Bdu*Aud)\Bdd);

end

%% Efficiency

R_xy = u_x*Sdu(:,m0)+u_y*Sdu(:,Nt+m0);

T_xy = u_x*Suu(:,m0)+u_y*Suu(:,Nt+m0);

R_z = (k_x_mn./k_1_zmn).*R_xy(1:Nt) + (k_y_mn./

k_1_zmn).*R_xy(Nt+1:2*Nt);

T_z = -(k_x_mn./k_3_zmn).*T_xy(1:Nt) - (k_y_mn./

k_3_zmn).*T_xy(Nt+1:2*Nt);

R_xyz = [R_xy;R_z]; T_xyz = [T_xy;T_z];

DEri = real([(k_1_zmn/k_1_zmn(m0));(k_1_zmn/

k_1_zmn(m0));(k_1_zmn/k_1_zmn(m0))]).*(R_xyz

.*conj(R_xyz));
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DEti = real([(k_3_zmn/k_1_zmn(m0));(k_3_zmn/

k_1_zmn(m0));(k_3_zmn/k_1_zmn(m0))]).*(T_xyz

.*conj(T_xyz));

DEr(yy,tt,ss) = sum(DEri(:));

DEt(yy,tt,ss) = sum(DEti(:));

[num2str(yy),'/',num2str(length(y)),', ',num2str

(tt),'/',num2str(length(th))] % Display

progress

end

end

end

%% Plot

% Angular Spectrum

pp = 1; % Select the polarization for the plot in terms of psi(pp)

figure('Units','inches','Position',[5 2 6 5]);

h = pcolor(y/1000,th,(1-DEr(:,:,pp)-DEt(:,:,pp))');

set(h,'linestyle','none');

set(gca,'fontsize',20);

colormap('jet');

bb = colorbar;

bb.Label.String = 'Absorption';

bb.Label.Rotation = 270;

clims = get(gca,'clim');

bb.Label.Position = [3.75,(clims(1)+clims(2))/2,0];

caxis([0,1]);

xlabel('\lambda (\mum)');

ylabel('\theta (ˆo)');
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% Line Plot

tt = 1; % [1,121,241]; % Incidence angles to be plotted in terms of th(

tt)

figure('Units','inches','Position',[5 2 6 5]);

plot(y/1000,1-DEr(:,tt(1),pp)-DEt(:,tt(1),pp),'linewidth',2);

hold on

for aa=2:length(tt)

plot(y/1000,1-DEr(:,tt(aa),pp)-DEt(:,tt(aa),pp),'-.r','linewidth',2)

;

end

xlim([min(y),max(y)]/1000);

xlabel('\lambda (\mum)');

ylabel('Absorption');

title(['\psi = ',num2str(psi(pp)),'\circ']);

set(gca,'fontsize',20);

ylim([0,1]);

labels = cell(size(tt));

for aa=1:length(tt)

labels(aa) = {['\theta = ',num2str(th(tt(aa))),'\circ']};

end

legend(labels);

Listing A.2: MATLAB script to recreate Fig. 5.7a

%% Inputs and Structure Parameters

y = 500; % Range of wavelength in nm

% Angles

th = 0; % Incidence Angle (deg)

phi = 0; % Angle between 'x' axis and plane of incidence (deg)

psi = 90; % Polarization angle (deg) 0 -> TM, 90 -> TE
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% Unit cell parameters

mlt = 1; % Scaling factor for the hexagonal unit cell

D_x = 300; % Length of one period in 'x'

D_x = 2*round(D_x*mlt/2); % Scaled and rounded to nearest even number

D_y = 2*round(sqrt(3)*D_x/2); % Length of one period in 'y'

% Metal-dielectric metamaterials

D_m = 10; % Thickness of metal layer in 'z'

D_d = 30; % Thickness of dielectric layer in 'z'

NN_z = 6; % =10; for uncarved % Number of uncarved unit cells (after the

moth-eyes)

% Moth-eye Structures

N_m = 4; % =0; for uncarved % Number of elementary cells carved into

pillars

r_1 = 50*mlt; % Radius of pillars at top

r_2 = 145*mlt; % Radius of pillars at bottom

N_zd = 3; % Number of slices of the dielectric layer (calculates radius,

increase for accuracy)

D_z = N_m*(2*D_d+D_m); % Thickness of moth-eye structure in 'z'

N_z = N_m*(2*N_zd+1); % Number of layers in one carved elementary cell

h_zd = D_d/N_zd; % Resolution in 'z' for carved dielectric layers

h_z = repmat([repmat(h_zd,1,N_zd),D_m,repmat(h_zd,1,N_zd)],1,N_m); %

Height of each carved layer

z_l = [0,cumsum(h_z(1:N_z-1))]; % 'z' coordinate of each carved layer

r_z = interp1([0,D_z-h_zd],[r_1,r_2],z_l); % Radius of pillars for each

carved layer

N_l = N_z+3*NN_z+2; % Total layers

% Fourier modes to consider in calculations (ODD)
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N_x = 9; %=1; for uncarved % Number of Fourier modes in x direction

N_y = 9; %=1; for uncarved % Number of Fourier modes in y direction

Nt = N_x*N_y;

% Preallocations

ky = 2*pi./y; % Wavenumbers

I = eye(Nt); II = eye(2*Nt); % Identity matrices

ZZ = zeros(2*Nt); zz = zeros(2*Nt,1);

EPS = zeros(Nt,Nt,N_l);

EPSyx = zeros(Nt,Nt,N_z);

EPSxy = zeros(Nt,Nt,N_z);

W = zeros(2*Nt,2*Nt,N_l);

V = zeros(2*Nt,2*Nt,N_l);

X = zeros(2*Nt,2*Nt,N_l);

qm = zeros(2*Nt,N_l);

% Foruier mode numbers and arrays

mx = (-(N_x-1)/2:(N_x-1)/2)';

my = (-(N_y-1)/2:(N_y-1)/2);

m0x = (N_x+1)/2;

m0y = (N_y+1)/2;

m0 = (Nt+1)/2;

%% Wavelength based permittivity

% Metal (with thin layer correction)

load Cu.txt; % Taken from refractiveindex.info

Me = interp1(Cu(:,1),Cu,y/1000); % Interpolation of experimental data

Metal = (Me(:,2) + 1i*Me(:,3)); Metal = Metal.';

kkk = D_m/39; % Thickness of W layer divided mean free path of W

kky = 1000*ky;
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fi = (1./kkk+3/4*(1-1/12*kkk.ˆ2).*expint(kkk)-3./(8*kkk.ˆ2).*(1-exp(-kkk

))-(5./(8*kkk)+1/16-kkk/16).*exp(-kkk)).ˆ-1;

wp = 6.5; % Plasma frequency in micronˆ-1

gamma = 12*10ˆ-2; gammakk = gamma*fi/kkk;

epsDrude = 1-(wpˆ2)./((kky/(2*pi)).ˆ2+1i*(kky/(2*pi))*gamma); % Drude

model for the Bulk

epsDrudekk = 1-(wpˆ2)./((kky/(2*pi)).ˆ2+1i*(kky/(2*pi))*gammakk); %

Drude Model corrected for the thin layer

epsMetal = Metal-epsDrude+epsDrudekk;

%% Index profile of moth eye structures

% Build the moth-eye structure as a binary 3D matrix

indexProfLog = false(D_x,D_y,N_z);

% Hexagon vertice positions

centre = [D_x,D_y]/2;

for nn=1:N_z

r = round(r_z(nn));

% Pillars

[rr,cc] = meshgrid(1:2*r+1);

circ = (rr-1-r).ˆ2+(cc-1-r).ˆ2<=rˆ2;

% Positioning the pillars

indexProfLog((centre(1)-r):(centre(1)+r),(centre(2)-r):(centre(2)+r)

,nn) = circ;

indexProfLog(1:r,1:r,nn) = indexProfLog(1:r,1:r,nn) | circ(r+2:2*r

+1,r+2:2*r+1);
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indexProfLog(1:r,D_y-r:D_y,nn) = indexProfLog(1:r,D_y-r:D_y,nn) |

circ(r+2:2*r+1,1:r+1);

indexProfLog(D_x-r:D_x,D_y-r:D_y,nn) = indexProfLog(D_x-r:D_x,D_y-r:

D_y,nn) | circ(1:r+1,1:r+1);

indexProfLog(D_x-r:D_x,1:r,nn) = indexProfLog(D_x-r:D_x,1:r,nn) |

circ(1:r+1,r+2:2*r+1);

end

%% Structure Analysis

uy = y/1000; % Wavelength in micron

% Permittivity and refractive indices

n_1 = 1; % Refractive index of incidence medium

n_3 = sqrt(1 + 0.28604141 + 1.07044083/(1 - 1.00585997e-2/uyˆ2) +...

1.10202242/(1 - 100/uyˆ2)); % Refractive index for transmission

medium (quartz)

e_m = epsMetal; % Permittivty of metal for current wavelength

e_d = 1 + 0.6961663/(1-(0.0684043/uy)ˆ2) + ...

0.4079426/(1 - (0.1162414/uy)ˆ2) + 0.8974794/(1 - (9.896161/uy)

ˆ2); % Permittivity of dielectric layer (SiO2)

e_f = 1; % Permittivity of material between pillars

e_p = repmat([repmat(conj(e_d),N_zd,1);conj(e_m);repmat(conj(e_d),N_zd

,1)],N_m,1);

% Permittivity matrices for each layer

indexProf = ones(D_x,D_y);

for nn=1:N_z

indexProf(indexProfLog(:,:,nn)) = e_p(nn);

indexProf(˜indexProfLog(:,:,nn)) = e_f;
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eps_fft = fftshift(fft2(indexProf))/(D_x*D_y);

eps_mn = eps_fft(D_x/2+2-N_x:D_x/2+N_x,D_y/2+2-N_y:D_y/2+N_y);

for pp = 1:N_x

for qq = 1:N_y

EE = rot90(eps_mn(pp:pp+N_x-1,qq:qq+N_y-1),2);

EPS(pp+N_x*(qq-1),:,nn+1) = reshape(EE,1,[]);

end

end

i_iepsx_mj = zeros(N_x,D_y,N_x);

iepsx_fft = fftshift(fft(indexProf.ˆ(-1),[],1),1)/D_x;

for qq=1:D_y

iepsx_m = iepsx_fft(D_x/2+2-N_x:D_x/2+N_x,qq);

iepsx_mj = toeplitz(iepsx_m(N_x:2*N_x-1),flip(iepsx_m(1:N_x)));

i_iepsx_mj(:,qq,:) = inv(iepsx_mj);

end

epsxy_fft = fftshift(fft(i_iepsx_mj,[],2),2)/D_y;

epsxy_mnj = epsxy_fft(:,D_y/2+2-N_y:D_y/2+N_y,:);

E4 = zeros(N_x,N_y,N_x,N_y);

for pp = 1:N_x

for qq = 1:N_x

E4(pp,:,qq,:) = toeplitz(epsxy_mnj(pp,N_y:2*N_y-1,qq),flip(

epsxy_mnj(pp,1:N_y,qq)));

end

end
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EPSxy(:,:,nn) = reshape(E4,[N_x*N_y,N_x*N_y]);

i_iepsy_nl = zeros(D_x,N_y,N_y);

iepsy_fft = fftshift(fft(indexProf.ˆ(-1),[],2),2)/D_y;

for pp=1:D_x

iepsy_n = iepsy_fft(pp,D_y/2+2-N_y:D_y/2+N_y);

iepsy_nl = toeplitz(iepsy_n(N_y:2*N_y-1),flip(iepsy_n(1:N_y)));

i_iepsy_nl(pp,:,:) = inv(iepsy_nl);

end

epsyx_fft = fftshift(fft(i_iepsy_nl,[],1),1)/D_x;

epsyx_mnl = epsyx_fft(D_x/2+2-N_x:D_x/2+N_x,:,:);

E4 = zeros(N_x,N_y,N_x,N_y);

for rr = 1:N_y

for ss = 1:N_y

E4(:,rr,:,ss) = toeplitz(epsyx_mnl(N_x:2*N_x-1,rr,ss),flip(

epsyx_mnl(1:N_x,rr,ss)));

end

end

EPSyx(:,:,nn) = reshape(E4,[N_x*N_y,N_x*N_y]);

end

%% Initializing variables

% Incident Field

u_x = cosd(psi)*cosd(phi)*cosd(th) - sind(psi)*sind(phi);
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u_y = cosd(psi)*sind(phi)*cosd(th) + sind(psi)*cosd(phi);

inc = zz; inc(m0) = u_x; inc(Nt+m0) = u_y;

% Wavenumber Matrices

k_0 = ky;

k_xi = k_0*n_1*sind(th)*cosd(phi) + 2*pi*mx/D_x;

k_yi = k_0*n_1*sind(th)*sind(phi) + 2*pi*my/D_y;

k_x_mn = reshape(repmat(k_xi,1,N_y),[],1);

k_y_mn = reshape(repmat(k_yi,N_x,1),[],1);

k_1_zmn = conj(((n_1*k_0)ˆ2*ones(Nt,1) - k_x_mn.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));

k_d_zmn = conj((e_d*(k_0)ˆ2*ones(Nt,1) - k_x_mn.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));

k_m_zmn = conj((e_m*(k_0)ˆ2*ones(Nt,1) - k_x_mn.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));

k_3_zmn = conj(((n_3*k_0)ˆ2*ones(Nt,1) - k_x_mn.ˆ2 - k_y_mn.ˆ2).ˆ(1/2));

K_x = 1i*diag(k_x_mn/k_0);

K_y = 1i*diag(k_y_mn/k_0);

%% Eigenmatrices

for nn=1:N_z

% Eigenvalue formulation for the grating region

F11 = -K_x*(EPS(:,:,nn+1)\K_y);

F12 = I + K_x*(EPS(:,:,nn+1)\K_x);

F21 = -I - K_y*(EPS(:,:,nn+1)\K_y);

F22 = K_y*(EPS(:,:,nn+1)\K_x);

F = [F11 F12;F21 F22];

G11 = -K_x*K_y;

G12 = EPSyx(:,:,nn) + K_xˆ2;

G21 = -EPSxy(:,:,nn) - K_yˆ2;
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G22 = K_x*K_y;

G = [G11 G12;G21 G22];

[W(:,:,nn+1), Q] = eig(F*G);

Q = (sqrt(Q));

qm(:,nn+1) = diag(Q);

V(:,:,nn+1) = -G*W(:,:,nn+1)/Q;

X(:,:,nn+1) = diag(exp(-k_0*qm(:,nn+1)*h_z(nn)));

end

% Eigenmatrices for reflection and transmission layers

W(:,:,1) = II;

W(:,:,N_l) = II;

EPS(:,:,1) = n_1ˆ2*I;

VIxx = (1i/k_0)*diag((k_x_mn.*k_y_mn)./k_1_zmn);

VIxy = (1i/k_0)*diag((k_y_mn.ˆ2 + k_1_zmn.ˆ2)./k_1_zmn);

VIyx = -(1i/k_0)*diag((k_x_mn.ˆ2 + k_1_zmn.ˆ2)./k_1_zmn);

VIyy = -VIxx;

V(:,:,1) = [VIxx VIxy;VIyx VIyy];

qm(:,1) = 1i*[k_1_zmn;k_1_zmn]/k_0;

X(:,:,1) = II;

EPS(:,:,N_l) = n_3ˆ2*I;

VIIxx = (1i/k_0)*diag((k_x_mn.*k_y_mn)./k_3_zmn);

VIIxy = (1i/k_0)*diag((k_y_mn.ˆ2 + k_3_zmn.ˆ2)./k_3_zmn);

VIIyx = -(1i/k_0)*diag((k_x_mn.ˆ2 + k_3_zmn.ˆ2)./k_3_zmn);

VIIyy = -VIIxx;

V(:,:,N_l) = [VIIxx VIIxy;VIIyx VIIyy];

qm(:,N_l) = 1i*[k_3_zmn;k_3_zmn]/k_0;

X(:,:,N_l) = II;
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% Eigenmatrices for the uncarved layers

for nn=1:3*NN_z

if (mod(nn+1,3))==0

k_n_zmn = k_m_zmn;

D_n = D_m;

EPS(:,:,1+N_z+nn) = conj(e_m)*I;

else

k_n_zmn = k_d_zmn;

D_n = D_d;

EPS(:,:,1+N_z+nn) = conj(e_d)*I;

end

W(:,:,1+N_z+nn) = II;

Vnxx = (1i/k_0)*diag((k_x_mn.*k_y_mn)./k_n_zmn);

Vnxy = (1i/k_0)*diag((k_y_mn.ˆ2 + k_n_zmn.ˆ2)./k_n_zmn);

Vnyx = -(1i/k_0)*diag((k_x_mn.ˆ2 + k_n_zmn.ˆ2)./k_n_zmn);

Vnyy = -Vnxx;

V(:,:,1+N_z+nn) = [Vnxx Vnxy;Vnyx Vnyy];

qm(:,1+N_z+nn) = 1i*[k_n_zmn;k_n_zmn]/k_0;

X(:,:,1+N_z+nn) = diag(exp(-1i*[k_n_zmn;k_n_zmn]*D_n));

end

%% Big matrix calculation

% Preallocation

B = repmat(ZZ,2*(N_l+1),2*(N_l+1));

% Building B using b

for ll=1:N_l

b = [W(:,:,ll) W(:,:,ll)*X(:,:,ll);

V(:,:,ll) -V(:,:,ll)*X(:,:,ll);
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-W(:,:,ll)*X(:,:,ll) -W(:,:,ll);

-V(:,:,ll)*X(:,:,ll) V(:,:,ll)];

B(4*(ll-1)*Nt+1:4*(ll+1)*Nt,4*(ll-1)*Nt+1:4*ll*Nt) = b;

end

% The final two columns

b_l=[-W(:,:,1), ZZ;

V(:,:,1), ZZ;

repmat(ZZ,2*(N_l-1),2);

ZZ, W(:,:,N_l);

ZZ, V(:,:,N_l)];

B(:,4*N_l*Nt+1:4*(N_l+1)*Nt) = b_l; % The BIG matrix

% Incident field matrix

Ein = inc;

Hin = V(:,:,1)*Ein;

Fin = [Ein;Hin;repmat(zz,2*N_l,1)]; % Fields in each layer at incidence

C = B\Fin; % Column matrix with wave amplitudes for each layer

% Reflected and transmitted fourier modes

Cc = reshape(C,4*Nt,N_l+1); % Rearrange

Cc(2*Nt+1:4*Nt,N_l) = zz; % Forcing incidence from transmission layer to

0

R_xy = Cc(1:2*Nt,N_l+1);

T_xy = Cc(2*Nt+1:4*Nt,N_l+1);

%% Efficiency
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R_z = (k_x_mn./k_1_zmn).*R_xy(1:Nt) + (k_y_mn./k_1_zmn).*R_xy(Nt+1:2*Nt)

;

T_z = -(k_x_mn./k_3_zmn).*T_xy(1:Nt) - (k_y_mn./k_3_zmn).*T_xy(Nt+1:2*Nt

);

R_xyz = [R_xy;R_z]; T_xyz = [T_xy;T_z];

DEri = real([(k_1_zmn/k_1_zmn(m0));(k_1_zmn/k_1_zmn(m0));(k_1_zmn/

k_1_zmn(m0))]).*(R_xyz.*conj(R_xyz));

DEti = real([(k_3_zmn/k_1_zmn(m0));(k_3_zmn/k_1_zmn(m0));(k_3_zmn/

k_1_zmn(m0))]).*(T_xyz.*conj(T_xyz));

DEr = sum(DEri(:));

DEt = sum(DEti(:));

Abs = 1-DEr-DEt

%% Fields

% Layer hieght array

h_l = [h_z,repmat([D_d,D_m,D_d],1,NN_z)];

% Layer permittivity array

eps_l = [n_1ˆ2;e_p;repmat(conj([e_d;e_m;e_d]),NN_z,1);n_3ˆ2];

% Space parameters

rz = 2; % Resolution in 'z'

zStart = -20; % Start plotting from this z coordinate

zEnd = sum(h_l) - zStart; % Stop plotting at this z coordinate

z = zStart:rz:zEnd;

rx = 5; % Resolution in 'x'

x = 1:rx:D_x-rx+1; % Need to compute just a single period
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ry = 2; % Resolution in 'y'

y = D_y/2;

zi = 1; % Starting z index

ll = 1; % Starting layer

% z coordinate for the end of each layer

z_l = cumsum([0,h_l,Inf]);

% Preallocating field magnitude matrices

eps_z = zeros(length(x),length(y),length(z));

E_x = zeros(length(x),length(y),length(z));

E_y = zeros(length(x),length(y),length(z));

E_z = zeros(length(x),length(y),length(z));

H_x = zeros(length(x),length(y),length(z));

H_y = zeros(length(x),length(y),length(z));

H_z = zeros(length(x),length(y),length(z));

E_v = zeros(length(x),length(y),length(z),3);

H_v = zeros(length(x),length(y),length(z),3);

S_v = zeros(length(x),length(y),length(z),3);

while zi<=length(z)

% Propagation in z

if z(zi)<z_l(ll)

p_z = exp(-k_0*qm(:,ll)*(z(zi)-z_l(ll-(ll˜=1))));

Phi_z = diag([p_z;X(:,:,ll)*p_z.ˆ(-1)]);

M = [W(:,:,ll), W(:,:,ll);

EPS(:,:,ll)\[-K_y,K_x]*V(:,:,ll), -EPS(:,:,ll)\[-K_y,K_x]*V

(:,:,ll);
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V(:,:,ll), -V(:,:,ll);

[-K_y,K_x]*W(:,:,ll), [-K_y,K_x]*W(:,:,ll)];

Psi_z = M*Phi_z*Cc(:,ll); % Field amplitude coefficients at

(*,*,z) in the incidence layer

for yi=1:length(y)

p_y = exp(-k_0*diag(K_y)*y(yi)); % Propagation in x

Phi_y = diag(repmat(p_y,6,1));

Psi_yz = Phi_y*Psi_z; % Field amplitude coefficients at (*,y

,z)

for xi=1:length(x)

p_x = exp(-k_0*diag(K_x)*x(xi)); % Propagation in x

Phi_x = diag(repmat(p_x,6,1));

Psi_xyz = Phi_x*Psi_yz; % Field amplitude coefficients

at (x,y,z)

% Separating the field components from \Psi(x,z)

E_x(xi,yi,zi) = sum(Psi_xyz(1:Nt));

E_y(xi,yi,zi) = sum(Psi_xyz(Nt+1:2*Nt));

E_z(xi,yi,zi) = sum(Psi_xyz(2*Nt+1:3*Nt));

H_x(xi,yi,zi) = sum(Psi_xyz(3*Nt+1:4*Nt));

H_y(xi,yi,zi) = sum(Psi_xyz(4*Nt+1:5*Nt));

H_z(xi,yi,zi) = sum(Psi_xyz(5*Nt+1:6*Nt));

E_v(xi,yi,zi,:) = [E_x(xi,yi,zi),E_y(xi,yi,zi),E_z(xi,yi

,zi)];

H_v(xi,yi,zi,:) = [H_x(xi,yi,zi),H_y(xi,yi,zi),H_z(xi,yi

,zi)];
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S_v(xi,yi,zi,:) = 0.5*real(cross(E_v(xi,yi,zi,:),conj(

H_v(xi,yi,zi,:))));

if(z(zi)<D_z && z(zi)>0)

if(indexProfLog(round(x(xi)),round(y(yi)),ll-1))

eps_z(xi,yi,zi) = eps_l(ll);

else

eps_z(xi,yi,zi) = e_f;

end

else

eps_z(xi,yi,zi) = eps_l(ll);

end

end

end

zi = zi + 1;

else

ll = ll + 1;

end

end

%% Losses

absE2 = [];

imagEps = [];

absE2(:,:) = abs(E_x(:,1,:)).ˆ2 + abs(E_y(:,1,:)).ˆ2 + abs(E_z(:,1,:))

.ˆ2;

imagEps(:,:) = abs(imag(eps_z(:,1,:)));

ohmL = imagEps.*absE2;

%% Plot

figure('Units','inches','Position',[5 2 7 5]);

h = pcolor(z,x,ohmL);
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set(h,'linestyle','none');

set(gca,'fontsize',20);

colormap('jet');

bb = colorbar;

bb.Label.String = 'Im(\epsilon)|E|ˆ2';

bb.Label.Rotation = 270;

clims = get(gca,'clim');

bb.Label.Position = [3.5,(clims(1)+clims(2))/2,0];

xlabel('z (nm)');

ylabel('x (nm)');

figure('Units','inches','Position',[5 2 7 5]);

h = pcolor(z,x,absE2);

set(h,'linestyle','none');

set(gca,'fontsize',20);

colormap('jet');

bb = colorbar;

bb.Label.String = '|E|ˆ2';

bb.Label.Rotation = 270;

clims = get(gca,'clim');

bb.Label.Position = [3.75,(clims(1)+clims(2))/2,0];

xlabel('z (nm)');

ylabel('x (nm)');
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